
37

C H A P T E R

5
Scope of Macro Variables

Introduction 37
Global Macro Variables 38

Local Macro Variables 39

Writing the Contents of Symbol Tables to the SAS Log 40

How Macro Variables Are Assigned and Resolved 41

Examples of Macro Variable Scopes 43
Changing the Values of Existing Macro Variables 43

Creating Local Variables 46

Forcing a Macro Variable to Be Local 50

Creating Global Macro Variables 53

Creating Global Variables Based on the Value of Local Variables 54

Special Cases of Scope with the CALL SYMPUT Routine 54
Example Using CALL SYMPUT with Complete DATA Step and a Nonempty Local Symbol

Table 55

Example Using CALL SYMPUT with an Incomplete DATA Step 58

Example Using CALL SYMPUT with a Complete DATA Step and an Empty Local Symbol
Table 60

Example Using CALL SYMPUT with SYSPBUFF and an Empty Local Symbol Table 60

Introduction

Every macro variable has a scope.* A macro variable’s scope determines how it is
assigned values and how the macro processor resolves references to it.

Two types of scope exist for macro variables: global and local. Global macro variables
exist for the duration of the SAS session and can be referenced anywhere in the
program–either inside or outside a macro. Local macro variables exist only during the
execution of the macro in which the variables are created and have no meaning outside
the defining macro.

Scopes can be nested, like boxes within boxes. For example, suppose you have a
macro A that creates the macro variable LOC1 and a macro B that creates the macro
variable LOC2. If the macro B is nested (executed) within the macro A, LOC1 is local to
both A and B. However, LOC2 is local only to B.

Macro variables are stored in symbol tables, which list the macro variable name and
its value. There is a global symbol table, which stores all global macro variables. Local
macro variables are stored in a local symbol table that is created at the beginning of the
execution of a macro.

* Earlier macro facility documentation often used the term "referencing environment" instead of scope.

38 Global Macro Variables 4 Chapter 5

Global Macro Variables

Figure 5.1 on page 38 illustrates the global symbol table during execution of the
following program:

%let county=Clark;

%macro concat;
data _null_;

length longname $20;
longname="&county"||" County";
put longname;

run;
%mend concat;

%concat

Calling the macro CONCAT produces the following statements:

data _null_;
length longname $20;
longname="Clark"||" County";
put longname;

run;

The PUT statement writes the following to the SAS log:

Clark County

Figure 5.1 Global Macro Variables

GLOBAL SYSDATE
SYSDAY

COUNTY

05FEB97
Wednesday

Clark

…

Global macro variables include the following:

� all automatic macro variables except SYSPBUFF. See Chapter 13, "Macro
Language Dictionary," for more information on SYSPBUFF and other automatic
macro variables.

� macro variables created outside of any macro.

Scope of Macro Variables 4 Local Macro Variables 39

� macro variables created in %GLOBAL statements. See "Creating Global Macro
Variables" later in this chapter for more information on the %GLOBAL statement.

� most macro variables created by the CALL SYMPUT routine. See “Special Cases
of Scope with the CALL SYMPUT Routine” on page 54 for more information on the
CALL SYMPUT routine.

You can create global macro variables any time during a SAS session or job. Except
for some automatic macro variables, you can change the values of global macro
variables any time during a SAS session or job.

In most cases, once you define a global macro variable, its value is available to you
anywhere in the SAS session or job and can be changed anywhere. So, a macro variable
referenced inside a macro definition is global if a global macro variable already exists
by the same name (assuming the variable is not explicitly defined as local with the
%LOCAL statement or in a parameter list). The new macro variable definition simply
updates the existing global one. Exceptions that prevent you from referencing the value
of a global macro variable are

� when a macro variable exists both in the global symbol table and in the local
symbol table, you cannot reference the global value from within the macro that
contains the local macro variable. In this case, the macro processor finds the local
value first and uses it instead of the global value.

� if you create a macro variable in the DATA step with the SYMPUT routine, you
cannot reference the value with an ampersand until the program reaches a step
boundary. See Chapter 4, "Macro Processing," for more information on macro
processing and step boundaries.

