105

CHAPTER

Using the Output Delivery
System in the DATA Step

Overview 105

Statement Syntax for Use with ODS 105
FILE Statement for ODS 106
ODS in the PUT Statement 112

Examples 114
Example 1: Using the Default Table Definition 114
Example 2: Selecting Variables for the Data Component 117
Example 3: Specifying Attributes for a Column 121
Example 4: Using a Simple User-Defined Definition 126

Overview

Within the DATA step itself, the ODS option in the FILE statement and the _ODS_
option in the PUT statement provide connections with the Output Delivery System. You
use both of these connections to route the results of a DATA step to ODS. By default,
when the DATA step uses ODS, ODS writes output objects to all open ODS destinations
and places links to them in the Results folder. You can use global ODS statements (see
Chapter 3, “The ODS Statements,” on page 47) to write to other ODS destinations.

Statement Syntax for Use with 0DS

FILE PRINT <ODS<=(0ODS-option(s))>><overflow-control><N=number>;
PUT <specification(s)><_0ODS_><@]@@> ;

The FILE and PUT statements interact in the following way:

o The ODS option in the FILE statement defines the structure of the data
component that holds the results of the DATA step.

o The _ODS_ option in the PUT statement writes values (as specified by the ODS
option in the FILE statement) into a special buffer. This buffer is written to the
data component.

o The ODS option in the FILE statement binds the data component to a table
definition to produce an output object. ODS sends this object to all open ODS
destinations, each of which formats the object appropriately.

The ODS destinations are controlled by the global ODS statements. You can use an
existing table definition or create your own with PROC TEMPLATE (see Chapter 5,
“The TEMPLATE Procedure,” on page 131).

106

FILE Statement for 0DS A Chapter 4

This section provides information on using the Output Delivery System from the
DATA step. For conceptual information on how ODS works, see Chapter 2, “Basic
Concepts of the Output Delivery System,” on page 21. For information on the ODS
statements, see Chapter 3, “The ODS Statements,” on page 47.

FILE Statement for 0DS

Defines the structure of the data component that holds the results of the DATA step and binds that
component to a table definition to produce an output object. ODS sends this object to all open
0DS destinations, each of which formats the object appropriately. Also controls what happens
when the PUT statement tries to write past the end of a line.

Requirements: If you use the ODS option, you must use the fileref PRINT in the FILE
statement.

Restriction: The DELIMITER= and DSD options have no effect on the ODS option. The
FOOTNOTES | NOFOOTNOTES, LINESIZE, PAGESIZE, and TITLES | NOTITLES
options have an effect only on the listing destination. You cannot use FILE_=,
FILEVAR=, HEADER=, or PAD with the ODS option.

FILE PRINT <ODS<=(0ODS-suboption(s))>><overflow-control ><N=number> ;

Note: This syntax shows only the ODS portion of the FILE statement. For the
complete syntax of the FILE statement, see SAS Language Reference: Dictionary. A

File Statement Arguments and Options

The arguments and options listed here can be specified in any order in the FILE
statement.

N=number
specifies the number of lines that are available to the output pointer in the current
iteration of the DATA step.

ODS<=(0ODS-suboptions)>
Defines the structure of the data component that holds the results of the DATA step
and binds that component to a table definition to produce an output object. ODS
sends this object to all open ODS destinations, each of which formats the object
appropriately. For information on the ODS-suboptions, see “ODS Suboptions” on
page 107.

Default: If you do not specify any ODS suboptions, the DATA step uses a default
table definition (base.datastep.table) that is stored in the SASHELP.TMPLMST
template store. This definition defines two generic columns: one for character
variables and one for numeric variables. ODS associates each variable in the
DATA step with one of these columns and displays the variables in the order in
which they are defined in the DATA step.

Without suboptions, the default table definition uses the variable’s label as its
column header. If no label exists, the definition uses the variable’s name as the
column header.

Featured in: All examples

Using the Output Delivery System in the DATA Step A FILE Statement for 0DS 107

overflow-control
determines the PUT statement behavior when the output pointer attempts to move
past the last ODS column in the buffer. overflow-control is one of the following:

DROPOVER
discards items when a PUT statement attempts to write to ODS columns beyond
the last ODS column in the buffer. A message in the log at the end of the DATA
step informs you if data were not written to the buffer.

FLOWOVER
moves the output pointer to a new line if a PUT statement attempts to write an
item to an ODS column beyond the last ODS column in the buffer. The PUT
statement writes the next item in the first ODS column of the new line.

STOPOVER
stops processing the DATA step immediately if a PUT statement attempts to write
to an ODS column beyond the last ODS column in the buffer. SAS discards the
data item, writes the portion of the buffer that was built before the error occurred,
and issues an error message.

Default: FLOWOVER
PRINT

is a reserved fileref that directs the output that is produced by any PUT statements
to all open ODS destinations.

