
107

C H A P T E R

10
Macro Facility Error Messages
and Debugging

General Debugging Information 107
Understanding What Kind of Errors You Can Encounter 108

Developing Bug-free Macros 108

Troubleshooting Your Macros 109

Solving Macro Variable Resolution Problems 111

Solving Problems with Macro Variable Scope 112
Solving Open Code Statement Recursion Problems 113

Solving Problems with Macro Functions 113

Solving “Apparent Invocation of Macro Not Resolved” Problems 114

Solving the “Black Hole” Macro Problem 114

Resolving Timing Issues 115

Example of a Macro Statement Executing Immediately 116
Macro Resolution Occurs During DATA Step Compilation 116

Solving Problems with the Autocall Facility 118

Fixing Autocall Library Specifications 118

Fixing Autocall Macro Definition Errors 119

File and Macro Names for Autocall 119
Displaying Information about Stored Compiled Macros 119

Solving Problems with Expression Evaluation 121

Debugging Techniques 122

Using System Options to Track Problems 122

Example of Tracing the Flow of Execution with MLOGIC 122
Example of Examining the Generated SAS Statements with MPRINT 123

Storing MPRINT Output in an External File 123

Examining Macro Variable Resolution with SYMBOLGEN 124

Using the %PUT Statement to Track Problems 125

General Debugging Information

Because the macro facility is such a powerful tool, it is also complex, and debugging
large macro applications can be extremely time-consuming and frustrating. Therefore,
it makes sense to develop your macro application in a way that minimizes the errors
and that makes the errors that do occur as easy as possible to find and fix. The first
step is to understand what kind of errors can occur and when they manifest
themselves. Then, develop your macros using a modular, layered approach. Finally, use
some built-in tools such as system options, automatic macro variables, and the %PUT
statement to diagnose errors.

Note: To receive certain important warning messages about unresolved macro
names and macro variables, be sure the system options SERROR and MERROR are in

108 Understanding What Kind of Errors You Can Encounter 4 Chapter 10

effect. See Chapter 13, “Macro Language Dictionary,” for more information on these
system options. 4

Understanding What Kind of Errors You Can Encounter
When the word scanner processes a program and finds a token in the form of & or %,

it triggers the macro processor to examine the name token that follows the & or %.
Depending on the token, the macro processor initiates one of the following activities:

� macro variable resolution
� macro open code processing
� macro compilation
� macro execution.

An error can occur during any one of these stages. For example, if you misspell a
macro function name or omit a necessary semicolon, that is a syntax error during
compilation. Syntax errors occur when program statements do not conform to the rules
of the macro language. Or, you may refer to a variable out of scope, causing a macro
variable resolution error. Execution errors (also called semantic errors) are usually errors
in program logic. They can occur, for example, when the text generated by the macro
has faulty logic (statements not executed in the right order or in the way you expect).

Of course, your macro code can be perfect–that does not guarantee that you will not
encounter errors caused by plain SAS code, such as a libref not defined, or a syntax
error in open code (that is, outside of a macro definition), or a typo in the code your
macro generates. Typically, error messages with numbers are plain SAS code error
messages; error messages generated by the macro processor do not have numbers.

Developing Bug-free Macros
When programming in any language, it is good technique to develop your code in

modules. That is, instead of writing one massive program, develop it piece by piece, test
each piece separately, then put the pieces together. This technique is especially useful
when developing macro applications because of the two-part nature of SAS macros:
macro code and the SAS code generated by the macro code.

Another good idea is to proofread your macro code for common mistakes before you
submit it.

The following list gives some simple things whose omission can cause errors–by
proofreading your code, you can catch these problems before compiling your code:

� the names in the %MACRO and %MEND statements match, and there is a
%MEND for each %MACRO.

� the number of %DO statements matches the number of %END statements.
� %TO values for iterative %DO statements exist and are appropriate.
� all statements end with semicolons.
� comments begin and end correctly and do not contain unmatched single quotation

marks.
� macro variable references begin with & and macro statements begin with %.
� macro variables created by CALL SYMPUT are not referenced in the same DATA

step in which they are created.
� statements that execute immediately (such as %LET) are not part of conditional

DATA step logic.
� single quotation marks are not used around macro variable references (such as in

TITLE or FILENAME statements). When used in quoted strings, macro variable
references resolve only in strings marked with double quotation marks.

Macro Facility Error Messages and Debugging 4 Troubleshooting Your Macros 109

� macro variable values do not contain any keywords or characters that could be
interpreted as mathematical operators. (If they do contain such characters, use
the appropriate macro quoting function.)

� macro variables, %GOTO labels, and macro names do not conflict with reserved
SAS System and host environment keywords.

Troubleshooting Your Macros
Table 10.1 on page 109 lists some problems you may encounter when working with

the macro facility. Because for many of these situations error messages aren’t written
to the SAS log, solving them can be hard. For each problem, the table gives some
possible causes and some solutions.

Table 10.1 Commonly Encountered Problems

Problem Cause(s) Explanation

Display manager session hangs
after you submit a macro
definition. You type and submit
code but nothing happens.