Local Macro Variables
Local macro variables are defined within an individual macro. Each macro you

invoke creates its own local symbol table. Local macro variables exist only as long as a
particular macro executes; when the macro stops executing, all local macro variables for
that macro cease to exist.

Figure 5.2 on page 40 illustrates the local symbol table during the execution of the
macro HOLINFO.

%macro holinfo(day,date);
%let holiday=Christmas;
%put *** Inside macro: ***;
%put *** &holiday occurs on &day, &date, 1997. ***;

%mend holinfo;

%holinfo(Thursday,12/25)

%put *** Outside macro: ***;
%put *** &holiday occurs on &day, &date, 1997. ***;

The %PUT statements write the following to the SAS log:

*** Inside macro: ***
*** Christmas occurs on Thursday, 12/25, 1997. ***

*** Outside macro: ***
WARNING: Apparent symbolic reference HOLIDAY not resolved.
WARNING: Apparent symbolic reference DAY not resolved.
WARNING: Apparent symbolic reference DATE not resolved.

40 Writing the Contents of Symbol Tables to the SAS Log 4 Chapter 5

*** &holiday occurs on &day, &date, 1997. ***

As you can see from the log, the local macro variables DAY, DATE, and HOLIDAY
resolve inside the macro, but outside the macro they do not exist and therefore do not
resolve.

Figure 5.2 Local Macro Variables

HOLINFO DAY
DATE

HOLIDAY

Thursday
12/25
Christmas

A macro’s local symbol table is empty until the macro creates at least one macro
variable. A local symbol table can be created by any of the following:

� the presence of one or more macro parameters
� a %LOCAL statement
� macro statements that define macro variables, such as %LET and the iterative

%DO statement (assuming the variable does not already exist globally or a
%GLOBAL statement is not used).

Note: Macro parameters are always local to the macro that defines them. You
cannot make macro parameters global. (Although, you can assign the value of the
parameter to a global variable; see "Creating Global Variables Based on the Value of
Local Variables" later in this chapter.) 4

When you invoke one macro inside another, you create nested scopes. Because you
can have any number of levels of nested macros, your programs can contain any
number of levels of nested scopes.

Writing the Contents of Symbol Tables to the SAS Log
While developing your macros, you may find it useful to write all or part of the

contents of the global and local symbol tables to the SAS log. To do so, use the %PUT
statement with one of the following options:

ALL describes all currently defined macro variables, regardless of scope.
This includes user-created global and local variables as well as
automatic macro variables. Scopes are listed in the order of
innermost to outermost.

Scope of Macro Variables 4 How Macro Variables Are Assigned and Resolved 41

AUTOMATIC describes all automatic macro variables. The scope is listed as
AUTOMATIC. All automatic macro variables are global except
SYSPBUFF. See Chapter 12, "Macro Language Elements," and
Chapter 13 for more information on specific automatic macro
variables.

GLOBAL describes all user-created global macro variables. The scope is listed
as GLOBAL. Automatic macro variables are not listed.

LOCAL describes user-created local macro variables defined within the
currently executing macro. The scope is listed as the name of the
macro in which the macro variable is defined.

USER describes all user-created macro variables, regardless of scope. The
scope is either GLOBAL, for global macro variables, or the name of
the macro in which the macro variable is defined.

For example, consider the following program:

%let origin=North America;

%macro dogs(type=);
data _null_;

set all_dogs;
where dogtype="&type" and dogorig="&origin";
put breed " is for &type.";

run;

%put _user_;
%mend dogs;

%dogs(type=work)

The %PUT statement preceding the %MEND statement writes to the SAS log the
scopes, names, and values of all user-generated macro variables:

DOGS TYPE work
GLOBAL ORIGIN North America

Because TYPE is a macro parameter, TYPE is local to the macro DOGS, with value
work. Because ORIGIN is defined in open code, it is global.

