
27

C H A P T E R

4
Using MDDBs

Using Version 6, Version 7, and Version 8 MDDBs 27
Using an MDDB with SAS/EIS Software 27

Using an MDDB with SAS/AF Software 28

Using an MDDB with the MDDB Report Viewer 30

Transporting MDDBs Across Operating Environments 31

Transporting MDDBs with the COPY Procedure 31
Transporting MDDBs with the UPLOAD and DOWNLOAD Procedures 31

Accessing MDDBs Remotely 32

Accessing MDDBs Via Remote Library Services 32

Accessing MDDBs Via CEDA 32

Using Version 6, Version 7, and Version 8 MDDBs
If you are using MDDBs created with different versions of SAS/MDDB Server, you

should be aware of the following:
� Version 8 of SAS/MDDB Server reads Version 6 MDDBs without conversion but

not Version 7 MDDBs. If you have MDDBs created in Version 7, you should
re-create them with Version 8.

� MDDBs created in a given version will not be read by a previous version of
SAS/MDDB Server. For example, SAS/MDDB Server Version 6 will not read
MDDBs created in Version 7 or Version 8.

Using an MDDB with SAS/EIS Software
To exploit your MDDBs, you can use the MDDB-enabled objects in SAS/EIS software

for a large variety of multidimensional reports. SAS/EIS software includes a wide range
of business reporting objects that have been specifically optimized for use with MDDBs.
These reporting objects, which provide a choice of styles for dynamic display and
interactive analysis, include the following:

� 3D Business Charts
� Bubble Charts
� Graphical Variance Reports
� Maps
� Multidimensional Business Trends
� Multidimensional Charts
� Multidimensional Pie Charts

28 Using an MDDB with SAS/AF Software 4 Chapter 4

� Multidimensional Reports
� Organizational Charts.

The multidimensional report objects have multiple levels with built-in drill-down
capabilities for fast navigation through data. Using these objects and customizable
viewers, users can

� navigate through the data
� perform analyses by adding calculations at run time
� dynamically reach through to detail data anywhere on the network.

For details on using an MDDB with SAS/EIS objects, refer to the SAS/EIS online
Help.

Using an MDDB with SAS/AF Software
You can access MDDBs from applications that you create with SAS/AF software by

using the MDDB_M class. The following example shows how to use the MDDB_M class
to provide data to the SAS/AF Table Editor viewer. For more information on the
MDDB_M class, refer to the SAS/MDDB Server online Help.

This SCL code attaches the table editor to an instance of the MDDB_M class and
reads in the MDDB that was created in “Example 1: Building an MDDB Using the
MDDB Procedure” on page 21.

/*-- load the MDDB_M class to read the mddb data --*/
dcl object tabid;
dcl object mddbid=_new_ sashelp.mddb.mddb_m();

init:
/*-- get the table editor id --*/
frame._getWidget(’obj1’, tabid);

/*-- attach the table editor to this instance of mddb_m --*/
tabid._attach(mddbid);

/*-- read in the MDDB you created --*/
mddbid._setMddbTable(’SASUSER.MDDB’);

classlist=makelist();
/*-- create the class list for your table --*/
rc = insertc(classlist, ’COUNTRY’, -1);
rc = insertc(classlist, ’PRODUCT’, -1);

/*-- make your table --*/
mddbid._makeTable(classlist);
mddbid._addComputedValue(’_STATS_’, ’Difference’);

/*-- set the SCL that will be run to calculate Difference --*/
mddbid._setSource(’SAMPCOMP.SCL’, ’Y’);
rc=rc;

return;

The following SCL code is the SAMPCOMP.SCL program called from the previous
code. It calculates the computed values for this example:

Using MDDBs 4 Using an MDDB with SAS/AF Software 29

stats=’’;;
anlsys=’’;;

init:
cellist=makelist();
rc=rc;
/*-- find out the address of the cell we are computing --*/
self._getCompCellAddress(cellist);

/*-- if we are computing the difference of ACTUAL/PREDICT sales --*/
if (_stats_="Difference") then
do;

getlist=makelist();
rc=copylist(cellist, ’y’, getlist);

/*-- setup the address to request SUM values --*/
rc = setnitemc(getlist, ’SUM’, ’_STATS_’);

if (_anlsys_=’ACTUAL’) then
do;

self._getValues(getlist, aval);
rc=setnitemc(getlist, ’PREDICT’, ’_ANLSYS_’);
self._getValues(getlist, pval);

end;
else
do;

self._getValues(getlist, pval);
rc=setnitemc(getlist, ’ACTUAL’, ’_ANLSYS_’);
self._getValues(getlist, aval);

end;

/*-- set up the value of the computed cell to contain --*/
/*-- the difference of predicted sales from actual sales --*/
value=aval - pval;

/*-- if we predicted more than we actually sold, --*/
/*-- turn that cell to RED so the value stands out --*/
if (value < 0) then
/*-- if the difference is negative it will be RED --*/
self._setCellColor(cellist, ’red’);
else
/*-- if the difference is positive it will be GREEN --*/
self._setCellColor(cellist, ’green’);
rc=dellist(getlist,’Y’);

end;
rc=dellist(cellist,’Y’);

return;

The following display shows the results of running a FRAME entry with the SAS/AF
Table Editor Viewer object and gives the results of the above programs:

30 Using an MDDB with the MDDB Report Viewer 4 Chapter 4

Display 4.1 Table Editor Viewer Frame

Using an MDDB with the MDDB Report Viewer
If you want to access MDDBs without creating and deploying your own application,

you can use the MDDB Report Viewer application, which is available as a component of
SAS/IntrNet Application Dispatcher software.