Restriction: You must use PRINT in a FILE statement that uses the ODS option.
Featured in: Example 1 on page 114

0DS Suboptions

To do this ... Use this suboption

Specify one or more columns for the data component COLUMNS= or VARIABLES=

Specify default values for column attributes that exist DYNAMIC=
in the table definition, but that get their values from
the data component

Assert that all column definitions in the table GENERIC=
definition can or cannot be used by more than one

variable

Specify a column header to use for any column that LABEL=

does not have a column header specified in the
COLUMNS= or VARIABLES= suboption

Specify a name for the output object that the DATA OBJECT=
step produces

Specify a label for the output object that the DATA OBJECTLABEL=
step produces

Specify the table definition to use with the data TEMPLATE=
component to produce the output object

COLUMNS=(column-specification(s))
specifies one or more columns for the data component. Each column-specification
associates a DATA step variable with a column that is defined in the table definition.

108 FILE Statement for 0DS A Chapter 4

The order of the columns in the data component is determined by their order in the
COLUMNS= suboption.

Note: By default, the order of the columns in the output object is determined by
their order in the table definition, not by their order in the data component. You can
override this order by using the ORDER_DATA= table attribute in the PROC
TEMPLATE step that creates the definition. The default DATA step table definition
uses this attribute. (See the discussion of ORDER_DATA= on page 216.) o

Each column-specification has this general form:

column-name<=variable-name><(attribute(s))>

column-name
is the name of a column. This name must match a name that is defined in the
table definition that you use.

Restriction: column-name must conform to the rules for SAS variable names. For
information on these rules, see “Rules for Words and Names” in SAS Language
Reference: Dictionary.

Tip: You can use list notation (for example, scorel-score5) to specify multiple
column names.

Featured in: Example 4 on page 126
variable-name
specifies a variable in the DATA step to place in the specified column.

Default: If you omit variable-name, ODS looks for a DATA step variable named
column-name to place in the specified column. If no such variable exists, ODS
returns an error.

Tip: You can use list notation (for example, scorel-score5) to specify a range of
variable names.

Featured in: Example 4 on page 126
attribute
assigns a characteristic, such as a label or a format, to a particular column in the

data component. These individual specifications override any attributes that the
DATA step sets. You assign attributes with the following suboptions.

DYNAMIC=dynamic-specification(s)
specifies a value for a column attribute that exists in the table definition but
that get its value from the data component. For details, see the discussion of
DYNAMIC= on page 109.

Featured in: Example 4 on page 126
FORMAT=format-name

specifies a format for the current column.

Default: ODS uses the first of these formats for the variable that it finds:
o for nongeneric columns, a format that is specified in the column

definition

o a format that is specified in the FORMAT= column attribute
o a format that is specified in a FORMAT statement

o the default format ($w. for character variables; BEST12. for numeric
variables).

Featured in: Example 4 on page 126

Note: Formats for generic columns that are specified in the table definition
are ignored by the DATA step interface to ODS. 2

Using the Output Delivery System in the DATA Step A FILE Statement for 0DS 109

GENERIC=ON|]OFF
specifies whether or not the DATA step uses this column definition for multiple
variables. For details, see GENERIC= on page 109.

Default: OFF
Featured in: Example 4 on page 126

LABEL="column-label’
specifies a label for this particular column. For details, see LABEL= on page
110.

Featured in: Example 3 on page 121

Default: If you do not specify COLUMNS= or VARIABLES=, the order of columns
in the data component matches the order of the corresponding variables in the
program data vector.

Restriction: You can use only one COLUMNS= suboption in a FILE statement.

Interaction: You can use either the COLUMNS= suboption or the VARIABLES=
suboption to associate variables with columns. However, you cannot use both
suboptions in the same FILE statement.

DYNAMIC=(dynamic-specification(s))
specifies default values for dynamic attribute values. Columns that do not contain
their own DYNAMIC= specifications use these.

A dynamic attribute value is defined in the table definition. Its name serves as a
placeholder for the value that is supplied to the data component with the
DYNAMIC= suboption. When ODS creates the output object from the table definition
and the data component, it substitutes the appropriate value from the data
component for the value’'s name in the table definition.

Each dynamic-specification has the following form:

dynamic-value-name<=variable-name | constant>

dynamic-value-name
is the name that the table definition gives to a dynamic attribute value (see
“DYNAMIC Statement” on page 222).

variable-name
specifies a variable whose value is assigned to dynamic-value-name and passed to
ODS to substitute for the placeholder in the table definition when it creates the
output object.

constant
specifies a constant to assign to dynamic-value-name and to pass to ODS to
substitute for the placeholder in the table definition when it creates the output
object.

Tip: By default, DYNAMIC= applies to all columns in the data component. You can
override this specification for an individual column by specifying DYNAMIC= as
an attribute for that column in the COLUMNS= or the VARIABLES= suboption.

GENERIC=ON | OFF
asserts that the DATA step does or does not use all column definitions for multiple
variables.

ON
asserts that the DATA step uses all column definitions for multiple variables.

OFF
asserts that the DATA step uses no column definitions for multiple variables.

Default: OFF

110 FILE Statement for 0DS A Chapter 4

Interaction: If you do not specify a table definition (see TEMPLATE= on page 110),
GENERIC= is set to ON.

