
63

C H A P T E R

6
Macro Expressions

Introduction 63
Arithmetic and Logical Expressions 64

Operands and Operators 64

How the Macro Processor Evaluates Arithmetic Expressions 65

Evaluating Numeric Operands 65

Evaluating Floating Point Operands 66
How the Macro Processor Evaluates Logical Expressions 67

Comparing Numeric Operands in Logical Expressions 67

Comparing Floating Point or Missing Values 68

Comparing Character Operands in Logical Expressions 68

Introduction

There are three types of macro expressions: text, logical, and arithmetic. A text
expression is any combination of text, macro variables, macro functions, or macro calls.
Text expressions are resolved to generate text. Here are some examples of text
expressions:

� &BEGIN

� %GETLINE

� &PREFIX.PART&SUFFIX

� %UPCASE(&ANSWER)

A logical expression or an arithmetic expression is a sequence of operators and
operands forming a set of instructions that are evaluated to produce a result. An
arithmetic expression contains an arithmetic operator. A logical expression contains a
logical operator. The following table show examples of simple arithmetic and logical
expressions:

Arithmetic Expressions Logical expressions

1 + 2 &DAY = FRIDAY

4 * 3 A < a

4 / 2 1 < &INDEX

00FFx - 003Ax &START NE &END

The following sections tell you where and how to use arithmetic and logical
expressions in macro functions and statements.

64 Arithmetic and Logical Expressions 4 Chapter 6

Arithmetic and Logical Expressions
You can use arithmetic and logical expressions in specific macro functions and

statements (Table 6.1 on page 64). The arithmetic and logical expressions in these
functions and statements enable you to control the text generated by a macro when it is
executed.

Table 6.1 Macro Language Elements that Evaluate Arithmetic and Logical
Expressions

%DOmacro-variable=expression %TO expression<%BY expression>;

%DO %UNTIL(expression);

%DO %WHILE(expression);

%EVAL (expression);

%IF expression %THEN statement;

%QSCAN(argument,expression<,delimiters>)

%QSUBSTR(argument,expression<,expression>)

%SCAN(argument,expression,<delimiters>)

%SUBSTR(argument,expression<,expression>)

%SYSEVALF(expression,conversion-type)

You can use text expressions to generate partial or complete arithmetic or logical
expressions. The macro processor resolves text expressions before it evaluates the
arithmetic or logical expressions. For example, when you submit the following
statements, the macro processor resolves the macro variables &A, &B, and
&OPERATOR in the %EVAL function, before it evaluates the expression 2 + 5:

%let A=2;
%let B=5;
%let operator=+;
%put The result of &A &operator &B is %eval(&A &operator &B).;

When you submit these statements, the %PUT statement writes this line to the log:

The result of 2 + 5 is 7.

Operands and Operators
Operands in arithmetic or logical expressions are always text. However, an operand

that represents a number can be temporarily converted to a numeric value when an
expression is evaluated. By default, the macro processor uses integer arithmetic, and
only integers and hexadecimal values that represent integers can be converted to a
numeric value. Operands that contain a period character, for example 1.0, are not
converted. The exception is the %SYSEVALF function, which interprets a period
character in its argument as a decimal point and converts the operand to a floating
point value on your operating system.

Operators in macro expressions are a subset of those in the DATA step (Table 6.2 on
page 65). However, in macro, there is no MAX or MIN operator, and macro does not

Macro Expressions 4 Evaluating Numeric Operands 65

recognize IN or ’:’, as does the DATA step. The order in which operations are performed
when an expression is evaluated is the same in the macro language as in the DATA
step. Operations within parentheses are performed first.

