n

CHAPTER

Macro Quoting

Overview of Macro Quoting 71

Understanding Why Macro Quoting is Necessary 72

Understanding Macro Quoting Functions 72

Passing Parameters That Contain Special Characters and Mnemonics 74
Deciding When to Use a Macro Quoting Function and Which Function to Use 74
Using the %STR and %NRSTR Functions 76

Using Unmatched Quotation Marks and Parentheses with %STR and %NRSTR 77

Using % Signs with %STR 77

Examples Using %STR 78

Examples Using %NRSTR 78
Using the %BQUOTE and %NRBQUOTE Functions 80

Examples Using %BQUOTE 80
Referring to Already Quoted Variables 81
Deciding How Much Text to Mask with a Macro Quoting Function 81
Using %SUPERQ 82

Examples Using %SUPERQ 82

Using the %SUPERQ Function to Prevent Warning Messages 82
Using the %SUPERQ Function to Enter Macro Keywords 83

Summary of Macro Quoting Functions and the Characters They Mask 84
Unquoting Text 85

Example of Unquoting 86

What to Do When Automatic Unquoting Does Not Work 87
Understanding How Macro Quoting Works “Behind the Scenes” 87
Other Functions That Perform Macro Quoting 88

Example Using the %QSCAN Function 88

Overview of Macro Quoting

The macro language is a character-based language. Even variables that appear to be
numeric are generally treated as character variables (except during expression
evaluation). Therefore, the macro processor enables you to generate all sorts of special
characters as text; but because the macro language is composed of some of the same
special characters, an ambiguity often arises: should the macro processor interpret a
particular special character (for example, a semicolon or % sign) or a mnemonic (for
example, GE or AND) as text or as a symbol in the macro language? Macro quoting
functions resolve these ambiguities by masking the significance of special characters so
the macro processor does not misinterpret them.

The following special characters and mnemonics may require masking when they
appear in text strings:

72

Understanding Why Macro Quoting is Necessary A Chapter 7

blank) = LT
; (| GE
- + AND GT
n — OR %
~ * NOT &
, (comma) / EQ

< NE

> LE

Understanding Why Macro Quoting is Necessary

Macro quoting functions tell the macro processor to interpret special characters and
mnemonics as text rather than as part of the macro language. If you did not use a
macro quoting function to mask the special characters, the macro processor or the rest
of the SAS System might give the character a meaning you did not intend. Here are
some examples of the kinds of ambiguities that can arise when text strings contain
special characters and mnemonics:

o Is $sign a call to the macro SIGN or a phrase “percent sign”?
o Is OR the mnemonic Boolean operator or the abbreviation for Oregon?

o Is the quote in O'Malley an unbalanced single quotation mark or just part of the
name?

Is Boys&Girls a reference to the macro variable &GIRLS or a group of children?
Is GE the mnemonic for “greater than or equal” or is it short for General Electric?
Which statement does a semicolon end?

Does a comma separate parameters, or is it part of the value of one of the
parameters?

O O o o

Macro quoting functions enable you to clearly indicate to the macro processor how it
is to interpret special characters and mnemonics.

Here is an example, using the simplest macro quoting function, %STR. Suppose you
want to assign a PROC PRINT statement and a RUN statement to the macro variable
PRINT. Here is the erroneous statement:

¢let print=proc print; run;; /* ERROR */

This code is ambiguous. Are the semicolons that follow PRINT and RUN part of the
value of the macro variable PRINT, or does one of them end the %LET statement? If
you do not tell the macro processor what to do, it interprets the semicolon after PRINT
as the end of the %LET statement; the value of the PRINT macro variable is

proc print

The rest of the characters (RUN;;) are simply the next part of the program.
To avoid the ambiguity and correctly assign the value of PRINT, you must mask the
semicolons with the macro quoting function %STR, as follows:

¢let print=%str(proc print; run;);

Understanding Macro Quoting Functions

The following macro quoting functions are most commonly used:

Macro Quoting A Understanding Macro Quoting Functions 73

O %STR and %NRSTR
0 %BQUOTE and %NRBQUOTE
o %SUPERQ

For the paired macro quoting functions, the function beginning with NR affects the
same category of special characters that are masked by the plain macro quoting
function as well as ampersands and percent signs. In effect, the NR functions prevent
macro and macro variable resolution. To help you remember which does which, try
associating the NR in the macro quoting function names with the words “not resolved”
— that is, macros and macro variables are not resolved when you use these functions.

The macro quoting functions with B in their names are useful for macro quoting
unmatched quotation marks and parentheses. As a help for remembering this, try
associating B with “by itself”.

The %SUPERQ macro quoting function is unlike the other macro quoting functions
in that it does not have a mate and works differently than the other macro quoting
functions. See “Using %SUPERQ” on page 82 for more information on the %SUPERQ
macro quoting function.