The MDDB Report Viewer enables users to generate and view reports and graphs of
data that are stored in MDDBs without running a SAS session. This capability
eliminates the need to have SAS software running on all users’ machines and provides
access to the MDDB reports and graphs in a Web environment.

The MDDB Report Viewer contains three pages in which the user enters information
to view an MDDB report. In general, the user selects an MDDB to view; specifies the
down, across, and analysis variables and statistics to be included in the report; and sets
some report options. Users can also specify whether to display a graph with the report.
After the report appears, users can drill down to additional values in a report; rotate
the down and across dimensions of the report; modify the report dimensions, analysis
variables, and statistics; generate a two-dimensional or three-dimensional graph of the
report data; download the report to a spreadsheet; and print the report.

For complete instructions on how to use the MDDB Report Viewer to view MDDBs,
refer to the online SAS/IntrNet Application Dispatcher documentation.

Using MDDBs 4 Transporting MDDBs with the UPLOAD and DOWNLOAD Procedures 31

Transporting MDDBs Across Operating Environments
In some business computing environments, it is necessary for MDDBs that are

created in one operating environment to be used on a different, incompatible operating
environment. In this case, the possible solutions are to

� copy the MDDB to the other operating environment
� access the MDDB from the other operating environment over a network.

The latter option is addressed in “Accessing MDDBs Remotely” on page 32. This section
discusses copying (“transporting”) MDDBs from one operating environment to another.

The CPORT and CIMPORT procedures, which are used to transport SAS files
between operating environments, do not support the transport of MDDBs. Instead, the
following methods can be used:

� the COPY procedure
� the UPLOAD and DOWNLOAD procedures
� the Cross Environment Data Access (CEDA) facility.

The first method requires either SAS/SHARE software or SAS/CONNECT software.
The last two methods require SAS/CONNECT software.

Transporting MDDBs with the COPY Procedure
To use the COPY procedure to transport MDDBs, you must have SAS/SHARE or

SAS/CONNECT software licensed.
1 Establish a connection between the local host and the SAS/SHARE server or

remote host. See SAS/SHARE User’s Guide or SAS/CONNECT User’s Guide for
details.

2 Use the LIBNAME statement to declare a library on the SHARE server or remote
host:

� For SAS/SHARE sessions

libname rmtlib server=rmthost.share1;

This example informs the local SAS session that the libref RMTLIB
references the RMTLIB library on the SAS/SHARE server share1, which is
located on a host called RMTHOST.

� For SAS/CONNECT sessions

signon rmtpc;
libname rmtlib remote ’d:\sasmddb’ server=rmtpc;

This example establishes a connection with the remote host RMTPC and
informs the local SAS session that the libref RMTLIB references the SAS
data library d:\sasmddb on the RMTPC host.

3 Use the COPY procedure to copy an MDDB between the local and remote hosts:

proc copy out=work in=rmtlib memtype=mddb;

This example copies all MDDBs from the RMTLIB library on the remote host to
the temporary library on the local host. The COPY procedure can also be used to
copy MDDBs from the local host to the remote host.

Transporting MDDBs with the UPLOAD and DOWNLOAD Procedures
To use the UPLOAD and DOWNLOAD procedures to transport MDDBs, you must

have SAS/CONNECT software licensed.

32 Accessing MDDBs Remotely 4 Chapter 4

1 Establish a connection to the remote host. (See the SAS/CONNECT User’s Guide
for details.)

2 Use the UPLOAD procedure to transport the MDDB to the remote host or the
DOWNLOAD procedure to transport the MDDB from the remote host:

proc upload data=school.grades out=grades_copy;

This example copies the MDDB GRADES from the local SCHOOL library to the
WORK library on the remote host as GRADES_COPY.

For complete details on the UPLOAD and DOWNLOAD procedures, see the SAS/
CONNECT User’s Guide.

Accessing MDDBs Remotely
Remote access of MDDBs is preferable to copying them if the MDDBs are frequently

updated or your data center rules prohibit multiple copies of data. Depending on which
method you use, you can specify read, write, and update access to your MDDBs from
remote clients on a single-client or multiple-client basis.

Accessing MDDBs Via Remote Library Services
To access MDDBs via Remote Library Services (RLS), you establish a SAS/SHARE

or SAS/CONNECT session and declare libraries on the remote hosts as shown in
“Transporting MDDBs with the COPY Procedure” on page 31. MDDBs that are stored
on the remote hosts are then available for reading.

Accessing MDDBs Via CEDA
To access MDDBs with the Cross Environment Data Access (CEDA) facility, you

must have SAS/CONNECT software licensed on the host that will be accessing the file.
CEDA is a SAS Version 8 facility that provides read-only access of supported member

types to all Version 8 operating environments except CMS. For complete details on
CEDA, see SAS/CONNECT User’s Guide and Moving and Accessing SAS Files across
Operating Environments.

To make an MDDB available for reading via CEDA, use Network File Services (NFS)
to mount the file on a network for host access. Ensure that the file has the appropriate
filename extension (for example, .sas8bmdb for Version 8). See the documentation for
NFS and your operating environment for details. When the file is mounted, any Version
8 host (except CMS) with access to the NFS can then read the MDDB.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/MDDB ® Server Administrator’s Guide, Version 8 , Cary, NC: SAS Institute Inc.,
1999.

SAS/MDDB® Server Administrator’s Guide, Version 8
Copyright © 1999 SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–504–3
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, ACF/VTAM® , AIX®, APPN®, MVS/ESA®, OS/2®, OS/390®, VM/ESA®, and VTAM®

are registered trademarks or trademarks of International Business Machines Corporation.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