How Macro Variables Are Assigned and Resolved
Before the macro processor creates a variable, assigns a value to a variable, or

resolves a variable, the macro processor searches the symbol tables to determine
whether the variable already exists. The search begins with the most local scope and, if
necessary, moves outward to the global scope. The request to assign or resolve a variable
comes from a macro variable reference in open code (outside a macro) or within a macro.

Figure 5.3 illustrates the search order the macro processor uses when it receives a
macro variable reference that requests a variable be created or assigned. Figure 5.4
illustrates the process for resolving macro variable references. Both these figures
represent the most basic type of search and do not apply in special cases, such as when
a %LOCAL statement is used or the variable is created by CALL SYMPUT.

42 How Macro Variables Are Assigned and Resolved 4 Chapter 5

Figure 5.3 Search Order When Assigning or Creating Macro Variables

Request to
 create variable or

assign a variable value

From open code

Change
variable
value in
global

symbol
table

Does variable exist in
global symbol table?

Create
variable

in
global

 symbol
table

From within a macro

Does variable exist in
local symbol table?

Does variable exist in
global symbol table?

Change
variable

value
in global
symbol

table

Create
variable
in local
symbol

table

Change
variable

value

Continue checking
next available scope

Change
variable

value
in local
symbol

table

Does variable exist in
next available scope?

YES NO YES NO

YES NO

YES NO

.

.

.

Scope of Macro Variables 4 Changing the Values of Existing Macro Variables 43

Figure 5.4 Search Order When Resolving Macro Variable References

Request to
 resolve variable

From open code

Resolve
variable

Does variable exist in
global symbol table?

Issue
warning
message

From within a macro

Does variable exist in
local symbol table?

Does variable exist in
global symbol table?

Resolve
variable

Issue
warning
message

Resolve
variable

Continue checking
next available scope

Resolve
variable

Does variable exist in
next available scope?

YES NO YES NO

YES NO

YES NO

.

.

.

Examples of Macro Variable Scopes

Changing the Values of Existing Macro Variables
When the macro processor executes a macro program statement that can create a

macro variable (such as a %LET statement), the macro processor attempts to change
the value of an existing macro variable rather than create a new macro variable. The
%GLOBAL and %LOCAL statements are exceptions.

To illustrate, consider the following %LET statements. Both statements assign
values to the macro variable NEW:

%let new=inventry;
%macro name1;

%let new=report;
%mend name1;

44 Changing the Values of Existing Macro Variables 4 Chapter 5

Suppose you submit the following statements:

%name1

data &new;

These statements produce the following statement:

data report;

Because NEW exists as a global variable, the macro processor changes the value of
that variable rather than creating a new one. The macro NAME1’s local symbol table
remains empty.

Figure 5.5 illustrates the contents of the global and local symbol tables before,
during, and after NAME1’s execution.

Scope of Macro Variables 4 Changing the Values of Existing Macro Variables 45

Figure 5.5 Snapshots of Symbol Tables

GLOBAL

GLOBAL

GLOBAL

Before NAME1 executes

While NAME1 executes

After NAME1 executes

SYSDATE
SYSDAY

NEW

15AUG97
Friday

inventry
…

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report

…

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report

…

NAME1

46 Creating Local Variables 4 Chapter 5

Creating Local Variables
When the macro processor executes a macro program statement that can create a

macro variable, the macro processor creates the variable in the local symbol table if no
macro variable with the same name is available to it. Consider the following example:

%let new=inventry;
%macro name2;

%let new=report;
%let old=warehse;

%mend name2;

%name2

data &new;
set &old;

run;

After NAME2 executes, the SAS compiler sees the following statements:

data report;
set &old;

run;

The macro processor encounters the reference &OLD after macro NAME2 has
finished executing; thus, the macro variable OLD no longer exists. The macro processor
is not able to resolve the reference and issues a warning message.

Figure 5.6 on page 47 illustrates the contents of the global and local symbol tables at
various stages.