Restriction: Unless GENERIC=0ON is specified in the COLUMNS= option, in the
ODS= option, and in the table definition that you are using, ODS does not
recognize the column names as a match.

Tip: By default, GENERIC= applies to all columns in the data component. You can
override this specification for an individual column by specifying GENERIC= as an
attribute for that column in the COLUMNS= or the VARIABLES= suboption.

LABEL="column-label’
specifies a label for any column that does not have a label specified in the
COLUMNS= or VARIABLES= suboption.

Default: ODS uses for the column header the first of these labels that it finds:

o a label that is specified with HEADER= for a particular column in the table
definition (see the discussion of the column attribute HEADER= on page 165).

o a label that is specified for a particular column with LABEL= in the
COLUMNS= or VARIABLES= suboption

o a label that is specified with LABEL= in the ODS= option
O a label that is assigned with the LABEL statement in the DATA step.
If no label is specified, the contents of the table definition determines whether
the column header contains the variable name or is blank.
Featured in: Example 4 on page 126
OBJECT=0bject-name
specifies a name for the output object.
The Results window and the HTML contents file both contain a description of, and

a link to, each output object. The description contains the first of these items that
ODS finds:

the object’s label (see OBJECTLABEL= on page 110)
the current title if it is not the default title, “The SAS System”
the object's name

the string FilePrint#, where # increases by 1 for each DATA step that you run

in the current SAS process without specifying an object name or an object label.

Restriction: object-name must conform to the rules for SAS variable names. For
information on these rules, see “Rules for Words and Names” in SAS Language
Reference: Dictionary.

OBJECTLABEL="0object-label’
specifies a label for the output object.
The Results window and the HTML contents file both contain a description of and
a link to each output object. The description contains the first of these items that
ODS finds:
the object’s label
the current title if it is not the default title, “The SAS System”
the object’'s name (see the discussion of OBJECT= on page 110)
the string FilePrint#, where # increases by 1 for each DATA step that you run
in the current SAS process without specifying an object name or an object label.

O o o g

O o o g

Featured in: Example 3 on page 121

TEMPLATE="table-definition-name’
specifies the table definition to use with the data component to produce the output
object.

Using the Output Delivery System in the DATA Step A FILE Statement for 0DS 11

table-definition-name
is the path to the table definition. SAS stores a table definition as an item in an
item store. By default, ODS first looks for table-definition-name in
SASUSER.TEMPLAT. If it doesn’t find the definition there, it looks in
SASHELP.TMPLMST. You can change the locations that it searches with the ODS
PATH statement (see “ODS PATH Statement” on page 64).

Default: base.datastep.table

Interaction: When you use the default table definition, GENERIC= is set to ON for
all columns in the data component. (See GENERIC= on page 109.)

Featured in: Example 4 on page 126

VARIABLES=(variable-specification(s))
specifies one or more columns for the data component of the output object. Each
variable-specification associates a DATA step variable with a column that is defined
in the table definition.

Note: By default, the order of the columns in the output object is determined by
their order in the table definition, not by their order in the data component. You can
override this order by using the ORDER_DATA table attribute in the PROC
TEMPLATE step that creates the definition. The default DATA step table definition
uses this attribute. (See the discussion of the ORDER_DATA= on page 216.) A

Each variable-specification has this general form:

variable-name<=column-name><(attribute(s))>

variable-name
specifies a variable in the DATA step to place in the specified column.

Tip: You can use list notation (for example, scorel-score5) to specify a range of
variable names.

Featured in: Example 2 on page 117 and Example 3 on page 121

column-name
is the name of a column. This name must match a name that is defined in the
table definition.

Default: If you omit column-name, ODS looks for a column in the table definition
that is named variable-name and places the variable in that column. If no such
column exists, ODS returns an error.

Restriction: column-name must match a column name in the table definition that
you are using. It must also conform to the rules for SAS variable names. For
information on these rules, see “Rules for Words and Names” in SAS Language
Reference: Dictionary.

Tip: You can use list notation (for example, scorel-score5) to specify a range of
column names.

attribute
assigns a characteristic, such as a label or a format, to a particular column in the
data component. These individual specifications override any attributes that are
set, in the DATA step, for the entire data component. You assign attributes just as
you do in the COLUMNS= suboption (see the discussion of attributes on page 108).

Default: If you do not specify COLUMNS= or VARIABLES=, the order of columns
in the data component matches the order of the corresponding variables in the
program data vector.

Restriction: You can use only one VARIABLES= suboption in a FILE statement.
Interaction: You can use either the COLUMNS= suboption or the VARIABLES=
suboption to associate variables with columns. However, you cannot use both

suboptions in the same FILE statement.

112 _0DS_ in the PUT Statement A Chapter 4

Tip: VARIABLES= is primarily for use with the default DATA step table definition.
When you are using the default definition, the DATA step can map variables to the
appropriate column in the definition so you don't need to specify a column name.

