
145

C H A P T E R

12
Macro Language Elements

Introduction 145
Macro Statements 145

Statements That Perform Automatic Evaluation 147

Macro Functions 147

Character Functions 148

Evaluation Functions 149
Quoting Functions 149

Compilation Quoting Functions 150

Execution Quoting Functions 150

Quotation Marks and Parentheses without a Match 151

Other Functions 151

Automatic Macro Variables 152
Interfaces with the Macro Facility 153

Selected Autocall Macros Provided with SAS Software 154

Required System Options for Autocall Macros 155

Using Autocall Macros 155

Selected System Options Used in the Macro Facility 156

Introduction
The SAS macro language consists of statements, functions, and automatic macro

variables. This chapter defines and lists these elements. Also covered are the interfaces
to the macro facility provided by base SAS, the SQL procedure, and Screen Control
Language as well as selected autocall macros and macro system options. For details on
each element, see Chapter 13, “Macro Language Dictionary.”

Macro Statements
A macro language statement instructs the macro processor to perform an operation.

It consists of a string of keywords, SAS names, and special characters and operators,
and it ends in a semicolon. Some macro language statements are allowed only in macro
definitions, but you can use others anywhere in a SAS session or job, either inside or
outside macro definitions (referred to as open code). Table 12.1 on page 146 lists macro
language statements that you can use in both macro definitions and open code.

146 Macro Statements 4 Chapter 12

Table 12.1 Macro Language Statements Allowed in Macro Definitions and Open
Code

Statement Description

%* comment designates comment text

%DISPLAY displays a macro window

%GLOBAL creates macaro variables that are available during the execution of
an entire SAS session

%INPUT supplies values to macro variables during macro execution

%KEYDEF assigns a definition to or identifes the definition of a function key

%LET creates a macro variable and assigns it a value

%MACRO begins a macro definition

%PUT writes text or the values of macro variables to the SAS log

%SYSCALL invokes a SAS call routine

%SYSEXEC issues operating system commands

%SYSLPUT defines a new macro variable or modifies the value of an existing
macro variable on a remote host or server

%SYSRPUT assigns the value of a macro variable on a remote host to a macro
variable on the local host

%WINDOW defines customized windows

Table 12.2 on page 146 lists macro language statements that you can use only in
macro definitions.

Table 12.2 Macro Language Statements Allowed in Macro Definitions Only

Statement Description

%DO begins a %DO group

%DO, Iterative executes statements repetitively, based on the value of an index
variable

%DO %UNTIL executes statements repetively unti la condition is true

%DO %WHILE executes statements repetitively while a condition is true

%END ends a %DO group

%GOTO branches macro processing to the specified label

%IF-%THEN/%ELSE conditionally processes a portion of a macro

%label: identifies the destination of a %GOTO statement

%LOCAL creates macro variable that are available only during the execution of
the macro where they are defined

%MEND ends a macaro definition

Macro Language Elements 4 Macro Functions 147

Statements That Perform Automatic Evaluation
Some macro statements perform an operation based on an evaluation of an

arithmetic or logical expression. They perform the evaluation by automatically calling
the %EVAL function. If you get an error message about a problem with %EVAL when a
macro does not use %EVAL explicitly, check for one of these statements. The macro
statements that perform automatic evaluation are:

%DO macro-variable=expression %TO expression <%BY expression>;

%DO %UNTIL(expression);

%DO %WHILE(expression);

%IF expression %THEN action;

For details on operands and operators in expressions, see Chapter 6, “Macro
Expressions.”

Macro Functions
In general, a macro language function processes one or more arguments and

produces a result. You can use all macro functions in both macro definitions and open
code. Macro functions include character functions, evaluation functions, and quoting
functions. The macro language functions are listed in Table 12.3 on page 147.

Table 12.3 Macro Functions

Function Description

%BQUOTE, %NRBQUOTE mask special characters and mnemonic operators in a resolved value
at macro execution.

%EVAL evaluates arithmetic and logical expressions using integer arithmetic.

%INDEX returns the position of the first character of a string.

%LENGTH returns the length of a string.

%QUOTE, %NRQUOTE mask special characters and mnemonic operators in a resolved value
at macro executin. Unmatched quotation marks (’”) and parentheses
(())must be marked with a preceding %.

%SCAN, %QSCAN search for a warod specified by its number. %QSCAN masks special
characters and mnemonic operators in its result.