Scope of Macro Variables 4 Creating Local Variables 47

Figure 5.6 Symbol Tables at Various Stages

GLOBAL

GLOBAL

GLOBAL

Before NAME2 executes

While NAME2 executes

After NAME2 executes

SYSDATE
SYSDAY

NEW

15AUG97
Friday

inventry
…

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report

…

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report

…

NAME2 OLD warehse

But suppose you place the SAS statements inside the macro NAME2, as in the
following program:

48 Creating Local Variables 4 Chapter 5

%let new=inventry;
%macro name2;

%let new=report;
%let old=warehse;
data &new;

set &old;
run;

%mend name2;

%name2

In this case, the macro processor generates the SET statement during the execution
of NAME2, and it locates OLD in NAME2’s local symbol table. Therefore, executing the
macro produces the following statements:

data report;
set warehse;

run;

The same rule applies regardless of how many levels of nesting exist. Consider the
following example:

%let new=inventry;
%macro conditn;

%let old=sales;
%let cond=cases>0;

%mend conditn;

%macro name3;
%let new=report;
%let old=warehse;
%conditn

data &new;
set &old;
if &cond;

run;
%mend name3;

%name3

The macro processor generates these statements:

data report;
set sales;
if &cond;

run;

CONDITN finishes executing before the macro processor reaches the reference
&COND, so no variable named COND exists when the macro processor attempts to
resolve the reference. Thus, the macro processor issues a warning message and
generates the unresolved reference as part of the constant text and issues a warning
message. Figure 5.7 on page 49 shows the symbol tables at each step.

Scope of Macro Variables 4 Creating Local Variables 49

Figure 5.7 Symbol Tables Showing Two Levels of Nesting

GLOBAL

GLOBAL

GLOBAL

Early execution of
NAME3, before
CONDITN executes

While NAME3 and
CONDITN execute

Late execution of
NAME3, after
CONDITN executes

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report
…

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report

…

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report

…

NAME3 OLD sales

NAME3 OLD warehse

NAME3 OLD sales

CONDITN COND = cases>0

Notice that the placement of a macro invocation is what creates a nested scope, not
the placement of the macro definition. For example, invoking CONDITN from within

50 Forcing a Macro Variable to Be Local 4 Chapter 5

NAME3 creates the nested scope; it is not necessary to define CONDITN within
NAME3.

Forcing a Macro Variable to Be Local
At times you need to ensure that the macro processor creates a local macro variable

rather than changing the value of an existing macro variable. In this case, use the
%LOCAL statement to create the macro variable.

Explicitly make all macro variables created within macros local when you do not
need their values after the macro stops executing. Debugging the large macro programs
is easier if you minimize the possibility of inadvertently changing a macro variable’s
value. Also, local macro variables do not exist after their defining macro finishes
executing, while global variables exist for the duration of the SAS session; therefore,
local variables use less overall storage.

Suppose you want to use the macro NAMELST to create a list of names for a VAR
statement, as shown here:

%macro namelst(name,number);
%do n=1 %to &number;

&name&n
%end;

%mend namelst;

You invoke NAMELST in this program:

%let n=North State Industries;

proc print;
var %namelst(dept,5);
title "Quarterly Report for &n";

run;

After macro execution, the SAS compiler sees the following statements:

proc print;
var dept1 dept2 dept3 dept4 dept5;
title "Quarterly Report for 6";

run;

The macro processor changes the value of the global variable N each time it executes
the iterative %DO loop. (After the loop stops executing, the value of N is 6, as described
in " %DO" in Chapter 13, "Macro Language Dictionary.") To prevent conflicts, use a
%LOCAL statement to create a local variable N, as shown here:

%macro namels2(name,number);
%local n;
%do n=1 %to &number;

&name&n
%end;

%mend namels2;

Now execute the same program:

%let n=North State Industries;

proc print;
var %namels2(dept,5);
title "Quarterly Report for &n";

Scope of Macro Variables 4 Forcing a Macro Variable to Be Local 51

run;

The macro processor generates the following statements:

proc print;
var dept1 dept2 dept3 dept4 dept5;
title "Quarterly Report for North State Industries";

run;

Figure 5.8 on page 52 shows the symbol tables before NAMELS2 executes, while
NAMELS2 is executing, and when the macro processor encounters the reference &N in
the TITLE statement.

