
131

C H A P T E R

5
The TEMPLATE Procedure

Overview 131
Concepts 132

What Is a Template Store? 132

What Is the Default Style Definition Like? 133

How Are Values in Table Columns Justified? 138

How Do Style-Definition Inheritance and Style-Element Inheritance Work? 139
Style Element Inheritance in a Style Definition with No Parent 140

Style-Definition Inheritance 146

Style-Element Inheritance in a Style Definition with a Parent 147

Procedure Syntax 156

PROC TEMPLATE Statement 157

DEFINE Statement 157
DEFINE COLUMN Statement 159

DEFINE FOOTER Statement 176

DEFINE HEADER Statement 177

DEFINE STYLE Statement 188

DEFINE TABLE Statement 209
DELETE Statement 227

EDIT Statement 227

LINK Statement 229

LIST Statement 229

PATH Statement 231
SOURCE Statement 232

TEST Statement 233

Examples 233

Example 1: Customizing a Table Definition that a SAS Procedure Uses 233

Example 2: Creating a New Table Definition 238

Example 3: Setting the Style Element for Cells Based on Their Values 247
Example 4: Creating a Stand-alone Style Definition 252

Example 5: Creating and Modifying a Style Definition with User-Defined Attributes 258

Example 6: Modifying the Default Style Definition for the HTML Destination 265

Overview
By default, ODS output is formatted according to instructions in various definitions

that the procedure or DATA step points to. However, ODS provides ways for you to
customize the output. You can customize the output for an entire SAS job, or you can
customize the output for a single output object.

To customize the presentation aspects of the output at the level of the entire SAS job,
use a style definition. To customize the output for a single output object, use a table

132 Concepts 4 Chapter 5

definition. The TEMPLATE procedure creates and modifies these definitions, which the
Output Delivery System then uses to create formatted output.

A style definition
describes how to render the presentation aspects (color, font face, font size, and so
forth) of an entire SAS job. A style definition determines the overall look of the
documents that use it. Each style definition is composed of style elements.

A style element
is a collection of style attributes that apply to a particular part of the output. For
instance, a style element may contain instructions for the presentation of column
headers or for the presentation of the data inside cells. Style elements may also
specify default colors and fonts for output that uses the style definition. Each style
attribute specifies a value for one aspect of the presentation. For instance, the
BACKGROUND= attribute specifies the color for the background of an HTML
table, and the FONT_STYLE= attribute specifies whether to use a Roman, a slant,
or an italic font.

A table definition
describes how to render the output for a tabular output object. (Almost all ODS
output is tabular.) A table definition determines the order of table headers and
footers, the order of columns, and the overall look of the output object that uses it.
Each table definition contains or references table elements.

A table element
is a collection of attributes that apply to a particular column, header, or footer.
Typically, these attributes specify something about the data rather than about its
presentation. For instance FORMAT= specifies the SAS format to use in a column.
However, some attributes describe presentation aspects of the data.

Note: You can also define columns, headers, and footers outside of a table
definition. Any table definition can then reference these table elements. 4

Concepts

What Is a Template Store?
A template store is a specific kind of item store (a kind of SAS file) that stores the

definitions that PROC TEMPLATE creates. Definitions that SAS Institute provides are
in the template store SASHELP.TMPLMST. You can store your definitions in any
template store that you can write to (see “PATH Statement” on page 231).

A template store can contain multiple levels (also referred to as directories). When
you specify a template store in the ODS PATH statement, however, you specify a
two-level name that includes a libref and the name of a template store in the SAS data
library that the libref references.

To view the contents of a template store in the SAS windowing environment,
complete the following steps:

1 Select

View I Results

from the Explorer.

The TEMPLATE Procedure 4 What Is the Default Style Definition Like? 133

2 In the Results window, select the Results folder. With your cursor on this folder,
use your right mouse button to open the Templates window.

3 Click on the plus sign that is next to an icon to view the contents of a template
store or a directory in a template store. If there is no plus sign next to the icon,
double click on the icon to view the contents of that directory.

You can also use the LIST statement to view the contents of one or more template
stores (see “LIST Statement” on page 229).

What Is the Default Style Definition Like?
The default style definition for the HTML destination is stored in

STYLES.DEFAULT in the template store SASHELP.TMPLMST. You can view the style
definition from the TEMPLATE window, or you can submit this PROC TEMPLATE step
to write the style definition to the SAS log:

proc template;
source styles.default;

run;

Note: The default style definition for the Printer destination is stored in
STYLES.PRINTER in the template store SASHELP.TMPLMST. This style definition is
similar to STYLES.DEFAULT. In fact, it inherits most of its attributes from
STYLES.DEFAULT. 4

You may want to alter parts of the default style definition, and Example 6 on page
265 shows you how to do so. When you try to modify the style definition for use at your
site, it is helpful to know what each style element in the style definition is for. The
following table lists all the style elements in the default style definition. The indention
in the table indicates the relationship between the style elements. An element that is
indented inherits from the element above it and to its left. The table also provides a
brief description of the purpose of each style element. An abstract style element is one
that is not used to render any style element but provides a basis for one or more style
elements to inherit.

Table 5.1 Style Elements that Are Available in the Default Style definition

Style Element Description

fonts Establishes a list of fonts.

color_list Establishes a list of color names
and their RGB values.

colors Associates parts of SAS output
with colors from color_list.

html Provides HTML for specific parts of
the output.

text Provides text for specific parts of
the output.

container Abstract: provides a basis for all
containers.

134 What Is the Default Style Definition Like? 4 Chapter 5

Table 5.1 (continued)

Style Element Description

index Abstract: provides a basis for the
contents and page files.

indexprocname Renders the procedure name in the
body file.

contentprocname Renders the procedure name in the
contents file.

contentproclabel Renders the procedure label in the
contents file.

pagesprocname Renders the procedure name in the
page file.

pagesproclabel Renders the procedure label in the
page file.

indexaction Abstract: determines what
happens when the mouse is
positioned over a folder or item.

folderaction Determines what happens when
the mouse is positioned over a
folder.

itemaction Determines what happens when
the mouse is positioned over an
item.

procnameaction Determines what happens when
the mouse is positioned over the
procedure name in the table of
contents.

titleaction Determines what happens when
the mouse is positioned over a SAS
title.

indextitle Abstract: controls the title of the
contents and page files.

contenttitle Renders the title in the contents
file.

pagestitle Renders the title in the page file.

document Abstract: controls the various
output files.

body Renders the body file.

frame Renders the frame file.

contents Renders the contents file.

pages Renders the page file.

date Abstract: controls the contents of
date fields.

The TEMPLATE Procedure 4 What Is the Default Style Definition Like? 135

Table 5.1 (continued)

Style Element Description

bodydate Renders the date field in the body
file.

contentsdate Renders the date field in the
contents file.

pagesdate Renders the date field in the page
file.

indexitem Abstract: controls the items in the
contents and page files.

contentfolder Controls the generic folder
definition in the contents file.

bycontentfolder Controls the byline folder definition
in the contents file.

contentitem Renders the lowest level of the
hierarchy in a contents file.

pagestitem Renders the lowest level of the
hierarchy in a page file.

systitleandfootercontainer Renders the container for system
headers and footers (provided by
TITLE and FOOTNOTE
statements or by GTITLE and
GFOOTNOTE statements in
combination with the NOGTITLE
and NOGFOOTNOTE options in
the ODS HTML statement).

titleandnotecontainer Renders the container for titles and
notes that the procedure provides.

titlesandfooters Abstract: controls the text of the
system titles and footers.

systemtitle Renders the text of system titles.

systemfooter Renders the text of system footers.

pageno Renders the text of the page
number.

byline Renders the text of the byline.

proctitle Renders the text of titles that the
procedure provides.

proctitlefixed Renders the text of titles that the
procedure provides with a fixed
font.

bylinecontainer Renders the container for the
byline.

output Abstract: controls basic
presentation of the output.

136 What Is the Default Style Definition Like? 4 Chapter 5

Table 5.1 (continued)

Style Element Description

table Renders output that is a table.

batch Renders output (like lineprinter
plots and calendars) that requires a
fixed font.

note Abstract: controls the container for
the text that precedes notes,
warning, and errors from SAS.

notebanner Renders the text that precedes the
contents of a note.

notecontent Renders the contents of a note.

notecontentfixed Renders the contents of a note with
a fixed font.

warnbanner Renders the text that precedes the
contents of a warning.

warncontent Renders the contents of a warning.

warncontentfixed Renders the contents of a warning
with a fixed font.

errorbanner Renders the text that precedes the
contents of an error.

errorcontent Renders the contents of an error.

errorcontentfixed Renders the contents of an error
with a fixed font.

fatalbanner Renders the text that precedes the
contents of a fatal error.

fatalcontent Renders the contents of a fatal
error.

fatalcontentfixed Renders the contents of a fatal
error with a fixed font.

cell Abstract: controls table cells.

data Renders the data in table cells.

datafixed Renders the data in table cells with
a fixed font.

dataempty Renders empty table cells.

dataemphasis Renders data in table cells with
emphasis.

dataemphasisfixed Renders data in table cells with
emphasis and a fixed font.

datastrong Renders data in cells with more
emphasis than dataemphasis.

