CHAPTER

SAS Programs and Macro
Processing

Introduction 9
How SAS Processes Statements without Macro Activity 10
How SAS Processes Statements with Macro Activity 12

Introduction

This chapter describes a typical pattern that the SAS System follows to process a
program. These concepts are helpful in understanding how the macro processor works
with other parts of the SAS System. However, they are not required for most macro
programming. They are provided so that you can understand what is going on behind
the scenes.

Note: The concepts in this chapter present a logical representation, not a detailed
physical representation, of how SAS software works. A

When you submit a program, it goes to an area of memory called the input stack.
This is true for all program and command sources: the Display Manager, the SCL
SUBMIT block, the SCL COMPILE command, or from batch or noninteractive sessions.
The input stack shown in Figure 2.1 on page 10 contains a simple SAS program that
displays sales data. The first line in the program is the top of the input stack.

10 How SAS Processes Statements without Macro Activity A Chapter 2

Figure 2.1 Submitted Programs are Sent to the Input Stack

DATA Step Compiler SCL Compiler Macro Processor Command Processor

T

Word Scanner

Input Stack

data sales (drop=lastyr);

infile inl;

input ml-mi2 lastyr; total=mi2+lastyr;
run;
%let list=ml m7 m12 total

proc print;
var &list;
run;
A
f : Batch or
Display Manager . SCL Compile . .
Submit Command SCL Submit Block Command Nomn_tergctlve
Submission

Display Manager
Command Line

Once a program reaches the input stack, SAS transforms the stream of characters
into individual tokens. These tokens are transferred to different parts of the SAS
System for processing, such as the DATA step compiler, the macro processor, and the
SAS procedures. Knowing how SAS recognizes tokens and how they are transferred to
different parts of the SAS System will help you understand how the various parts of the
SAS System and the macro processor work together and how to control the timing of
macro execution in your programs. The following sections show you how a simple
program is tokenized and processed.

How SAS Processes Statements without Macro Activity

The process that SAS uses to extract words and symbols from the input stack is
called tokenization. Tokenization is performed by a component of SAS called the word
scanner, as shown in Figure 2.2 on page 11. The word scanner starts at the first
character in the input stack and examines each character in turn. In doing so, the word
scanner assembles the characters into tokens. There are four general types of tokens:

Literal
a string of characters enclosed in quotation marks.

SAS Programs and Macro Processing A How SAS Processes Statements without Macro Activity 1

Number
digits, date values, time values, and hexadecimal numbers.

Name
a string of characters beginning with an underscore or letter.

Special
any character or group of characters that have special meaning to the SAS
System, for example SAS operators. Examples of special characters include:

o

*/+_**;$()_&

For more information on tokens, see Appendix 2, “SAS Tokens.”

Figure 2.2 The Sample Program before Tokenization

(Word Scanner W

Input Stack

data sales (drop=lastyr);
infile inl;
input ml-ml2 lastyr;
total=ml2+lastyr;

run;

The first SAS statement in the input stack (Figure 2.2 on page 11) contains eight
tokens (four names and four special characters).

datasales(drop=lastyr) ;

When the word scanner finds a blank or the beginning of a new token, it removes a
token from the input stack and transfers it to the bottom of the queue.

In this example, when the word scanner pulls the first token from the input stack, it
recognizes the token as the beginning of a DATA step. The word scanner triggers the
DATA step compiler, which begins to request more tokens. The compiler pulls tokens
from the top of the queue, as shown in Figure 2.3 on page 12.

How SAS Processes Statements with Macro Activity A Chapter 2

Figure 2.3 The Word Scanner Obtains Tokens

(Compiler \ / Word Scanner \
C e

sales
(drop

lastyr

Ihgut Stack
) O
infile inl;
input ml-mi2 lastyr;
total=ml2+lastyr;

run;

The compiler continues to pull tokens until it recognizes the end of the DATA step (in
this case, the RUN statement), which is called a DATA step boundary, as shown in
Figure 2.4 on page 12. When the DATA step compiler recognizes the end of a step, the
step is executed, and the DATA step is complete.

Figure 2.4 The Word Scanner Sends Tokens to the Compiler

(Compiler \ f Word Scanner \
DATA SALES (DROP = LASTYR) ; “ ®
INFILE INZ;
INPUT M1 - M12 LASTYR ;
RUN

NS

Input Stack

In most SAS programs with no macro processor activity, all information that the
compiler receives comes from the submitted program.

How SAS Processes Statements with Macro Activity

In a program with macro activity, the macro processor can generate text that is
placed on the input stack to be tokenized by the word scanner. The example in this
section shows you how the macro processor creates and resolves a macro variable. To
illustrate how the compiler and the macro processor work together, Figure 2.5 on page
13 contains the macro processor and the macro variable symbol table. SAS creates the
symbol table at the beginning of a SAS session to hold the values of automatic and
global macro variables. SAS creates automatic macro variables at the beginning of a
SAS session. For the sake of illustration, the symbol table is shown with only one
automatic macro variable, SYSDAY.

