
17

C H A P T E R

3
Macro Variables

Introduction 17
Macro Variables Defined by the SAS System 18

Macro Variables Defined by Users 20

Creating Macro Variables and Assigning Values 20

Using Macro Variables 23

Combining Macro Variable References with Text 24
Delimiting Macro Variable Names within Text 25

Creating a Period to Follow Resolved Text 26

Displaying Macro Variable Values 26

Referencing Macro Variables Indirectly 27

Generating a Series of Macro Variable References with a Single Macro Call 27

Using More Than Two Ampersands 28
Manipulating Macro Variable Values with Macro Functions 28

Introduction

Macro variables are tools that enable you to dynamically modify the text in a SAS
program through symbolic substitution. You can assign large or small amounts of text
to macro variables, and after that, you can use that text by simply referencing the
variable that contains it.

Macro variable values have a maximum length of 32K characters. The length of a
macro variable is determined by the text assigned to it instead of an explicit length
declaration. So its length varies with each value it contains. Macro variables contain
only character data. However, the macro facility has features that allow a variable to be
evaluated as a number when it contains a value that can be interpreted as a number.
The value of a macro variable remains constant until it is explicitly changed. Macro
variables are independent of SAS data set variables.

Macro variables defined by macro programmers are called user-defined macro
variables. Those defined by the SAS System are called automatic macro variables. You
can define and use macro variables anywhere in SAS programs, except within data lines.

When a macro variable is defined, the macro processor adds it to one of the program’s
macro variable symbol tables. When a macro variable is defined in a statement that is
outside a macro definition (called open code) or when the variable is created
automatically by the SAS System (except SYSPBUFF), the variable is held in the global
symbol table, which SAS creates at the beginning of a SAS session. When a macro
variable is defined within a macro and is not explicitly defined as global, the variable is
typically held in the macro’s local symbol table, which SAS creates when the macro
starts executing. For more information about symbol tables, see Chapter 2, “SAS
Programs and Macro Processing” and Chapter 5, “Scope of Macro Variables.”

18 Macro Variables Defined by the SAS System 4 Chapter 3

When it is in the global symbol table, a macro variable exists for the remainder of
the current SAS session. A variable in the global symbol table is called a global macro
variable. It has global scope because its value is available to any part of the SAS session.

When it is in a local symbol table, a macro variable exists only during execution of
the macro in which it is defined. A variable in a local symbol table is called a local
macro variable. It has local scope because its value is available only until the macro
stops executing. Chapter 2 contains figures that illustrate a program with a global and
a local symbol table.

You can use the %PUT statement to view all macro variables available in a current
SAS session. See %PUT in Chapter 13, “Macro Language Dictionary,” and also in
Chapter 10, “Macro Facility Error Messages and Debugging.”

Macro Variables Defined by the SAS System
When you invoke SAS, the macro processor creates automatic macro variables that

supply information related to the SAS session. Automatic variables are global except
SYSPBUFF, which is local.

To use an automatic macro variable, reference it with an ampersand followed by the
macro variable name (for example, &SYSJOBID). This FOOTNOTE statement contains
references to the automatic macro variables SYSDAY and SYSDATE:

footnote "Report for &sysday, &sysdate";

If the current SAS session is invoked on December 17, 1996, macro variable
resolution causes SAS to receive this statement:

FOOTNOTE "Report for Tuesday, 17DEC96";

Automatic macro variables are often useful in conditional logic such as a %IF
statement with actions determined by the value that is returned. %IF is described in
Chapter 13.

You can assign values to automatic macro variables that have read/write status.
However, you cannot assign a value to an automatic macro variable that has read-only
status. Table 3.1 on page 18 lists the automatic macro variables that are supplied by
base SAS software and their read/write status. They are described in Chapter 13.

Use %PUT _AUTOMATIC_ to view all available automatic macro variables.
There are also system-specific macro variables that are created only on a particular

platform. These are documented in the host companion, and common ones are listed in
Chapter 11. Other SAS software products also provide macro variables, which are
described in the documentation for the product that uses them.