The TEMPLATE Procedure 4 What Is the Default Style Definition Like? 137

Table 5.1 (continued)

Style Element Description

datastrongfixed Renders data in table cells with
more emphasis than
dataemphasis and with a fixed
font.

headersandfooters Abstract: controls table headers
and footers.

header Renders the headers of a table.

headerfixed Renders the headers of a table with
a fixed font.

headerempty Renders empty table headers.

headeremphasis Renders the headers of a table with
emphasis.

headeremphasisfixed Renders the headers of a table with
emphasis and with a fixed font.

headerstrong Renders the headers of a table with
more emphasis than
headeremphasis.

headerstrongfixed Renders the headers of a table with
more emphasis than
headeremphasis and with a fixed
font.

rowheader Renders row headers.

rowheaderfixed Renders row headers with a fixed
font.

rowheaderempty Renders empty row headers.

rowheaderemphasis Renders row headers with
emphasis.

rowheaderemphasisfixed Renders row headers with
emphasis and with a fixed font.

rowheaderstrong Renders row headers with more
emphasis than
rowheaderemphasis.

rowheaderstrongfixed Renders row headers with more
emphasis than
rowheaderemphasis and with a
fixed font.

footer Renders the footers of a table.

footerfixed Renders the footers of a table with
a fixed font.

footerempty Renders empty table footers.

footeremphasis Renders the footers of a table with
emphasis.

138 How Are Values in Table Columns Justified? 4 Chapter 5

Table 5.1 (continued)

Style Element Description

footeremphasisfixed Renders the footers of a table with
emphasis and with a fixed font.

footerstrong Renders the footers of a table with
more emphasis than
footeremphasis.

footerstrongfixed Renders the footers of a table with
more emphasis than
footeremphasis and with a fixed
font.

rowfooter Renders row footers.

rowfooterfixed Renders row footers with a fixed
font.

rowfooterempty Renders empty row footers.

rowfooteremphasis Renders row footers with emphasis.

rowfooteremphasisfixed Renders row footers with emphasis
and with a fixed font.

rowfooterstrong Renders row footers with more
emphasis than
rowfooteremphasis.

rowfooterstrongfixed Renders row footers with more
emphasis than
rowfooteremphasis and with a
fixed font.

caption Abstract: controls the caption field
in PROC TABULATE.

beforecaption Renders captions that precede the
table.

aftercaption Renders captions that follow the
table.

How Are Values in Table Columns Justified?
The process of justifying the values in columns in Listing output involves the

variable’s format and the values of two attributes: JUST= and JUSTIFY=. It is a
three-step process:

1 ODS puts the value into the format for the column. Character variables are left
justified within their format fields; numeric variables are right justified.

2 ODS justifies the entire format field within the column width according to the
value of the JUST= attribute for the column, or, if that attribute is not set, JUST=
for the table. For example, if you right justify the column, the format field is

The TEMPLATE Procedure 4 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 139

placed as far to the right as possible. However, the placement of the individual
numbers and characters within the field does not change. Thus, decimal points
remain aligned. If the column and the format field have the same width, JUST=
has no apparent affect because the format field occupies the entire column.

3 If you specify JUSTIFY=ON for the column or the table, ODS justifies the values
within the column without regard to the format field. By default, JUSTIFY=OFF.

Consider this set of values:

123.45
234.5
.
987.654

If the values are formatted with a 6.2 format and displayed in a column with a width
of 6, they look like this regardless of the value of JUST= (asterisks indicate the width of
the column):

123.45
234.50

.
987.65

If the width of the column increases to 8, the value of JUST= does affect the
placement of the values because the format field has room to move within the column.

just=left just=center just=right

******** ******** ********
123.45 123.45 123.45
234.50 234.50 234.50

. . .
987.65 987.65 987.65

Notice that the decimal points remain aligned but that the numbers shift in relation to
the column width. Now, if you add JUSTIFY=ON, the values are formatted within the
column without regard to the format width. The results are as follows:

justify=on justify=on justify=on
just=left just=center just=right

******** ******** ********
123.45 123.45 123.45
234.50 234.50 234.50
. . .
987.65 987.65 987.65

The HTML and Printer destinations always justify the values in columns as if
JUSTIFY=ON.

How Do Style-Definition Inheritance and Style-Element Inheritance
Work?

When you use PROC TEMPLATE to create style definitions, it is important to
understand inheritance. There are two types of inheritance: style-definition inheritance

140 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 4 Chapter 5

and style-element inheritance. Recall that a style definition is composed of style
elements (see “Overview” on page 131). A style definition is created with the DEFINE
STYLE statement and its substatements and attributes. Style elements are created
with the STYLE and REPLACE statements and their attributes.

The PARENT= attribute, used with the DEFINE STYLE statement, controls
style-definition inheritance. When you specify a parent for a style definition, all the
style elements and attributes and statements that are specified in the parent’s
definition are used in the new definition unless the new definition overrides them.

The STYLE and REPLACE statements, used with the DEFINE STYLE statement,
control style-element inheritance. They augment or override the attributes of a
particular style element. You can use the STYLE statement in either a style definition
that has no parent or a style definition that has a parent. However, you can use the
REPLACE statement only in a style definition that has a parent.

This section explains style-definition inheritance and style-element inheritance,
beginning with the simpler case of style-element inheritance in a style definition that
has no parent and progressing to more complicated cases. The focus here is on PROC
TEMPLATE and the DEFINE STYLE statement, so only the PROC TEMPLATE code
that creates the style definitions appears in the text. However, in order to produce the
HTML output that is shown here, it is necessary to create a customized table (with the
DEFINE TABLE statement in PROC TEMPLATE) and to bind that table to a data set
(with the TEST statement in PROC TEMPLATE). The complete code that produces
each piece of output is in “Programs that Illustrate Inheritance” on page 283.

Style Element Inheritance in a Style Definition with No Parent
When you create a style definition, you use a STYLE statement to create each style

element in the definition. For instance, the following PROC TEMPLATE step creates a
style definition, concepts.style1, that contains one style element, celldatasimple.
This style element uses the Arial font face, a light blue background, and a white
foreground:

Example Code 5.1 Creating a Style Definition with One Style Element

proc template;
define style concepts.style1;

style celldatasimple /
font_face=arial
background=very light vivid blue
foreground=white;

end;
run;

The style element celldatasimple does not inherit any attributes from any other
element. It is simply created with these three attributes. All other attributes are set by
the browser when a table is rendered in HTML with this style definition. The following
HTML output uses this style definition:

The TEMPLATE Procedure 4 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 141

Display 5.1 Using a Style Definition with One Style Element

The style definition that this HTML output uses contains only one style element:
celldatasimple. All three columns use this style element. celldatasimple uses these
attributes:

FONT_FACE=arial

BACKGROUND=very light vivid blue

FOREGROUND=white.

Now, suppose that you want an additional style element for cells. This style element
emphasizes the data by using an italic font. It uses the same font face and background
color as celldatasimple, but it uses blue instead of white for the foreground color. You
can create the new style element completely on its own:

Example Code 5.2 Creating a Second Style Element Independently

proc template;
define style concepts.style1;

style celldatasimple /
font_face=arial
background=very light vivid blue;
foreground=white

style celldataemphasis /
font_face=arial
background=very light vivid blue
foreground=blue
font_style=italic;

end;
run;

Alternatively, you can create celldataemphasis from celldatasimple:

Example Code 5.3 Creating a Second Style Element from the Existing Style Element

proc template;
define style concepts.style1;

style celldatasimple /

142 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 4 Chapter 5

font_face=arial
background=very light vivid blue
foreground=white;

style celldataemphasis from celldatasimple /
foreground=blue
font_style=italic;

end;
run;

The PROC TEMPLATE steps in Example Code 5.2 on page 141 and Example Code
5.3 on page 141 produce identical results. In both cases, celldatasimple contains
these attributes:

� FONT_FACE=arial
� BACKGROUND=very light vivid blue
� FOREGROUND=white.

celldataemphasis has these attributes:

� FONT_FACE=arial (inherited from celldatasimple)
� BACKGROUND=very light vivid blue (inherited from celldatasimple)
� FOREGROUND=blue (modified in celldataemphasis)
� FONT_STYLE=italic (added in celldataemphasis).