� Syntax error in %MEND
statement

� Missing semicolon,
parenthesis, or quotation
mark

� Missing %MEND
statement

� Unclosed comment

The %MEND statement is not
recognized and all text is
becoming part of the macro
definition.

Display manager session hangs
after you call a macro

An error in invocation, such as
forgetting to provide one or
more parameters, or forgetting
to use parentheses when
invoking a macro that is
defined with parameters.

The macro facility is waiting
for you to finish the invocation.

The macro does not compile
when you submit it.

A syntax error exists
somewhere in the macro
definition.

Only syntactically correct
macros are compiled.

The macro does not execute
when you call it or partially
executes and stops.

� A bad value was passed
to the macro (for
example, as a
parameter).

� A syntax error exists
somewhere into the
macro definition.

A macro successfully executes
only when it receives the
correct number of parameters
that are of the correct type.

The macro executes but the
SAS code gives bad results or
no results.

Incorrect logic in the macro os
SAS code.

Computers do what you tell
them, not what you intended to
tell them.

110 Troubleshooting Your Macros 4 Chapter 10

Problem Cause(s) Explanation

Code runs fine if submitted as
open code, but when generated
by a macro, the code doesn’t
work and issues strange error
messages.

� Tokenization is not as
you intended.

� A syntax error exists
somewhere in the macro
defintion.

Rarely, macro quoting
functions alter the tokenization
of text enclosed in them. Use
the %UNQUOTE function.

See “%UNQUOTE” in Chapter
13.

A %MACRO statement
generates “invalid statement”
error.

� The MACRO system
option is turned off.

� A syntax error exists
somewhere in the macro
defintion.

For the macro facility to work,
the MACRO system option
must be one. Edit your SAS
configuration file accordingly.

Table 10.2 on page 111 lists some common macro error and warning messages. For
each message, some probable causes are listed, and pointers to more information are
provided.

Macro Facility Error Messages and Debugging 4 Solving Macro Variable Resolution Problems 111

Table 10.2 Common Macro Error Messages and Causes

Error Message Possible Causes For More Information

Apparent invocation of
macro xxx not resolved.

� You have misspelled the
macro name.

� MAUTOSOURCE system
option is turned off.

� MAUTOSOURCE is on,
but you have specified an
incorrect path in the
SASAUTOS=system
option.

� You are using the
autocall fackility but
have given the macro
and file different names.

� You are using the
autocall facility but
didn’t give the file the
.SAS extension

� There is a syntax error
within the macro
defintion.

� Check the spelling of the
macro name

� “Solving Problems with
the Autocall Facility” on
page 121.

� “Developing Bug-free
Macros” on page 112.

Apparent symbolic
reference xxx not
resolved.

� You are trying to resolve
a macro variable in the
same DATA step as the
CALL SYMPUT that
created it.

� You have misspelled the
macro variable name.

� You are referencing a
macro variable that is
not in scope.

� You have omitted the
period delimiter when
adding text to the end of
the macro variable.

� “Resolving Timing
Issues” on page 118

� Check the spelling of the
macro variable

� “Solving Problems with
Macro Variable Scope” on
page 115

� “Solving Macro Variable
Resolution Problems” on
page 114

� “Generating a Suffix for
a Macro Variable
Reference” in Chapter 1.

Solving Macro Variable Resolution Problems
When the macro processor examines a name token that follows an &, it searches the

macro symbol tables for a matching macro variable entry. If it finds a matching entry, it
pulls the associated text from the symbol table and replaces &name on the input stack.
When a macro variable name is passed to the macro processor but the processor does
not find a matching entry in the symbol tables, it leaves the token on the input stack
and generates this message:

WARNING: Apparent symbolic reference NAME not resolved.

The unresolved token is transferred to the input stack for use by other parts of the
SAS System.

112 Solving Problems with Macro Variable Scope 4 Chapter 10

Note: You receive the WARNING only if the SERROR system option is on. 4

To solve these problems, check that you’ve spelled the macro variable name right and
that you are referencing it in an appropriate scope.

When a macro variable resolves but does not resolve to the correct value, you can
check several things. First, if the variable is a result of a calculation, make sure the
correct values were passed into the calculation. And, make sure you have not
inadvertently changed the value of a global variable. (See “Solving Problems with
Macro Variable Scope” on page 112 for more details on variable scope problems.)

Another common problem is adding text to the end of a macro variable but forgetting
to add a delimiter that shows where the macro variable name ends and the added text
begins. For example, suppose you want to write a TITLE statement with a reference to
WEEK1, WEEK2, and so on. You set a macro variable equal to the first part of the
string, then supply the week’s number in the TITLE statement:

%let wk=week;

title "This is data for &wk1"; /* INCORRECT */

When these statements compile, the macro processor looks for a macro variable
named WK1, not WK. To fix the problem, add a period (the macro delimiter) between
the end of the macro variable name and the added text, as in the following statements:

%let wk=week;

title "This is data for &wk.1";

CAUTION:
Do not prefix macro variable names with AF, DMS, or SYS. The letters AF, DMS, and
SYS are frequently used by the SAS System as prefixes for automatic variables. SAS
does not prevent you from using AF, DMS, or SYS as a prefix for macro variable
names. However, using these strings as prefixes may create a conflict between the
names you specify and the name of an automatic macro variable (including automatic
macro variables in later SAS releases).

