
91

C H A P T E R

8
Interfaces with the Macro
Facility

Introduction 91
DATA Step Interfaces 92

CALL EXECUTE Routine Timing Details 92

A Simple Example of CALL EXECUTE Timing 92

Another Example Using CALL EXECUTE 93

Using SAS Language Functions in the DATA Step and Macro Facility 95
Interfaces with the SQL Procedure 96

INTO Clause 96

Controlling Job Execution 96

Interfaces with Screen Control Language 97

Understanding How Macro References Are Resolved by SCL 97

Referencing Macro Variables in Submit Blocks 98
Considerations for Sharing Macros between SCL Programs 98

Example Using Macros in an SCL Program 98

SAS/CONNECT Interfaces 99

Example Using %SYSRPUT to Check the Value of a Return Code on a Remote Host 100

Introduction
An interface with the macro facility is not part of the macro processor but rather a

SAS software feature that enables another portion of the SAS language to interact with
the macro facility during execution. For example, a DATA step interface enables you to
access macro variables from the DATA step. Macro facility interfaces are useful
because, in general, macro processing happens before DATA step, SQL, SCL, or
SAS/CONNECT execution, so the connection between the macro facility and the rest of
the SAS System is not usually dynamic. But by using an interface to the macro facility,
you can dynamically connect the macro facility to the rest of the SAS System.

Note: The %SYSFUNC and %QSYSFUNC macro functions enable you to use SAS
language functions with the macro processor. The %SYSCALL macro statement enables
you to use SAS language CALL routines with the macro processor. While these
elements of the macro language are not considered true macro facility interfaces, they
are discussed in this chapter. See Chapter 13, “Macro Language Dictionary,” for more
information on these macro language elements. 4

While this chapter includes some examples, you can find additional examples for
each item in Chapter 13.

92 DATA Step Interfaces 4 Chapter 8

DATA Step Interfaces
DATA step interfaces consist of four tools that enable a program to interact with the

macro facility during DATA step execution. Because the work of the macro facility
takes place before DATA step execution begins, information provided by macro
statements has already been processed during DATA step execution. Use one of the
DATA step interfaces to interact with the macro facility during DATA step execution.
Use DATA step interfaces to

� pass information from a DATA step to a subsequent step in a SAS program
� invoke a macro based on information available only when the DATA step executes
� resolve a macro variable while a DATA step executes.

Table 8.1 on page 92 lists the DATA step interfaces by category and their uses.

Table 8.1 DATA Step Interfaces

Category Tool Description

Execution CALL EXECUTE routine resolves its argument and executes the
resolved value at the next step boundary
(if the value is a SAS statement) or
immediately (if the value is a macro
language element)

Resolution RESOLVE function resolves the value of a text expression
during DATA step execution

Read or Write SYMGET function returns the value of a macro variable
during DATA step execution

CALL SYMPUT routine assigns a value produced in a DATA step
to a macro variable

CALL EXECUTE Routine Timing Details
CALL EXECUTE is useful when you want to execute a macro conditionally. But you

must remember that if CALL EXECUTE produces macro language elements, those
elements execute immediately; if CALL EXECUTE produces SAS language statements,
or if the macro language elements generate SAS language statements, those statements
execute after the end of the DATA step’s execution.

Note: Because macro references execute immediately and SAS statements do not
execute until after a step boundary, you cannot use CALL EXECUTE to invoke a macro
that contains references for macro variables that are created by CALL SYMPUT in that
macro. 4

Here are two examples that illustrate the timing problems that users frequently
have with CALL EXECUTE.

A Simple Example of CALL EXECUTE Timing
In this example, the CALL EXECUTE routine is used incorrectly:

data prices; /* ID for price category and actual price */
input code amount;

Interfaces with the Macro Facility 4 CALL EXECUTE Routine Timing Details 93

cards;
56 300
99 10000
24 225
;

%macro items;
%global special;
%let special=football;

%mend items;

data sales; /* incorrect usage */
set prices;
length saleitem $ 20;
call execute(’%items’);
saleitem="&special";

run;

In the DATA SALES step, the assignment statement for SALEITEM requires the
value of the macro variable SPECIAL at DATA step compilation. CALL EXECUTE does
not produce the value until DATA step execution. Thus, you receive a message about an
unresolved macro variable, and the value assigned to SALEITEM is &special.

In this example, it would be better to eliminate the macro definition (the %LET
macro statement is valid in open code) or move the DATA SALES step into the macro
ITEMS. In either case, CALL EXECUTE is not necessary or useful. Here is one version
of this program that works:

data prices; /* ID for price category and actual price */
input code amount;
cards;

56 300
99 10000
24 225
;

%let special=football; /* correct usage */

data sales;
set prices;
length saleitem $ 20;
saleitem="&special";

run;

The %GLOBAL statement isn’t necessary in this version. Because the %LET
statement is executed in open code, it automatically creates a global macro variable.
(See Chapter 5, “Scope of Macro Variables,” for more information about macro variable
scope.)