The following HTML output uses this style definition:

Display 5.2 A Style Definition with Two Style Elements

The style definition that this HTML output uses contains two style elements: celldatasimple
and celldataemphasis. The columns for Country and Kilotons use celldatasimple. The
column for grain uses celldataemphasis.

Although the PROC TEMPLATE steps in Example Code 5.2 on page 141 and Example
Code 5.3 on page 141 produce identical HTML output, there is an important difference
between them. In the Example 5.8, the program does not use style-element inheritance.

The TEMPLATE Procedure 4 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 143

celldataemphasis is created independently of celldatasimple, so a change to
celldatasimple does not affect celldataemphasis. For example, if you change the
STYLE statement that creates celldatasimple so that the font face is Times, Example
Code 5.2 on page 141 creates celldataemphasis with Arial as the font face.

Example Code 5.4 Changing the Font Face in Only One Style Element

proc template;
define style concepts.style1;

style celldatasimple
’The change to FONT_FACE= does not

affect celldataemphasis.’ /
font_face=times
background=very light vivid blue
foreground=white;

style celldataemphasis /
font_face=arial
background=very light vivid blue
foreground=blue
font_style=italic;

end;

The following HTML output uses this style definition:

Display 5.3 Changing the Font Face in Only One Style Element

Here, the font face in the style element celldatasimple, which is used for the first and third
columns in the HTML output, has changed from Arial to Times. However, celldataemphasis,
which is used for the second column, still uses the Arial font face because it does not inherit any
attributes from celldatasimple.

On the other hand, if you change the font face for celldatasimple from Arial to
Times in Example Code 5.3 on page 141, celldataemphasis does use the Times font
face because in this PROC TEMPLATE step, celldataemphasis inherits all the
attributes from celldatasimple.

144 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 4 Chapter 5

Example Code 5.5 Changing the Font Face in the Parent and Child Style Elements

proc template;
define style concepts.style1;

style celldatasimple
’The change to FONT_FACE= is passed to

celldataemphasis, which inherits all the
attributes of celldatasimple.’ /

font_face=times
background=very light vivid blue
foreground=white;

style celldataemphasis from celldatasimple /
foreground=blue
font_style=italic;

end;
run;

The following HTML output uses this style definition:

Display 5.4 Inheriting a Change to a Style Element

In this case, the change to the Times font face in celldatasimple is inherited by
celldataemphasis. Both style elements use the Times font face.The only attributes that differ
between the two style elements are ones that were explicitly redefined in the definition of
celldataemphasis (the FOREGROUND= attribute, which was changed, and the
FONT_STYLE= attribute, which was added). The columns for Country and Kilotons use
celldatasimple. The column for Grain uses celldataemphasis.

Let’s add a third style element to the style definition. This style element further
emphasizes the data by using a large, bold, italic font. Again, you can create the new
style element from scratch, or you can derive it from either of the other style elements.
The following program creates celldatalarge from celldataemphasis:

The TEMPLATE Procedure 4 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 145

Example Code 5.6 Creating the Style Element celldatalarge

proc template;
define style concepts.style1;

style celldatasimple /
font_face=arial
background=very light vivid blue
foreground=white;

style celldataemphasis from celldatasimple /
foreground=blue
font_style=italic;

style celldatalarge from celldataemphasis /
font_weight=bold
font_size=5;

end;
run;

HTML output that uses the new style definition appears in Display 5.5 on page 146.
The style elements celldatasimple and celldataemphasis have not changed.
celldatasimple has these attributes:

� FONT_FACE=arial
� BACKGROUND=very light vivid blue
� FOREGROUND=white.

celldataemphasis has these attributes:

� FONT_FACE=arial (inherited from celldatasimple)
� BACKGROUND=very light vivid blue (inherited from celldatasimple)
� FOREGROUND=blue (modified in celldataemphasis)
� FONT_STYLE=italic (added in celldataemphasis).

The new style element, celldatalarge, has these attributes:

� FONT_FACE=arial (inherited from celldataemphasis, which inherited it from
celldatasimple)

� BACKGROUND=very light vivid blue (inherited from celldataemphasis, which
inherited it from celldatasimple)

� FOREGROUND=blue (inherited from celldataemphasis)
� FONT_STYLE=italic (inherited from celldataemphasis)
� FONT_WEIGHT=bold (added in celldatalarge)
� FONT_SIZE=5 (added in celldatalarge).

146 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 4 Chapter 5

Display 5.5 Adding the Style Element celldatalarge

The style definition that this HTML output uses contains three style elements:
celldatasimple, celldataemphasis, and celldatalarge. The column for Country uses
celldatasimple. The column for Grain uses celldataemphasis. The column for Kilotons
uses celldatalarge.

In this case, celldatalarge inherits style attributes from celldataemphasis, and
celldataemphasis inherits from celldatasimple. If you change the font face in
celldatasimple, the font face in both other style elements changes. If you change the
font style or foreground color in celldataemphasis, the font style or foreground color
in celldatalarge also changes. Changes to celldatalarge affect only
celldatalarge because no style element inherits from it.

The following points summarize style-element inheritance in a style definition that
does not have a parent:

� You can create a new style element from any existing style element.

� The new style element inherits all the attributes from its parent.

� You can specify additional attributes in the new style definition. The attributes
are added to the attributes that the element inherits.

� You can change the value of an inherited attribute by respecifying it in the
definition of the new style element.

Style-Definition Inheritance

If you use the PARENT= attribute in a style definition, the new style definition
inherits the entire style definition. You can then add new style elements or modify style
elements that are inherited from the parent.

Let’s continue with concepts.style1, which was created in “Style Element
Inheritance in a Style Definition with No Parent” on page 140. The following program
creates a new style definition, concepts.style2, which inherits the entire style
definition from its parent, concepts.style1. At this point, the two style definitions are
identical:

The TEMPLATE Procedure 4 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 147

Example Code 5.7 Using Style-Definition Inheritance to Create a New Style Definition

proc template;
define style concepts.style1;

style celldatasimple /
font_face=arial
background=very light vivid blue
foreground=white;

style celldataemphasis from celldatasimple /
foreground=blue
font_style=italic;

style celldatalarge from celldataemphasis /
font_weight=bold
font_size=5;

end;
run;

proc template;
define style concepts.style2;

parent=concepts.style1;
end;

run;

For this new style definition to be useful, it should differ from its parent. There are
several ways to change the new style definition. The following section explains
style-element inheritance in a style definition that has a parent.

Style-Element Inheritance in a Style Definition with a Parent
Let’s start by adding a new style element to concepts.style2. The following

program adds celldatasmall, a style element that does not exist in the parent style
definition. Its definition is not based on any other style element.

Example Code 5.8 Creating a Style Element Independently in a Style Definition with a Parent

proc template;
define style concepts.style1;

style celldatasimple /
font_face=arial
background=very light vivid blue
foreground=white;

style celldataemphasis from celldatasimple /
foreground=blue
font_style=italic;

style celldatalarge from celldataemphasis /
font_weight=bold
font_size=5;

end;
run;

proc template;
define style concepts.style2;

parent=concepts.style1;
style celldatasmall /

font_face=arial
background=very light vivid blue

148 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 4 Chapter 5

foreground=blue
font_style=italic
font_weight=bold
font_size=2;

end;
run;

If you look at the attributes for celldatasmall, you can see that they match the
attributes for celldatalarge in the parent style definition except for FONT_SIZE=.
Another way to create this new style element, then, is to create it from celldatalarge.
You do this just as you did when you created a style element in a style definition that
didn’t have a parent:

Example Code 5.9 Creating a New Style Element from a Style Element in the Parent Style Definition

proc template;
define style concepts.style1;

style celldatasimple /
font_face=arial
background=very light vivid blue
foreground=white;

style celldataemphasis from celldatasimple /
foreground=blue
font_style=italic;

style celldatalarge from celldataemphasis /
font_weight=bold
font_size=5;

end;
run;

proc template;
define style concepts.style2;

parent=concepts.style1;
style celldatasmall from celldatalarge /

font_size=2;
end;

run;

When you specify FROM in the STYLE statement in a style definition with a parent,
PROC TEMPLATE first looks for the style element that you specify in the child style
definition. If no such style element exists, it looks in the parent (and continues looking
up through parents as far as is necessary or possible). In this case, because no style
element called celldatalarge exists in concepts.style2, PROC TEMPLATE uses
the style element from the parent style definition.