Featured in: Example 2 on page 117 and Example 3 on page 121

0DS in the PUT Statement

PUT <specification(s)><_ODS_><@]@@>;

Arguments

specification
specifies the variables to write and where to write them. Each specification has the
following form:

<ods-pointer-control>variable

variable
identifies the variable to write.

Featured in: Example 4 on page 126

ods-pointer-control
moves the pointer in the buffer to a specified line or column.

See also: “Column Pointer Controls and ODS” on page 113 and “Line Pointer
Controls” on page 114

Options

ODS
moves data values for all columns to a buffer. The order of these columns is
determined by the order specified by the COLUMNS= or VARIABLES= suboption in
the ODS option in the FILE statement. If you do not specify either of these options,
the order of the variables in the program data vector determines their order in the
buffer.
The PUT statement writes this buffer to the data component.

Restriction: Use _ODS_ only if you have previously specified the ODS option in the
FILE statement. (See “FILE Statement for ODS” on page 106.)

Interaction: You can use _ODS_in a PUT statement that specifies the placement of
individual variables. _ODS__ writes to a particular row and column only if another
PUT statement has not already written a variable to that same row and column.
The position of _ODS_ in the PUT statement does not affect the outcome in the
data component, but it may affect performance.

Tip: The order of the columns in the data component matches the order of the
columns in buffer. However, the table definition that is combined with the data
component to produce the output object may override this order. (See the
discussion of the ORDER_DATA= on page 216 table attribute.)

@ | e
holds an output line for the execution of the next PUT statement across iterations of
the DATA step. The line-hold specifiers are called trailing @ and double trailing @.

Using the Output Delivery System in the DATA Step A _0DS_ in the PUT Statement 113

Default: If you do not use @ or @@, each PUT statement in a DATA step writes a
new line to the buffer.

Column Pointer Controls and 0DS

Column pointer controls in a DATA step that uses ODS differ slightly from column
pointer controls in a DATA step that does not use ODS. ODS is not character-based.
Therefore, in ODS a column contains the entire value of a variable. Column 1 contains
the first variable in the output; column 2 contains the second variable, and so on.

Column pointer controls have the following general forms:

@ods-column
+ods-column
@'column-name’

@ods-column
moves the pointer to the specified ODS column. ods-column can be a number, a
numeric-variable, or an expression that identifies the column to write to.

Range: If ods-column is a number, it must be a positive integer.
If ods-column is a variable or an expression, SAS treats it as follows:

If the variable or expression is ... SAS does this

not an integer truncates the decimal portion and uses only
the integer value

0 or negative moves the pointer to column 1

Tip: By default, if ods-column exceeds the number of columns in the data
component, ODS writes the current line, moves the pointer to the first column on
the next line, and continues to process the PUT statement. You can alter this
behavior with options in the FILE statement. (See the discussion of
overflow-control on page 107.)

Featured in: Example 4 on page 126

+ods-column
moves the pointer the specified number of columns. ods-column can be a number, a
numeric-variable, or an expression that specifies the number of columns to move the
pointer.

Range: If ods-column is a number, it must be an integer. If ods-column is a variable
or an expression, it does not have to be an integer. If it is not an integer, SAS
truncates the decimal portion and uses only the integer value.

Tip: If ods-column is greater than 0, the pointer moves to the right. If ods-column
is less than 0, the pointer moves to the left. If ods-column is equal to 0, the pointer
does not move.

If the current column position becomes less than 1, the pointer moves to column
1. If the current column position exceeds the number of columns in the data
component, ODS writes the current line, moves the pointer to the first column on
the next line, and continues to process the PUT statement.

See also: “When the Pointer Goes Past the End of a Line” on page 114

@’column-name’
moves the pointer to the ODS column identified by 'column-name’.

114 Examples

A Chapter 4

Line Pointer Controls

Line pointer controls in a DATA step that uses ODS are the same as line pointer
controls in a DATA step that does not use ODS. Line pointer controls have the following
general forms:

#line
/

#line
moves the pointer to the specified line. line can be a number, a numeric-variable, or
an expression that identifies the line to write to.

Range: If line is a number, it must be an integer. If line is a variable or an
expression, it does not have to be an integer. If it is not an integer, SAS truncates
the decimal portion and uses only the integer value.

moves the pointer to the first column of the next line.
Featured in: Example 4 on page 126

When the Pointer Goes Past the End of a Line

In a DATA step that uses the Output Delivery System, the number of columns that is
specified by the COLUMNS= or VARIABLES= suboption to the ODS option in the FILE
statement determines the number of columns in the buffer and, eventually, in the data
component. If you do not specify either of these options, the number of variables in the
program data vector determines the number of columns.

Note: The table definition that is combined with the data component to produce the
output object may change the number of columns that actually appear in the output
object. A

Using pointer controls and trailing @ or double trailing @, you may inadvertently
position the pointer beyond the last column. You control how SAS handles this situation
with options in the FILE statement. (See the discussion of overflow-control on page 107.)

