
31

C H A P T E R

4
Programmer’s Reference

Introduction 31
Support for and Implementation of ODBC Functions 31

CORE Functions 31

LEVEL 1 Functions 32

Support for SQL Grammar 33

Supported Data Types 34
Data Types Reported on Queries 34

Creating or Comparing Date, Time, and Datetime Values 34

Interpretation of Data Types in CREATE TABLE Requests 35

User-Specified SQL Options 36

Infer INTEGER from FORMAT Option 36

Support VARCHAR Option 36
Fuzz Numbers at N Places Option 36

SAS ODBC Driver Error Codes 37

Introduction
This chapter is intended for applications programmers and others who need

information about how the SAS ODBC driver has been implemented. It provides
information about the driver’s support for ODBC functions, SQL grammar, and SQL
data types.

For complete information about the ODBC standard, see the Microsoft ODBC 2.0
Programmer’s Reference and SDK Guide.

Support for and Implementation of ODBC Functions
Microsoft’s ODBC specification defines three levels of support for ODBC functions:

CORE, LEVEL 1, and LEVEL 2. The SAS ODBC driver is ODBC 2.0 compliant and
supports LEVEL 1 functionality, with the exception of those functions associated with
cursors (SQLGetCursorName, SQLSetCursorName) and large data fields
(SQLParamData, SQLPutData, SQLExtendedFetch), which are not supported. The
following tables provide explanations of the functions that are not supported or whose
implementation details may be noteworthy to applications developers.

CORE Functions

32 LEVEL 1 Functions 4 Chapter 4

Table 4.1 CORE Functions

Function Name Purpose SAS ODBC Driver Implementation

SQLBindParameter Assigns storage for a
parameter in an SQL
statement

Note that SQL_DATA_AT_EXEC is not supported
because SAS does not support large data fields.

SQLCancel Cancels an SQL statement This function is used only in asynchronous mode, which
SAS does not support. The SAS System’s interprocess
communication library does not provide any way to
interrupt a transaction in process. SQLCancel does not
cause an active statement to terminate immediately, and
it does not halt an operation that is already in process.
This is allowable within the function specification. This
call always returns as successful.

SQLColAttributes Describes the attributes of
a column in the result set

A common reason for applications to call this function is
to determine whether a column of data is a dollar
amount. With SAS data sets or views, this is inferred
from the FORMAT. See “Supported Data Types” on page
34 for more information about SAS FORMATs.

SQLGetCursorName Returns the cursor name
that is associated with a
statement handle

SAS does not support cursors, so this function returns
SQL_ERROR with SQLSTATE set to IM001 ("Driver
does not support this function").

SQLPrepare Prepares an SQL
statement for later
execution

Does not check syntax at this point; syntax checking is
done later in the SQLExecute call by the server.

SQLSetCursorName Specifies a cursor name SAS does not support cursors, so this function returns
SQL_ERROR with SQLSTATE set to IM001 ("Driver
does not support this function").

SQLTransact Commits or rolls back a
transaction

Always returns SQL_SUCCESS for SQL_COMMIT.
Returns an error for SQL_ROLLBACK because SAS does
not support transactions.

LEVEL 1 Functions

Programmer’s Reference 4 Support for SQL Grammar 33

Table 4.2 LEVEL 1 Functions

Function Name Purpose SAS ODBC Driver Implementation

SQLColumns Returns the list of column
names from specified
tables

SAS uses a specially formatted query to query the virtual
table DICTIONARY.COLUMNS.

SQLDriverConnect Connects to a specific
driver by connection string
or requests that the Driver
Manager and the driver
display connection dialogs
for the user

SAS makes use of the same dialogs that are used in
configuration. If input was adequate, it continues with
the connection rather than saving the parameters.
However, in many cases input is not required. The
connection to the host is made at this time.

SQLParamData Returns the storage value
that has been assigned to
a parameter for which
data will be sent at
execution time

This function is used for large data fields, which SAS
does not support, so the function returns SQL_ERROR
with SQLSTATE set to IM001 ("Driver does not support
this function").

SQLPutData Sends part or all of a data
value for a parameter

This function is used for large data fields, which SAS
does not support, so the function returns SQL_ERROR
with SQLSTATE set to IM001 ("Driver does not support
this function").

SQLSpecialColumns Retrieves information
about the optimal set of
columns that uniquely
identifies a row in a
specified table, or about
the columns that are
automatically updated
when any value in the row
is updated by a transaction

The SAS ODBC driver uses a query on the
DICTIONARY.INDEXES view to obtain this information.