The style definition concepts.style2 that is produced in Example Code 5.8 on page
147 is identical to the one that is produced in Example Code 5.9 on page 148. In both
cases, the style element celldatasmall has these attributes:

� FONT_FACE=arial (inherited from celldatalarge through celldataemphasis
and celldatasimple)

� BACKGROUND=very light vivid blue (inherited from celldatalarge through
celldataemphasis and celldatasimple)

� FOREGROUND=blue (inherited from celldatalarge through
celldataemphasis)

� FONT_STYLE=italic (inherited from celldatalarge through celldataemphasis)

The TEMPLATE Procedure 4 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 149

� FONT_WEIGHT=bold (inherited from celldatalarge)

� FONT_SIZE=2 (modified in celldatasmall).

The following HTML output uses concepts.style2:

Display 5.6 Creating a New Style Element from a Style Element in the Parent Style Definition

The style definition concepts.style2 contains four style elements. The style definition
inherits celldatasimple, celldataemphasis, and celldatalarge from the parent style
definition, concepts.style1. The column for Country uses celldatasimple. The column
for grain uses celldataemphasis. The first column for Kilotons uses celldatalarge. The
fourth style element in the new style definition is celldatasmall. This style element is
created in concepts.style2. It inherits from celldatalarge in concepts.style1. The
fourth column, which repeats the values for Kilotons, uses celldatasmall.

Although Example Code 5.8 on page 147 and Example Code 5.9 on page 148 produce
the same style definition for concepts.style2, they will produce different style
definitions if you change the definition of celldatalarge in the parent (or the
definition of any of the style elements that celldatalarge inherits from). In Example
Code 5.8 on page 147, changes to celldatalarge do not affect celldatasmall because
celldatasmall is created independently in the new style definition. It does not inherit
from any style element in the parent style definition.

On the other hand, in Example Code 5.9 on page 148 , changes to celldatalarge in
the parent style definition do affect celldatasmall because celldatasmall inherits
(and adds to) the attributes of celldatalarge. Similarly, changes to other style
elements in the parent style definition do not affect celldatasmall in the Example
Code 5.8 on page 147, but they do in the Example Code 5.9 on page 148.

For example, the following program is based on Example Code 5.9 on page 148. It
changes the font face in celldatasimple from Arial to Times. All the other style
elements, in both the parent and the child style definitions, inherit this change. The
program also changes the foreground color of celldataemphasis to black. The style
elements celldatalarge (in the parent style definition) and celldatasmall (in the
new style definition) both inherit this foreground color.

150 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 4 Chapter 5

Example Code 5.10 Inheriting Changes from Style Elements in the Parent Style Definition

proc template;
define style concepts.style1;

style celldatasimple /
font_face=times
background=very light vivid blue
foreground=white;

style celldataemphasis from celldatasimple /
foreground=black
font_style=italic;

style celldatalarge from celldataemphasis /
font_weight=bold
font_size=5;

end;
run;
proc template;

define style concepts.style2;
parent=concepts.style1;
style celldatasmall from celldatalarge /

font_size=2;
end;

run;

The following HTML output uses this new style definition:

Display 5.7 Inheriting Changes to the Parent Style Definition

Changes to the style elements in the parent style definition are passed to style elements that
inherit from these elements in both the parent and the child style definitions.

Creating a new style element in a style definition that has a parent is not very
different from creating a new style element in a style definition that does not have a
parent. The only difference is that the style element that you specify with FROM in the
STYLE statement can be in either the parent or the child style definition.

The TEMPLATE Procedure 4 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 151

When you create a new style definition from a parent definition you can, in addition
to adding new style elements, modify existing style elements. There are two ways to do
this. One way uses the STYLE statement to make the change only to the style element
that you specify. The other way uses the REPLACE statement to make the change to
the style element that you specify and to all the style elements that inherit from that
element.

The following program uses the STYLE statement to redefine the style element
celldataemphasis in concepts.style2. It changes the background color to white:

Example Code 5.11 Redefining a Style Element with the STYLE Statement

proc template;
define style concepts.style1;

style celldatasimple /
font_face=arial
background=very light vivid blue
foreground=white;

style celldataemphasis from celldatasimple /
foreground=blue
font_style=italic;

style celldatalarge from celldataemphasis /
font_weight=bold
font_size=5;

end;
run;
proc template:

define style concepts.style2;
parent=concepts.style1;
style celldataemphasis from celldataemphasis /

background=white;
style celldatasmall from celldatalarge /

font_size=2;
end;

run;

In this case, celldataemphasis in concepts.style2 initially inherits all the
attributes of celldataemphasis in concepts.style1 because it is created from this
style element. The inherited attributes are

� the Arial font face (which celldataemphasis inherits from celldatasimple)

� the very light vivid blue background (which celldataemphasis inherits from
celldatasimple)

� the blue foreground

� the italic font style.

The STYLE statement that creates celldataemphasis in the new style definition
changes the background color to white. The background color is the only difference
between the celldataemphasis style elements in the parent and child style definitions.

But, what about celldatalarge? celldatalarge is not redefined in
concepts.style2. It is defined only in the parent style definition, where it inherits all
the attributes of celldataemphasis. So the question is, which celldataemphasis
does it inherit from— the one in the parent style definition or the one in the child style
definition? Does it get the white background or not?

The answer is that it does not. You can envision the process this way. The STYLE
statement that creates celldataemphasis in the new style definition, affects only

152 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 4 Chapter 5

those style elements that inherit from celldataemphasis and that are defined in the
new style definition. Because celldatalarge is defined only in the parent style
definition, it does not inherit the changes that are specified in the child. Similarly,
celldatasmall does not inherit the white background because it inherits from
celldatalarge. The following HTML output uses this version of concepts.style2:

Display 5.8 Using the STYLE Statement to Alter an Existing Style Element in the Child Style Definition

A style element that is defined with the STYLE statement in the child style definition does not
pass its attributes to style elements that inherit from the like-named style element in the parent
style definition. In this case, the change of the background color for celldataemphasis is made
in the child style definition. The new background color is not inherited by celldatalarge
because although it inherits from celldataemphasis, it is defined in the parent style
definition, not the child definition. Nor is the change inherited by celldatasmall, which
inherits its attributes from celldatalarge and from the parents of celldatalarge, which
include celldataemphasis (as defined in the parent style definition) and celldatasimple.

But, suppose that you want to pass the white background from celldataemphasis
on to celldatalarge even though it is defined only in the parent style definition?
There are two ways to make this sort of change. The first is simply to redefine
celldatalarge in the new style definition with a STYLE statement:

Example Code 5.12 Redefining a Style Element without Inheritance

proc template;
define style concepts.style1;

style celldatasimple /
font_face=arial
background=very light vivid blue
foreground=white;

style celldataemphasis from celldatasimple /

The TEMPLATE Procedure 4 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 153

foreground=blue
font_style=italic;

style celldatalarge from celldataemphasis /
font_weight=bold
font_size=5;

end;
run;

proc template:
define style concepts.style2;

parent=concepts.style1;
style celldataemphasis from celldataemphasis /

background=white;
style celldatalarge from celldataemphasis /

font_weight=bold
font_size=5;

style celldatasmall from celldatalarge /
font_size=2;

end;
run;

In this case, when PROC TEMPLATE processes the STYLE statement that creates
celldatalarge, it looks for a style element named celldataemphasis to inherit from.
Because there is such a style element in the child style definition, PROC TEMPLATE
uses that style element. (If there were no such element in the new style definition,
PROC TEMPLATE would look for one in the parent and use that one.) Therefore,
celldatalarge inherits the new definition of celldataemphasis, which includes the
white background. Similarly celldatasmall, which now inherits from celldatalarge
in the child style definition, inherits the white background.

This method works fine for a few style elements. However, if a large number of style
elements are inherited from celldataemphasis, it would be time-consuming to
redefine all of them in the child style element.

Fortunately, there is a way to redefine celldataemphasis so that the changes are
passed on to style elements that inherit from it. PROC TEMPLATE’s flexibility allows
you to choose whether you want to pass the new style attributes on to descendants or
not.

If you want to make a change that “ripples” through to the style elements that are
defined in the parent and that inherit from the style element that you redefine in the
child style definition, use the REPLACE statement. You can only use the REPLACE
statement if you have specified a parent style definition. The following program
changes the background color of celldataemphasis with a REPLACE statement. You
can think of this REPLACE statement as replacing the statement that defines the
like-named style element in the parent style definition. The REPLACE statement
doesn’t actually change the parent style definition, but PROC TEMPLATE builds the
child style definition as if it had changed the parent.

