
29

C H A P T E R

4
Macro Processing

Introduction 29
Defining and Calling Macros 29

How the Macro Processor Compiles a Macro Definition 30

How the Macro Processor Executes a Compiled Macro 32

Summary 36

Introduction
This chapter describes macro processing and shows the typical pattern that the SAS

System follows to process a program containing macro elements. For most macro
programming, you do not need this level of detail. It is provided to help you understand
what is going on behind the scenes.

Defining and Calling Macros
Macros are compiled programs that you can invoke (or call) in a submitted SAS

program or from a SAS command prompt. Like macro variables, you generally use
macros to generate text. However, macros provide additional capabilities:

� Macros can contain programming statements that enable you to control how and
when text is generated.

� Macros can accept parameters. This allows you to write generic macros that can
serve a number of uses.

To compile a macro, you must submit a macro definition. The general form of a
macro definition is

%MACRO macro-name;
<macro_text>

%MEND <macro_name>;

where macro_name is a unique SAS name that identifies the macro and macro_text is
any combination of macro statements, macro calls, text expressions, or constant text.

When you submit a macro definition, the macro processor compiles the definition and
produces a member in the session catalog. The member consists of compiled macro
program statements and text. The distinction between compiled items and noncompiled
(text) items is important for macro execution. Examples of text items include:

� macro variable references
� nested macro calls

30 How the Macro Processor Compiles a Macro Definition 4 Chapter 4

� macro functions, except %STR and %NRSTR

� arithmetic and logical macro expressions

� text to be written by %PUT statements

� field definitions in %WINDOW statements

� model text for SAS statements and SAS Display Manager System commands.

When you want to call the macro, you use the form
%macro_name

A later section illustrates calling a macro. The following section illustrates how the
macro processor compiles and stores a macro definition.

How the Macro Processor Compiles a Macro Definition

When you submit a SAS program, the contents of the program goes to an area of
memory called the input stack. The example program in Figure 4.1 on page 30 contains
a macro definition, a macro call and a PROC PRINT step. This section illustrates how
the macro definition in the example program is compiled and stored.

Figure 4.1 Macro APP in the Input Stack

Input Stack

%macro app(goal);
 %if &sysday=Friday %then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;
%app(10000)
proc print;
run;

Using the same process described in Chapter 2, “SAS Programs and Macro
Processing,” the word scanner begins tokenizing the program. When the word scanner
detects % followed by a non-blank character in the first token, it triggers the macro
processor. The macro processor examines the token and recognizes the beginning of a
macro definition. The macro processor pulls tokens from the input stack and compiles
until the %MEND statement terminates the macro definition (Figure 4.2 on page 31).

During macro compilation, the macro processor

� creates an entry in the session catalog.

� compiles and stores all macro program statements for that macro as macro
instructions.

� stores all noncompiled items in the macro as text.

Note: Text items are underlined in the illustrations in this chapter. 4

Macro Processing 4 How the Macro Processor Compiles a Macro Definition 31

If the macro processor detects a syntax error while compiling the macro, the macro
processor checks the syntax in the rest of the macro and issues messages for any
additional errors it finds. However, the macro processor does not store the macro for
execution. A macro that the macro processor compiles but does not store is called a
dummy macro.

Figure 4.2 Macro APP in the Input Stack

 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;
%app(10000)
proc print;
run;

Macro Catalog

Compiler
Symbol Table

SYSDAY Friday

Macro Processor

Input Stack

APP Macro

%macro app(goal);
 %if &sysday=Friday &then
 %do;
 data thisweek;
 set lastweek;

Word Scanner

In this example, the macro definition is compiled and stored sucessfully (Figure 4.3).
For the sake of illustration, the compiled APP macro looks like the original macro
definition that was in the input stack. The entry would actually contain compiled macro
instructions with constant text. The constant text in this example is underlined.