Another Example Using CALL EXECUTE
This example shows a common pattern that causes an error.

/* This version of the example shows the problem. */

data prices; /* ID for price category and actual price */
input code amount;
cards;

94 CALL EXECUTE Routine Timing Details 4 Chapter 8

56 300
99 10000
24 225
;
data names; /* name of sales department and item sold */

input dept $ item $;
cards;

BB Boat
SK Skates
;

%macro items(codevar=); /* create macro variable if needed */
%global special;
data _null_;

set names;
if &codevar=99 and dept=’BB’ then call symput(’special’, item);

run;
%mend items;

data sales; /* attempt to reference macro variable fails */
set prices;
length saleitem $ 20;
if amount > 500 then

call execute(’%items(codevar=’ || code || ’)’);
saleitem="&special";

run;

In this example, the DATA SALES step still requires the value of SPECIAL during
compilation. The CALL EXECUTE routine is useful in this example because of the
conditional IF statement. But as in the first example, CALL EXECUTE still invokes
the macro ITEMS during DATA step execution–not compilation. The macro ITEMS
generates a DATA _NULL_ step that executes after the DATA SALES step has ceased
execution. The DATA _NULL_ step creates SPECIAL, and the value of SPECIAL is
available after the _NULL_ step ceases execution–much later than when the value was
needed.

This version of the example corrects the problem:

/* This version solves the problem. */

data prices; /* ID for price category and actual price */
input code amount;
cards;

56 300
99 10000
24 225
;

data names; /* name of sales department and item sold */
input dept $ item $;
cards;

BB Boat
SK Ski
;
%macro items(codevar=); /* create macro variable if needed */

%global special;

Interfaces with the Macro Facility 4 Using SAS Language Functions in the DATA Step and Macro Facility 95

data _null_;
set names;
if &codevar=99 and dept=’BB’ then

call symput(’special’, item);
run;

%mend items;

data _null_; /* call the macro in this step */
set prices;
if amount > 500 then

call execute(’%items(codevar=’ || code || ’)’);
run;

data sales; /* use the value created by the macro in this step */
set prices;
length saleitem $ 20;
saleitem="&special";

run;

This version uses one DATA _NULL_ step to call the macro ITEMS. After that step
ceases execution, the DATA _NULL_ step generated by ITEMS executes and creates the
macro variable SPECIAL. Then the DATA SALES step references the value of
SPECIAL as usual.

Using SAS Language Functions in the DATA Step and Macro Facility
The macro functions %SYSFUNC and %QSYSFUNC can call SAS language functions

and functions written with SAS/TOOLKIT software to generate text in the macro
facility. %SYSFUNC and %QSYSFUNC have one difference: the %QSYSFUNC masks
special characters and mnemonics and %SYSFUNC does not. For more information on
these functions, see the %QSYSFUNC and %SYSFUNC topics in Chapter 13.

%SYSFUNC arguments are a single SAS language function and an optional format,
as shown in the following examples:

%sysfunc(date(),worddate.)
%sysfunc(attrn(&dsid,NOBS))

You cannot nest SAS language functions within %SYSFUNC. However, you can nest
%SYSFUNC functions that call SAS language functions, as in the following statement:

%sysfunc(compress(%sysfunc(getoption(sasautos)),%str(%)%(%’)))

This example returns the value of the SASAUTOS= system option, using the
COMPRESS function to eliminate opening parentheses, closing parentheses, and single
quotation marks from the result. Note the use of the %STR function and the
unmatched parentheses and quotation marks that are marked with a percent sign (%).

All arguments in SAS language functions within %SYSFUNC must be separated by
commas. You cannot use argument lists preceded by the word OF.

Because %SYSFUNC is a macro function, you do not need to enclose character values
in quotation marks as you do in SAS language functions. For example, the arguments
to the OPEN function are enclosed in quotation marks when the function is used alone
but do not require quotation marks when used within %SYSFUNC.

Here are some examples of the contrast between using a function alone and within
%SYSFUNC:

� dsid = open("sasuser.houses","i");

96 Interfaces with the SQL Procedure 4 Chapter 8

� dsid = open("&mydata","&mode");

� %let dsid = %sysfunc(open(sasuser.houses,i));

� %let dsid = %sysfunc(open(&mydata,&mode));

You can use %SYSFUNC and %QSYSFUNC to call all of the DATA step SAS
functions except DIF, DIM, HBOUND, INPUT, LAG, LBOUND, PUT, RESOLVE, and
SYMGET. In the macro facility, SAS language functions called by %SYSFUNC can
return values with a length up to 32K. However, within the DATA step, return values
are limited to the length of a data set character variable.