Example Code 5.13 Redefining a Style Element with the REPLACE Statement

proc template;
define style concepts.style1;

style celldatasimple /
font_face=arial
background=very light vivid blue
foreground=white;

style celldataemphasis from celldatasimple /

154 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 4 Chapter 5

foreground=blue
font_style=italic;

style celldatalarge from celldataemphasis /
font_weight=bold
font_size=5;

end;
run;

proc template:
define style concepts.style2;

parent=concepts.style1;
replace celldataemphasis from celldatasimple /

foreground=blue
font_style=italic
background=white;

style celldatasmall from celldatalarge /
font_size=2;

end;
run;

This is how PROC TEMPLATE constructs concepts.style2:

1 The PARENT= option makes concepts.style1 the basis of the new style
definition. The new style definition contains all the style elements that the parent
contains: celldatasimple, celldataemphasis, and celldatalarge.

2 The new style definition does nothing to celldatasimple. Therefore, in
concepts.style2, celldatasimple is the same as it is in concepts.style1.

3 The REPLACE statement essentially replaces the definition of celldataemphasis
in concepts.style1 while concepts.style2 is being created. (It does not really
alter concepts.style1, but concepts.style2 is created as if it had.) Thus, not
only does celldataemphasis now exist in concepts.style2, but also every style
element that concepts.style2 inherits from concepts.style1 is based on the
replaced definition.

A description of each style element in concepts.style2 follows:

celldatasimple
is not redefined in concepts.style2. Nor does it inherit from any other style
element. Therefore, it has the same attributes as celldatasimple in
concepts.style1 does:

� FONT_FACE=arial

� BACKGROUND=very light vivid blue

� FOREGROUND=white.

celldataemphasis
is defined in concepts.style2. It inherits from celldatasimple, so initially it
has these attributes:

� FONT_FACE=arial

� BACKGROUND=very light vivid blue

� FOREGROUND=white.
However, the REPLACE statement that creates celldataemphasis specifies a

foreground color, a background color, and a font style. The foreground and

The TEMPLATE Procedure 4 How Do Style-Definition Inheritance and Style-Element Inheritance Work? 155

background color specifications override the inherited attributes. Therefore, the
final list of attributes for celldataemphasis is

� FONT_FACE=arial
� BACKGROUND=white
� FOREGROUND=blue
� FONT_STYLE=italic.

celldatalarge
is not redefined in concepts.style2. Therefore, concepts.style2 uses the same
definition as concepts.style1 uses. The definition of celldatalarge is from
celldataemphasis. Because celldataemphasis was created in
concepts.style2 with a REPLACE statement, celldatalarge inherits the
following attributes from the replaced definition of celldataemphasis:

� FONT_FACE=arial
� BACKGROUND=white
� FOREGROUND=blue
� FONT_STYLE=italic.

The definition of celldatalarge adds these attributes:

� FONT_WEIGHT=bold
� FONT_SIZE=5.

celldatasmall
exists only in concepts.style2. It is created from celldatalarge. PROC
TEMPLATE first looks for celldatalarge in concepts.style2, but because it
doesn’t exist, it uses the definition in the parent style definition. celldatasmall
is, therefore, just like celldatalarge except that the font size of 2 replaces the
font size of 5.

The following HTML output uses this new style definition:

Display 5.9 Using the REPLACE Statement to Alter a Style Element and Its Children

156 Procedure Syntax 4 Chapter 5

The following points summarize style-element inheritance in a style definition that
has a parent:

� You can create a new style element from any style element in the parent or the
child style definition.

� If you create a style element from another style element, PROC TEMPLATE first
looks in the current style definition for that element. If the style definition does
not contain such an element, PROC TEMPLATE looks in the parent (and in
parent’s parent, and so forth).

� A new style element inherits all the attributes from its parent.

� You can specify additional attributes in the new style definition. The attributes
are added to the attributes that the element inherits.

� You can change the value of an inherited attribute by respecifying it in the
definition of the new style element.

� If you use the STYLE statement to create a style element in the new style
definition, only style elements that explicitly inherit from that style element in the
new style definition inherit the change. Style elements that are not explicitly
redefined in the new style definition inherit from the style element definition that
is in the parent style definition.

� If you use the REPLACE statement to create a style element in the new style
definition, all style elements that inherit from that element inherit the definition
that is in the new style definition. If you want to keep any attributes that are
specified in the definition that is in the parent, you must respecify them in the
definition that you create in the child style definition.

Procedure Syntax
Availability: The LIST statement and the STORE= option are available in Version 8 of
the SAS System

PROC TEMPLATE;

DEFINE definition-type definition-path< / STORE=libname.template-store>;
statements-and-attributes
END;

DELETE definition-path< / STORE=libname.template-store >;

EDIT definition-path-1 <AS definition-path-2> < / STORE=libname.template-store > ;
statements-and-attributes
END;

LINK definition-path-1 definition-path-2 </ <NOTES =’text’
<STORE=libname.template-store >>>;

LIST <starting-path></ option(s)>;

PATH location(s);

SOURCE definition-path </ FILE=’file-specification’><STORE=libref.template-store>;

TEST DATA=SAS-data-set< / STORE=libname.template-store>;

The TEMPLATE Procedure 4 DEFINE Statement 157

To do this … Use this statement

Create a definition for a table, column, header, footer,
or style

DEFINE

Delete the specified definitions DELETE

Edit an existing definition EDIT

Create a link to an existing definition LINK

List items in one or more template stores LIST

Specify which locations to search for definitions, as
well as the order in which to search for them

PATH

View the source code for the specified definition SOURCE

Test the most recently created definition by binding it
to the specified data set

TEST

PROC TEMPLATE Statement

PROC TEMPLATE;

DEFINE Statement

Creates a definition for a table, column, header, footer, or style.

Requirement: An END statement must be the last statement in the definition.
Interaction: In some cases, you can use a DEFINE statement inside a definition.

A table definition can contain one or more column, header, or footer definitions.
A column definition can include one or more header definitions.

See also: “DEFINE COLUMN Statement” on page 159, “DEFINE HEADER Statement”
on page 177, “DEFINE STYLE Statement” on page 188, and “DEFINE TABLE
Statement” on page 209

DEFINE definition-type definition-path< / STORE=libname.template-store>;
statements-and-attributes
END;

Required Arguments

definition-type
specifies the type of definition to create, where definition-type is one of the following:

COLUMN

158 END Statement 4 Chapter 5

FOOTER

HEADER

STYLE

TABLE

The definition-type determines what other statements and what attributes can go in
the definition. For details, see the documentation for the corresponding DEFINE
statement.

definition-path
specifies where to store the definition. A definition-path consists of one or more
names, separated by periods. Each name represents a directory, or level, in a
template store. (A template store is a type of SAS file.) PROC TEMPLATE writes the
definition to the first template store that you can write to in the current
template-store path.

Restriction: If the definition is nested inside another definition, definition-path
must be a single-level name.

Restriction: If you want to reference the definition that you are creating from
another definition, do not nest the definition inside another one. For example, if
you want to reference a header definition from multiple columns, do not define the
header inside a column definition.

See also: For information on setting the current path, see “PATH Statement” on
page 231.

Options

STORE=libname.template-store
specifies the template store in which to store the definition. If the template store
does not exist, it is created.
Restriction: If the definition is nested inside another definition, you cannot use the

STORE= option.
Availability: Version 8 of the SAS System

END Statement

Ends the definition.

END;

The TEMPLATE Procedure 4 DEFINE COLUMN Statement 159

DEFINE COLUMN Statement
Creates a definition for a column.

Requirement: An END statement must be the last statement in the definition.
Interaction: A column definition can include one or more header definitions.
See also: “DEFINE HEADER Statement” on page 177
Featured in: Example 2 on page 238, Example 3 on page 247, and Example 4 on page 252

DEFINE COLUMN column-path< / STORE=libname.template-store>;
<column-attribute-1; <… column-attribute-n; >>
CELLSTYLE expression-1 AS <style-element-name><[style-attribute-specification(s)]

><…, expression-n AS <style-element-name><[style-attribute-specification(s)]>>;
COMPUTE AS expression;
DEFINE HEADER definition-path;

statements-and-attributes
END;

DYNAMIC variable-1<’text-1’> <… variable-n<’text-n’>>;
MVAR variable-1<’text-1’> <… variable-n<’text-n’>>;
NMVAR variable-1<’text-1’> <… variable-n<’text-n’>>;
NOTES ’text’;
TRANSLATE expression-1 INTO expression-2 <…, expression-n INTO

expression-m>;
END;

To do this … Use this statement

Set one or more column attributes. column-attributes

Set the style element of the cells in the column
according to the values of the variables.

CELLSTYLE-AS

Compute values for a column that is not in the data
component, or modify the values of a column that is in
the data component.

COMPUTE AS

Create a definition for a column header. DEFINE HEADER

Define a symbol that references a value that the data
component supplies from the procedure or DATA step.