Figure 4.3 The Compiled Macro APP

%app(10000)
proc print;
run;

Macro Catalog

Compiler
Symbol Table

SYSDAY Friday

Input Stack

APP Macro

%macro app(goal);
 %if &sysday=Friday &then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

Word Scanner

Macro Processor

32 How the Macro Processor Executes a Compiled Macro 4 Chapter 4

How the Macro Processor Executes a Compiled Macro
Macro execution begins with the macro processor opening the SASMACR catalog to

read the appropriate macro entry. As the macro processor executes the compiled
instructions in the macro entry, it performs a series of simple repetitive actions. During
macro execution, the macro processor

� executes compiled macro program instructions
� places noncompiled constant text on the input stack
� waits for the word scanner to process the generated text
� resumes executing compiled macro program instructions.

To continue the example from the previous section, Figure 4.4 on page 32 shows the
lines remaining in the input stack after the macro processor compiles the macro
definition APP.

Figure 4.4 The Macro Call in the Input Stack

%app(10000)
proc print;
run;

Input Stack

The word scanner examines the input stack and detects % followed by a nonblank
character in the first token. It triggers the macro processor to examine the token
(Figure 4.5 on page 32).

Figure 4.5 Macro Call Entering Word Queue

Macro Catalog

Compiler
Symbol Table

SYSDAY Friday

Macro Processor

Input Stack

APP Macro

%macro app(goal);
 %if &sysday=Friday &then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

Word Scanner

 app (10000)
proc print;
run;

%

The macro processor recognizes a macro call and begins to execute macro APP, as
follows:

Macro Processing 4 How the Macro Processor Executes a Compiled Macro 33

1 The macro processor opens the session catalog and creates a local symbol table
with an entry for the parameter GOAL.

2 The macro processor removes the tokens for the macro call from the input stack
and places the parameter value in GOAL entry in the APP symbol table.

3 The macro processor encounters the compiled %IF instruction and recognizes that
the next item will be text containing a condition.

4 The macro processor places the text &sysday=Friday on the input stack ahead of
the remaining text in the program (Figure 4.6 on page 33) and waits for the word
scanner to tokenize the generated text.

Figure 4.6 Text for %IF Condition on Input Stack

Macro Catalog

Compiler

Input Stack

APP Macro

Word Scanner Symbol Table

SYSDAY Friday

APP Symbol Table

GOAL 10000

Macro Processor

&sysday=Friday
proc print;
run;

%macro app(goal);
 %if &sysday=Friday &then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

5 The word scanner starts tokenizing the generated text, recognizes an ampersand
followed by nonblank character in the first token, and triggers the macro processor.

6 The macro processor examines the token, finds a possible macro variable reference
&SYSDAY. The macro processor first searches the local APP symbol table for a
matching entry and then the global symbol table. when the macro processor finds
the entry in the global symbol table, it replaces macro variable in the input stack
with the value Friday (Figure 4.7).

7 The macro processor stops and waits for the word scanner to tokenize the
generated text.

34 How the Macro Processor Executes a Compiled Macro 4 Chapter 4

Figure 4.7 Input Stack after Macro Variable Reference Is Resolved

Macro Catalog

Compiler

Input Stack

APP Macro

Word Scanner Symbol Table

SYSDAY Friday

APP Symbol Table

GOAL 10000

Macro Processor

Friday=Friday
proc print;
run;

%macro app(goal);
 %if &sysday=Friday &then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

8 The word scanner then read Friday=Friday from the input stack.

9 The macro processor evaluates the expression Friday=Friday and, because the
expression is true, proceeds to the %THEN and %DO instructions (Figure 4.8).