If a name conflict occurs, SAS may not issue a warning or error message,
depending on the details of the conflict. Therefore, the best practice is to avoid using
the strings AF, DMS, or SYS as the beginning characters of macro names and macro
variable names. 4

Solving Problems with Macro Variable Scope
A common mistake that occurs with macro variables concerns referencing local macro

variables outside their scope. As described in Chapter 5, “Scope of Macro Variables,”
macro variables are either global or local. Referencing a variable outside its scope
prevents the macro processor from resolving the variable reference. For example,
consider the following program:

%macro totinv(var);
data inv;

retain total 0;
set sasuser.houses end=final;
total=total+&var;
if final then call symput("macvar",put(total,dollar14.2));

run;
%put **** TOTAL=&macvar ****;

%mend totinv;

Macro Facility Error Messages and Debugging 4 Solving Problems with Macro Functions 113

%totinv(price)
%put **** TOTAL=&macvar ****; /* ERROR */

When you submit these statements, the %PUT statement in the macro TOTINV
writes the value of TOTAL to the log, but the %PUT statement that follows the macro
call generates a warning message and writes the text TOTAL=&macvar to the log, as
follows:

TOTAL= $1,240,800.00
WARNING: Apparent symbolic reference MACVAR not resolved.
**** TOTAL=&macvar ****

The second %PUT statement fails because the macro variable MACVAR is local to the
TOTINV macro. To correct the error, you must use a %GLOBAL statement to declare
the macro variable MACVAR.

Another common mistake that occurs with macro variables concerns overlapping
macro variable names. If, within a macro definition, you refer to a macro variable with
the same name as a global macro variable, you affect the global variable, which may
not be what you intended. Either give your macro variables distinct names or use a
%LOCAL statement to explicitly define a local macro variable. See “Forcing a Macro
Variable to Be Local” in Chapter 5 for an example of this technique.

Solving Open Code Statement Recursion Problems
Recursion is something calling itself. Open code recursion is when your open code

erroneously causes a macro statement to call another macro statement. The most
common error that causes open code recursion is a missing semicolon. In the following
example, the %LET statement is not terminated by a semicolon:

%let a=b /* ERROR */
%put **** &a ****;

When the macro processor encounters the %PUT statement within the %LET
statement, it generates this error message:

ERROR: Open code statement recursion detected.

Open code recursion errors usually occur because the macro processor is not reading
your macro statements as you intended. Careful proofreading can usually solve open
code recursion errors, because this type of error is mostly the result of typos in your
code, not errors in execution logic.

To recover from an open code recursion error, first try submitting a single semicolon.
If that does not work, try submitting the following string:

*’; *"; *); */; %mend; run;

Continue submitting this string until the following message appears in the SAS log:

ERROR: No matching %MACRO statement for this %MEND statement.

If the above method does not work, close your SAS session and restart SAS. Of
course, this causes you to lose any unsaved data, so be sure to save often while you are
developing your macros, and proofread them carefully before you submit them.

Solving Problems with Macro Functions
Some common causes of problems with macro functions include
� misspelling the function name

114 Solving “Apparent Invocation of Macro Not Resolved” Problems 4 Chapter 10

� omitting the opening or closing parenthesis
� omitting an argument or specifying an extra argument.

If you encounter an error related to a macro function, you may also see other error
messages, generated by the invalid tokens left on the input stack by the macro processor.

Consider the following example. The user wants to use the %SUBSTR function to
assign a portion of the value of the macro variable LINCOLN to the macro variable
SECONDWD. But a typo exists in the second %LET statement, where %SUBSTR is
misspelled as %SUBSRT:

%macro test;
%let lincoln=Four score and seven;
%let secondwd=%subsrt(&lincoln,6,5); /* ERROR */
%put *** &secondwd ***;
%mend test;

%test

When the erroneous program is submitted, the following appears in the SAS log:

WARNING: Apparent invocation of macro SUBSRT not resolved.

The error messages clearly point to the function name, which is misspelled.

Solving “Apparent Invocation of Macro Not Resolved” Problems
When a macro name is passed to the macro processor but the processor does not find

a matching macro definition, it generates the following message:

WARNING: Apparent invocation of macro NAME not resolved.

This error could be caused by the misspelling of the name of a macro or a macro
function, or it could be caused by an error in a macro definition that caused the macro
to be compiled as a dummy macro. A dummy macro is a macro that the macro
processor partially compiles but does not store.

Note: You receive this warning only if the MERROR system option is on. 4

Solving the “Black Hole” Macro Problem
One error that is most frustrating to new users of the macro language is one that is

not accompanied by any error message (and is therefore hard to solve if you are a
novice). When the macro processor begins compiling a macro definition, it reads and
compiles tokens until it finds a matching %MEND statement. If you omit a %MEND
statement or cause it to be unrecognized by omitting a semicolon in the preceding
statement, the macro processor does not stop compiling tokens. Every line of code you
submit becomes part of the macro.