The macro quoting functions can also be divided into three types, depending on when
they take effect:

compilation cause the macro processor to interpret special characters as text in a

functions macro program statement in open code or while compiling
(constructing) a macro. The %STR and %NRSTR functions are
compilation functions.

execution cause the macro processor to treat as text special characters that

functions result from resolving a macro expression (such as a macro variable
reference, a macro invocation, or the argument of an implicit
%EVAL function). They are called execution functions because
resolution occurs during macro execution or during execution of a
macro program statement in open code. The macro processor
resolves the expression as far as possible, issues any warning
messages for macro variable references or macro invocations it
cannot resolve, and quotes the result. The %BQUOTE and
%NRBQUOTE functions are execution functions.

An implicit %EVAL function is one that is caused by another
macro statement, such as a %DO %TO statement. An explicit
%EVAL function is one that is directly called by macro code.

function that causes the macro processor to treat the value of a macro variable as
prevents a “picture” during macro execution. It treats the value as text,
resolution without beginning the process of resolution. The %SUPERQ

function prevents resolution of a macro variable’s value.

The %SUPERQ function takes as its argument a macro variable
name (or a macro expression that yields a macro variable name).
The argument must not be a reference to the macro variable whose
value you are masking; that is, do not include the & before the name.

Note: Two other execution macro quoting functions exist, %QUOTE and
%NRQUOTE. They are useful for uniqgue macro quoting needs and for compatibility
with older macro applications. For more information on these two macro quoting
functions, refer to Chapter 13, “Macro Language Dictionary.” a

74 Passing Parameters That Contain Special Characters and Mnemonics A Chapter 7

Passing Parameters That Contain Special Characters and Mnemonics

Using an execution macro quoting function in the macro definition is the simplest
and best way to have the macro processor accept resolved values that may contain
special characters. However, if you discover that you need to pass parameter values
such as or when a macro has not been defined with an execution macro quoting
function, you can do so by masking the value in the macro invocation. The logic of the
process is as follows:

1 When you mask a special character with a macro quoting function, it remains
masked as long as it is within the macro facility (unless you use the %UNQUOTE
function, described in “nquoting Text”later in this chapter).

2 The macro processor constructs the complete macro invocation before beginning to
execute the macro.

3 Therefore, you can mask the value in the invocation with the %STR function.
Although the masking is not needed when the macro processor is constructing the
invocation, the value is already masked by a macro quoting function when macro
execution begins and therefore does not cause problems during macro execution.

For example, suppose a macro named ORDERX does not use the %BQUOTE function.
You can pass the value or to the ORDERX macro with the following invocation:

gorderx(%str(or))

However, placing the macro quoting function in the macro definition makes the
macro much easier for you to invoke.

Deciding When to Use a Macro Quoting Function and Which Function
to Use

Use a macro quoting function anytime you want to assign to a macro variable a
special character that could be interpreted as part of the macro language. Table 7.1 on
page 74 describes the special characters to mask when used as part of a text string and
which macro quoting functions are useful in each situation.

Table 7.1 Special Characters and When Macro Quoting is Needed

Quoted by All
Special Macro Quoting
Character... Must Be Masked... Functions? Remarks
+-*/<>=" |- ~ LE to prevent it from being treated yes AND, OR, and NOT
LT EQ NE GE as an operator in the argument need to be masked
GT AND OR NOT of an explicit or implicit %EVAL because they are
function interpreted as
mnemonic operators
by an implicit %EVAL
and by %SYSEVALF.
blank to maintain, rather than ignore, yes

a leading, trailing, or isolated
blank

Macro Quoting A Deciding When to Use a Macro Quoting Function and Which Function to Use

75

Special
Character...

Must Be Masked...

Quoted by All
Macro Quoting
Functions?

Remarks

, (comma)

%name &name

to prevent a macro program
statement from ending
prematurely

to prevent it from indicating a
new function argument,
parameter, or parameter value

if it may be unmatched

(depends on what the
expression might resolve to)

yes

yes

no

no

Arguments that may
contain quotation
marks and
parentheses should be
masked with a macro
quoting function so
that the macro facility
interprets the single
and double quotation
marks and
parentheses as text
rather than macro
language symbols or
possibly unmatched
quotation marks or
parentheses for the
SAS language. With
%STR, %NRSTR,
%QUOTE, and
%NRQUOTE,
unmatched quotation
marks and
parentheses must be
marked with a %
sign. You do not have
to mark unmatched
symbols in the
arguments of
%BQUOTE,
%NRBQUOTE, and
%SUPERQ.

%NRSTR,
%NRBQUOTE, and
%NRQUOTE mask
these patterns. To use
%SUPERQ with a
macro variable, omit
the ampersand from
name.