The %SYSCALL macro statement enables you to use SAS language CALL routines
with the macro processor, and it is described in Chapter 13.

Interfaces with the SQL Procedure
Structured Query Language (SQL) is a standardized, widely used language for

retrieving and updating data in databases and relational tables. The SAS System’s
SQL processor enables you to

� create tables and views
� retrieve data stored in tables
� retrieve data stored in SQL and SAS/ACCESS views
� add or modify values in tables
� add or modify values in SQL and SAS/ACCESS views.

INTO Clause
SQL provides the INTO clause in the SELECT statement for creating SAS macro

variables. You can create multiple macro variables with a single INTO clause. The
INTO clause follows the same scoping rules as the %LET statement. See Figure 5.3 in
Chapter 5 for a summary of how macro variables are created. For further details and
examples relating to the INTO clause, see Chapter 13.

Controlling Job Execution
PROC SQL also provides macro tools to
� stop execution of a job if an error occurs
� execute programs conditionally based on data values.

Table 8.2 on page 97 provides information about macro variables created by SQL that
affect job execution.

Interfaces with the Macro Facility 4 Understanding How Macro References Are Resolved by SCL 97

Table 8.2 Macro Variables that Affect Job Execution

Macro Variable Description

SQLOBS contains the number of rows or observations produced by a SELECT
statement.

SQLRC contains the return code from an SQL statement. For return codes,
see SAS SQL documentation.

SQLOOPS contains the number of iterations that the inner loop of PROC SQL
processes.

Interfaces with Screen Control Language
You can use the SAS macro facility to define macros and macro variables for your

SCL program. Then, you can pass parameters between macros and the rest of your
program. Also, through the use of the autocall and compiled stored macro facilities,
macros can be used by more than one SCL program.

Note: Macro modules can be more complicated to maintain than a program segment
because of the symbols and macro quoting that may be required. Also, implementing
modules as macros does not reduce the size of the compiled SCL code. Program
statements generated by a macro are added to the compiled code as if those lines
existed at that location in the program. 4

Table 8.3 on page 97 lists the SCL macro facility interfaces.

Table 8.3 SCL Interfaces to the Macro Facility

Category Tool Description

Read or Write SYMGET returns the value of a global macro variable
during SCL execution

SYMGETN returns the value of a global macro variable as
a numeric value

CALL SYMPUT assigns a value produced in SCL to a global
macro vairable

CALL SYMPUTN assigns a numeric value to a global macro
variable

Note: It is inefficient to use SYMGETN to retrieve values that are not assigned with
SYMPUTN. It is also inefficient to use & to reference a macro variable that was created
with CALL SYMPUTN. Instead, use SYMGETN. In addition, it is inefficient to use
SYMGETN and CALL SYMPUTN with values that are not numeric. 4

For details on these elements, see Chapter 13.

Understanding How Macro References Are Resolved by SCL
An important point to remember when using the macro facility with SCL is that

macros and macro variable references in SCL programs are resolved when the SCL

98 Referencing Macro Variables in Submit Blocks 4 Chapter 8

program compiles, not when you execute the application. To further control the
assignment and resolution of macros and macro variables, use the following techniques:

� If you want macro variables to be assigned and retrieved when the SCL program
executes, use CALL SYMPUT and CALL SYMPUTN in the SCL program.

� If you want a macro call or macro variable reference to resolve when an SCL
program executes, use SYMGET and SYMGETN in the SCL program.

Referencing Macro Variables in Submit Blocks
In SCL, macro variable references are resolved at compile time unless they are in a

Submit block. When SCL encounters a name prefixed with an ampersand (&) in a
Submit block, it checks whether the name following the ampersand is the name of an
SCL variable. If so, SCL substitutes the value of the corresponding variable for the
variable reference in the submit block. If the name following the ampersand does not
match any SCL variable, the name passes intact (including the ampersand) with the
submitted statements. When the SAS System processes the statements, it attempts to
resolve the name as a macro variable reference

To guarantee that a name is passed as a macro variable reference in submitted
statements, precede the name with two ampersands (for example, &&DSNAME). If you
have both a macro variable and an SCL variable with the same name, a reference with
a single ampersand substitutes the SCL variable. To force the macro variable to be
substituted, reference it with two ampersands (&&).