Resubmitting the macro definition and adding the %MEND statement does not
correct the error. When you submit the corrected definition, the macro processor treats
it as a nested definition in the original macro definition. The macro processor must find
a matching %MEND statement to stop compilation.

Note: It is a good practice to use the %MEND statement with the macro name, so
you can easily match %MACRO and %MEND statements. 4

If you recognize that SAS is not processing submitted statements and you are not
sure how to recover, submit %MEND statements one at a time until the following
message appears in the SAS log:

Macro Facility Error Messages and Debugging 4 Resolving Timing Issues 115

ERROR: No matching %MACRO statement for this %MEND statement.

Then recall the original erroneous macro definition, correct the error in the %MEND
statement, and submit the definition for compilation.

There are other syntax errors that can create similar problems, such as unmatched
quotation marks and unclosed parentheses. Often, one of these syntax errors leads to
others. Consider the following example:

%macro rooms;
/* other macro statements */
%put **** %str(John’s office) ****; /* ERROR */

%mend rooms;

%rooms

When you submit these statements, the macro processor begins to compile the macro
definition ROOMS. However, the single quotation mark in the %PUT statement is not
marked by a percent sign. Therefore, during compilation the macro processor interprets
the single quote as the beginning of a literal token. It does not recognize the closing
parenthesis, the semicolon at the end of the statement, or the %MEND statement at
the end of the macro definition.

To recover from this error, you must submit the following:

’);
%mend;

If the above methods do not work, try submitting the following string:

*’; *"; *); */; %mend; run;

Continue submitting this string until the following message appears in the SAS log:

ERROR: No matching %MACRO statement for this %MEND statement.

Obviously, it is easier to catch these types errors before they occur. You can avoid
subtle syntax errors by carefully checking your macros before submitting them for
compilation. Refer to “Developing Bug-free Macros” on page 108 for a syntax checklist.

Note: Another cause of unexplained and unexpected macro behavior is using a
reserved word as the name of a macro variable or macro. For example, the SAS System
reserves names starting with SYS; you should not create macros and macro variables
with names beginning with SYS. Also, most host environments have reserved words
too. For example, on PC-based platforms, the word CON is reserved for console input.
Check Appendix 1, “Reserved Words in the Macro Facility,” for reserved SAS System
keywords; check your SAS companion for host environment reserved words. 4

Resolving Timing Issues

Many macro errors occur because a macro variable resolves at a different time than
when the user intended or a macro statement executes at an unexpected time. A prime
example of the importance of timing is when you use CALL SYMPUT to write a DATA
step variable to a macro variable. You cannot use this macro variable in the same
DATA step where it is defined; you can use it only in subsequent steps (that is, after the
DATA step’s RUN statement).

The key to forestalling timing errors is to understand how the macro processor
works. In simplest terms, the two major steps are compilation and execution. The
compilation step resolves all macro code to compiled code. Then the code is executed.
Most timing errors occur because the user expects something to happen during

116 Resolving Timing Issues 4 Chapter 10

compilation that doesn’t actually occur until execution or, conversely, expects something
to happen later but is actually executed right away.

Here are two examples to help you understand why the timing of compilation and
execution can be important.

Example of a Macro Statement Executing Immediately
In the following program, the user intends to use the %LET statement and the

SR_CIT variable to indicate whether a data set contains any data for senior citizens:

data senior;
set census;
if age > 65 then
do;

%let sr_cit = yes; /* ERROR */
output;

end;
run;

However, the results differ from the user’s expectations. The %LET statement is
executed immediately, while the DATA step is only being compiled–before the data set is
read. Therefore, the %LET statement executes regardless of the results of the IF
condition. Even if the data set contains no observations where AGE is greater than 65,
SR_CIT is always yes.

The solution is to set the macro variable’s value by a means that is controlled by the
IF logic and does not execute unless the IF statement is true. In this case, the user
should use CALL SYMPUT, as in the following correct program:

%let sr_cit = no;
data senior;

set census;
if age > 65 then
do;

call symput ("sr_cit","yes");
output;

end;
run;

When this program is submitted, only if an observation is found with AGE greater
than 65 is the value of SR_CIT set to yes. Note that the variable was initialized to no.
It is generally a good idea to initialize your macro variables.

Macro Resolution Occurs During DATA Step Compilation
In the previous example, you learned you had to use CALL SYMPUT to conditionally

assign a macro variable a value in a DATA step. So, you submit the following program:

%let sr_age = 0;
data senior;

set census;
if age > 65 then
do;

call symput("sr_age",age);
put "This data set contains data about a person";
put "who is &sr_age years old."; /* ERROR */

end;
run;

Macro Facility Error Messages and Debugging 4 Resolving Timing Issues 117

If AGE was 67, you’d expect to see a log message like this one:

This data set contains data about a person
who is 67 years old.

However, no matter what AGE is, the following message is sent to the log:

This data set contains data about a person
who is 0 years old.