The macro facility allows you as much flexibility as possible in designing your
macros. You need to mask a special character with a macro quoting function only when
the macro processor would otherwise interpret the special character as part of the

76 Using the %STR and %NRSTR Functions A Chapter 7

macro language rather than as text. For example, in this statement you must use a
macro quoting function to mask the first two semicolons to make them part of the text:

%let p=%str(proc print; run;);

However, in the macro PR, shown here, you do not need to use a macro quoting
function to mask the semicolons after PRINT and RUN:

gmacro pr(start);
$if &start=yes %then
%do;
gput proc print requested;
proc print;
run;
gend;
gmend pr;

Because the macro processor does not expect a semicolon within the %DO group, the
semicolons after PRINT and RUN are not ambiguous, and they are interpreted as text.
Although it is not possible to give a series of rules that cover every situation, the
following sections describe how to use each macro quoting function. Table 7.4 on page
85, later in this chapter, provides a summary of the various characters that may need

masking and of which macro quoting function is useful in each situation.

Note: You can also perform the inverse of a macro quoting function—that is, remove
the tokenization provided by macro quoting functions. For an example of when the
%UNQUOTE function is useful, see “Unquoting Text” on page 85. A

Using the %STR and %NRSTR Functions

If a special character or mnemonic affects the way the macro processor constructs
macro program statements, you must mask the item during macro compilation (or
during the compilation of a macro program statement in open code) by using either the
%STR or %NRSTR macro quoting functions.

These macro quoting functions mask the following special characters and mnemonics:

blank) = LT
; (| GE
- + AND GT
n — OR
~ * NOT
, (comma) / EQ

< NE

> LE

In addition to these, %NRSTR masks & and %.

Note: If an unmatched single or double quotation mark or a left or right parenthesis
is used with %STR or %NRSTR, these characters must be preceded by a percent sign
(%). See “Using Unmatched Quotation Marks and Parentheses with %STR and
%NRSTR” later in this chapter for more information. a

Macro Quoting A Using % Signs with %STR 77

When you use %STR or %NRSTR, the macro processor does not receive these
functions and their arguments when it executes a macro. It receives only the results of
these functions because these functions work when a macro compiles. This means by
the time the macro executes, the string is already masked by a macro quoting function.
Therefore, %STR and %NRSTR are useful for masking strings that are constants, such
as sections of SAS code. In particular, %NRSTR is a good choice for masking strings
that contain % and & signs. However, these functions are not so useful for masking
strings that contain references to macro variables because it is possible that the macro
variable could resolve to a value not quotable by %STR or %NRSTR. For example, the
string could contain an unmarked, unmatched left parenthesis.

Using Unmatched Quotation Marks and Parentheses with %STR and
%NRSTR

If the argument to %STR or %NRSTR contains an unmatched single or double
guotation mark or an unmatched left or right parenthesis, precede each of these
characters with a % sign. Table 7.2 on page 77 shows some examples of this technique.

Table 7.2 Examples of Marking Unmatched Quotation Marks and Parenthese with
%STR and %NRSTR

Notation Description Example Quoted Value Stored
%’ unmatched single quotation $let a’
mark myvar=%str(a%’);
%" unmatched double quotation gjet title ‘‘first
mark myvar=%str(title

g’ first);

%(unmatched left parenthesis $let myvar=3str log (12
(log%(12);

%) unmatched right $let myvar=3str 345)
parenthesis (345%));

Using % Signs with %STR

In general, if you want to mask a % sign with a macro quoting function at
compilation, use %NRSTR. There is one case where you can use %STR to mask a %
sign: when the % sign does not have any text following it that could be construed by the
macro processor as a macro name. The % sign must be marked by another % sign.
Here are some examples.

Table 7.3 Examples of Masking % Signs with %STR

Notation Description Example Quoted Value Stored
‘%’ % sign before a matched $let "%’

single quotation mark myvar=$str(’%’);
%%%’ % sign before an unmatched $let %’

single quotation mark myvar=3str(%3%');

78 Examples Using %STR A Chapter 7

Notation Description Example Quoted Value Stored
""%% % sign after a matched slet "y

double quotation mark myvar=3str(""%%);
%%%% two % signs in a row slet %%

myvar=3%str(%%%

oe
~
~e

Examples Using %STR

The %STR function in the following %LET statement prevents the semicolon after
PROC PRINT from being interpreted as the ending semicolon for the %LET statement:

¢let printit=%str(proc print; run;);

As a more complex example, the macro KEEPIT1 shows how the %STR function
works in a macro definition:

gmacro keepitl(size);
$if &size=big %then %str(keep city numeric ;);
%else %str(keep city;);

¢mend keepitl;

Call the macro as follows:
$keepitl(big)
This produces the following statement:

keep city numeric ;

When you use the %STR function in the %IF-%THEN statement, the macro
processor interprets the first semicolon after the word %THEN as text. The second
semicolon ends the %THEN statement, and the %ELSE statement immediately follows
the %THEN statement. Thus, the macro processor compiles the statements as you
intended. However, if you omit the %STR function, the macro processor interprets the
first semicolon after the word %THEN as the end of the %THEN clause and the next
semicolon as constant text. Because constant text cannot appear between a % THEN
and a %ELSE clause, the macro processor does not compile the macro. Instead, it
issues an error message.