DYNAMIC

Define a symbol that references a macro variable.
ODS will use the variable as a string. References to
the macro variable are resolved when ODS binds the
definition and the data component to produce an
output object.

MVAR

Define a symbol that references a macro variable.
ODS will convert the variable’s value to a number
(stored as a double) before using it. References to the
macro variable are resolved when ODS binds the
definition and the data component to produce an
output object.

NMVAR

160 DEFINE COLUMN Statement 4 Chapter 5

To do this … Use this statement

Provide information about the column. NOTES

Translate the specified values to other values. TRANSLATE-INTO

End the definition. END

Required Arguments

column-path
specifies where to store the column definition. A column-path consists of one or more
names, separated by periods. Each name represents a directory in a template store.
(A template store is a type of SAS file.) PROC TEMPLATE writes the definition to
the first template store that you can write to in the current path.
Restriction: If the definition is nested inside another definition, definition-path

must be a single-level name.
Restriction: If you want to reference the definition that you are creating from

another definition, do not nest the definition inside another one. For example, if
you want to reference a column definition from multiple tables, do not define the
column inside a table definition.

Options

STORE=libname.template-store
specifies the template store in which to store the definition. If the template store
does not exist, it is created.
Restriction: If the definition is nested inside another definition, you cannot use the

STORE= option.
Availability: Version 8 of the SAS System

Column Attributes
This section lists all the attributes that you can use in a column definition. For all

attributes that support a value of ON, the following forms are equivalent:

ATTRIBUTE-NAME
ATTRIBUTE-NAME=ON

For all attributes that support a value of variable, variable can be any variable that you
declare in the column definition with the DYNAMIC, MVAR, or NMVAR statement. If
the attribute is a boolean, the value of variable should resolve to one of the following:

ON YES 0

ON _YES_ FALSE

1 OFF NO

TRUE _OFF_ _NO_

The TEMPLATE Procedure 4 DEFINE COLUMN Statement 161

To do this … * Use this attribute

Influence the appearance of the contents of the cells

Specify whether or not to suppress the value of a
variable from one row to the next if the value
does not change.

BLANK_DUPS=

Specify whether or not to wrap the text in the
current column if it is too long to fit in the space
that is provided.

FLOW=

Specify the format for the column. FORMAT=

Specify the format width for the column if it
isn’t specified with FORMAT=.

FORMAT_WIDTH=

Specify the number of decimals for the column if
it isn’t specified with FORMAT=.

FORMAT_NDEC=

Supply a numeric value against which values in
the column are compared to eliminate trivial
values (absolute values less than the FUZZ=
value) from computation and printing.

FUZZ=

Specify the horizontal justification of the format
field within the column (and for the header if
the definition for the header does not include
JUST=).

JUST=

Specify whether to justify the format field within
the column or to justify the value within the
column without regard to the format field.

JUSTIFY=

Specify whether to try to divide the text equally
among all lines or to maximize the amount of
text in each line when the text in the column
uses more than one line.

MAXIMIZE=

Specify whether or not to draw a continuous line
in the current column above the first table footer
(or, if there is no table footer, below the last row
of the column).

OVERLINE=

Specify whether or not to treat the text as
preformatted text.

PREFORMATTED=

Specify whether or not to print the column. PRINT=

Specify a separator character to append to each
value in the column.

SEPARATOR=

Specify the style element and style attributes to
use for the column.

STYLE=

Specify the split character for the data in the
column.

TEXT_SPLIT=

Specify whether or not to draw a continuous line
in the current column below the column header
(or, if there is no column header, above the first
row of the column).

UNDERLINE=

Specify the vertical justification for the column. VJUST=

162 DEFINE COLUMN Statement 4 Chapter 5

To do this … * Use this attribute

Specify the width of the column in characters. WIDTH=

Specify the maximum width allowed for this
column.

WIDTH_MAX=

Customize column headers

Specify the text for the column header. HEADER=

Specify whether or not to print the column
header.

PRINT_HEADERS=

Influence the relationship to other columns

Specify whether or not the column definition is
generic — that is, whether or not it can be used
by more than one variable.

GENERIC=

Specify whether or not the column is an ID
column.

ID=

Specify whether or not to merge the current
column with the column immediately to its right.

MERGE=

Specify whether or not to merge the current
column with the column immediately to its left.

PRE_MERGE=

Specify the number of blank characters to leave
between the current column and the column
immediately to its left.

PRE_SPACE=

Specify the number of blank characters to leave
between the current column and the column
immediately to its right.

SPACE=

Influence the presentation of data panels

Influence the place at which ODS splits a table
when it creates multiple data panels.

GLUE=

Specify whether or not to delete the current
column from the output object if doing so
enables all the remaining columns to fit in the
space that is provided without splitting the table
into multiple data panels.

OPTIONAL=

Specify the name of the column in the data
component to associate with the current column.

DATANAME=

Specify a label for the column. LABEL=

Specify the column definition that the current
definition inherits from.

PARENT=

Specify the name to use for the corresponding
variable in an output data set.

VARNAME=

Specify whether or not to include the column in an
output data set.

DROP=

Specify which format to use if both a column
definition and a data component specify one.

DATA_FORMAT_OVERRIDE=

* Different attributes affect different ODS destinations. For details, consult the documentation
for a specific attribute.

The TEMPLATE Procedure 4 DEFINE COLUMN Statement 163

BLANK_DUPS<=ON | OFF | variable>
specifies whether or not to suppress the value of a variable from one row to the next
if the value does not change.
Default: OFF
Interaction: If the CLASSLEVELS= table attribute on page 213 is in effect, ODS

ignores BLANK_DUPS=ON when any value changes in a preceding column that is
also marked with BLANK_DUPS=ON.

ODS Destinations: All but Output. Note that when the Printer destination
suppresses the value of a variable, it also suppresses the horizontal rule above the
blank cell.

Featured in: Example 3 on page 247 and Example 4 on page 252

DATA_FORMAT_OVERRIDE<=ON | OFF | variable>
specifies which format to use if both a column definition and a data component
specify one.

ON
Uses the format in the data component.

OFF
Uses the format in the column definition.

Default: OFF
ODS Destinations: All
Availability: Version 8 of the SAS System

DATANAME=column-name
specifies the name of the column in the data component to associate with the current
column.
Default: By default, ODS associates the current column with a column of the same

name in the data component.
ODS Destinations: All

DROP<=ON | OFF | variable>
specifies whether or not to include the column in an output data set.
Default: OFF
ODS Destinations: Output
Availability: Version 8 of the SAS System

FLOW<=ON | OFF | variable>
specifies whether or not to wrap the text in the current column if it is too long to fit
in the space that is provided.
Default: ON if the format width of the column is greater than the column width.

OFF if the format width of the column is not greater than the column width.
See also: MAXIMIZE= on page 166
ODS Destinations: Listing

Note: The HTML and Printer destinations always wrap the text if it is too long
to fit in the space that is provided. 4

FORMAT=format-name <format-width <decimal-width>> | variable
specifies the format for the column.
Default: If you don’t specify FORMAT=, PROC TEMPLATE uses the format that

the data component provides. If the data component does not provide a format,
PROC TEMPLATE uses

� best8. for integers

164 DEFINE COLUMN Statement 4 Chapter 5

� 12.3 for doubles
� the length of the variable for character variables.

If the format is provided by the data component and if the format includes a
format width or a decimal width, PROC TEMPLATE uses the specified format.
However, if FORMAT_WIDTH=, FORMAT_NDEC=, or both are used in the
column definition, PROC TEMPLATE uses those values instead of the ones that
the data component provided with its format name.

Restriction: If you specify a format width for a numeric column, its value cannot
exceed 32.

Interaction: If you specify a format name but do not specify a format width or a
decimal width with the format name, PROC TEMPLATE uses the values that are
specified by FORMAT_WIDTH= and FORMAT_NDEC=. If these options aren’t
specified, PROC TEMPLATE uses the values for format width and decimal width
that the data component provides.

ODS Destinations: All

FORMAT_WIDTH=positive-integer | variable
specifies the format width for the column.
Default: the format width that is specified with FORMAT=
Range: 1 to 32 for numeric variables; operating system limit for character variables
Interaction: If you specify a format width with FORMAT= and with

FORMAT_WIDTH=, PROC TEMPLATE uses the one that you specify with
FORMAT_WIDTH=.

ODS Destinations: All

FORMAT_NDEC=positive-integer | variable
specifies the number of decimals for the column.
Default: the decimal width that is specified with FORMAT=
Interaction: If you specify a decimal width with FORMAT= and with

FORMAT_NDEC=, PROC TEMPLATE uses the one that you specify with
FORMAT_NDEC=.