52 Forcing a Macro Variable to Be Local 4 Chapter 5

Figure 5.8 Global and Local Variables with the Same Name

GLOBAL

GLOBAL

GLOBAL

Before NAMELS2 executes

While NAMELS2 executes
(at end of last iteration
of %DO loop)

After NAMELS2 executes

NAMELS2

SYSDATE
SYSDAY

15AUG97
Friday…

North State IndustriesN

SYSDATE
SYSDAY

15AUG97
Friday…

North State IndustriesN

SYSDATE
SYSDAY

15AUG97
Friday…

North State IndustriesN

NAME
NUMBER

N

dept
5
6

Scope of Macro Variables 4 Creating Global Macro Variables 53

Creating Global Macro Variables

The %GLOBAL statement creates a global macro variable if a variable with the same
name does not already exist there, regardless of what scope is current.

For example, in the macro NAME4, the macro CONDITN contains a %GLOBAL
statement that creates the macro variable COND as a global variable:

%macro conditn;
%global cond;
%let old=sales;
%let cond=cases>0;

%mend conditn;

Here is the rest of the program:

%let new=inventry;

%macro name4;
%let new=report;
%let old=warehse;
%conditn
data &new;

set &old;
if &cond;

run;
%mend name4;

%name4

Invoking NAME4 generates these statements:

data report;
set sales;
if cases>0;

run;

Suppose you want to put the SAS DATA step statements outside NAME4. In this
case, all the macro variables must be global for the macro processor to resolve the
references. You cannot add OLD to the %GLOBAL statement in CONDITN because the
%LET statement in NAME4 has already created OLD as a local variable to NAME4 by
the time CONDITN begins to execute. (You cannot use the %GLOBAL statement to
make an existing local variable global.)

Thus, to make OLD global, use the %GLOBAL statement before the variable
reference appears anywhere else, as shown here in the macro NAME5:

%let new=inventry;

%macro conditn;
%global cond;
%let old=sales;
%let cond=cases>0;

%mend conditn;

%macro name5;
%global old;
%let new=report;
%let old=warehse;

54 Creating Global Variables Based on the Value of Local Variables 4 Chapter 5

%conditn
%mend name5;

%name5

data &new;
set &old;
if &cond;

run;

Now the %LET statement in NAME5 changes the value of the existing global
variable OLD rather than creating OLD as a local variable. The SAS compiler sees the
following statements:

data report;
set sales;
if cases>0;

run;

Creating Global Variables Based on the Value of Local Variables
To use a local variable such as a parameter outside a macro, use a %LET statement

to assign the value to a global variable with a different name, as in this program:

%macro namels3(name,number);
%local n;
%global g_number;
%let g_number=&number;
%do n=1 %to &number;

&name&n
%end;

%mend namels3;

Now invoke the macro NAMELS3 in the following the program:

%let n=North State Industries;

proc print;
var %namels3(dept,5);
title "Quarterly Report for &n";
footnote "Survey of &g_number Departments";

run;

The compiler sees the following statements:

proc print;
var dept1 dept2 dept3 dept4 dept5;
title "Quarterly Report for North State Industries";
footnote "Survey of 5 Departments";

run;

Special Cases of Scope with the CALL SYMPUT Routine
Most problems with CALL SYMPUT involve the lack of an explicit step boundary

between the CALL SYMPUT statement that creates the macro variable and the macro
variable reference that uses that variable. (See Chapter 8, "Interfaces with the Macro

Scope of Macro Variables 4 Special Cases of Scope with the CALL SYMPUT Routine 55

Facility," for details on CALL SYMPUT.) However, a few special cases exist that involve
the scope of a macro variable created by CALL SYMPUT.

Two rules control where CALL SYMPUT creates its variables:

1 CALL SYMPUT creates the macro variable in the current symbol table available
while the DATA step is executing, provided that symbol table is not empty. If it is
empty (contains no local macro variables), usually CALL SYMPUT creates the
variable in the closest nonempty symbol table.

