
101

C H A P T E R

9
Storing and Reusing Macros

Introduction 101
Saving Macros in an Autocall Library 102

Using Directories as Autocall Libraries 102

Using SAS Catalogs as Autocall Libraries 103

Calling an Autocall Macro 103

Saving Macros Using the Stored Compiled Macro Facility 104
Compiling and Storing a Macro Definition 104

Storing Autocall Macros Supplied by SAS Institute 105

Calling a Stored Compiled Macro 105

Introduction
When you submit a macro definition, by default, the macro processor compiles and

stores the macro in a SAS catalog in the WORK library. These macros, referred to as
session compiled macros, exist only during the current SAS session. To save frequently
used macros between sessions, you can use either the autocall macro facility or the
stored compiled macro facility.

The autocall macro facility stores the source for SAS macros in a collection of
external files called an autocall library. The autocall facility is useful when you want to
create a pool of easily maintained macros in a location that can be accessed by different
applications and users. Autocall libraries can be concatenated together. The primary
disadvantage of the autocall facility is that the first time that an autocall macro is
called in a session, the macro processor compiles it. This compilation is overhead that
you can avoid by using the stored compiled macro facility.

The stored compiled macro facility stores compiled macros in a SAS catalog in a SAS
data library that you specify. By using stored compiled macros, you may save macro
compilation time in your production-level jobs. However, because these stored macros
are compiled, you must save and maintain the source for the macro definitions in a
different location.

The autocall facility and the stored compiled macro facility each offer advantages.
Some of the factors that determine how you choose to save a macro definition are how
often you use a macro, how often you change it, how many users need to execute it, and
how many compiled macro statements it has. If you are developing new programs,
consider creating macros and compiling them during your current session. If you are
running production-level jobs using name-style macros, consider using stored compiled
macros. If you are allowing a group of users to share macros, consider using the
autocall facility.



102 Saving Macros in an Autocall Library 4 Chapter 9

Note: For greater efficiency, store only name-style macros if you use the stored
compiled macro facility. Storing statement-style and command-style macros is less
efficient. 4

It is good practice, when you are programming stored compiled macros or autocall
macros, to use the %LOCAL statement to define macro variables that will be used only
inside that macro. Otherwise, values of macro variables defined outside of the current
macro might be altered. See the discussion of macro variable scope in Chapter 5, “Scope
of Macro Variables.”

Saving Macros in an Autocall Library

Generally, an autocall library is a directory containing individual files, each of which
contains one macro definition. In Release 6.11 or later, an autocall library can also be a
SAS catalog (see “Using SAS Catalogs as Autocall Libraries” below).

Operating Environment Information: Autocall Libraries on Different Hosts The term
directory refers to an aggregate storage location that contains files (or members)
managed by the host operating system. Different host operating systems identify an
aggregate storage location with different names, such as a directory, a subdirectory, a
maclib, a text library, or a partitioned data set. For more information, see the SAS
Companion for your operating system. 4

Using Directories as Autocall Libraries
To use a directory as a SAS autocall library, do the following:

1 To create library members, store the source code for each macro in a separate file
in a directory. The name of the file must be the same as the macro name. For
example, the statements defining a macro you would call by submitting %SPLIT
must be in a file named SPLIT.

Operating Environment Information: Autocall Library Member Names On
operating systems that allow filenames with extensions, you must name autocall
macro library members with a special extension, usually .SAS. Look at the
autocall macros on your system provided by SAS Institute to determine whether
names of files containing macros must have a special extension at your site.

On MVS operating systems, you must assign the macro name as the name of
the PDS member. 4

2 Set the SASAUTOS system option to specify the directory as an autocall library.
On most hosts, the reserved fileref SASAUTOS is assigned at invocation time to
the autocall library supplied by SAS Institute or another one designated by your
site. If you are specifying one or more autocall libraries, remember to concatenate
the autocall library supplied by the Institute with your autocall libraries so that
these macros will also be available. For details, refer to your host documentation
and SASAUTOS in Chapter 13, “Macro Language Dictionary.”

When storing files in an autocall library, remember the following:

� Although the SAS System does not restrict the type of material you place in an
autocall library, you should store only autocall library files in it to avoid confusion
and for ease of maintenance.

� Although the SAS System lets you include more than one macro definition, as well
as open code, in an autocall library member, you should generally keep only one



Storing and Reusing Macros 4 Calling an Autocall Macro 103

macro in any autocall library member. If you need to keep several macros in the
same autocall library member, keep related macros together.

Using SAS Catalogs as Autocall Libraries
In Release 6.11 or later, you can use the CATALOG access method to store autocall

macros as SOURCE entries in SAS catalogs. To create an autocall library using a SAS
catalog, follow these steps:

1 Use a LIBNAME statement to assign a libref to the SAS library.
2 Use a FILENAME statement with the CATALOG argument to assign a fileref to

the catalog that contains the autocall macros. For example, the following code
creates a fileref, MYMACROS, that points to a catalog named
MYMACS.MYAUTOS:

libname mymacs ’SAS-data-library’;
filename mymacros catalog ’mymacs.myautos’;

3 Store the source code for each macro in a SOURCE entry in a SAS catalog.
(SOURCE is the entry type.) The name of the SOURCE entry must be the same
as the macro name.

4 Set the SASAUTOS system option to specify the fileref as an autocall library. For
more information, see SASAUTOS in Chapter 13.