ODS Destinations: All

FUZZ=number | variable
supplies a numeric value against which values in the column are compared to
eliminate trivial values (absolute values less than the FUZZ= value) from
computation and printing. A number whose absolute value is less than the FUZZ=
value is treated as zero in computations and printing.
Default: the smallest representable floating-point number on the computer that

you are using
ODS Destinations: All but Output

GENERIC<=ON | OFF | variable>
specifies whether or not the column definition is generic – that is, whether or not it
can be used by more than one column. Generic columns are useful in tables with
many similar columns. For instance, the table definitions for both PROC SQL and
the DATA step define only two columns: one for character variables and one for
numeric variables. When the program runs, it determines which column definition
the data component should use for each column.
Default: OFF
ODS Destinations: All but Output
Featured in: Example 2 on page 238, Example 3 on page 247, and Example 4 on

page 252

The TEMPLATE Procedure 4 DEFINE COLUMN Statement 165

GLUE=integer | variable
Influences the places at which ODS splits a table when it creates multiple data
panels. ODS creates multiple data panels from a table that is too wide to fit in the
allotted space. The higher the value of GLUE= is, the less likely it is that ODS will
split the table between the current column and the column to its right.

Default: 1

Range: -1 to 327

Tip: A value of -1 forces the table to split between the current column and the
column to its right.

ODS Destinations: Listing and Printer

HEADER=header-specification
specifies the text for the column header. header-specification can be one of the
following:

’text’
Provides the actual text of the header.

header-name
specifies the name of a header definition to use. You create a header definition
with the DEFINE HEADER statement (see “DEFINE HEADER Statement” on
page 177). If header-name is a single-level name, the header definition must occur
within the current column definition.

variable
specifies the name of a variable that you declare with the DYNAMIC, MVAR, or
NMVAR statement. The value of the variable becomes the column header.

LABEL
Uses the label that is specified in the data component for the column header.

Default: _LABEL_

Tip: The HEADER= option provides a simple way for you to specify the text of a
column header. If you want to customize the header further, use the DEFINE
HEADER statement with the appropriate header attributes. (See “DEFINE
HEADER Statement” on page 177.)

Tip: You can use the split character in the text of the header to force the text to a
new line.

See also: LABEL= on page 166 and TEXT_SPLIT= on page 170

ODS Destinations: All

Note: If you are using the Output destination, the column header becomes the
label of the corresponding variable in the output data set if you do not specify one
with the LABEL= attribute and if the data component does not supply one. 4

Featured in: Example 2 on page 238 and Example 4 on page 252

ID<=ON | OFF | variable>
specifies whether or not the column is an ID column. An ID column is repeated on
each data panel. (ODS creates multiple data panels when a table is too wide to fit in
the allotted space.)

Default: OFF

Tip: ODS treats all columns up to and including a column that is marked with
ID=ON as ID columns.

ODS Destinations: Listing and Printer

Featured in: Example 2 on page 238

166 DEFINE COLUMN Statement 4 Chapter 5

JUST=justification | variable
specifies the horizontal justification of the format field within the column (and of the
header if the definition for the header does not include JUST=). For a discussion of
how the Listing destination justifies data, see “How Are Values in Table Columns
Justified?” on page 138. justification can be one of the following:

Left
specifies left justification.
Alias: L

Right
specifies right justification.
Alias: R

Center
specifies center justification.
Alias: C

Default: LEFT for columns that contain character values; RIGHT for columns that
contain numeric values.

Interaction: For the Listing destination, ODS justifies the format field within the
column width. At times, you may need to specify the JUSTIFY= attribute to get
the results that you want. See the discussion of JUSTIFY= on page 166.

See also: FORMAT= on page 163 and WIDTH= on page 170
ODS Destinations: All but Output
Featured in: Example 1 on page 233

JUSTIFY<=ON | OFF | variable>
specifies whether to justify the format field within the column or to justify the value
within the column without regard to the format field. For a discussion of how ODS
destinations justify data, see “How Are Values in Table Columns Justified?” on page
138.
Default: OFF
Interaction: JUSTIFY=ON can interfere with decimal alignment.
Tip: If you translate numeric data to character data, you may need to use

JUSTIFY= to align the data as you wish.
Featured in: Example 3 on page 247
ODS Destinations: Listing (The HTML and Printer destinations always behave as

if JUSTIFY=ON.)

LABEL=’text’ | variable
specifies a label for the column in the output data set.
Default: If you do not specify a label, ODS uses the label that is specified in the

data component. If no label is specified in the data component, ODS uses the
header for the column as the label.

ODS Destinations: Output
Tip: If the Output destination is open, LABEL= provides a label for the

corresponding variable in the output data set. This label overrides any label that
is specified in the data component.

MAXIMIZE<=ON | OFF | variable>
Specifies whether to try to divide the text equally among all lines or to maximize the
amount of text in each line when the text in the column uses more than one line. For
example, if the text spans three lines, MAXIMIZE=ON might result in 45% of the
text on the first line, 45% of the text on the second line, and 10% of the text on the

The TEMPLATE Procedure 4 DEFINE COLUMN Statement 167

third line. MAXIMIZE=OFF would result in 33% of the text on each line.
MAXIMIZE=ON may write lines of text that vary greatly in length.
MAXIMIZE=OFF may result in using less than the full column width.

Default: OFF

Interaction: This attribute is effective only if the column is defined with
FLOW=ON (see the discussion of FLOW= on page 163).

ODS Destinations: Listing

MERGE<=ON | OFF | variable>
specifies whether or not to merge the current column with the column immediately to
its right. When you set MERGE=ON for the current column, the data in each row of
the column is merged with the data in the same row of the next column. ODS applies
the format, justification, spacing, and prespacing attributes to each column
independently. Then, it concatenates the columns. Finally, it applies to the
concatenated data all the remaining attributes that are specified on the column that
does not have MERGE= set.

Default: OFF

Restriction: You cannot use both MERGE=ON and PRE_MERGE=ON in the same
column definition. You cannot merge or premerge a column with another column
that has either MERGE=ON or PRE_MERGE=ON. Note that you can merge three
columns by setting MERGE=ON for the first column, no merge or premerge
attributes for the second column, and PRE_MERGE=ON for the third column.

See also: PRE_MERGE= on page 168

ODS Destinations: All but Output

OPTIONAL<=ON | OFF | variable>
specifies whether or not to delete the current column from the output object if doing
so enables all the remaining columns to fit in the space that is provided without
splitting the table into multiple data panels.

Default: OFF

Interaction: If multiple column definitions contain OPTIONAL=ON, PROC
TEMPLATE includes either all or none of these columns in the output object.

ODS Destinations: Listing

OVERLINE<=ON | OFF | variable>
specifies whether or not to draw a continuous line in the current column above the
first table footer (or, if there is no table footer, below the last row of the column).
PROC TEMPLATE uses the second formatting character to draw the line. (See the
discussion of FORMCHAR= on page 215.)

Default: OFF

ODS Destinations: Listing

PARENT=column-path
specifies the column definition that the current definition inherits from. A
column-path consists of one or more names, separated by periods. Each name
represents a directory in a template store. (A template store is a type of SAS file.)
The current definition inherits from the the specified column in the first template
store that you can read from in the current path.

When you specify a parent, all the attributes and statements that are specified in
the parent’s definition are used in the current definition unless the current definition
specifically overrides them.

ODS Destinations: All

168 DEFINE COLUMN Statement 4 Chapter 5

PREFORMATTED<=ON | OFF | variable>
specifies whether or not to treat the text as preformatted text. When text is
preformatted, ODS honors line breaks as well as leading, trailing, and internal
spaces. It also renders the text in a monospace font.
Default: OFF
Interaction: When PREFORMATTED=ON, ODS uses the datafixed style element

unless you specify another style element with the STYLE= column attribute.
ODS Destinations: HTML and Printer

PRE_MERGE<=ON | OFF | variable>
specifies whether or not to merge the current column with the column immediately to
its left. When you set PRE_MERGE=ON for the current column, the data in each
row of the column is merged with the data in the same row of the previous column.
ODS applies the format, justification, spacing, and prespacing attributes to each
column independently. Then, it concatenates the columns. Finally, it applies to the
concatenated data all the remaining attributes that are specified on the column that
does not have PRE_MERGE= set.

Default: OFF
Restriction: You cannot use both MERGE=ON and PRE_MERGE=ON in the same

column definition. You cannot merge or premerge a column with another column
that has either MERGE=ON or PRE_MERGE=ON. Note that you can merge three
columns by setting MERGE=ON for the first column, no merge or premerge
attributes for the second column, and PRE_MERGE=ON for the third column.