Why is this? Because when the DATA step is being compiled, &SR_AGE is sent to
the macro facility for resolution, and the result is passed back before the DATA step
executes. To achieve the desired result, submit this corrected program instead:

%let sr_age = 0;
data senior;

set census;
if age > 65 then
do;

call symput("sr_age",age);
stop;

end;
run;

data _null_;
put "This data set contains data about a person";
put "who is &sr_age years old.";

run;

Note: Use double quotation marks in statements like PUT, because macro variables
do not resolve when enclosed in single quotation marks. 4

Here is another example of erroneously referring to a macro variable in the same
step that creates it:

data _null_;
retain total 0;
set mydata end=final;
total=total+price;
call symput("macvar",put(total,dollar14.2));
if final then put "*** total=&macvar ***"; /* ERROR */

run;

Submitting these statements writes the following lines to the SAS log:

WARNING: Apparent symbolic reference MACVAR not resolved.

*** total=&macvar ***

As this DATA step is tokenized and compiled, the & causes the word scanner to
trigger the macro processor, which looks for a MACVAR entry in a symbol table.
Because such an entry does not exist, the macro processor generates the warning
message. Because the tokens remain on the input stack, they are transferred to the
DATA step compiler. During DATA step execution, the CALL SYMPUT statement
creates the macro variable MACVAR and assigns a value to it. However, the text
&macvar in the PUT statement occurs because the text has already been processed
while the macro was being compiled. If you were to resubmit these statements, then
the macro would appear to work correctly, but the value of MACVAR would reflect the
value set during the previous execution of the DATA step. This can be misleading.

118 Solving Problems with the Autocall Facility 4 Chapter 10

Remember that in general, the % and & trigger immediate execution or resolution
during the compilation stage of the rest of your SAS code.

For more examples and explanation of how CALL SYMPUT creates macro variables,
see “Creating Macro Variables with the CALL SYMPUT Routine” in Chapter 5.

Solving Problems with the Autocall Facility
The autocall facility is an efficient way of storing and using production (debugged)

macros. When a call to an autocall macro produces an error, the cause is one of two
things:

� an erroneous autocall library specification
� an invalid autocall macro definition.

If the error is the autocall library specification and the MERROR option is set, SAS
can generate any or all of the following warnings:

WARNING: No logical assign for filename FILENAME.
WARNING: Source level autocall is not found or cannot be opened.

Autocall has been suspended and OPTION NOMAUTOSOURCE has
been set. To use the autocall facility again, set OPTION
MAUTOSOURCE.

WARNING: Apparent invocation of macro MACRO-NAME not resolved.

If the error is in the autocall macro definition, SAS generates a message like the
following:

NOTE: Line generated by the invoked macro "MACRO-NAME".

Fixing Autocall Library Specifications
When an autocall library specification causes an error, it is because the macro

processor cannot find the member containing the autocall macro definition in the
library or libraries specified in the SASAUTOS system option.

To correct this error, follow these steps.
1 If the unresolved macro call created an invalid SAS statement, submit a single

semicolon to terminate the invalid statement. This enables the SAS System to
correctly recognize subsequent statements.

2 Look at the value of the SASAUTOS system option by printing the output of the
OPTIONS procedure or by viewing the OPTIONS window in the SAS Display
Manager System. (Or, edit your SAS configuration file or SAS autoexec file.) Verify
each fileref or directory name. If you find an error, submit a new OPTIONS
statement or change the SASAUTOS setting in the OPTIONS window.

3 Check the MAUTOSOURCE system option. If SAS could not open at least one
library, it sets the NOMAUTOSOUCE option. If NOMAUTOSOURCE is present,
reset MAUTOSOURCE with a new OPTIONS statement or the OPTIONS window.

4 If the library specifications are correct, check the contents of each directory to
verify that the autocall library member exists and that it contains a macro
definition of the same name. If the member is missing, then add it.

5 Set the MRECALL option with a new OPTIONS statement or the OPTIONS
window. By default, the macro processor only searches once for an undefined
macro. Setting this option causes the macro processor to search the autocall
libraries for the specification again.

6 Call the autocall macro. This includes and submits the autocall macro source.
7 Reset the NOMRECALL option.

Macro Facility Error Messages and Debugging 4 Displaying Information about Stored Compiled Macros 119

Note: Some host environments have environment variables or system-level logical
names assigned to the SASAUTOS library; check your SAS companion for more
information on details about how the SASAUTOS library specification is handled in
your host environment. 4

Fixing Autocall Macro Definition Errors
When the autocall facility locates an autocall library member, the macro processor

compiles any macros in that library member and stores the compiled macros in the
catalog containing stored compiled macros. For the rest of your SAS session, invoking
one of those macros retrieves the compiled macro from the WORK library. Under no
circumstances does the autocall facility use an autocall library member when a
compiled macro with the same name already exists. Thus, if you invoke an autocall
macro and discover you made an error when you defined it, you must correct the
autocall library member for future use and compile the corrected version directly in
your program or session.

To correct an autocall macro definition in a display manager session, do the following:
1 Use the INCLUDE command to bring the autocall library member into the SAS

PROGRAM EDITOR window. If the macro is stored in a catalog SOURCE entry,
use the COPY command to bring the program into the PROGRAM EDITOR
window.

2 Correct the error.
3 Store a copy of the corrected macro in the autocall library with the FILE command

for a macro in an external file or with a SAVE command for a macro in a catalog
entry.