Note: Expressions in which comparison operators surround a macro expression, as
in 10<&X<20, may or may not be the equivalent of a DATA step compound expression
(depending on what the expression resolves into). To be safe, write the connecting
operator explicitly, as in the expression 10<&X AND &X<20. 4

Table 6.2 Macro Language Operators

Operator Mnemonic Name Procedence

** exponential 1

+ positive prefix 2

— negative prefix 2

^~ NOT logical not* 3

* multiplication 4

/ division 4

+ addition 5

— subtraction 5

< LT less than 6

<= LE less than or equal 6

= EQ eqaul 6

=^=~= NE not equal* 6

> GT greater than 6

>= GE greater than or equal 6

& AND logical and 7

| OR logical or 8

*The symbol to use depends on your keyboard.

How the Macro Processor Evaluates Arithmetic Expressions

The macro facility is a string handling facility. However, in specific situations, the
macro processor can evaluate operands that represent numbers as numeric values.
When the macro processor evaluates an expression that contains an arithmetic operator
and operands that represent numbers, it temporarily converts the operands to numeric
values and performs the integer arithmetic operation. The result of the evaluation is
text.

Evaluating Numeric Operands
By default, arithmetic evaluation in most macro statements and functions is

performed with integer arithmetic. The exception is the %SYSEVALF function. See

66 Evaluating Floating Point Operands 4 Chapter 6

“Evaluating Floating Point Operands” on page 66 for more information. The following
macro statements illustrate integer arithmetic evaluation:

%let a=%eval(1+2);
%let b=%eval(10*3);
%let c=%eval(4/2);
%let i=%eval(5/3);
%put The value of a is &a;
%put The value of b is &b;
%put The value of c is &c;
%put The value of I is &i;

When you submit these statements, the following messages appear in the log:

The value of a is 3
The value of b is 30
The value of c is 2
The value of I is 1

Notice the result of the last statement. If you perform division on integers that
would ordinarily result in a fraction, integer arithmetic discards the fractional part.

When the macro processor evaluates an integer arithmetic expression that contains a
character operand, it generates an error. Only operands that contain characters that
represent integers or hexadecimal values are converted to numeric values. The
following statement shows an incorrect usage:

%let d=%eval(10.0+20.0); /*INCORRECT*/

Because the %EVAL function supports only integer arithmetic, the macro processor
does not convert a value containing a period character to a number, and the operands
are evaluated as character operands. This statement produces the following error
message:

ERROR: A character operand was found in the %EVAL function or %IF
condition where a numeric operand is required. The condition was:
10.0+20.0

Evaluating Floating Point Operands

The %SYSEVALF function evaluates arithmetic expressions with operands that
represent floating point values. For example, the following expressions in the
%SYSEVALF function are evaluated using floating point arithmetic:

%let a=%sysevalf(10.0*3.0);
%let b=%sysevalf(10.5+20.8);
%let c=%sysevalf(5/3);
%put 10.0*3.0 = &a;
%put 10.5+20.8 = &b;
%put 5/3 = &c;

The %PUT statements display the following messages in the log:

10.0*3.0 = 30
10.5+20.8 = 31.3
5/3 = 1.6666666667

When the %SYSEVALF function evaluates arithmetic expressions, it temporarily
converts the operands that represent numbers to floating point values. The result of the

Macro Expressions 4 Comparing Numeric Operands in Logical Expressions 67

evaluation can represent a floating point value, but as in integer arithmetic
expressions, the result is always text.

The %SYSEVALF function provides conversion type specifications: BOOLEAN,
INTEGER, CEIL, and FLOOR. For example, these %PUT statements

%let a=2.5;
%put %sysevalf(&a,boolean);
%put %sysevalf(&a,integer);
%put %sysevalf(&a,ceil);
%put %sysevalf(&a,floor);

return 1, 2, 3, and 2, respectively. These conversion types tailor the value returned
by %SYSEVALF so that it can be used in other macro expressions that require integer
or Boolean values.