%STR, %NRSTR mask special characters and mnemonic operators in constant text at
macro compilation. Unmatched quotation marks (’”) and parentheses
(())must be marked with a preceding %.

%SUBSTR, %QSUBSTR produce a substring of a characater string. %QSUBSTR masks
special characters and mnemonic operators in its result.

%SUPERQ masks all special characters and mnemonic operators at macro
execution but prevents resolution of the value.

%SYSEVALF evaluates arithmetic and logical expressions using floating point
arithmetic.

%SYSFUNC, %QSYSFUNC execute SAS functions or user-written functions. %QSYSFUNC
masks special charactaers and mnemonic operators in its result.

148 Character Functions 4 Chapter 12

Function Description

%SYSGET returns the value of a specified host environment variable.

%SYSPROD reports whether a SAS software product is licensed at the site.

%UNQUOTE unmasks all special characters and mnemonic operators for a value.

%UPCASE, %QUPCASE convert characters to uppercase. %QUPCASE masks special
characters and mnemonic operators in its result.

Character Functions
Character functions change character strings or provide information about them.

Table 12.4 on page 148 lists the macro character functions.

Table 12.4 Macro Character Functions

Function Description

%INDEX returns the position of the first character of a string.

%LENGTH returns the length of a string

%SCAN, %QSCAN search for a word that is specified by a number. %QSCAN masks
special characters and mnemonic operataors in its result.

%SUBSTR, %QSUBSTR produce a substring of a character string. %QSUBSTR masks special
characters and mnemonic operators in its result.

%UPCASE, %QUPCASE convert characters to uppercase. %QUPCASE masks special
charactaers and mnemonic operators in its result.

For macro character functions that have a Q form (for example, %SCAN and
%QSCAN), the two functions work alike except that the function beginning with Q
masks special characters and mnemonic operators in its result. In general, use the
function beginning with Q when an argument has been previously masked with a
macro quoting function or when you want the result to be masked (for example, when
the result may contain an unmatched quotation mark or parenthesis). For details, see
Chapter 7, “Macro Quoting.”

Many macro character functions have names corresponding to SAS character
functions and perform similar tasks (such as %SUBSTR and SUBSTR). But, macro
functions operate before the DATA step executes. Consider this DATA step:

data out.%substr(&sysday,1,3); /* macro function */
set in.weekly (keep=name code sales);
length location $4;
location=substr(code,1,4); /* SAS function */

run;

Running the program on Monday creates the data set name OUT.MON, as shown:

data out.MON; /* macro function */
set in.weekly (keep=name code sales);
length location $4;
location=substr(code,1,4); /* SAS function */

run;

Macro Language Elements 4 Quoting Functions 149

Suppose that the IN.WEEKLY variable CODE contains the values cary18593 and
apex19624. The SAS function SUBSTR operates during DATA step execution and
assigns these values to the variable LOCATION, cary and apex.

Evaluation Functions
Evaluation functions evaluate arithmetic and logical expressions. They temporarily

convert the operands in the argument to numeric values. Then, they perform the
operation specified by the operand and convert the result to a character value. The
macro processor uses evaluation functions to:

� make character comparisons
� evaluate logical (Boolean) expressions
� assign numeric properties to a token, such as an integer in the argument of a

function.

For more information, see Chapter 6. Table 12.5 on page 149 lists the macro
evaluation functions.

Table 12.5 Macro Evaluation Functions

Function Description

%EVAL evaluates arithmetic and logical expressions using integer arithmetic

%SYSEVALF evaluates arithmetic and logical expressions using floating point
arithmetic

%EVAL is called automatically by the macro processor to evaluate expressions in the
arguments to the statements that perform evaluation, listed on “Statements That
Perform Automatic Evaluation” on page 147, and in the following functions:

%QSCAN(argument,n<,delimiters>)

%QSUBSTR(argument,position<,length>)

%SCAN(argument,n<,delimiters>)

%SUBSTR(argument,position<,length>)

Quoting Functions
Macro quoting functions mask special characters and mnemonic operators so the

macro processor interprets them as text instead of elements of the macro language.
Table 12.6 on page 150 lists the macro quoting functions, and also describes the

special characters they mask and when they operate. (Although %QSCAN,
%QSUBSTR, and %QUPCASE mask special characters and mnemonic operations in
their results, they are not considered quoting functions because their purpose is to
process a character value and not simply to quote a value.) For more information, see
Chapter 7, “Macro Quoting.”