Examples

Example 1

: Using the Default Table Definition

0DS features:
FILE statement:

ODS option without suboptions
PRINT fileref

PUT _ODS_

This example uses the DATA step’s default table definition to write an output object
to the Listing destination.

Using the Output Delivery System in the DATA Step A Program 115

Program

The OPTIONS statement controls several aspects of the Listing output.

options pagesize=60 linesize=64 nodate pageno=1;

The TITLE statement specifies a title for the output object.

title ’'Leading Grain Producers’;

PROC FORMAT creates a format for the variable Country.

proc format;
value $cntry ’'BRZ’'='Brazil’
'CHN'='China’
"IND’'='India’
'INS’'='Indonesia’
'USA’='United States’;
run;

This DATA step does not create a data set. Instead, it creates a data component and, eventually,
an output object. The FORMAT statement assigns a format to the variable Country. The LABEL
statement assigns a label to the variable Type.

data _null ;
length Country $ 3 Type $ 5;
input Year country $ type $ Kilotons;
format country $cntry.;
label type='Grain’;

The combination of the fileref PRINT and the ODS option in the FILE statement routes the
DATA step output to ODS. The only open ODS destination is the Listing destination, which is
open by default. Because no suboptions are specified, ODS uses the default DATA step table
definition.

file print ods;

The _ODS_ option in the PUT statement writes every variable to the buffer that the PUT
statement writes to the data component. Because no formats or labels are specified for
individual columns, ODS uses the defaults (see Output 4.1 on page 116).

put ods ;

The data provide information on the amounts of wheat, rice, and corn that five leading
grain-producing nations produced during 1995 and 1996.

datalines;

1995 BRZ Wheat 1516

1995 BRZ Rice 11236
1995 BRZ Corn 36276
1995 CHN Wheat 102207
1995 CHN Rice 185226
1995 CHN Corn 112331
1995 IND Wheat 63007

1995 IND Rice 122372

1995 IND Corn 9800

116 Listing Output A Chapter 4

1995 INS Wheat .
1995 INS Rice 49860

1995 INS Corn 8223
1995 USA Wheat 59494
1995 USA Rice 7888
1995 USA Corn 187300
1996 BRZ Wheat 3302
1996 BRZ Rice 10035
1996 BRZ Corn 31975
1996 CHN Wheat 109000
1996 CHN Rice 190100
1996 CHN Corn 119350
1996 IND Wheat 62620
1996 IND Rice 120012
1996 IND Corn 8660
1996 INS Wheat .

1996 INS Rice 51165
1996 INS Corn 8925
1996 USA Wheat 62099
1996 USA Rice 7771
1996 USA Corn 236064
H

run;

Listing Output

Output 4.1 Listing Output Created with the Default DATA Step Table Definition

The default table definition produces a column for each variable in the DATA step. The order of
the columns is determined by their order in the program data vector. Because no attributes are
specified for individual columns, ODS uses the default column headers and formats.

Using the Output Delivery System in the DATA Step A Example 2: Selecting Variables for the Data Component 117

Leading Grain Producers 1
Country Grain Year Kilotons
Brazil Wheat 1995 1516
Brazil Rice 1995 11236
Brazil Corn 1995 36276
China Wheat 1995 102207
China Rice 1995 185226
China Corn 1995 112331
India Wheat 1995 63007
India Rice 1995 122372
India Corn 1995 9800
Indonesia Wheat 1995 .
Indonesia Rice 1995 49860
Indonesia Corn 1995 8223
United States Wheat 1995 59494
United States Rice 1995 7888
United States Corn 1995 187300
Brazil Wheat 1996 3302
Brazil Rice 1996 10035
Brazil Corn 1996 31975
China Wheat 1996 109000
China Rice 1996 190100
China Corn 1996 119350
India Wheat 1996 62620
India Rice 1996 120012
India Corn 1996 8660
Indonesia Wheat 1996 .
Indonesia Rice 1996 51165
Indonesia Corn 1996 8925
United States Wheat 1996 62099
United States Rice 1996 7771
United States Corn 1996 236064

Example 2: Selecting Variables for the Data Component

ODS features:
FILE statement, ODS option:

VARIABLES= suboption
ODS HTML statement:
BODY=
URL= suboption
PUT _ODS_
Format: $CNTRY. on page 115

This example selects variables to write to the data component. The output is routed
to two ODS destinations: the Listing destination, which is open by default, and the
HTML destination, which is opened by the ODS HTML statement.