4 Submit the macro definition from the PROGRAM EDITOR window.

The macro processor then compiles the corrected version, replacing the incorrect
compiled macro. The corrected, compiled macro is now ready to execute at the next
invocation.

To correct an autocall macro definition in an interactive line mode session, do the
following:

1 Edit the autocall macro source with a text editor.
2 Correct the error.
3 Use a %INCLUDE statement to bring the corrected library member into your SAS

session.

The macro processor then compiles the corrected version, replacing the incorrect
compiled macro. The corrected, compiled macro is now ready to execute at the next
invocation.

File and Macro Names for Autocall
When you want to use a macro as an autocall macro, you must store the macro in a

file with the same name as the macro. Also, the file extension must be .SAS (if your
operating system uses file extensions). If you experience problems with the autocall
facility, be sure the macro and file names match and the file has the right extension
when necessary.

Displaying Information about Stored Compiled Macros
To display the list of entries in a catalog containing compiled macros, you can use the

display manager CATALOG window or the CATALOG procedure. The following PROC

120 Displaying Information about Stored Compiled Macros 4 Chapter 10

step displays the contents of a macro catalog in a SAS data library identified with the
libref MYSASLIB:

libname mysaslib ’SAS-data-library’;
proc catalog catalog=mysaslib.sasmacr;

contents;
run;
quit;

You can also use PROC CATALOG to display information about autocall library
macros stored in SOURCE entries in a catalog. You cannot use PROC CATALOG or the
CATALOG window to copy or rename stored compiled macros.

In Release 6.11 or later, you can use PROC SQL to retrieve information about all
compiled macros. For example, submitting the following statements produces output
similar to Output 10.1 on page 120:

proc sql;
select * from dictionary.catalogs

where memname in (’SASMACR’);

Output 10.1 Output from PROC SQL

Library Member Member Object Object
Name Name Type Name Type

Date Object
Object Description Modified Alias
--
WORK SASMACR CATALOG FINDAUTO MACRO

05/28/96

SASDATA SASMACR CATALOG CLAUSE MACRO
Count words in clause 05/24/96

SASDATA SASMACR CATALOG CMPRES MACRO
CMPRES autocall macro 05/24/96

SASDATA SASMACR CATALOG DATATYP MACRO
DATATYP autocall macro 05/24/96

SASDATA SASMACR CATALOG LEFT MACRO
LEFT autocall macro 05/24/96

To display information about compiled macros when you invoke them, use the SAS
system options MLOGIC, MPRINT, and SYMBOLGEN. When you specify the SAS
system option MLOGIC, the libref and date of compilation of a stored compiled macro
are written to the log along with the usual information displayed during macro
execution.

Macro Facility Error Messages and Debugging 4 Solving Problems with Expression Evaluation 121

Solving Problems with Expression Evaluation
The following macro statements use an implicit %EVAL function:

%DO %IF-%THEN %SCAN

%DO %UNTIL %QSCAN %SYSEVALF

%DO %WHILE %QSUBSTR %SUBSTR

In addition, you can use the %EVAL function to perform an explicit expression
evaluation.

The most common errors that occur while evaluating expressions are the presence of
character operands where numeric operands are required or ambiguity about whether a
token is a numeric operator or a character value. Chapter 6, “Macro Expressions,”
discusses these and other macro expression errors.

Quite often, an error occurs when a special character or a keyword appears in a
character string. Consider the following program:

%macro conjunct(word=);
%if &word = and or &word = but or &word = or %then /* ERROR */

%do %put *** &word is a conjunction. ***;

%else
%do %put *** &word is not a conjunction. ***;

%mend conjunct;

In the %IF statement, the values of WORD being tested are ambiguous–they could
also be interpreted as the numeric operators AND and OR. Therefore, the SAS System
generates the following error messages in the log:

ERROR: A character operand was found in the %EVAL function or %IF
condition where a numeric operand is required. The condition
was:word = and or &word = but or &word = or

ERROR: The macro will stop executing.

To fix this problem, use the quoting functions %BQUOTE and %STR, as in the
following corrected program:

%macro conjunct(word=);
%if %bquote(&word) = %str(and) or %bquote(&word) = but or

%bquote(&word) = %str(or) %then
%do %put *** &word is a conjunction. ***;

%else
%do %put *** &word is not a conjunction. ***;

%mend conjunct;

In the corrected program, the %BQUOTE function quotes the result of the macro
variable resolution (in case the user passes in a word containing an unmatched
quotation mark or some other odd value), and the %STR function quotes the
comparison values AND and OR at compile-time, so they are not ambiguous. You do not
need to use %STR on the value BUT, because it is not ambiguous (not part of the SAS
or macro language). See Chapter 7, “Macro Quoting,” for more information on using
macro quoting functions.

122 Debugging Techniques 4 Chapter 10

Debugging Techniques
If you cannot identify your problem in “Troubleshooting Your Macros” on page 109,

you can use the techniques described in this section to pinpoint the location of the error.

Using System Options to Track Problems
The SAS system options MLOGIC, MPRINT, and SYMBOLGEN can help you track

the macro code and SAS code generated by your macro. Messages generated by these
options appear in the SAS log, prefixed by the name of the option responsible for the
message.