Table 3.1 Automatic Macro Variables by Category

Status Variable Contains

Read/Write SYSBUFFER unmatched text from %INPUT

SYSCC the current condition code that SAS returns to your
operating environment (the operating environment
condition code)

SYSCMD last unrecognized command from the command line
of a macro window

SYSDEVIC name of current graphics device

Macro Variables 4 Macro Variables Defined by the SAS System 19

Status Variable Contains

SYSDMG return code that reflects an action taken on a
damaged data set

SYSDSN name of most recent SAS data set in two fields

SYSFILRC return code set by the FILENAME statement

SYSLAST name of most recent SAS data set in one field

SYSLCKRC return code set by the LOCK statement

SYSLIBRC return code set by the LIBNAME statement

SYSMSG message for display in macro window

SYSPARM value specified with the SYSPARM= system option

SYSPBUFF text of macro parameter values

SYSRC various system-related return codes

Read-Only SYSCHARWIDTH the character width value

SYSDATE the character value representing the date a SAS job
or session began executing (two-digit year)

SYSDATE9 the character value representing the date a SAS job
or session began executing (four-digit year)

SYSDAY day of week SAS job or session began executing

SYSENV foreground or background indicator

SYSERR return code set by SAS procedures and the DATA
step

SYSINDEX number of macros that have begun execution during
this session

SYSINFO return code information

SYSJOBID name of current batch job or userid (varies by host
environment)

SYSMENV current macro execution environment

SYSPROCESSID the process id of the current SAS process

SYSPROCESSNAME the process name of the current SAS process

SYSSCP the abbreviation of an operating system

SYSSCPL the name of an operating system

SYSSITE the number assigned to your site

SYSSTARTID the id generated from the last STARTSAS statement

SYSSTARTNAME the process name generated from the last
STARTSAS statement

SYSTIME the character value of the time a SAS job or session
began executing

SYSUSERID the userid or login of the current SAS process

20 Macro Variables Defined by Users 4 Chapter 3

Status Variable Contains

SYSVER release or version number of SAS software executing

SYSVLONG release number and maintenance level of SAS
software

Macro Variables Defined by Users

You can create your own macro variables, change their values, and define their scope.
You can define a macro variable within a macro, and you can also explicitly define it as
a global variable, by defining it with the %GLOBAL statement. Macro variable names
must start with a letter or an underscore and can be followed by letters or digits. You
can assign any name to a macro variable as long as the name is not a reserved word.
The prefixes AF, DMS, SQL, and SYS are not recommended because they are frequently
used in SAS software for automatic macro variables. Thus, using one of these prefixes
can cause a name conflict with an automatic macro variable. For a complete list of
reserved words in the macro language, see Appendix 1, “Reserved Words in the Macro
Facility.” If you assign a macro variable name that is not valid, an error message is
printed in the SAS log.

You can use %PUT _ALL_ to view all user-created macro variables. See %PUT in
Chapter 13.

Creating Macro Variables and Assigning Values
The simplest way to create and assign a value to a macro variable is to use the

macro program statement %LET, as in

%let dsname=Newdata;

DSNAME is the name of the macro variable. Newdata is the value of the macro
variable DSNAME. The value of a macro variable is simply a string of characters. The
characters can include any letters, numbers, or printable symbols found on your
keyboard, and blanks between characters. The case of letters is preserved in a macro
variable value. Some characters, such as unmatched quotation marks, require special
treatment, which is described later.

If a macro variable already exists, a value assigned to it replaces its current value. If
a macro variable or its value contains macro triggers (% or &), the trigger is evaluated
before the value is assigned. In the following example, &name is resolved to Cary and
then it is assigned as the value of city in the following statements:

%let name=Cary;
%let city=&name;

Generally, the macro processor treats alphabetic characters, digits, and symbols
(except & and %) as characters. It can also treat & and % as characters using a special
treatment, which is described later. It does not make a distinction between character
and numeric values as the rest of the SAS System does. (However, the %EVAL and
%SYSEVALF functions can evaluate macro variables as integers or floating point
numbers. See “Evaluation Functions” in Chapter 12, “Macro Language Elements.”)

Macro variable values can represent text to be generated by the macro processor or
text to be used by the macro processor. Values can range in length from 0 bytes to 32K.
If you omit the value argument, the value is null (0 characters). By default, leading and
trailing blanks are not stored with the value.

Macro Variables 4 Creating Macro Variables and Assigning Values 21

In addition to the %LET statement, other features of the macro language that create
macro variables are

� iterative %DO statement
� %GLOBAL statement
� %INPUT statement
� INTO clause of the SELECT statement in SQL
� %LOCAL statement
� %MACRO statement
� SYMPUT routine and SYMPUTN routine in SCL
� %WINDOW statement.

Table 3.2 on page 21 describes how to assign a variety of types of values to macro
variables.

Table 3.2 Types of Assignments for Macro Variable Values

To assign ... Use...

Constant text a character string. The following statements show several ways that the value
maple can be assigned to macro variable STREET. In each case, the macro
processor stores the five-character value maple as the value of STREET. The
leading and trailing blanks are not stored.
%let street=maple;

%let street= maple;
%let street=

maple;
Note: Quotation marks are not required. If quotation marks are used, they
become part of the value.