CAUTION:
Specify a conversion type for the %SYSEVALF function. If you use the %SYSEVALF
function in macro expressions or assign its results to macro variables that are used
in other macro expressions, then errors or unexpected results may occur if the
%SYSEVALF function returns missing or floating point values. To prevent errors,
specify a conversion type that returns a value compatible with other macro
expressions. See “%SYSEVALF” in Chapter 13, “Macro Language Dictionary” for
more information on using conversion types. 4

How the Macro Processor Evaluates Logical Expressions

A logical, or Boolean, expression returns a value that is evaluated as true or false. In
the macro language, any numeric value other than 0 is true and a value of 0 is false.

Comparing Numeric Operands in Logical Expressions
When the macro processor evaluates logical expressions that contain operands that

represent numbers, it converts the characters temporarily to numeric values. To
illustrate how the macro processor evaluates logical expressions with numeric operands,
consider the following macro definition:

%macro compnum(first,second);
%if &first>&second %then %put &first is greater than &second;
%else %if &first=&second %then %put &first equals &second;
%else %put &first is less than &second;

%mend compnum;

Invoking the COMPNUM macro with these values

%compnum(1,2)
%compnum(-1,0)

displays these results in the log:

1 is less than 2
-1 is less than 0

The results show that the operands in the logical expressions were evaluated as
numeric values.

68 Comparing Character Operands in Logical Expressions 4 Chapter 6

Comparing Floating Point or Missing Values
You must use the %SYSEVALF function to evaluate logical expressions containing

floating point or missing values. To illustrate comparisons with floating point and
missing values, consider the following macro that compares parameters passed to it
with the %SYSEVALF function and places the result in the log:

%macro compflt(first,second);
%if %sysevalf(&first>&second) %then %put &first is greater than &second;
%else %if %sysevalf(&first=&second) %then %put &first equals &second;
%else %put %sysevalf(&first is less than &second);

%mend compflt;

Invoking the COMPFLT macro with these values

%compflt (1.2,.9)
%compflt (-.1,.)
%compflt (0,.)

places these values in the log:

1.2 is greater than .9
-.1 is greater than .
0 is greater than .

The results show that the %SYSEVALF function evaluated the floating point and
missing values.

Comparing Character Operands in Logical Expressions
To illustrate how the macro processor evaluates logical expressions, consider the

COMPC macro. Invoking the COMPC macro compares the values passed as parameters
and places the result in the log.

%macro compchar(first,second);
%if &first>&second %then %put &first comes after &second;
%else %put &first comes before &second;

%mend compchar;

Invoking the macro COMPCHAR with these values

%compchar(a,b)
%compchar(.,1)
%compchar(Z,E)

prints these results in the log:

a comes before b
. comes before 1
Z comes after E

When the macro processor evaluates expressions with character operands, it uses the
sort sequence of the host operating system for the comparison. The comparisons in
these examples work with both EBCDIC and ASCII sort sequences.

A special case of a character operand is an operand that looks numeric but contains a
period character. If you use an operand with a period character in an expression, both
operands are compared as character values. This can lead to unexpected results. So
that you can understand and better anticipate results, look at the following examples.

If you invoke the COMPNUM macro, shown earlier, with these values

%compnum(10,2.0)

Macro Expressions 4 Comparing Character Operands in Logical Expressions 69

then these values are written to the log:

10 is less than 2.0

Because the %IF-THEN statement in the COMPNUM macro uses integer evaluation,
it does not convert the operands with decimal points to numeric values. The operands
are compared as character strings using the host sort sequence, which is the
comparison of characters with smallest-to-largest values. For example, lowercase letters
may have smaller values than uppercase, and uppercase letters may have smaller
values than digits.

CAUTION:
The host sort sequence determines comparison results. If you use a macro definition on
more than one operating system, comparison results may differ because the sort
sequence of one host operating system may differ from the other system. Refer to
“The SORT Procedure” in SAS Procedures Guide for more information on host sort
sequences. 4

70 Comparing Character Operands in Logical Expressions 4 Chapter 6

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Macro Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999. 310 pages.

SAS Macro Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1-58025-522-1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
OS/2® is a registered trademark or trademark of International Business Machines
Corporation.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