150 Quoting Functions 4 Chapter 12

Table 12.6 Macro Quoting Functions

Function Description

%BQUOTE, %NRBQUOTE mask special characters and mnemonic operators in a resolved value
at macro execution. %BQUOTE and %NRBQUOTE are the most
powerful functions for masking values at execution time because
they do not require that unmatched quotation marks (’”’) and
parentheses (())are marked.

%QUOTE, %NRQUOTE mask special charactaers and mnemoinic operators in a resolved
value at macro execution. Unmatched quotation marks (’”’) and
parentheses (())must be marked with a preceding %.

%STR, %NRSTR mask special characters and mnemlonic operators in constant text at
macro compilation. Unmatched quotation marks (’”’) and
parentheses (())must be marked with a preceding %.

%SUPERQ masks all special characters and mnemonic operators at macro
execution but prevents resolution of the value.

%UNQUOTE unmasks all special charactaers and mnemonic operators for a value.

Compilation Quoting Functions
%STR and %NRSTR mask special characters and mnemonic operators in values

during compilation of a macro definition or a macro language statement in open code.
For example, the %STR function prevents the following %LET statement from ending
prematurely. It keeps the semicolon in the PROC PRINT statement from being
interpreted as the semicolon for the %LET statement.

%let printit=%str(proc print; run;);

Execution Quoting Functions
%BQUOTE, %NRBQUOTE, %QUOTE, %NRQUOTE, and %SUPERQ mask special

characters and mnemonic operators in values during execution of a macro or a macro
language statement in open code. Except for %SUPERQ, these functions instruct the
macro processor to resolve a macro expression as far as possible and mask the result,
issuing warning messages for any macro variable references or macro invocations they
cannot resolve. %SUPERQ protects the value of a macro variable from any attempt at
further resolution.

Of the quoting functions that resolve values during execution, %BQUOTE and
%NRBQUOTE are the most flexible. For example, the %BQUOTE function prevents the
following %IF statement from producing an error if the macro variable STATE resolves
to OR (for Oregon). Without %BQUOTE, the macro processor would interpret the
abbreviation for Oregon as the logical operator OR.

%if %bquote(&state)=nc %then %put North Carolina Dept. of Revenue;

%SUPERQ fetches the value of a macro variable from the macro symbol table and
masks it immediately, preventing the macro processor from attempting to resolve any
part of the resolved value. For example, %SUPERQ prevents the following %LET
statement from producing an error when it resolves to a value with an ampersand, like
Smith&Jones. Without %SUPERQ, the macro processor would attempt to resolve
&Jones.

%let testvar=%superq(corpname);
/* No ampersand in argument to %superq. */

Macro Language Elements 4 Other Functions 151

(%SUPERQ takes as its argument either a macro variable name without an
ampersand or a text expression that yields a macro variable name.)

Quotation Marks and Parentheses without a Match
Syntax errors result if the arguments of %STR, %NRSTR, %QUOTE, and

%NRQUOTE contain a quotation mark or parenthesis that does not have a match. To
prevent these errors, mark these quotation marks and parentheses by preceding them
with a percent sign. For example, to store the value 345) in macro variable B, write

%let b=%str(345%));

If an argument of %STR, %NRSTR, %QUOTE, or %NRQUOTE contains a percent
sign that precedes a quotation mark or parenthesis, use two percent signs (%%) to
specify that the argument’s percent sign does not mark the quotation mark or
parenthesis. For example, to store the value TITLE "20%"; in macro variable P, write

%let p=%str(TITLE "20%%";);

If the argument for one of these functions contains a character string with the
comment symbols /* and -->, use a %STR function with each character. For example,
consider the statements:

%let instruct=Comments can start with %str(/)%str(*).;
%put &instruct;

They write to the log:

Comments can start with /*

Note: Unexpected results can occur if the comment symbols are not quoted with a
quoting function. 4

For more information about macro quoting, see Chapter 7.

Other Functions
Three other macro functions do not fit into the earlier categories, but they provide

important information. Table 12.7 on page 151 lists these functions:

Table 12.7 Macro Quoting Functions

Function Description

%SYSFUNC, %QSYSFUNC execute SAS language functions or user-written functions within the
macro facility.

%SYSGET returns the value of the specified host environment variable. For
details, see the SAS Companion for your operating system.

%SYSPROD reports whether a SAS software product is licensed at the site.