In the %ELSE statement, the %STR function causes the macro processor to treat the
first semicolon in the statement as text and the second one as the end of the %ELSE
clause. Therefore, the semicolon that ends the KEEP statement is part of the
conditional execution. If you omit the %STR function, the first semicolon ends the
%ELSE clause and the second semicolon is outside the conditional execution. It is
generated as text each time the macro executes. (In this example, the placement of the
semicolon does not affect the SAS code.) Again, using %STR causes the macro
KEEPIT1 to compile as you intended.

Here is an example that uses %STR to mask a string that contains an unmatched
single quotation mark. Note the use of the % sign before the quotation mark:

%let innocent=%str(I didn%’'t do it!);

Examples Using %NRSTR

Suppose you want the name (not the value) of a macro variable to be printed by the
%PUT statement. To do so, you must use the %NRSTR function to mask the & and
prevent the resolution of the macro variable, as in the following example:

Macro Quoting A Examples Using %NRSTR 79

gmacro example;
$local myvar;
$let myvar=abc;
gput %nrstr(The string &myvar appears in log output,);
¢put instead of the variable value.;
gmend example;

%example
This code writes the following text to the SAS log:

The string &myvar appears in log output,
instead of the variable value.

If you did not use the %NRSTR function or if you used %STR, the following
undesired output would appear in the SAS log:

The string abc appears in log output,
instead of the variable value.

The %NRSTR function prevents the & from triggering macro variable resolution.
The %NRSTR function is also useful when the macro definition contains patterns
that the macro processor would ordinarily recognize as macro variable references, as in

the following program:

gmacro credits(d=%nrstr(Mary&Stacy&Joan Ltd.));
footnote "Designed by &d";
gmend credits;

Using %NRSTR causes the macro processor to treat &STACY and &JOAN simply as
part of the text in the value of D; the macro processor does not issue warning messages
for unresolvable macro variable references. Suppose you invoke the macro CREDITS
with the default value of D, as follows:

gcredits()
Submitting this program generates the following FOOTNOTE statement:
footnote "Designed by Mary&Stacy&Joan Ltd.";

If you omit the %NRSTR function, the macro processor attempts to resolve the
references &STACY and &JOAN as part of the resolution of &D in the FOOTNOTE
statement. The macro processor issues these warning messages (assuming the SERROR
system option, described in Chapter 13, is active) because no such macro variables exist:

WARNING: Apparent symbolic reference STACY not resolved.
WARNING: Apparent symbolic reference JOAN not resolved.

Here is a final example of using %NRSTR. Suppose you wanted to have a text string
include the name of a macro function: This is the result of 3$NRSTR. Here is the
program:

gput This is the result of %nrstr(%nrstr);

You must use %NRSTR to mask the % sign at compilation, so the macro processor
does not try to invoke %NRSTR a second time. If you did not use %NRSTR to mask the
string $nrstr, the macro processor would complain about a missing open parenthesis
for the function.

80

Using the %BQUOTE and %NRBQUOTE Functions A Chapter 7

Using the %BQUOTE and %NRBQUOTE Functions

%BQUOTE and %NRBQUOTE mask values during execution of a macro or a macro
language statement in open code. These functions instruct the macro processor to
resolve a macro expression as far as possible and mask the result, issuing any warning
messages for macro variable references or macro invocations it cannot resolve. These
functions mask all the characters that %STR and %NRSTR mask with the addition of
unmarked percent signs; unmatched, unmarked single and double quotation marks;
and unmatched, unmarked opening and closing parentheses. That means that you do
not have to precede an unmatched quotation mark with a % sign, as you must when
using %STR and %NRSTR.

The %BQUOTE function treats all parentheses and quotation marks produced by
resolving macro variable references or macro calls as special characters to be masked by
a macro quoting function. (It does not mask parentheses or quotation marks that are
not produced by resolution.) Therefore, it does not matter whether quotation marks and
parentheses in the resolved value are matched; each one is masked individually.

The %NRBQUOTE function is useful when you want a value to be resolved when
first encountered, if possible, but you do not want any ampersands or percent signs in
the result to be interpreted as operators by an explicit or implicit %EVAL function.

If the argument of the %NRBQUOTE function contains an unresolvable macro
variable reference or macro invocation, the macro processor issues a warning message
before it masks the ampersand or percent sign (assuming the SERROR or MERROR
system option, described in Chapter 13, is in effect). To suppress the message for
unresolved macro variables, use the %SUPERQ function (discussed later in this
chapter) instead.