Note: Whenever you use the macro facility, use the following options: MACRO,
MERROR, SERROR, and SOURCE. (While SOURCE is not a macro option, it is helpful
to use this option when using the macro facility). In addition, if you are using autocall
macros, use the MAUTOSOURCE option. See Table 13.8 for more system options
associated with the macro facility. 4

Although the following sections discuss each system option separately, you can, of
course, combine them. However, each option can produce a significant amount of
output, and too much information can be as confusing as too little. So, use only those
options you think you might need and turn them off when you are done debugging.

Example of Tracing the Flow of Execution with MLOGIC
The MLOGIC system option traces the flow of execution of your macro, including the

resolution of parameters, the scope of variables (global or local), the conditions of macro
expressions being evaluated, the number of loop iterations, and the beginning and end
of each macro execution. Use the MLOGIC option when you think a bug lies in the
program logic (as opposed to simple syntax errors).

Note: MLOGIC can produce a lot of output, so use it only when necessary, and turn
it off when debugging is finished. 4

In the following example, the macro FIRST calls the macro SECOND to evaluate an
expression:

%macro second(param);
%let a = %eval(¶m);a

%mend second;

%macro first(exp);
%if (%second(&exp) ge 0) %then

%put **** result >= 0 ****;
%else

%put **** result < 0 ****;
%mend first;

options mlogic;
%first(1+2)

Submitting this example with option MLOGIC shows when each macro starts
execution, the values of passed parameters, and the result of the expression evaluation.

MLOGIC(FIRST): Beginning execution.
MLOGIC(FIRST): Parameter EXP has value 1+2

Macro Facility Error Messages and Debugging 4 Using System Options to Track Problems 123

MLOGIC(SECOND): Beginning execution.
MLOGIC(SECOND): Parameter PARAM has value 1+2
MLOGIC(SECOND): %LET (variable name is A)
MLOGIC(SECOND): Ending execution.
MLOGIC(FIRST): %IF condition (%second(&exp) ge 0) is TRUE
MLOGIC(FIRST): %PUT **** result >= 0 ****
MLOGIC(FIRST): Ending execution.

Example of Examining the Generated SAS Statements with MPRINT

The MPRINT system option writes to the SAS log each SAS statement generated by
a macro. Use the MPRINT option when you suspect your bug lies in code that is
generated in a manner you did not expect.

For example, the following program generates a simple DATA step:

%macro second(param);
%let a = %eval(¶m);a

%mend second;

%macro first(exp);
data _null_;

var=%second(&exp);
put var=;

run;
%mend first;

options mprint;
%first(1+2)

When you submit these statements with option MPRINT, these lines are written to
the SAS log:

MPRINT(FIRST): DATA _NULL_;
MPRINT(FIRST): VAR=
MPRINT(SECOND): 3
MPRINT(FIRST): ;
MPRINT(FIRST): PUT VAR=;
MPRINT(FIRST): RUN;

VAR=3

The MPRINT option shows you the generated text and identifies the macro that
generated it.

Storing MPRINT Output in an External File

You can store text that is generated by the macro facility during macro execution in
an external file. Printing the statements generated during macro execution to a file is
useful for debugging macros when you want to test generated text in a later SAS
session.

To use this feature, set both the MFILE and MPRINT system options on and also
assign MPRINT as the fileref for the file to contain the output generated by the macro
facility:

options mprint mfile;
filename mprint ’external-file’;

124 Using System Options to Track Problems 4 Chapter 10

The external file created by the MPRINT system option remains open until the SAS
session terminates. The MPRINT text generated by the macro facility is written to the
LOG window during the SAS session and to the external file when the session ends.
The text consists of program statements generated during macro execution with macro
variable references and macro expressions resolved. Only statements generated by the
macro are stored in the external file. Any program statements outside the macro are
not written to the external file. Each statement begins on a new line with one space
separating words. The text is stored in the external file without the
MPRINT(macroname): prefix, which is displayed in the LOG window.

If MPRINT is not assigned as a fileref or if the file cannot be accessed, warnings are
written to the log and MFILE is turned off. To use the feature again, you must specify
MFILE again.

By default, the MPRINT and MFILE options are off.
The following example uses the MPRINT and MFILE options to store generated text

in the external file named TEMPOUT:

options mprint mfile;
filename mprint ’TEMPOUT’;

%macro temp;
data one;

%do i=1 %to 3;
x&i=&i;

%end;
run;

%mend temp;

%temp

The macro facility writes the following lines to the SAS log and creates the external
file named TEMPOUT:

MPRINT(TEMP): DATA ONE;
NOTE: The macro generated output from MPRINT will also be written

to external file ’/u/local/abcdef/TEMPOUT’ while OPTIONS
MPRINT and MFILE are set.