Figure 4.8 Macro Processor Receives the Condition

Macro Catalog

Compiler

Input Stack

APP Macro

Word Scanner Symbol Table

SYSDAY Friday

APP Symbol Table

GOAL 10000

Macro Processor

proc print;
run;

%macro app(goal);
 %if &sysday=Friday &then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

Friday
=
Friday

10 The macro processor executes the compiled %DO instructin and recognizes that
the next item is text.

11 The macro processor places the text on top of the input stack and waits for the
word scanner to begin tokenization.

12 The word scanner reads the generated text from the input stack, and tokenizes it.

Macro Processing 4 How the Macro Processor Executes a Compiled Macro 35

13 The word scanner recognizes the beginning of a DATA step, and triggers the
compiler to begin accepting tokens. The word scanner transfers tokens to the
compiler from the top of the stack (Figure 4.9).

Figure 4.9 Generated Text on Top of Input Stack

Macro Catalog

Compiler

Input Stack

APP Macro

Word Scanner Symbol Table

SYSDAY Friday

APP Symbol Table

GOAL 10000

Macro Processor

thisweek
;
set
lastweek
;

 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
proc print;
run;

DATA

%macro app(goal);
 %if &sysday=Friday &then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

14 When the word scanner detects & followed by a nonblank characater (the macro
variable refernece &GOAL), it triggers the macro processor.

15 The macro processor looks in the local APP symbol table and resolves the macro
variable reference &GOAL to 10000. the macro processor places the value on top
of the input stack, ahead of the remaining text in the program (Figure 4.10).

Figure 4.10 The Word Scanner Reads Generated Text

 10000;
 then bonus = .03;
 else bonus = 0;
proc print;
run;

Macro Catalog

Compiler

Input Stack

APP Macro

Word Scanner Symbol Table

SYSDAY Friday

APP Symbol Table

GOAL 10000

Macro Processor

if
totsales
>

DATA THISWEEK;
SET LASTWEEK;

%macro app(goal);
 %if &sysday=Friday &then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

36 Summary 4 Chapter 4

16 The word scanner resumes tokenization. When it has completed tokenizing the
generated text, it triggers the macro processor.

17 The macro processor resumes processing the compiled macro instructions. It
recognizes the end of the %DO group at the %END instructin and proceeds to
%MEND.

18 the macro processor executes the %MEND instruction, removes the local symbol
table APP, and macro APP ceases execution.

19 The macro processor triggers the word scanner to resume tokenization.
20 The word scanner reads the first token in input stack (PROC), recognizes the

beginning of a step boundary, and triggers the DATA step compiler.
21 The compiled DATA step is executed, and the DATA step compiler is cleared.
22 The word scanner signals the PRINT procedure (a separate executable not

illustrated), which pulls the remaining tokens.

Figure 4.11 The Remaining Statements are Compiled and Executed

DATA THISWEEK ;
 SET LASTWEEK;
 IF TOTSALES > 10000
 THEN BONUS = .03 ;
 ELSE BONUS = 0 ;

 print;
run;

Compiler

Input Stack

Word Scanner Symbol Table

SYSDAY Friday

APP Symbol Table

GOAL 10000

Macro Processor

proc

Macro Catalog

APP Macro

%macro app(goal);
 %if &sysday=Friday &then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

Summary
The previous sections illustrate the relationship between macro compilation and

execution and DATA step compilation and execution. The relationship contains a
pattern of simple repetitive actions. These actions begin when text is submitted to the
input stack and the word scanner begins tokenization. At times the word scanner waits
for the macro processor to perform an activity, such as searching the symbol tables or
compiling a macro definition. If the macro processor generates text during its activity,
then it pauses while the word scanner tokenizes the text and sends the tokens to the
appropriate target. These tokens may trigger other actions in parts of the SAS system,
such as the DATA step compiler, the command processor, or a SAS procedure. If this is
the case, the macro processor waits for these actions to be completed before resuming
its activity. When the macro processor stops, the word scanner resumes tokenization.
This process continues until the entire program has been processed.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Macro Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999. 310 pages.

SAS Macro Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1-58025-522-1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
OS/2® is a registered trademark or trademark of International Business Machines
Corporation.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