Because the %BQUOTE and %NRBQUOTE functions operate during execution and
are more flexible than %STR and %NRSTR, %BQUOTE and %NRBQOUTE are good
choices for masking strings which contain macro variable references.

Examples Using %BQUOTE

In the following statement, the %IF-%THEN statement uses %BQUOTE to prevent
an error if the macro variable STATE resolves to OR (for Oregon), which the macro
processor would interpret as the logical operator OR otherwise:

$if %bquote(&state)=OR %then %put Oregon Dept. of Revenue;

Note: This example works if you use %STR-but it is not robust or good
programming practice. Because you cannot guarantee what &STATE is going to resolve
to, you need to use %BQUOTE to mask the resolution of the macro variable at
execution time, not the name of the variable itself at compile time. A

In the following example, a DATA step creates a character value containing a single
guotation mark and assigns that value to a macro variable. The macro READIT then
uses the %BQUOTE function to allow a %IF condition to accept the unmatched single
guotation mark:

data test;
store="Susan’'s Office Supplies";
call symput(’s’,store);

run;

gmacro readit;

Macro Quoting A Deciding How Much Text to Mask with a Macro Quoting Function 81

$if %bquote(&s) ne %$then %$put *** valid ***;
%else %put *** null value ***;
gmend readit;

greadit

When you assign the value Susan’s Office Supplies to STORE in the DATA
step, enclosing the character string in double quotation marks allows you to use an
unmatched single quotation mark in the string. The SAS System stores the value of
STORE as

Susan’s Office Supplies

The CALL SYMPUT routine assigns that value (containing an unmatched single
guotation mark) as the value of the macro variable S. If you do not use the %BQUOTE
function when you reference S in the macro READIT, the macro processor issues an
error message for an invalid operand in the %IF condition.

When you submit the code, the following is written to the SAS log:

x* yvalid *

Referring

to Already Quoted Variables

Items that have been masked by a macro quoting function, such as the value of
&WHOSE in the following program, remain masked as long as the item is being used
by the macro processor. When you use the value of WHOSE later in a macro program
statement, you do not need to mask the reference again.

/* Use %STR to mask the constant, and use a % sign to mark */
/* the unmatched single quotation mark. */
%let whose=%str(John%’s);

/* You don’'t need to mask the macro reference, since it was */
/* masked in the %LET statement, and remains masked. */
gput *** This coat is &whose **%*;

Deciding How Much Text to Mask with a Macro Quoting Function

In each of the following statements, the macro processor treats the masked
semicolons as text:

%let p=%str(proc print; run;);
¢let p=proc %str(print;) $%$str(run;);
¢let p=proc print%str(;) run%str(;);

The value of P is the same in each case:
proc print; run;

The results of the three %LET statements are the same because when you mask text
with a macro quoting function, the macro processor quotes only the items that the
function recognizes. Other text enclosed in the function remains unchanged. Therefore,
the third %LET statement is the minimalist approach to macro quoting. However,
masking “too much” text with a macro quoting function is harmless and results in code
that is much easier to read (such as the first %LET statement).

82 Using %SUPERQ A Chapter 7

Using %SUPERQ

The %SUPERQ function locates the macro variable named in its argument and
guotes the value of that macro variable without permitting any resolution to occur. It
masks all items that may require macro quoting at macro execution. Because
%SUPERQ does not attempt any resolution of its argument, the macro processor does
not issue any warning messages that a macro variable reference or a macro invocation
has not been resolved. Therefore, even when the %NRBQUOTE function allows the
program to work correctly, you can use the %SUPERQ function to eliminate unwanted
warning messages from the SAS log. %SUPERQ takes as its argument a macro variable
name without an ampersand or a text expression that yields a macro variable name.

%SUPERQ retrieves the value of a macro variable from the macro symbol table and
guotes it immediately, preventing the macro processor from making any attempt to
resolve anything that may occur in the resolved value. For example, if the macro
variable CORPNAME resolves to Smith&Jones, using %SUPERQ prevents the macro
processor from attempting to further resolve &Jones. This %LET statement
successfully assigns the value Smith&Jones to TESTVAR:

$let testvar=%superqg(corpname);

Examples Using %SUPERQ

This example shows how the %SUPERQ function affects two macro invocations, one
for a macro that has been defined and one for an undefined macro:

gmacro a;
gput *** This is a. ***;
gmend a;

gmacro test;

gput *** Enter two values: **%;

ginput;

gput *** fsuperq(sysbuffr) ***x; /* Note absence of ampersand */
gmend test;

Suppose you invoke the macro TEST and respond to the prompt as shown:

$test
*** Enter two values: ***

)

%a %X
The second %PUT statement simply writes the following line:

*k*k g IX *k*

It does not invoke the macro A, and it does not issue a warning message that %X was
not resolved. See Chapter 13 for a description of SYSBUFFR.

The following two examples compare the %SUPERQ function with other macro
quoting functions.