The %SYSFUNC and %QSYSFUNC functions make most of the functions from base
SAS software and Screen Control Language available to the macro facility. Consider
these examples:

• /* in a DATA step or SCL program */
dsid=open("sasuser.houses","i");

152 Automatic Macro Variables 4 Chapter 12

• /* in the macro facility */
%let dsid = %sysfunc(open(sasuser.houses,i));

For more information on each of these functions, see Chapter 13, “Macro Language
Dictionary.”

Automatic Macro Variables
Automatic macro variables are created by the macro processor and they supply a

variety of information. They are useful in programs, for example to check the status of
a condition before executing code. When you use automatic macro variables, you
reference them the same way that you do macro variables that you create, for example
&SYSLAST or &SYSJOBID.

CAUTION:
Do not create macro variable names that begin with SYS. The three-letter prefix SYS is
reserved for use by the SAS System for automatic macro variables. For a complete
list of reserved words in the macro language, see Appendix 1, Reserved Words in the
Macro Facility. 4

For example, suppose you want to include today’s day and date in a FOOTNOTE
statement. Write the statement to reference the automatic macro variables SYSDAY
and SYSDATE9, as shown here:

footnote "Report for &sysday, &sysdate9";

If you run the program on June 15, 2001, macro variable resolution causes the SAS
System to see this statement:

FOOTNOTE "Report for Friday, 15JUN2001";

All automatic variables except for SYSPBUFF are global and are created when you
invoke the SAS System. Table 12.8 on page 152 lists the automatic macro variables and
describes their READ and WRITE status.

Table 12.8 Automatic Macro Variables

Variable READ/WRITE Status

SYSBUFFR read/write

SYSCC read/write

SYSCHARWIDTH read only

SYSCMD read/write

SYSDATE read only

SYSDATE9 read only

SYSDAY read only

SYSDEVIC read/write

SYSDMG read/write

SYSDSN read/write

SYSENV read only

SYSERR read only

Macro Language Elements 4 Interfaces with the Macro Facility 153

Variable READ/WRITE Status

SYSFILRC read/write

SYSINDEX read only

SYSINFO read only

SYSJOBID read only

SYSLAST read/write

SYSLCKRC read/write

SYSLIBRC read/write

SYSMENV read only

SYSMSG read/write

SYSPARM read/write

SYSPBUFF read/write

SYSPROCESSID read only

SYSPROCESSNAME read only

SYSRC read/write

SYSSCP read only

SYSSCPL read only

SYSSITE read only

SYSSTARTID read only

SYSSTARTNAME read only

SYSTIME read only

SYSUSERID read only

SYSVER read only

SYSVLONG read only

Interfaces with the Macro Facility

The DATA step, Screen Control Language, and the SQL procedure provide interfaces
with the macro facility. Table 12.9 on page 153, Table 12.10 on page 154, and Table
12.11 on page 154 list the elements that interact with the SAS macro facility.

The DATA step provides elements that enable a program to interact with the macro
facility during DATA step execution.

Table 12.9 Interfaces from the DATA Steps

Element Description

EXECUTE routine resolves an argument and executes the resolved value at the next
step boundary

RESOLVE function resolves the value of a text expression during DATA step execution

154 Selected Autocall Macros Provided with SAS Software 4 Chapter 12

Element Description

SYMGET function returns the value of a macro variable to the DATA step during DATA
step execution.

SYMPUT routine assigns a value produced in a DATA step to a macro variable

Screen Control Language (SCL) provides two elements for using the SAS macro
facility to define macros and macro variables for SCL programs.

Table 12.10 Interfaces from Screen Control Language

Element Description

SYMGETN returns the value of a global macro variable as a numeric value

SYMPUTN assigns a numeric value to a global macro variable

The SQL procedure provides a feature for creating and updating macro variables
with values produced by the SQL procedure.

Table 12.11 Interfaces from the SQL Procedure

Element Description

INTO assigns the result of a calculation or the value of a data column

For more information, see Chapter 8, “Interfaces with the Macro Facility.”

Selected Autocall Macros Provided with SAS Software
SAS Institute supplies libraries of autocall macros to each SAS site. The libraries

you receive depend on the SAS products licensed at your site. You can use autocall
macro without having to define or include them in your programs.

When SAS is installed, the autocall libraries are included in the value of the
SASAUTOS system option in the system configuration file. The autocall macros are
stored as individual members, each containing a macro definition. Each member has
the same name as the macro definition it contains.

Although the macros available in the autocall libraries supplied by SAS Institute are
working utility programs, you can also use them as models for your own routines. In
addition, you can call them in macros you write yourself.