2 However, if the macro variable SYSPBUFF is created at macro invocation time or
the executing macro contains a computed %GOTO statement, CALL SYMPUT
creates the variable in the local symbol table, even if that symbol table is empty. A
computed %GOTO statement is one that uses a label that contains an & or a % in
it. That is, a computed %GOTO statement contains a macro variable reference or
a macro call that produces a text expression. Here is an example of a computed
%GOTO statement:

%goto &home;

The symbol table that is currently available to a DATA step is the one that exists
when the SAS System determines that the step is complete. (The SAS System considers
a DATA step to be complete when it encounters a RUN statement, a semicolon after
data lines, or the beginning of another step).

In simplest terms, if an executing macro contains a computed %GOTO statement, or
if the macro variable SYSPBUFF is created at macro invocation time, but the local
symbol table is empty, CALL SYMPUT behaves as though the local symbol table was
not empty, and creates a local macro variable.

You may find it helpful to use the %PUT statement with the _USER_ option to
determine what symbol table the CALL SYMPUT routine has created the variable in.

Example Using CALL SYMPUT with Complete DATA Step and a Nonempty
Local Symbol Table

Consider the following example, which contains a complete DATA step with a CALL
SYMPUT statement inside a macro:

%macro env1(param1);
data _null_;

x = ’a token’;
call symput(’myvar1’,x);

run;
%mend env1;

%env1(10)

data temp;
y = "&myvar1";

run;

When you submit these statements, you receive an error message:

WARNNG: Apparent symbolic reference MYVAR1 not resolved.

This message appears because the DATA step is complete within the environment of
ENV1 (that is, the RUN statement is within the macro) and because the local symbol
table of ENV1 is not empty (it contains parameter PARAM1). Therefore, the CALL
SYMPUT routine creates MYVAR1 as a local variable for ENV1, and the value is not
available to the subsequent DATA step, which expects a global macro variable.

56 Special Cases of Scope with the CALL SYMPUT Routine 4 Chapter 5

To see the scopes, add a %PUT statement with the _USER_ option to the macro, and
a similar statement in open code. Now invoke the macro as before:

%macro env1(param1);
data _null_;

x = ’a token’;
call symput(’myvar1’,x);

run;

%put ** Inside the macro: **;
%put _user_;

%mend env1;

%env1(10)

%put ** In open code: **;
%put _user_;

data temp;
y = "&myvar1"; /* ERROR - MYVAR1 is not available in open code. */

run;

When the %PUT _USER_ statements execute, they write the following information to
the SAS log:

** Inside the macro: **
ENV1 MYVAR1 a token
ENV1 PARAM1 10

** In open code: **

The MYVAR1 macro variable is created by CALL SYMPUT in the local ENV1 symbol
table. The %PUT _USER_ statement in open code writes nothing to the SAS log,
because no global macro variables are created.

Figure 5.9 on page 57 shows all of the symbol tables in this example.

Scope of Macro Variables 4 Special Cases of Scope with the CALL SYMPUT Routine 57

Figure 5.9 The CALL SYMPUT Routine in a Macro Generating a Complete DATA
Step

GLOBAL

GLOBAL

GLOBAL

Before ENV1 executes

While ENV1 executes

After ENV1 executes

ENV1

SYSDATE
SYSDAY

15AUG97
Friday…

SYSDATE
SYSDAY

15AUG97
Friday…

SYSDATE
SYSDAY

15AUG97
Friday…

PARAM1
MYVAR1

10
a token

58 Special Cases of Scope with the CALL SYMPUT Routine 4 Chapter 5

Example Using CALL SYMPUT with an Incomplete DATA Step
In the macro ENV2, shown here, the DATA step is not complete within the macro

because there is no RUN statement:

%macro env2(param2);
data _null_;

x = ’a token’;
call symput(’myvar2’,x);

%mend env2;

%env2(20)
run;

data temp;
y="&myvar2";

run;

These statements execute without errors. The DATA step is complete only when the
SAS System encounters the RUN statement (in this case, in open code); thus, the
current scope of the DATA step is the global scope. CALL SYMPUT creates MYVAR2 as
a global macro variable, and the value is available to the subsequent DATA step.