Note: This example uses file names that may not be valid in all operating
environments. To successfully run the example in your operating environment, you may
need to change the file specifications. See Appendix 1, “Alternative ODS HTML
Statements for Running Examples in Different Operating Environments,” on page
275. 2

118

Program A Chapter 4

Program

The OPTIONS statement controls several aspects of the Listing output. None of these options
affects the HTML output.

options pagesize=60 linesize=64 nodate pageno=1;

The ODS HTML statement opens the HTML destination and creates HTML output. It sends all
output objects to the external file selectvars-body.htm in the current directory. Some
browsers require an extension of HTM or HTML on the filename.

ods html body=’'selectvars-body.htm’;

The TITLE statements provide titles for the data component.

title ’'Leading Grain Producers’;
title2 ’'for 1996°';

This DATA step does not create a data set. Instead it creates a data component and, eventually,
an output object. The IF statement restricts processing to observations with Year=1996. The
FORMAT statement assigns a format to the variable Country. The LABEL statement assigns a
label to the variable Type.

data _null ;
length Country $ 3 Type $ 5;
input Year country $ type $ Kilotons;
if year=1996;
format country $cntry.;
label type='Grain’;

The combination of the fileref PRINT and the ODS option in the FILE statement routes the
results of the DATA step to ODS. Two ODS destinations, the Listing and the HTML
destinations, are open. Because no table definition is specified, ODS uses the default DATA step
definition. The VARIABLES= suboption specifies the variables to write to the data component
and the order in which to write them.

file print ods=(variables=(country

type
kilotons));

The _ODS_ option in the PUT statement writes every variable to the buffer that the PUT
statement writes to the data component. Because no formats or labels are specified for individual
columns, ODS uses the defaults (see Display 4.1 on page 120 and Output 4.2 on page 121).

put ods ;
The data provide information on the amounts of wheat, rice, and corn that five leading

grain-producing nations produced during 1995 and 1996. For a complete listing of the data, see
the DATALINES statement on page 115.

datalines;

1995 BRZ Wheat 1516
1995 BRZ Rice 11236
1995 BRZ Corn 36276

. more lines of data

Using the Output Delivery System in the DATA Step A Program 119

1996 USA Wheat 62099
1996 USA Rice 7771
1996 USA Corn 236064

14

The ODS HTML statement closes the HTML destination and all the files that are associated
with it. You must close the destination before you can view the output with a browser.

ods html close;

120

HTML Output A Chapter 4

HTML Output

Display 4.1 Body File Produced by the HTML Destination

Leading Grain Producers
for 1996
Country Grain Kilotons
Brazil Wy'heat 33l
Brazil Rice 10035
Brazil Carn 31975
China Wyheat 109000
China Rice 190100
China Carn 119330
India Wy'heat B2620
India Rice 120012
India Carn gbB0

Indanesia Wi'heat

Indanesia Rice 51165
Indonesia Carn 8925
United States Wheat B2059
United States Rice fid
United States Corn 236064

Using the Output Delivery System in the DATA Step A Program 121

Listing Output

Output 4.2 Listing Output Produced by the Listing Destination

Leading Grain Producers 1
for 1996
Country Grain Kilotons
Brazil Wheat 3302
Brazil Rice 10035
Brazil Corn 31975
China Wheat 109000
China Rice 190100
China Corn 119350
India Wheat 62620
India Rice 120012
India Corn 8660
Indonesia Wheat .
Indonesia Rice 51165
Indonesia Corn 8925
United States Wheat 62099
United States Rice 7771
United States Corn 236064

Example 3: Specifying Attributes for a Column

0DS features:
FILE statement, ODS option:

OBJECTLABEL-= suboption
VARIABLES= suboption

LABEL= attribute
FORMAT= attribute

PUT ODS_
Format: $CNTRY. on page 115

This example assigns a label to the output object that it creates. It also specifies a
label and a format for individual columns.

Note: This example uses file names that may not be valid in all operating
environments. To successfully run the example in your operating environment, you may
need to change the file specifications. See Appendix 1, “Alternative ODS HTML
Statements for Running Examples in Different Operating Environments,” on page
275. 2

Program

The OPTIONS statement controls several aspects of the Listing output. NODATE and
PAGENO-= also affect the Printer output. None of these options affects the HTML output.

options pagesize=60 linesize=64 nodate pageno=1;

122

Program A Chapter 4

The ODS HTML statement opens the HTML destination and creates HTML output. Subsequent
output objects go to the body file. CONTENTS= and FRAME-= create a frame file that includes a
table of contents that links to the contents of the body file. The body file also appears in the
frame. The ODS PRINTER statement opens the Printer destination and creates Printer output.
It sends all output objects to the external file attribs.ps in the current directory.

ods html body='attribs-body.htm’
contents='attribs-contents.htm’
frame='attribs-frame.htm’;

ods printer file='attribs.ps’;

The TITLE statements provide titles for the data component.

title ’'Leading Grain Producers’;
title2 ’'for 1996°';

This DATA step does not create a data set. Instead it creates a data component and, eventually,
an output object. The IF statement restricts processing to observations with Year=1996. The
FORMAT statement assigns a format to the variable Country. The LABEL statement assigns a
label to the variable Type.

data _null ;
length Country $ 3 Type $ 5;
input Year country $ type $ Kilotons;
if year=1996;
format country $cntry.;
label type='Grain’;

The combination of the fileref PRINT and the ODS option in the FILE statement routes the
results of the DATA step to ODS. Three ODS destinations— the Listing, the HTML, and the
Printer destinations— are open. Because no table definition is specified, ODS uses the default
DATA step definition.

file print ods=

OBJECTLABEL= specifies a label for the output object. This label appears in the Results folder
and in the HTML contents file (see Display 4.2 on page 124).