To explore these macro definitions, browse the commented section at the beginning of
each member. See the setting of SAS system option SASAUTOS, to find the location of
the autocall libraries. To view the SASAUTOS value, use one of the following:

� the OPTIONS command in the SAS Display Manager System to open the
OPTIONS window

� the OPTIONS procedure
� the VERBOSE system option
� the OPLIST system option.

For details on these options, refer to Chapter 16, “SAS System Options,” in SAS
Language: Reference, Version 6, First Edition.

Macro Language Elements 4 Using Autocall Macros 155

Table 12.12 on page 155 lists selected autocall macros.

Table 12.12 Selected Autocall Macros

Macro Description

CMPRES and QCMPRES compress multiple blanks and remove leading and trailing blanks.
QCMPRES masks the result so special characters and mnemonic
operators are treated as text instead of being interpreted by the
macro facility.

COMPSTOR compiles macros and stores them in a catalog in a permanent SAS
library.

DATATYP returns the data type of a value.

LEFT and QLEFT left-align an argument by removing leading blanks. QLEFT masks
the result so special characters and mnemonic operators are treated
as text instead of being interpreted by the macro facility.

SYSRC returns a value corresponding to an error condition.

TRIM and QTRIM trim trailing blanks. QTRIM masks the result so special characters
and mnemonic operators are treated as text instead of being
interpreted by the macro facility.

VERIFY returns the position of the first character unique to an expression.

Required System Options for Autocall Macros
To use autocall macros, you must set two SAS system options:

MAUTOSOURCE
enables the autocall facility. NOMAUTOSOURCE disables the autocall facility.

SASAUTOS=library-specification | (library-specification-1..., library-specification-n)
specifies the autocall library or libraries. For more information, see the SAS
companion for your operating system.

If your site has installed the autocall libraries supplied by SAS Institute and uses
the standard configuration of SAS software supplied by the Institute, you need only to
ensure that the SAS system option MAUTOSOURCE is in effect to begin using the
autocall macros.

Using Autocall Macros
To use an autocall macro, call it in your program with the statement %macro-name.

The macro processor searches first in the WORK library for a compiled macro definition
with that name. If the macro processor does not find a compiled macro and if the
MAUTOSOURCE is in effect, the macro processor searches the libraries specified by the
SASAUTOS option for a member with that name. When the macro processor finds the
member, it

1 compiles all of the source statements in that member, including all macro
definitions

2 executes any open code (macro statements or SAS source statements not within
any macro definition) in that member

156 Selected System Options Used in the Macro Facility 4 Chapter 12

3 executes the macro with the name you invoked.

After the macro is compiled, it is stored in the WORK.SASMACR catalog and is
available for use in the SAS session without having to be recompiled.

You can also create your own autocall macros and store them in libraries for easy
execution. For more information, see Chapter 9, “Storing and Reusing Macros.”

Selected System Options Used in the Macro Facility
Table 12.13 on page 156 lists the SAS options that apply to the macro facility.

Table 12.13 System Options Used in the Macro Facility

Option Description

CMDMAC controls command-style macro invocation

IMPLMAC controls statement-style macro invocation

MACRO controls whether the SAS macro language is available

MAUTOSOURCE controls whether the macro autocall feature is available

MERROR controls whether the macro processor issues a warning message
when a macro-like name (%name) does not match a compiled macro

MFILE determines whether MPRINT output is routed to an external file

MLOGIC controls whether macro execution is traced for debugging

MPRINT controls whether SAS statements generated by macro execution are
traced for debugging

MRECALL controls whether the macro processor searches the autocall libraries
for a member that was not found during an earlier search

MSTORED controls whether stored compiled macros are available

MSYMTABMAX specifies the maximum amount of memory available to the macro
variable symbol tables(s)

MVARSIZE specifies the maximum size for in-memory macro variable values

SASAUTOS specifies one or more autocall libraries

SASMSTORE specifies the libref of a SAS library containing a catalolg of stored
compiled SAS macros

SERROR controls whether the macro processor issues a warning message
when a macro variable reference does not match a macro variable

SYMBOLGEN controls whether the results of resolving macro variable references
are displayed for debugging

SYSPARM controls whether the macro processor searches the autocall libraries
for a member that was not found during an earlier search

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS
Macro Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999. 310 pages.

SAS Macro Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1-58025-522-1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
OS/2® is a registered trademark or trademark of International Business Machines
Corporation.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