SQLStatistics Retrieves statistics about a
single table and the list of
indexes that are associated
with the table

The SAS ODBC driver uses a query on the
DICTIONARY.INDEXES view to obtain this information.

SQLTables Returns the list of table
names stored in a specific
data source

The SAS ODBC driver uses a query on the
DICTIONARY.TABLES and DICTIONARY.MEMBERS
views to obtain this information.

Support for SQL Grammar
Microsoft’s ODBC specification defines three levels of support for SQL grammar:

MINIMUM, CORE and EXTENDED. The SAS ODBC driver supports all of MINIMUM
and some of the CORE SQL statements and the statement elements. See the SAS
Procedures Guide for complete information about supported grammar.

34 Supported Data Types 4 Chapter 4

Supported Data Types
Internally, the SAS System supports two data types for storing data:

CHAR fixed-length character data, 200-character maximum

NUM double-precision floating-point number

However, by using SAS format information, the SAS ODBC driver is able to
represent other ODBC data types, both when responding to queries and in CREATE
TABLE requests. (A SAS format is a string that describes how data should be printed.
The SAS System associates format information with each column in a table.)

The following sections explain conventions for data type representation that the SAS
ODBC driver follows.

For information about user-specified SQL options that can also affect data type
representations, see “User-Specified SQL Options” on page 36. For more information
about SAS formats, see SAS Language Reference: Dictionary.

Data Types Reported on Queries
When the SQLDescribeCol and SQLColAttributes functions are called against active

queries, the SAS ODBC driver reports data types as follows:
� When the SQLDescribeCol function is called, the SAS ODBC driver reports CHAR

data types as SQL_CHAR. NUM data types are generally reported as
SQL_DOUBLE.

However, the SAS System stores dates and times as numbers, and the SAS
ODBC driver uses SAS format information to infer the following additional SQL
data types from NUM data types:*

SAS Data Type SQL Data Type

NUM FORMAT=DATEn. SQL_DATE

NUM FORMAT=TIMEn. SQL_TIME

NUM FORMAT=DATETIMEn. SQL_TIMESTAMP

In each of the previous FORMAT= strings, n is a number that selects the
printable representation by specifying a width for printing. The value of n is not
relevant to the driver.

� When the SQLColAttributes function is called, if a NUM column has a format of
DOLLARn., the SAS ODBC driver identifies it as financial data (having a column
attribute of SQL_COLUMN_MONEY).

Creating or Comparing Date, Time, and Datetime Values
When you create or compare date, time and datetime values in SAS data sets from

an ODBC application, you must consider the following:
� A SAS time value is the number of seconds since the current day began. That is, 0

is 00:00:00 or 12:00:00 AM and 86399 is 11:59:59 PM.

* For a complete list of date and time formats that the SAS ODBC driver supports, see the table of formats listed by categories
in SAS Language Reference: Dictionary.

Programmer’s Reference 4 Interpretation of Data Types in CREATE TABLE Requests 35

Note: ODBC does not support negative time values or values greater than one
day’s worth of seconds. The SAS ODBC driver returns an error for time values
that are less than 0 or greater than 86399 (the last second of the day). 4

� A SAS date value is the number of days since January 1, 1960. That is, 0 is
01jan1960 and -1 is 31dec1959.

� A SAS datetime value is the number of seconds since midnight on January 1,
1960. That is, 0 is 01jan1960:00:00:00 and -1 is 31dec1959:11:59:59.

Both ODBC and SAS date, time and datetime literals are supported by the SAS
ODBC driver.

CAUTION:
You can only compare equivalent literals against SAS date, time or datetime values since
they each have a different unit of measure. 4

For example, you cannot compare a SAS data set value that has been defined with a
datetime format against a date literal using

select * where hiredate = {d’1995-01-02’}

or
select * where hiredate = ’02jan1995’d

Instead, use a datetime literal such as

select * where hiredate = {ts’1995-01-02 00:00:00’}

or
select * where hiredate = ’02jan1995:00:00:00’dt

Interpretation of Data Types in CREATE TABLE Requests
In CREATE TABLE requests, the SAS ODBC driver interprets certain column-type

specifications by creating NUM variables and associating SAS formats with them, as
shown in the following table:

Table 4.3 Correspondence of CREATE TABLE Data Types and SAS Data Types

CREATE TABLE ODBC Data Type SAS Data Type

Data Type Name

char(w) SQL_CHAR CHAR(w)

num(w, d) SQL_DOUBLE NUM

num(w, d) SQL_FLOAT NUM

integer SQL_INTEGER NUM FORMAT=11.0

date9x SQL_DATE NUM FORMAT=DATE9.

datetime19x SQL_TIMESTAMP NUM FORMAT=DATETIME19.

time8x SQL_TIME NUM FORMAT=TIME8X

The data type names listed in the first column of the table are the values that are
returned by SQLColAttributes (with the parameter SQL_COLUMN_TYPE_NAME) and
by SQLGetTypeInfo. For all CREATE TABLE statements, the SAS ODBC driver

36 User-Specified SQL Options 4 Chapter 4

translates these data type names into the respective SAS data types shown under the
SAS Data Type heading. Do not try to use the ODBC data types directly in SAS.