(objectlabel="1996 Grain Production’

The VARIABLES= suboption specifies the variables to write to the data component and the
order in which to write them. The suboption includes attribute specifications of a label (for the
variable Type) and a format (for the variable Kilotons). The label specified here takes
precedence over the LABEL statement assignment that was made previously in the DATA step,
so it is used as the column header for Type.

variables=(country
type(label='Type of Grain’)
kilotons(format=commal2.))

The _ODS_ option in the PUT statement writes to the buffer every variable that the PUT
statement writes to the data component. It uses default attributes for Country, and it uses any
attributes specified in the VARIABLES= suboption for the other variables. For attributes that
are not specified in VARIABLES=, it uses the defaults.

put ods ;

Using the Output Delivery System in the DATA Step A Program 123

The data provide information on the amounts of wheat, rice, and corn that five leading

grain-producing nations produced during 1995 and 1996. For a complete listing of the data, see
the DATALINES statement on page 115.

datalines;

1995 BRZ Wheat 1516
1995 BRZ Rice 11236
1995 BRZ Corn 36276

. more lines of data

1996 USA Wheat 62099
1996 USA Rice 7771
1996 USA Corn 236064

14

The ODS HTML statement closes the HTML destination and all the files that are associated
with it. You must close the destination before you can view the output with a browser. The ODS
PRINTER statement closes the Printer destination. You must close the destination before you
can print the output on a physical printer.

ods html close;
ods printer close;

124 HTML Output A Chapter 4

HTML Output

Display 4.2 Frame File Produced by the HTML Destination

In this HTML frame file, the object’s label, which was supplied by OBJECTLABEL=, appears in
the table of contents as the link to the output object. In the body file, the label that is supplied
as an attribute for the variable Grain becomes its column header. The format for Kilotons was
also supplied as an attribute in the ODS= option in the FILE statement.

T — Leading Grain Producers
for 1996
LNILE Country Type of Grain HKilotons
Datastep
Pr?ﬁre Brazil Wheat 3,302
S%uijrhctinn Brazil Rice 10,035
Brazil corn 31,874
China Wheat 109,000
China Rice 190100
China corn 119,340
India Wheat G2 620
India Rice 120,012
India corn 3,660
Indonesia Wheat
Indonesia Rice a1,1645
Indonesia corn 2,925
Linited States Wheat B2 0949
Linited States Rice 7,771
Linited States Corn 236,064

Using the Output Delivery System in the DATA Step A Listing Output 125

Printer Output

Just as in the HTML body file and in the Listing output, in the Printer output the label that is
supplied as an attribute for the variable Grain becomes its column header. The format for
Kilotons was also supplied as an attribute in the ODS= option in the FILE statement.

Leading Grain Producers 1
for 1996

Country | Typeof Grain Kilotons
Brazil Wheat 3,302
Brazil Rice 10,035
Brazil Corn 31,975
China Wheat 109,000
China Rice 190,100
China Corn 119,350
India Wheat 62,620
India Rice 120,012
India Corn 8,660
Indonesia Whest
Indonesia Rice 51,165
Indonesia Corn 8,925
United States | Wheat 62,099
United States | Rice 7,771
United States | Corn 236,064

Listing Output

Just as in the HTML body file and the Printer output, in the Listing output the label that is
supplied as an attribute for the variable Grain becomes its column header. The format for
Kilotons was also supplied as an attribute in the ODS= option in the FILE statement.

126 Example 4: Using a Simple User-Defined Definition A Chapter 4

Leading Grain Producers 1
for 1996
Type
of
Country Grain Kilotons
Brazil Wheat 3,302
Brazil Rice 10,035
Brazil Corn 31,975
China Wheat 109,000
China Rice 190,100
China Corn 119,350
India Wheat 62,620
India Rice 120,012
India Corn 8,660
Indonesia Wheat .
Indonesia Rice 51,165
Indonesia Corn 8,925
United States Wheat 62,099
United States Rice 7,771
United States Corn 236,064

Example 4: Using a Simple User-Defined Definition

0DS features:
PROC TEMPLATE

FILE statement, ODS option:
COLUMNS= suboption

FORMAT= attribute
DYNAMIC= attribute
GENERIC= attribute

TEMPLATE=
PUT _ODS_:

column pointer controls
line pointer controls

This example illustrates how to use a simple user-defined table definition in the
DATA step. It also illustrates the use of pointer controls in the PUT _ODS_ statement.

Note: This example uses file names that may not be valid in all operating
environments. To successfully run the example in your operating environment, you may
need to change the file specifications. See Appendix 1, “Alternative ODS HTML
Statements for Running Examples in Different Operating Environments,” on page
275. A

Using the Output Delivery System in the DATA Step A Program 127

Program

This PROC TEMPLATE step defines a table definition named phonelist. The definition
defines two columns: NAME and PHONE. The GENERIC=0ON suboption defines the column for
NAME as one that the DATA step can use for multiple variables. The column definition uses
dynamic headers; that is, a variable that uses this column defintion takes the value of the
header at run time from the DATA step that uses the definition. Thus, each variable can have a
different column header. STYLE= specifies a style element, Data, to use as the basis for
rendering the data in this column. The font face and font size that Data normally uses are
replaced by the ones that are specified in STYLE=.