Digits the appropriate digits. This example creates the macro variables NUM and
TOTALSTR:
%let num=123’
%let totalstr=100+200;
The macro processor does not treat 123 as a number or evaluate the expression
100+200. Instead, the macro processor treats all the digits as characters.

Arithmetic
expressions

the %EVAL function, for example,
%let num=%eval(100+200); / * produces 300 * /
use the %SYSEVALF function, for example,
%let num=%sysevalf(100+1.597) / * produces 101.597 * /
For more information, see “Evaluation Functions” in Chapter 12 and details on
the functions in Chapter 13.

A null value no assignment for the value argument. For example,
%let country=;

22 Creating Macro Variables and Assigning Values 4 Chapter 3

To assign ... Use...

A macro variable
reference

a macro variable reference, ¯o-variable. For example,
%let street=Maple;
%let num=123;
%let address=&num &street Avenue;
This example shows multiple macro references that are part of a text
expression. The macro processor attempts to resolve text expressions before it
makes the assignment. Thus, the macro processor stores the value of macro
variable ADDRESS as 123 Maple Avenue.

You can treat ampersands and percent signs as literals by using the %NRSTR
function to mask the character so that the macro processor treats it as text
instead of trying to interpret it as a macro call. See “Quoting Functions” in
Chapter 12 and Chapter 7, “Macro Quoting,” for information.

A macro
invocation

a macro call, %macro-name. For example,
%let status=%wait;
When the %LET statement executes, the macro processor also invokes the
macro WAIT. The macro processor stores the text produced by the macro WAIT
as the value of STATUS.

To prevent the macro from being invoked when the %LET statement executes,
use the %NRSTR function to mask the percent sign:
%let status=%nrstr(%wait);
The macro processor stores %wait as the value of STATUS.

Macro Variables 4 Using Macro Variables 23

To assign ... Use...

Blanks and
special
characters

macro quoting function %STR or %NRSTR around the value. This action masks
the blanks or special characters so that the macro processor interprets them as
text. See “Quoting Functions” in Chapter 12 and Chapter 7, “Macro Quoting.”
For example,
%let state=%str(North Carolina);
%let town=%str(Taylor%’s Pond);
%let store=%nrstr(Smith&Jones);
%let plotit=%str(

proc plot;
plot income*age;

run;);
The definition of macro variable TOWN demonstrates using %STR to mask a
value containing an unmatched quotation mark. “Macro Quoting Functions” in
Chapter 12 and Chapter 7 discuss macro quoting functions that require
unmatched quotation marks and other symbols to be marked.

The definition of macro variable PLOTIT demonstrates using %STR to mask
blanks and special characters (semicolons) in macro variable values. When a
macro variable contains complete SAS statements, the statements are easier to
read if you enter them on separate lines with indentions for statements within
a DATA or PROC step. Using a macro quoting function retains the significant
blanks in the macro variable value.

Value from a
DATA step

the SYMPUT routine. This example puts the number of observations in a data
set into a FOOTNOTE statement where AGE is greater than 20:
data _null_;

set in.permdata end=final;
if age>20 then n+1;
if final then call symput(’number’,trim(left(n)));

run;
footnote "&number Observations have AGE>20";
During the last iteration of the DATA step, the SYMPUT routine creates a
macro variable named NUMBER whose value is the value of N. (The SAS
System also issues a numeric-to-character conversion message.) The TRIM and
the LEFT functions remove the extra space characters from the DATA step
variable N before its value is assigned to the macro variable NUMBER.

The program generates this FOOTNOTE statement:
FOOTNOTE "Observations have AGE>20";
For a discussion of SYMPUT, including information on preventing the
numeric-character message, see Chapter 13.

Using Macro Variables
After a macro variable is created, you typically use the variable by referencing it

with an ampersand preceding its name (&variable-name), which is called a macro
variable reference. These references perform symbolic substitutions when they resolve
to their value. You can use these references anywhere in a SAS program. To resolve a
macro variable reference that occurs within a literal string, enclose the string in double
quotation marks. Macro variable references that are enclosed in single quotation marks
are not resolved. Compare the following statements that assign a value to macro
variable DSN and use it in a TITLE statement:

%let dsn=Newdata;
title1 "Contents of Data Set &dsn";
title2 ’Contents of Data Set &dsn’;

24 Combining Macro Variable References with Text 4 Chapter 3

In the first TITLE statement, the macro processor resolves the reference by replacing
&DSN with the value of macro variable DSN. In the second TITLE statement, the
value for DSN does not replace &DSN. The SAS System sees the following statements:

TITLE1 "Contents of Data Set Newdata";
TITLE2 ’Contents of Data Set &dsn’;

You can refer to a macro variable as many times as you need to in a SAS program.
The value remains constant until you change it. For example, this program refers to
macro variable DSN twice:

%let dsn=Newdata;
data temp;

set &dsn;
if age>=20;

run;

proc print;
title "Subset of Data Set &dsn";

run;

Each time the reference &DSN appears, the macro processor replaces it with
Newdata. Thus, the SAS System sees these statements:

DATA TEMP;
SET NEWDATA;
IF AGE>=20;

RUN;

PROC PRINT;
TITLE "Subset of Data Set NewData";

RUN;

Note: If you reference a macro variable that does not exist, a warning message is
printed in the SAS log. For example, if macro variable JERRY is misspelled as JERY,
the following produces an unexpected result:

%let jerry=student;
data temp;

x="produced by &jery";
run;

This produces the following message:

WARNING: Apparent symbolic reference JERY not resolved.

4

Combining Macro Variable References with Text
It is often useful to place a macro variable reference next to leading or trailing text

(for example, DATA=PERSNL&YR.EMPLOYES, where &YR contains two characters
for a year), or to reference adjacent variables (for example, &MONTH&YR). This allows
you to reuse the same text in several places or to reuse a program because you can
change values for each use.

Macro Variables 4 Combining Macro Variable References with Text 25

To reuse the same text in several places, you can write a program with macro
variable references representing the common elements. You can change all the locations
with a single %LET statement, as shown:

%let name=sales;
data new&name;

set save.&name;
more SAS statements
if units>100;

run;

After macro variable resolution, the SAS System sees these statements:

DATA NEWSALES;
SET SAVE.SALES;
more SAS statements
IF UNITS>100;

RUN;

Notice that macro variable references do not require the concatenation operator as
the DATA step does. The SAS System forms the resulting words automatically.

Delimiting Macro Variable Names within Text

Sometimes when you use a macro variable reference as a prefix, the reference does
not resolve as you expect if you simply concatenate it. Instead, you may need to delimit
the reference by adding a period to the end of it.

A period immediately following a macro variable reference acts as a delimiter; that
is, a period at the end of a reference forces the macro processor to recognize the end of
the reference. The period does not appear in the resulting text.

Continuing with the example above, suppose that you need another DATA step that
uses the names SALES1, SALES2, and INSALES.TEMP. You might add the following
step to the program:

/* first attempt to add suffixes--incorrect */
data &name1 &name2;

set in&name.temp;
run;

After macro variable resolution, the SAS System sees these statements:

DATA &NAME1 &NAME2;
SET INSALESTEMP;

RUN;

None of the macro variable references have resolved as you intended. The macro
processor issues warning messages, and the SAS System issues syntax error messages.
Why?

Because NAME1 and NAME2 are valid SAS names, the macro processor searches for
those macro variables rather than for NAME, and the references pass into the DATA
statement without resolution.

In a macro variable reference, the word scanner recognizes that a macro variable
name has ended when it encounters a character that is not allowed in a SAS name.
However, you can use a period (.) as a delimiter for a macro variable reference. For
example, to cause the macro processor to recognize the end of the word NAME in this
example, use a period as a delimiter between &NAME and the suffix:

/* correct version */
data &name.1 &name.2;

26 Displaying Macro Variable Values 4 Chapter 3

The SAS System now sees this statement:

DATA SALES1 SALES2;

Creating a Period to Follow Resolved Text

Sometimes you need a period to follow the text resolved by the macro processor. For
example, a two-level data set name needs to include a period between the libref and
data set name.

When the character following a macro variable reference is a period, use two periods.
The first is the delimiter for the macro reference, and the second is part of the text. For
example,

set in&name..temp;

After macro variable resolution, the SAS System sees this statement:

SET INSALES.TEMP;

You can end any macro variable reference with a delimiter, but the delimiter is
necessary only if the characters that follow can be part of a SAS name. For example,
both of these TITLE statements are correct:

title "&name.--a report";
title "&name--a report";

They produce:

TITLE "sales--a report";

Displaying Macro Variable Values

The simplest way to display macro variable values is to use the %PUT statement,
which writes text to the SAS log. For example, the statements

%let a=first;
%let b=macro variable;
%put &a ***&b***;

write

first ***macro variable***

You can also use a %PUT statement to view available macro variables. %PUT
provides several options that allow you to view individual categories of macro variables.
%PUT is described in Chapter 13.