In a CREATE TABLE statement, any FORMAT= specification is passed on to the
SAS System unmodified, so a column within a table (or data set) can be created
according to any exact specification that is required for its use within SAS. For
example, in the following CREATE TABLE statement, variable B’s data type and format
are passed directly to the SAS System.

CREATE TABLE
SASUSER.TABLE1

(A INTEGER,
B NUM FORMAT=9.5,
C CHAR(40));

User-Specified SQL Options

This section describes two SQL options that affect how other default conversions of
data types or data values can be made: Infer INTEGER from FORMATS and Support
VARCHAR. A third SQL option, Fuzz Numbers at N Places, is important in
comparison operations. You can specify these options in the SQL Options page of the
SAS ODBC Driver Configuration dialog. (See “Naming Your Data Source and
Specifying SQL Options” on page 14.)

Infer INTEGER from FORMAT Option
Even when no FORMAT string is specified for SAS data, the SAS System assigns a

default width and number of decimal places to the data. If the SQL Option Infer
INTEGER from FORMAT is selected, then the SAS ODBC driver reports SAS columns of
NUM(n,0) data types as SQL_INTEGER, where n is less than 12. This can be
important, because some PC products do not use indexes on floating-point columns. If
those columns actually contain only integer values, then using this option enables these
products to honor the index and to allow updates. See “Updating Attached Tables” on
page 29 for more information.

Support VARCHAR Option
The SQL option Support VARCHAR causes the SAS ODBC driver to report the data

type CHAR(n) as SQL_VARCHAR, where n is greater than 80. Because SAS is fixed
width, CHAR fields are often specified at the maximum. For example, for a list of
messages the text width might be specified as 200 characters, even though the average
width is much less. Reporting it as SQL_VARCHAR enables some PC products to use
less memory.

Fuzz Numbers at N Places Option
This option addresses a problem that arises from the conversion of floating-point

numbers. Floating-point numbers are stored in different binary representations on
different computer hardware. Even when data is transferred between different
applications on the same type of hardware, the precision of floating-point numbers may
be affected slightly due to conversion between ASCII and binary representations.

Programmer’s Reference 4 SAS ODBC Driver Error Codes 37

This effect is usually so slight that it is insignificant when a number is used in
calculations. For example, the numbers 65.8 and 65.799999999999 are practically
identical for mathematical purposes, and the difference between them might be the
result of conversion between representations rather than any purposeful change in
value.

However, such a slight difference in value can keep a number from comparing
correctly. For example, many ODBC applications include a WHERE clause that lists
every column in a record at its current value whenever the application performs an
UPDATE. This is done to ensure that the record has not been changed since the last
time it was read. Sometimes a comparison may fail because of the aforementioned
problem with floating-point conversion.

To solve this problem, SAS "fuzzes" numbers (standardizes the degree of precision to
use, overriding the hardware-specific representations). Instead of using exact
comparisons, SAS checks to make sure that the numbers are acceptably close.

By default, the degree of precision is 12 decimal places. Given a number N, then if N1
were to be checked for equality with N, the SAS ODBC driver would use the SQL
BETWEEN function to determine whether N1 > (N - (ABS(N * 10**-12))) AND
N1 < (N + (ABS(N * 10**-12))).

If N=0, the driver checks for BETWEEN -(10**-12) AND (10**-12).

SAS ODBC Driver Error Codes

See the Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide for information
about the SQLSTATE values (return codes) and associated texts that can be returned
for the SQLError function.

For explanations of messages that may be returned by your communications
software, see the Appendix in this book.

38 SAS ODBC Driver Error Codes 4 Chapter 4

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS ® ODBC Driver User’s Guide and Programmer’s Reference, Version 8, Cary, NC: SAS
Institute Inc., 1999.

SAS® ODBC Driver User’s Guide and Programmer’s Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–505-1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
AS/400®, DB2®, OS/2®, and OS/390® are registered trademarks or trademarks of IBM
Corporation. ORACLE® and Oracle RdbTM are trademarks or registered trademarks of
Oracle Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