MPRINT(TEMP): X1=1;
MPRINT(TEMP): X2=2;
MPRINT(TEMP): X3=3;
MPRINT(TEMP): RUN;

When the SAS session ends, the file TEMPOUT contains:

DATA ONE;
X1=1;
X2=2;
X3=3;
RUN;

Note: Using MPRINT to write code to an external file is a debugging tool only–it
should not be used to create SAS code files for purposes other than debugging. 4

Examining Macro Variable Resolution with SYMBOLGEN
The SYMBOLGEN system option tells you what each macro variable resolves to by

writing messages to the SAS log. This option is especially useful in spotting quoting

Macro Facility Error Messages and Debugging 4 Using the %PUT Statement to Track Problems 125

problems, where the macro variable resolves to something other than what you
intended because of a special character.

For example, suppose you submit the following statements:

options symbolgen;

%let a1=dog;
%let b2=cat;
%let b=1;
%let c=2;
%let d=a;
%let e=b;
%put **** &&&d&b ****;
%put **** &&&e&c ****;

The SYMBOLGEN option writes these lines to the SAS log:

SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable D resolves to a
SYMBOLGEN: Macro variable B resolves to 1
SYMBOLGEN: Macro variable A1 resolves to dog
**** dog ****

SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable E resolves to b
SYMBOLGEN: Macro variable C resolves to 2
SYMBOLGEN: Macro variable B2 resolves to cat
**** cat ****

Reading the log provided by the SYMBOLGEN option is easier than examining the
program statements to trace the indirect resolution. Notice that the SYMBOLGEN
option traces each step of the macro variable resolution by the macro processor. When
the resolution is complete, the %PUT statement writes the value to the SAS log.

When you use SYMBOLGEN to trace the values of macro variables that have been
masked with a macro quoting function, you may see an additional message about the
quoting being “stripped for printing.” For example, suppose you submit the following
statements, with SYMBOLGEN set to on:

%let nickname = %bquote(My name’s O’Malley, but I’m called Bruce);
%put *** &nickname ***;

The SAS log contains the following after these statements have executed:

SYMBOLGEN: Macro variable NICKNAME resolves to
My name’s O’Malley, but I’m called Bruce

SYMBOLGEN: Some characters in the above value which were
subject to macro quoting have been
unquoted for printing.

*** My name’s O’Malley, but I’m called Bruce ***

You can ignore the unquoting message.

Using the %PUT Statement to Track Problems

Along with using the SYMBOLGEN system option to write the values of macro
variables to the SAS log, you may find it useful to use the %PUT statement while
developing and debugging your macros. When the macro is finished, you can delete or

126 Using the %PUT Statement to Track Problems 4 Chapter 10

comment out the %PUT statements. Table 10.3 gives some occasions where you might
find the %PUT statement helpful in debugging, and an example of each:

Table 10.3 Example %PUT Statements Useful when Debugging Macros

Situation Example

show a macro variable’s value %PUT ****&variable-name****;

check leading or trailing blanks in a variable’s
value

%PUT ***&variable-name***;

check double-ampersand resolution, as during a
loop

%PUT ***variable-name&i =
&&variable-name***;

check evaluation of a condition %PUT ***This condition was met.***;

As you recall, macro variables are stored in symbol tables. There is a global symbol
table, which contains global macro variables, and a local symbol table, which contains
local macro variables. During the debugging process, you may find it helpful on
occasion to print these tables to examine the scope and values of a group of macro
variables. To do so, use the %PUT statement with one of the following options:

ALL describes all currently defined macro variables, regardless of scope.
This includes user-generated global and local variables as well as
automatic macro variables.

AUTOMATIC describes all automatic macro variables. The scope is listed as
AUTOMATIC. All automatic macro variables are global except
SYSPBUFF.

GLOBAL describes all user-generated global macro variables. The scope is
listed as GLOBAL. Automatic macro variables are not listed.

LOCAL describes user-generated local macro variables defined within the
currently executing macro. The scope is listed as the name of the
macro in which the macro variable is defined.

USER describes all user-generated macro variables, regardless of scope.
For global macro variables, the scope is GLOBAL; for local macro
variables, the scope is the name of the macro.

The following example uses the %PUT statement with the argument _USER_ to
examine the global and local variables available to the macro TOTINV. Notice the use
of the user-generated macro variable TRACE to control when the %PUT statement
writes values to the log.

%macro totinv(var);
%global macvar;
data inv;

retain total 0;
set sasuser.houses end=final;
total=total+&var;
if final then call symput("macvar",put(total,dollar14.2));

run;

%if &trace = ON %then
%do;

%put *** Tracing macro scopes. ***;

Macro Facility Error Messages and Debugging 4 Using the %PUT Statement to Track Problems 127

%put _USER_;
%end;

%mend totinv;

%let trace=ON;
%totinv(price)
%put *** TOTAL=&macvar ***;

When you submit these statements, the first %PUT statement in the macro TOTINV
writes the message about tracing being on and then writes the scope and value of all
user generated macro variables to the SAS log.

*** Tracing macro scopes. ***
TOTINV VAR price
GLOBAL TRACE ON
GLOBAL MACVAR $1,240,800.00
*** TOTAL= $1,240,800.00 ***

See Chapter 5 for a more detailed discussion of macro variable scope.

128 Using the %PUT Statement to Track Problems 4 Chapter 10

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Macro Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999. 310 pages.

SAS Macro Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1-58025-522-1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
OS/2® is a registered trademark or trademark of International Business Machines
Corporation.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