The system option SYMBOLGEN displays the resolution of macro variables. For this
example, assume that macro variables PROC and DSET have the values GPLOT and
SASUSER.HOUSES, respectively.

options symbolgen;
%let title "%upcase(&proc) of %upcase(&dset)";

The SYMBOLGEN option prints to the log:

SYMBOLGEN: Macro variable PROC resolves to gplot
SYMBOLGEN: Macro variable DATA resolves to sasuser.houses

For more information on debugging macro programs, see Chapter 10, “Macro Facility
Error Messages and Debugging.”

Macro Variables 4 Generating a Series of Macro Variable References with a Single Macro Call 27

Referencing Macro Variables Indirectly

The macro variable references shown so far have been direct macro references that
begin with one ampersand: &name. However, it is also useful to be able to indirectly
reference macro variables that belong to a series so that the name is determined when
the macro variable reference resolves. The macro facility provides indirect macro
variable referencing, which allows you to use an expression (for example, CITY&N) to
generate a reference to one of a series of macro variables. For example, you could use
the value of macro variable N to reference a variable in the series of macro variables
named CITY1 to CITY20. If N has the value 8, the reference would be to CITY8. If the
value of N is 3, the reference would be to CITY3.

Although for this example the type of reference you want is CITY&N, the following
example will not produce the results that you expect, which is the value of &N
appended to CITY:

%put &city&n; /* incorrect */

This produces a warning message saying that there is no macro variable CITY
because the macro facility has tried to resolve &CITY and then &N and concatenate
those values.

When you use an indirect macro variable reference, you must force the macro
processor to scan the macro variable reference more than once and resolve the desired
reference on the second, or later, scan. To force the macro processor to rescan a macro
variable reference, you use more than one ampersand in the macro variable reference.
When the macro processor encounters multiple ampersands, its basic action is to
resolve two ampersands to one ampersand. For example, to append the value of &N to
CITY and then reference the appropriate variable name, you use:

%put &&city&n; /* correct */

Assuming that &N contains 6, when the macro processor receives this statement, it
performs the following steps:

1 resolves && to &

2 passes CITY as text

3 resolves &N into 6

4 returns to the beginning of the macro variable reference, &CITY6, starts resolving
from the beginning again, and prints the value of CITY6.

Generating a Series of Macro Variable References with a Single
Macro Call

Using indirect macro variable references, you can generate a series of references with
a single macro call by using an iterative %DO loop. The following example assumes that
the macro variables CITY1 through CITY10 contain the respective values Cary, New
York, Chicago, Los Angeles, Austin, Boston, Orlando, Dallas, Knoxville, and Asheville:

%macro listthem;
%do n=1 %to 10;&city&n
%end;

%mend listthem;

%put %listthem;

This program writes the following to the SAS log:

28 Using More Than Two Ampersands 4 Chapter 3

Cary New York Chicago Los Angeles Austin Boston
Orlando Dallas Knoxville Asheville

Using More Than Two Ampersands
You can use any number of ampersands in an indirect macro variable reference,

although using more than three is rare. Regardless of how many ampersands are used
in this type of reference, the macro processor performs the following steps to resolve the
reference. For example,

%let var=city;
%let n=6;
%put &&&var&n;

1 It resolves the entire reference from left-to-right. If a pair of ampersands (&&) is
encountered, the pair is resolved to a single ampersand, then the next part of the
reference is processed. In this example, &&&VAR&N becomes &CITY6.

2 It returns to the beginning of the preliminary result and starts resolving again
from left-to-right. When all ampersands have been fully processed, the resolution
is complete. In this example, &CITY6 resolves to Boston, and the resolution
process is finished.

In some cases, using indirect macro references with triple ampersands increases the
efficiency of the macro processor. For more information see Chapter 11, “Writing
Efficient and Portable Macros.”

Manipulating Macro Variable Values with Macro Functions
When you define macro variables, you can include macro functions in the expressions

to manipulate the value of the variable before the value is stored. For example, you can
use functions that scan other values, evaluate arithmetic and logical expressions, and
remove the significance of special characters such as unmatched quotation marks.

To scan for words in macro variable values, use the %SCAN function. For example,

%let address=123 maple avenue;
%let frstword=%scan(&address,1);

The first %LET statement assigns the string 123 maple avenue to macro variable
ADDRESS. The second %LET statement uses the %SCAN function to search the source
(first argument) and retrieve the first word (second argument). Because the macro
processor executes the %SCAN function before it stores the value, the value of
FRSTWORD is the string 123. (The %SCAN function is discussed in Chapter 13.)

For more information about macro functions, see “Macro Functions” in Chapter 12.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Macro Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999. 310 pages.

SAS Macro Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1-58025-522-1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
OS/2® is a registered trademark or trademark of International Business Machines
Corporation.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