Again, use the %PUT statement with the _USER_ option to illustrate the scopes:

%macro env2(param2);
data _null_;

x = ’a token’;
call symput(’myvar2’,x);

%put ** Inside the macro: **;
%put _user_;

%mend env2;

%env2(20)

run;

%put ** In open code: **;
%put _user_;

data temp;
y="&myvar2";

run;

When the %PUT _USER_ statement within ENV2 executes, it writes the following to
the SAS log:

** Inside the macro: **
ENV2 PARAM2 20

The %PUT _USER_ statement in open code writes the following to the SAS log:

** In open code: **
GLOBAL MYVAR2 a token

Figure 5.10 on page 59 shows all the scopes in this example.

Scope of Macro Variables 4 Special Cases of Scope with the CALL SYMPUT Routine 59

Figure 5.10 The CALL SYMPUT Routine in a Macro Generating an Incomplete
DATA Step

GLOBAL

GLOBAL

GLOBAL

Before ENV2 executes

While ENV2 executes

After ENV2 executes

ENV2

SYSDATE
SYSDAY

15AUG97
Friday…

SYSDATE
SYSDAY

15AUG97
Friday…

SYSDATE
SYSDAY

15AUG97
Friday…

PARAM2 20

MYVAR2 a token

60 Special Cases of Scope with the CALL SYMPUT Routine 4 Chapter 5

Example Using CALL SYMPUT with a Complete DATA Step and an Empty
Local Symbol Table

In the following example, ENV3 does not use macro parameters. Therefore, its local
symbol table is empty:

%macro env3;
data _null_;

x = ’a token’;
call symput(’myvar3’,x);

run;

%put ** Inside the macro: **;
%put _user_;

%mend env3;

%env3

%put ** In open code: **;
%put _user_;

data temp;
y="&myvar3";

run;

In this case, the DATA step is complete and executes within the macro, but the local
symbol table is empty. So, CALL SYMPUT creates MYVAR3 in the closest available
nonempty symbol table–the global symbol table. Both %PUT statements show that
MYVAR3 exists in the global symbol table:

** Inside the macro: **
GLOBAL MYVAR3 a token

** In open code: **
GLOBAL MYVAR3 a token

Example Using CALL SYMPUT with SYSPBUFF and an Empty Local Symbol
Table

In the following example, the presence of the SYSPBUFF automatic macro variable
causes CALL SYMPUT to behave as though the local symbol table were not empty,
even though the macro ENV4 has no parameters or local macro variables:

%macro env4 /parmbuff;
data _null_;

x = ’a token’;
call symput(’myvar4’,x);

run;

%put ** Inside the macro: **;
%put _user_;
%put &syspbuff;

%mend env4;

%env4

%put ** In open code: **;

Scope of Macro Variables 4 Special Cases of Scope with the CALL SYMPUT Routine 61

%put _user_;
%put &syspbuff;

data temp;
y="&myvar4"; /* ERROR - MYVAR4 is not available in open code */

run;

The presence of the /PARMBUFF specification causes the SYSPBUFF automatic
macro variable to be created. So, when you call macro ENV4, CALL SYMPUT creates
the macro variable MYVAR4 in the local symbol table (that is, in ENV4’s), even though
the macro ENV4 has no parameters and no local variables.

The results of the %PUT statements prove this–the score of MYVAR4 is listed as
ENV4, and the reference to SYSPBUFF does not resolve in the open code %PUT
statement because SYSPBUFF is local to ENV4:

** Inside the macro: **
ENV4 MYVAR4 a token

** In open code: **
WARNING: Apparent symbolic reference SYSPBUFF not resolved.

For more information about SYSPBUFF, see Chapter 13.

62 Special Cases of Scope with the CALL SYMPUT Routine 4 Chapter 5

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Macro Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999. 310 pages.

SAS Macro Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1-58025-522-1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
OS/2® is a registered trademark or trademark of International Business Machines
Corporation.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