SAS Programs and Macro Processing A How SAS Processes Statements with Macro Activity 13

Figure 2.5 The Macro Processor and Symbol Table

(Compiler \ W
K J Symbol Table

SYSDAY Friday

Macro Processor

Input Stack

Y%let file=inl;

data sales (drop=lastyr);
infile &file;
input ml-mi2 lastyr;
total=ml2+lastyr;

run;

Whenever the word scanner encounters a macro trigger, it sends information to the
macro processor. A macro trigger is either an ampersand (&) or percent sign (%)
followed by a nonblank character. As it did in the previous example, the word scanner
begins to process this program by examining the first characters in the input stack. In
this case, the word scanner finds a percent sign (%) followed by a nonblank character.
The word scanner recognizes this combination of characters as a potential macro
language element, and triggers the macro processor to examine the tokens % and then
LET, as shown in Figure 2.6 on page 13.

Figure 2.6 The Macro Processor Examines LET

(Compiler \
N)

f Word Scanner 1

Symbol Table
SYSDAY Friday

% J
y \
Macro Processor

Input Stack

@@e:inl;

data sales (drop=lastyr);
infile &file;
input ml-mi2 lastyr;
total=ml2+lastyr;

run;

When the macro processor recognizes a macro language element, it begins to work
with the word scanner. In this case, the macro processor removes the %LET statement,
and writes an entry in the symbol table, as shown in Figure 2.7 on page 14.

14

How SAS Processes Statements with Macro Activity A Chapter 2

Figure 2.7 The Macro Processor Writes to the Symbol Table

Compiler

\

.
N

J

(Word Scanner

<

Symbol Table

SYSDAY Friday
FILE

A

Macro Processor

Input Stack

inl;
data sales (drop=lastyr);
infile &file;
input ml-mi2 lastyr;
total=ml2+lastyr;
run;

From the time the word scanner triggers the macro processor until that macro
processor action is complete, the macro processor controls all activity. While the macro
processor is active, no activity occurs in the word scanner or the DATA step compiler.

When the macro processor is finished, the word scanner reads the next token (the
DATA keyword in this example) and sends it to the compiler. The word scanner triggers
the compiler, which begins to pull tokens from the top of the queue, as shown in Figure

2.8 on page 14.

Figure 2.8 The Word Scanner Resumes Tokenization

(Compiler

~

4 Word Scanner

N

N

@ Symbol Table
sales

(drop SYSDAY Friday
= FILE inl

lastyr
\ yr)

Input Stack

infile &file;

input ml-mi2 lastyr;

total=ml2+lastyr;

run;

As it processes each token, SAS removes the protection that the macro quoting
functions provide to mask special characters and mnemonic operators. For more

information, see Chapter 7, “Macro Quoting.”

SAS Programs and Macro Processing A How SAS Processes Statements with Macro Activity 15

If the word scanner finds an ampersand followed by a nonblank character in a token,
it triggers the macro processor to examine the next token, as shown in Figure 2.9 on
page 15.

Figure 2.9 The Macro Processor Examines &FILE

(Compiler \
kDATA SALES (DROP =LASTYR) ; j

Word Scanner

Symbol Table

SYSDAY Friday
FILE inl

infile
&

Macro Processor

/mﬁn Stack
e
input ml-mi2 lastyr;
total=mi2+lastyr;
run;

The macro processor examines the token and recognizes a macro variable that exists
in the symbol table. The macro processor removes the macro variable name from the
input stack and replaces it with the text from the symbol table, as shown in Figure 2.10
on page 15.

Figure 2.10 The Macro Processor Generates Text to the Input Stack

Compiler \ (W

kDATA SALES (DROP = LASTYR)) ; j

Symbol Table

SYSDAY _Friday

infile

v

F Macro Processor

it Stack
inl;
input ml-mi2 lastyr;
total=mi2+lastyr;
run;

The compiler continues to request tokens, and the word scanner continues to supply
them, until the entire input stack has been read (Figure 2.11 on page 16).

16 How SAS Processes Statements with Macro Activity A Chapter 2

Figure 2.11 The Word Scanner Completes Processing

(Compiler N 4 Word Scanner W

DATA SALES (DROP = LASTYR) : —r@n) p———
INFILE IN ? 4

INPUT ML - ML2 LASTYR; SYSDAY Friday
TOTAL = M12 + LASTYR FLE int

J
_
Input Stack

If the end of the input stack is a DATA step boundary, as it is in this example, the
compiler compiles and executes the step. SAS then frees the DATA step task. Any
macro variables that were created during the program remain in the symbol table. If the
end of the input stack is not a step boundary, the processed statements remain in the
compiler. Processing resumes when more statements are submitted to the input stack.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Macro Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999. 310 pages.
SAS Macro Language: Reference, Version 8

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.

1-58025-522-1

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any

means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

0S/2% is a registered trademark or trademark of International Business Machines
Corporation.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