Using the %SUPERQ Function to Prevent Warning Messages

The discussions of the %NRBQUOTE function showed that this function causes the
macro processor to attempt to resolve the patterns &name and %name the first time it
encounters them; if the macro processor cannot resolve them, it quotes the ampersand
or percent sign so that later uses of the value do not cause the macro processor to

Macro Quoting A Examples Using %SUPERQ 83

recognize them. However, if the MERROR or SERROR option is in effect, the macro
processor issues a warning message that the reference or invocation was not resolved.

The macro FIRMS3, shown here, shows how the %SUPERQ function can prevent
unwanted warning messages:

gmacro firms3;
¢global code;
gput Enter the name of the company;
ginput;
$let name=%superq(sysbuffr);
%2if &name ne %then %let code=valid;
%else %let code=invalid;
gput *** &name is &code ***;
gmend firms3;

Suppose you invoke the macro FIRMS3 twice and respond with the companies shown
here:

A&A Autos
Santos&D’Amato

After the macro executes, the following is written to the SAS log:

*%% A&A Autos is valid ***
*%% Santos&D’Amato is valid ***

Using the %SUPERQ Function to Enter Macro Keywords

Suppose you create an online training system in which users can enter problems and
guestions that another macro prints for you later. The user’s response to a %INPUT
statement is assigned to a local macro variable and then to a global macro variable.
Because the user is asking questions about macros, he or she may enter all sorts of
macro variable references and macro calls as examples of problems, as well as
unmatched, unmarked quotation marks and parentheses. If you mask the response
with %BQUOTE, you have to use a few %PUT statements to warn the user about
responses that cause problems. If you use the %SUPERQ function, you need fewer
instructions. The macros ASK1 and ASK2 show how the macro code becomes simpler as
you change macro quoting functions.

The macro ASK1, below, shows how the macro looks when you use the %BQUOTE
function:

gmacro askl;
$global myprob;
$local temp;
$put Describe the problem.;
gput Do not use macro language keywords, macro calls,;
gput or macro variable references.;
$put Enter /// when you are finished.;
%do %until(%bquote(&sysbuffr) eq %str(///));
ginput;
%let temp=&temp %bquote(&sysbuffr);
%end;
$let myprob=&temp;
g¢mend askl;

The macro ASK1 does not include a warning about unmatched quotation marks and
parentheses. You can invoke the macro ASK1 and enter a problem as shown:

84 Summary of Macro Quoting Functions and the Characters They Mask A Chapter 7

gaskl

Describe the problem.

Do not use macro language keywords, macro calls,

or macro variable references.

Enter /// when you are finished.

Why didn’t my macro run when I called it? (It had three
parameters, but I wasn’t using any of them.) It ran
after I submitted the next statement.

/117

Notice that both the first and second lines of the response contain an unmatched,
unmarked quotation mark and parenthesis. %BQUOTE can handle these characters.
The macro ASK2, shown here, modifies the macro ASK1 by using the %SUPERQ
function. Now the %INPUT statement accepts macro language keywords and does not

attempt to resolve macro calls and macro variable references:

gmacro ask2;
$global myprob;
$local temp;
$put Describe the problem.;
$put Enter /// when you are finished.;
¢do %until(%superq(sysbuffr) eq %str(///)); /* No ampersand */
ginput;
%let temp=&temp %$superq(sysbuffr); /* No ampersand */
gend;
%let myprob=&temp;
g¢mend ask2;

You can invoke the macro ASK2 and enter a response as shown:

gask2

Describe the problem.

Enter /// when you are finished.

My macro ADDRESS starts with $MACRO ADDRESS (COMPANY,

CITY);. I called it with %ADDRESS(SMITH-JONES, INC., BOSTON),
but it said I had too many parameters. What happened?

/117

The response contains a macro language keyword, a macro invocation, and
unmatched parentheses.

Summary of Macro Quoting Functions and the Characters They Mask

Different macro quoting functions mask different special characters and mnemonics
so the macro facility interprets them as text instead of as macro language symbols.
Table 7.4 on page 85 divides the symbols into categories and shows which macro

qguoting functions mask which symbols.

By Item

Macro Quoting A Unquoting Text

Table 7.4 Summary of Special Characters and Macro Quoting Functions

85

Group

Items

Macro Quoting Functions

A

+ — */<>=-"|~;, blank AND OR NOT

EQ NE LE LT GE GT
&%

unmatched’ “()

all

%NRSTR, %NRBQUOTE, %SUPERQ,
NRQUOTE

%BQUOTE, %NRBQUOTE,
%SUPERQ, %STR*, %NRSTR*,
%QUOTE*, %NRQUOTE*

By Function

Function

Affects Groups

Works at

%STR
%NRSTR
%BQUOTE
%NRBQUOTE
%SUPERQ

%QUOTE

%NRQUOTE

A, C*
A, B, C*
, C

> > »

B, C
B, C

C*

>

macro compilation
macro compilation
macro execution
macro execution

macro execution (prevents
resolution)

macro execution. Requires
unmatched quotation marks
and parentheses to be marked
with a percent sign (%).

macro execution. Requires
unmatched quotation marks
and parentheses to be marked
with a percent sign (%).