Calling an Autocall Macro
To call an autocall macro, the system options MAUTOSOURCE must be set and

SASAUTOS must be assigned. MAUTOSOURCE enables the autocall facility, and
SASAUTOS specifies the autocall libraries. For more information on these options, see
MAUTOSOURCE and SASAUTOS in Chapter 13.

Once you have set the required options, calling an autocall macro is like calling a
macro that you have created in your current session. However, it is important that you
understand how the macro processor locates the called macro. When you call a macro,
the macro processor searches first for a session compiled macro definition. Next, the
macro processor searches for a permanently stored compiled macro. If compiled stored
macros are enabled with the MSTORED option, the macro processor opens the macro
catalog in the library specified in the SASMSTORE option. If the macro processor does
not find a compiled macro, and if MAUTOSOURCE is set, the macro processor opens
libraries specified by the SASAUTOS option in the order in which they are specified in
the option. It then searches each library for a member with the same name as the
macro you invoked. When SAS finds a library member with that name, the macro
processor does the following:

1 compiles all of the source statements in that member, including any and all macro
definitions, and stores the result in the session catalog.

2 executes any open code (macro statements or SAS source statements not within
any macro definition) in that member.

3 executes the macro within it with the name you invoked.

Note: If an autocall library member contains more than one macro, the macro
processor compiles all of the macros but executes only the macro with the name you
invoked. 4

Any open code statements in the same autocall library member as a macro execute
only the first time you invoke the macro. When you invoke the macro later in the same



104 Saving Macros Using the Stored Compiled Macro Facility 4 Chapter 9

session, the compiled macro is executed, which contains only the compiled macro
definition and not the other code the autocall macro source file may have contained.

It is not advisable to change SASAUTOS during a SAS session. If you change the
SASAUTOS= specification in an ongoing SAS session, the SAS System will store the
new specification only until you invoke an uncompiled autocall macro and then will
close all opened libraries and open all the newly specified libraries that it can open.

For information about debugging autocall macros, see Chapter 10, “Macro Facility
Error Messages and Debugging.”

Saving Macros Using the Stored Compiled Macro Facility
The stored compiled macro facility compiles and saves compiled macros in a

permanent catalog in a library that you specify. This compilation occurs only once. If
the stored compiled macro is called in the current or later sessions, the macro processor
executes the compiled code.

Compiling and Storing a Macro Definition
To compile a macro definition in a permanent catalog, create and save the source for

each stored compiled macro. To store the compiled macro, follow these steps:
1 Use the STORE option in the %MACRO statement. Optionally, you can assign a

descriptive title for the macro entry in the SAS catalog, by specifying the DES=
option. For example, the %MACRO statement in the following definition shows the
STORE and DES= options:

%macro myfiles / store
des=’Define filenames’;

filename file1 ’external-file-1’;
filename file2 ’external-file-2’;

%mend;

CAUTION:
Save your macro source code. You cannot re-create the source statements from a
compiled macro. Therefore, you must save the original macro source statements
if you want to change the macro. For all stored compiled macros, you should
document your macro source code well and save it. It is recommended that you
save the source code in the same catalog as the compiled macro. In this
example, save it to

mylib.sasmacro.myfiles.source

4

2 Set the MSTORED system option to enable the stored compiled macro facility. For
more information, see MSTORED in Chapter 13.

3 Assign the SASMSTORE option to specify the SAS data library that contains or
will contain the catalog of stored compiled SAS macros. For example, to store or
call compiled macros in a SAS catalog named MYLIB.SASMACR, submit these
statements.

libname mylib ’SAS-data-library’;
options mstored sasmstore=mylib;

For more information, see SASMSTORE in Chapter 13.



Storing and Reusing Macros 4 Calling a Stored Compiled Macro 105

4 Submit the source for each macro that you want to compile and permanently store.

You cannot move a stored compiled macro to another operating system. You can,
however, move the macro source code to another operating system where you can then
compile and store it. You may need to recompile these macros if you use them in a
different release of the SAS System. For more information, see your host companion.

Storing Autocall Macros Supplied by SAS Institute
If you use the macros in the autocall library supplied by SAS Institute, you can save

macro compile time by compiling and storing those macros in addition to ones you
create yourself. Many of the macros related to base SAS software that are in the
autocall library supplied by the Institute can be compiled and stored in a SAS catalog
named SASMACR by using the autocall macro COMPSTOR that is supplied by SAS
Institute. For more information, see COMPSTOR in Chapter 13.

Calling a Stored Compiled Macro
Once you have set the required system options, calling a stored compiled macro is

just like calling session compiled macros. However, it is important that you understand
how the macro processor locates a macro. When you call a macro, the macro processor
searches for the macro name using this sequence:

1 the macros compiled during the current session

2 the stored compiled macros in the SASMACR catalog in the specified library (if
options MSTORED and SASMSTORE= are in effect)

3 each autocall library specified in the SASAUTOS option (if options SASAUTOS=
and MAUTOSOURCE are in effect).

You can display the entries in a catalog containing compiled macros. For more
information, see Chapter 10.



106 Calling a Stored Compiled Macro 4 Chapter 9



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Macro Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999. 310 pages.

SAS Macro Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1-58025-522-1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
OS/2® is a registered trademark or trademark of International Business Machines
Corporation.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