Considerations for Sharing Macros between SCL Programs
Sharing macros between SCL programs can be useful, but it can also raise some

configuration management problems. If a macro is used by more than one program, you
must keep track of all the programs that use it so you can recompile all of them each
time the macro is updated. Because SCL is compiled, each SCL program that calls a
macro must be recompiled whenever that macro is updated to update the program with
the new macro code.

CAUTION:
Recompile the SCL program. If you fail to recompile the SCL program when you update
the macro, you run the risk of the compiled SCL being out of sync with the source. 4

Example Using Macros in an SCL Program
This SCL program is for an example application with the fields BORROWED,

INTEREST, and PAYMENT. The program uses the macros CKAMOUNT and CKRATE
to validate values entered into fields by users. The program calculates the payment,
using values entered for the interest rate (INTEREST) and the sum of money
(BORROWED).

/* Display an error message if AMOUNT */
/* is less than zero or larger than 1000. */

%macro ckamount(amount);
if (&amount < 0) or (&amount > 1000) then

do;
erroron borrowed;
msg=’Amount must be between $0 and $1,000.’;
stop;

end;

Interfaces with the Macro Facility 4 SAS/CONNECT Interfaces 99

else erroroff borrowed;
%mend ckamount;

/* Display an error message if RATE */
/* is less than 0 or greater than 1.5 */

%macro ckrate(rate);
if (&rate < 0) or (&rate > 1) then

do;
erroron interest;
msg=’Rate must be between 0 and 1.5’;
stop;

end;
else erroroff interest;

%mend ckrate;

/* Open the window with BORROWED at 0 and INTEREST at .5. */
INIT:

control error;
borrowed=0;
interest=.5;

return;

MAIN:
/* Run the macro CKAMOUNT to validate */
/* the value of BORROWED. */

%ckamount(borrowed);
/* Run the macro CKRATE to validate */
/* the value of INTEREST. */

%ckrate(interest)
/* Calculate payment. */

payment=borrowed*interest;
return;

TERM:
return;

SAS/CONNECT Interfaces
The %SYSRPUT macro statement is submitted with SAS/CONNECT to a remote

host to retrieve the value of a macro variable stored on the remote host. %SYSRPUT
assigns that value to a macro variable on the local host. %SYSRPUT is similar to the
%LET macro statement because it assigns a value to a macro variable. However,
%SYSRPUT assigns a value to a variable on the local host, not on the remote host
where the statement is processed. The %SYSRPUT statement places the macro
variable in the current scope of the local host.

Note: The names of the macro variables on the remote and local hosts must not
contain a leading ampersand. 4

The %SYSRPUT statement is useful for capturing the value of the automatic macro
variable SYSINFO and passing that value to the local host. SYSINFO contains
return-code information provided by some SAS procedures. Both the UPLOAD and the
DOWNLOAD procedures of SAS/CONNECT can update the macro variable SYSINFO
and set it to a nonzero value when the procedure terminates due to errors. You can use

100 Example Using %SYSRPUT to Check the Value of a Return Code on a Remote Host 4 Chapter 8

%SYSRPUT on the remote host to send the value of the SYSINFO macro variable back
to the local SAS session. Thus, you can submit a job to the remote host and test
whether a PROC UPLOAD or DOWNLOAD step has successfully completed before
beginning another step on either the remote host or the local host.

To use %SYSRPUT, you must have invoked a remote SAS display manager session
by submitting the DMR option with the SAS command. For details about using
%SYSRPUT, see the SAS/CONNECT documentation.

To create a new macro variable or to modify the value of an existing macro variable
on a remote host or a server, use the %SYSLPUT macro statement.

Example Using %SYSRPUT to Check the Value of a Return Code on a
Remote Host

This example illustrates how to download a file and return information about the
success of the step. When remote processing is completed, the job checks the value of
the return code stored in RETCODE. Processing continues on the local host if the
remote processing is successful. In this example, the %SYSRPUT statement follows a
PROC DOWNLOAD step, so the value returned by SYSINFO indicates the success of
the PROC DOWNLOAD step:

/* This code executes on the remote host. */
rsubmit;

proc download data=remote.mydata out=local.mydata;
run;

/* RETCODE is on the local host. */
/* SYSINFO is on the remote host. */

%sysrput retcode=&sysinfo;
endrsubmit;

/* This code executes on the local host. */
%macro checkit;

%if &retcode = 0 %then
%do;

further processing on local host
%end;

%mend checkit;

%checkit

To determine the success or failure of a step executed on a remote host, use the
%SYSRPUT macro statement to check the value of the automatic macro variable
SYSERR.

For more details and syntax of the %SYSRPUT statement, refer to Chapter 13.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Macro Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999. 310 pages.

SAS Macro Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1-58025-522-1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
OS/2® is a registered trademark or trademark of International Business Machines
Corporation.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