The header for PHONE is hardcoded as Telephone. STYLE= specifies a style element to use for
the data in this column. For information on PROC TEMPLATE, see Chapter 5, “The
TEMPLATE Procedure,” on page 131.

/* Define the table definition ’‘phonelist’ */
proc template;
define table phonelist;
column name phone;
dynamic colheader;
define name;
generic=on;
header=colheader;
style=data{font style=italic font size=5};
end;

define phone;
header='Telephone’;
style=datafixed;
end;
end;
run;

The ODS LISTING CLOSE statement closes the Listing destination to conserve resources. The
Listing destination is open by default.

ods listing close;

The ODS HTML statement opens the HTML destination and creates HTML output. Subsequent
output objects go to the body file.

ods html body=’'ptcntrl-body.htm’;

The TITLE statement provides a title for the data component.

title ’'New Subscriber Telephone List’;

PROC FORMAT creates a format for telephone numbers.

proc format;
picture phonenum .='Not available’
other='0000)000-0000" (prefix='(');
run;

The data set PHONES contains names and phone numbers for each person.

128

Program A Chapter 4

data phones;
length first name $20 last name $25;
input first name $ last name $ business phone home phone;
datalines;
Jerome Johnson 9193191677 9198462198
Romeo Montague 8008992164 3609736201
Imani Rashid 5088522146 5083669821
Palinor Kent . 9197823199
Ruby Archuleta
Takei Ito 7042982145
Tom Joad 2099632764 2096684741

14

PROC SORT sorts the data set PHONES by LAST_NAME and replaces the original data set

with the sorted one.

proc sort data=phones;
by last name;
run;

This DATA step does not create a data set. Instead, it creates a data component and, eventually,

an output object.

data _null ;
set phones;

The combination of the fileref PRINT and the ODS option in the FILE statement routes the
results of the DATA step to ODS. Only the HTML destination is open. TEMPLATE-= tells ODS
to use the table definition named phonelist, which was just created with PROC TEMPLATE.

file print ods=(template='phonelist’

The COLUMNS= suboption places DATA step variables into columns that are defined in the
table definition. Both LAST_NAME and FIRST_NAME go in columns that are defined as NAME
in the table definition. GENERIC=ON must be set in both the table definition and the ODS=
option in order for you to use a column definition for more than one column. The variable
BUSINESS_PHONE is placed in a column that is defined as PHONE in the definition. The
DYNAMIC= attribute assigns a value to the variable COLHEADER. This value is passed to the
table definition when the output object is created, and the definition uses it for the column

header. Thus, even though the variables use the same column definition from the table

definition, the columns in the output object have different column headers. The FORMAT=

attribute assigns the format PHONENUM. to the column named PHONE.

columns=
(name=last name
(generic=on
dynamic=(colheader='Last Name'))
name=first name
(generic=on
dynamic=(colheader='First Name'))
phone=business phone
(format=phonenum.)

)

Using the Output Delivery System in the DATA Step A Program 129

This piece of conditional code executes a different PUT _ODS_ statement for each of three
conditions. If BUSINESS PHONE is missing, the PUT statement writes values for
LAST_NAME, FIRST_NAME, and BUSINESS_PHONE (the columns that are defined in the
ODS= option) into the output buffer. It then writes the value for HOME_PHONE in column 3,
overwriting the missing value of BUSINESS PHONE.

If HOME_PHONE is missing, the PUT statement simply writes values for LAST_NAME,
FIRST_NAME, and BUSINESS_PHONE to the buffer.

Finally, if both phone numbers have values, the PUT statement writes values for LAST_NAME,
FIRST_NAME, and BUSINESS_PHONE to the buffer in the first line. It then goes to the next
line (as directed by the line pointer control /) and writes the value of HOME_PHONE in the
third column of the next line.

if (missing(business phone)) then
put _ods_ @3 home phone;
else if (missing(home phone)) then

put ods ;
else

put _ods_ / @3 home phone;
run;

The ODS HTML statement closes the HTML destination and all the files that are associated
with it. You must close the destination before you can view the output with a browser.

ods html close;

130

HTML Output A Chapter 4

HTML Output

New Subscriber Telephone List

Last Name First Name Telephone
Archuleta Ruby Not available
Ito Takei (704)298-2145
Joad Tom (209)963-2764

(209)668-4741
Johnson Jerome (919)319-1677

(919)846-2198
Kent Palinor (919)7832-3199
Montague Romeo (800)899-2164

(360)973-6201
Rashid Imani (508)852-2146

(508)366-9821

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., The
Complete Guide to the SAS® Output Delivery System, Version 8, Cary, NC: SAS Institute
Inc., 1999. 310 pp.

The Complete Guide to the SAS’ Output Delivery System, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-425-X

All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