*Unmatched quotation marks and parentheses must be marked with a percent sign (%) when used

with %STR, %NRSTR, %QUOTE, and %NRQUOTE.

Unquoting Text

To unquote a value means to restore the significance of symbols in an item that was

previously masked by a macro quoting function.

Usually, after an item has been masked by a macro quoting function, it retains its

special status until one of the following occurs:

O You enclose the item with the %UNQUOTE function (described in Chapter 13).

O The item leaves the word scanner and is passed to the DATA step compiler, SAS
procedures, or other parts of the SAS System, when the item is part of generated

SAS statements.

o The item is returned as an unquoted result by the %SCAN, %SUBSTR, or
%UPCASE function. (To retain a value’'s masked status during one of these

operations, use the %QSCAN, %QSUBSTR, or %QUPCASE function. See “Other

Functions That Perform Macro Quoting” on page 88 for more details.)

86 Example of Unquoting A Chapter 7

As a rule, you do not need to unquote an item because it is automatically unquoted
when the item is passed from the word scanner to the rest of the SAS System. Under
two circumstances, however, you may need to use the %UNQUOTE function to restore
the original significance to a masked item:

o when you want to use a value with its restored meaning later in the same macro
in which its value was previously masked by a macro quoting function.

o when, as in a few cases, masking text with a macro quoting function changes the
way the word scanner tokenizes it, producing SAS statements that look correct but
that the SAS compiler does not recognize.

Example of Unquoting

The following example illustrates using a value twice: once in macro quoted form and
once in unquoted form. Suppose the macro ANALYZE is part of a system that allows
you to compare the output of two statistical models interactively. First, you enter an
operator to specify the relationship you want to test (one result greater than another,
equal to another, and so forth). The macro ANALYZE tests the macro quoted value of
the operator to verify that you have entered it correctly, uses the unquoted value to
compare the values indicated, and writes a message. Match the numbers in the
comments to the paragraphs below.

gmacro analyze(stat);
data _null ;
set outl;
call symput(’'vl’,&stat);
run;

data _null ;

set out2;

call symput(’'v2’,&stat);
run;

¢put Preliminary test. Enter the operator.;
ginput;
%let op=%bquote(&sysbuffr); (1)
$if &op=%str(=<) %then %let op=%str(<=); @ (3)
%else %if &op=%str(=>) %then %let op=%str(>=);
$if &vl %unquote(&op) &v2 %then @
¢put You may proceed with the analysis.;
$else
2do;
gput &stat from outl is not &op &stat from out2.;
¢put Please check your previous models.;
gend;
g¢mend analyze;

You mask the value of SYSBUFFR with the %BQUOTE function, which masks resolved
items including unmatched, unmarked quotation marks and parentheses (but excluding
the ampersand and percent sign).

The %IF condition compares the value of the macro variable OP to a string to see
whether the value of OP contains the correct symbols for the operator. If the value
contains symbols in the wrong order, the %THEN statement corrects the symbols.
Because a value masked by a macro quoting function remains masked, you do not need
to mask the reference &OP in the left side of the %IF condition.

Macro Quoting A Understanding How Macro Quoting Works “Behind the Scenes” 87

Because you can see the characters in the right side of the %IF condition and in the
%LET statement when you define the macro, you can use the %STR function to mask
them. Masking them once at compilation is more efficient than masking them at each
execution of ANALYZE.

To use the value of the macro variable OP as the operator in the %IF condition, you
must restore the meaning of the operator with the %UNQUOTE function.

What to Do When Automatic Unquoting Does Not Work

When the macro processor generates text from an item masked by a macro quoting
function, you can usually allow the SAS System to unquote the macro quoted items
automatically. For example, suppose you define a macro variable PRINTIT as follows:

¢let printit=%str(proc print; run;);
Then you use that macro variable in your program like this:
gput *** This code prints the data set: &printit **%*;

When the macro processor generates the text from the macro variable, the items
masked by macro quoting functions are automatically unquoted, and the previously
masked semicolons work normally when they are passed to the rest of the SAS System.

In rare cases, masking text with a macro quoting function changes the way the word
scanner tokenizes the text. (The word scanner and tokenization are discussed in
Chapter 2, “SAS Programs and Macro Processing” and Chapter 4, “Macro Processing.”)
For example, a single or double quotation mark produced by resolution within the
%BQUOTE function becomes a separate token; the word scanner does not use it as the
boundary of a literal token in the input stack. If generated text that was once masked
by the %BQUOTE function looks correct but the SAS System does not accept it, you
may need to use the %UNQUOTE function to restore normal tokenization.

Understanding How Macro Quoting Works “Behind the Scenes”

In simple terms, when the macro processor masks a text string, it masks special
characters and mnemonics within the coding scheme, and prefixes and suffixes the
string with a hexadecimal character, called a delta character. The prefix character
marks the beginning of the string and also indicates what type of macro quoting is to be
applied to the string. The suffix character marks the end of the string. The prefix and
suffix characters preserve any leading and trailing blanks contained by the string. The
hexadecimal characters used to mask special characters and mnemonics and those used
for the prefix and suffix characters may vary and are not portable.

There are more hexadecimal combinations possible in each byte than are needed to
represent the symbols on a keyboard. Therefore, when a macro quoting function
recognizes an item to be masked, the macro processor uses a previously unused
hexadecimal combination for the prefix and suffix characters.

Macro functions, such as %EVAL and %SUBSTR, ignore the prefix and suffix
characters. Therefore, the prefix and suffix characters do not affect comparisons.

When the macro processor is finished with a macro quoted text string, it removes the
macro quoting-coded substitute characters and replaces them with the original
characters. The unmasked characters are passed on to the rest of the system.
Sometimes you may see a message about this unmasking, as in the following example:

/* Turn on SYMBOLGEN so you can see the messages about unquoting. */
options symbolgen;

88

Other Functions That Perform Macro Quoting A Chapter 7

/* Assign a value to EXAMPLE that contains several special */
/* characters and a mnemonic. */
$let example = %nrbquote(1 + 1 = 3 Today'’s Test and More);

gput *&example*;
When this program is submitted, the following appears in the SAS log:

SYMBOLGEN: Macro variable EXAMPLE resolves to 1 + 1 = 3 Today's
Test and More

SYMBOLGEN: Some characters in the above value which were subject
to macro quoting have been unquoted for printing.

* 1 + 1 = 3 Today’'s Test and More *

As you can see, the leading and trailing blanks and special characters were retained
in the variable’s value. While the macro processor was working with the string, the
string actually contained coded characters that were substituted for the “real”
characters. The substitute characters included coded characters to represent the start
and end of the string. This preserved the leading and trailing blanks. Characters were
also substituted for the special characters +, =, and ’, and the mnemonic AND. When
the macro finished processing and the characters were passed to the rest of the SAS
System, the coding was removed and the real characters were replaced.

“Unqguoting Text” on page 85 provides more information on what happens when a
masked string is unquoted. Chapter 13 describes the SYMBOLGEN system option.

Other Functions That Perform Macro Quoting

Some macro functions are available in pairs, where one function starts with the
letter Q:

o %SCAN and %QSCAN

O %SUBSTR and %QSUBSTR

o %UPCASE and %QUPCASE

O %SYSFUNC and %QSYSFUNC.

The Qxxx functions are necessary because by default, macro functions return an
unquoted result, even if the argument was masked by a macro quoting function. The

%QSCAN, %QSUBSTR, %QUPCASE, and %QSYSFUNC functions mask the returned
value. The items masked are the same as those masked by the %NRBQUOTE function.

Example Using the %QSCAN Function

The following macro uses the %QSCAN function to assign items in the value of
SYSBUFFR (described in Chapter 13) as the values of separate macro variables. The
numbers in the comments correspond to the explanations in the list that follows the
macro code.

gmacro splitit;
gput What character separates the values?; @
ginput;
%let s=%bquote(&sysbuffr); (2]
$put Enter three values.;
ginput;

Macro Quoting A Example Using the %QSCAN Function 89

%local i;
gdo i=1 %to 3; @
%global x&i;
%let x&i=%qgscan(%superq(sysbuffr),si,&s); @
gend;
gmend splitit;

gsplitit

What character separates the values?

#

Enter three values.

Fischer Books#Smith&Sons#Sarah’s Sweet Shoppe @

1 This question asks you to input a delimiter for the %QSCAN function that will not
appear in the values you are going to enter.

2 Masking the value of SYSBUFFR with the %BQUOTE function allows you to
choose a quotation mark or parenthesis as a delimiter if necessary.

3 The iterative %DO loop creates a global macro variable for each segment of
SYSBUFFR and assigns it the value of that segment.

4 The %SUPERQ function masks the value of SYSBUFFR in the first argument of
the %QSCAN function. It prevents any resolution of the value of SYSBUFFR.

5 The %QSCAN function returns macro quoted segments of the value of
SYSBUFFR,; thus, the unmatched quotation mark in Sarah’s Sweet Shoppe
and the &name pattern in Smith&Sons do not cause problems.

90 Example Using the %QSCAN Function A Chapter 7

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Macro Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999. 310 pages.
SAS Macro Language: Reference, Version 8

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.

1-58025-522-1

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any

means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227-19
Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

0S/2% is a registered trademark or trademark of International Business Machines
Corporation.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