See also: MERGE= on page 167
ODS Destinations: All but Output

PRE_SPACE=non-negative-integer
specifies the number of blank characters to leave between the current column and
the column immediately to its left.
Default: A value in the range that is bounded by the COL_SPACE_MIN and

COL_SPACE_MAX table attributes.
Interaction: If PRE_SPACE= and SPACE= are specified for the same intercolumn

space, ODS honors PRE_SPACE=.
See also: SPACE= on page 169, COL_SPACE_MIN= on page 213, and

COL_SPACE_MAX= on page 213
ODS Destinations: Listing

PRINT<=ON | OFF | variable>
specifies whether or not to print the column.
Default: ON
See also: OPTIONAL= on page 167 and DROP= on page 163
ODS Destinations: All but Output

PRINT_HEADERS<=ON | OFF | variable>
specifies whether or not to print the column header and any underlining and
overlining.
Default: ON
See also: UNDERLINE= on page 170 and OVERLINE= on page 167
ODS Destinations: All but Output

SEPARATOR=’character’ | variable
specifies a separator character to append to each value in the column.

The TEMPLATE Procedure 4 DEFINE COLUMN Statement 169

Default: None
Tip: To specify a hexadecimal character as the separator character, put an x after

the closing quote. For instance, the following option assigns the hexadecimal
character 2D as the separator character:

separator=’2D’x
ODS Destinations: Listing and Printer

SPACE=positive-integer | variable
specifies the number of blank characters to leave between the current column and
the column immediately to its right.
Default: A value in the range that is bounded by the COL_SPACE_MIN and

COL_SPACE_MAX table attributes.
Interaction: If PRE_SPACE= and SPACE= are specified for the same intercolumn

space, ODS honors PRE_SPACE=.
See also: PRE_SPACE= on page 168, COL_SPACE_MIN= on page 213, and

COL_SPACE_MAX= on page 213
ODS Destinations: Listing

STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies the style element and any changes to its attributes to use for the current
column. Neither style-attribute-specification nor style-element-name is required.
However, you must use at least one of them.

Note: You can use braces ({ and }) instead of square brackets ([and]). 4

style-element-name
is the name of the style element to use to render the data in the column. The style
element must be part of a style definition that is registered with the Output
Delivery System. SAS Institute provides some style definitions. Users can create
their own style definitions with PROC TEMPLATE (see “DEFINE STYLE
Statement” on page 188). By default, ODS renders different parts of ODS output
with different style elements. For instance, by default, the data in a column is
rendered with the style element data. The style elements that you would be most
likely to use with the STYLE= column attribute are

� data
� datafixed
� dataempty
� dataemphasis
� dataemphasisfixed
� datastrong
� datastrongfixed.
The style element provides the basis for rendering the column. Additional style

attributes that you provide can modify the rendering.
For information on finding an up-to-date list of the style definitions and for

viewing a style definition so that you can see the style elements that are available,
see “Customizing Presentation Aspects of ODS Output” on page 42. For
information about the default style definition that ODS uses, see “What Is the
Default Style Definition Like?” on page 133.

style-element-name can be either the name of a style element or a variable
whose value is a style element.
Default: data

style-attribute-specification
describes the style attribute to change. Each style-attribute-specification has this
general form:

170 DEFINE COLUMN Statement 4 Chapter 5

style-attribute-name=style-attribute-value

For information on the style attributes that you can specify, see “Style
Attributes” on page 192.

ODS Destinations: HTML and Printer
Featured in: Example 2 on page 238 and Example 4 on page 252

TEXT_SPLIT=’character’ | variable
specifies the split character for the data in the column. PROC TEMPLATE breaks a
value in the column when it reaches that character and continues the value on the
next line. The split character itself is not part of the data and does not appear in the
column.
Default: None
ODS Destinations: All but Output

UNDERLINE<=ON | OFF | variable>
specifies whether or not to draw a continuous line in the current column below the
column header (or, if there is no column header, above the first row of the column).
PROC TEMPLATE uses the second formatting character to draw the line. (See the
discussion of FORMCHAR= on page 215.)
Default: OFF
ODS Destinations: Listing

VARNAME=variable-name | variable
specifies the name to use for the corresponding variable in an output data set.

Default: If you do not specify VARNAME=, PROC TEMPLATE uses the the value of
the DATANAME= attribute. If you do not specify DATANAME=, PROC
TEMPLATE uses the name of the column.

Tip: If you use VARNAME= to specify the same name for different columns, a
number is appended to the name each time that the name is used.

ODS Destinations: Output

VJUST=justification | variable
Specifies the vertical justification for the column. justification can be one of the
following:

TOP
places the first line of text as high as possible.
Alias: T

CENTER
centers the text vertically.
Alias: C

BOTTOM
places the last line of text as low as possible.
Alias: B

Default: TOP for the Printer destination; CENTER for the HTML destination
ODS Destinations: HTML and Printer
Featured in: Example 2 on page 238

WIDTH=positive-integer | variable
specifies the width of the column in characters.

Default: If you do not specify a width, PROC TEMPLATE uses the format width. If
the column has no format associated with it, PROC TEMPLATE uses a width of

The TEMPLATE Procedure 4 CELLSTYLE–AS Statement 171

� 8 for integers
� 12 for doubles
� data length for character variables.

Interaction: The length of the column header can influence the width of the column.
See also: WIDTH_MAX on page 171 and WIDTH= header attribute on page 185
ODS Destinations: Listing

WIDTH_MAX=positive-integer | variable
specifies the maximum width allowed for this column. By default, PROC TEMPLATE
extends the width of the column if the header is wider than the data. The width of
the column can be anywhere between the values of WIDTH= and WIDTH_MAX=.
Default: the width of the format for the column
ODS Destinations: Listing

CELLSTYLE–AS Statement

Sets the style element of the cells in the column according to the values of the variables. Use this
statement to set the presentation characteristics (such as foreground color, font face, flyover) of
individual cells.

Featured in: Example 3 on page 247

CELLSTYLE expression-1 AS
<style-element-name><[style-attribute-specification(s)]><…, expression-n AS
<style-element-name><[style-attribute-specification(s)]>>;

Required Arguments

expression
is an expression that is evaluated for each cell in the column. It can be any
expression that is valid in the WHERE statement (or the WHERE= data set option).
For information on expressions that you can use in the WHERE statement, see
“Statements” in SAS Language Reference: Dictionary. Use _VAL_ to represent the
value of the current column. You may also reference symbols that you declared in a
DYNAMIC, MVAR, or NMVAR statement in the definition.

If expression resolves to TRUE (a non-zero value), the style element that is
specified is used for the current cell. If expression is FALSE (zero), the next
expression in the statement is evaluated. Thus, you can string multiple expressions
together to format cells conditionally.
Restriction: You may not reference the values of other columns in expression.
Tip: Using an expression of 1 as the last expression in the CELLSTYLE-AS

statement sets the style element for any cells that did not meet an earlier
condition.

Options

Note: Neither style-attribute-specification nor style-element-name is required.
However, you must use at least one of them. 4

172 COMPUTE AS Statement 4 Chapter 5

style-attribute-specification
describes a style attribute to set. Each style-attribute-specification has this general
form:

style-attribute-name=style-attribute-value

For information on the style attributes that you can set in a column definition, see
“Style Attributes” on page 192.
Default: If you don’t specify any style attributes to modify, ODS uses the

unmodified style-element-name.

style-element-name
is the name of the style element to use to render the data in the column. The style
element must be the name of a style element that is part of a style definition that is
registered with the Output Delivery System. SAS Institute provides some style
definitions. Users can create their own style definitions with PROC TEMPLATE (see
“DEFINE STYLE Statement” on page 188). By default, ODS renders different parts
of ODS output with different style elements. For instance, by default, the data in a
column is rendered with the style element data. The style elements that you would
be most likely to use with the CELLSTYLE-AS statement in a column definition are

� data
� datafixed
� dataempty
� dataemphasis
� dataemphasisfixed
� datastrong
� datastrongfixed.
The style element provides the basis for rendering the column. Additional style

attributes that you provide can modify the rendering.
For information on finding an up-to-date list of the style definitions and for

viewing a style definition so that you can see the style elements that are available,
see “Customizing Presentation Aspects of ODS Output” on page 42. For information
about the default style definition that ODS uses, see “What Is the Default Style
Definition Like?” on page 133.
Default: data

COMPUTE AS Statement

Computes values for a column that is not in the data component, or modifies the values of a
column that is in the data component.

COMPUTE AS expression;

Required Arguments

expression
is an expression that assigns a value to each table cell in the column. It can be any
expression that is valid in the WHERE statement (or the WHERE= data set option).
For information on expressions that you can use in the WHERE statement, see
“Statements” in SAS Language Reference: Dictionary.

To reference another column in a COMPUTE-AS statement, use the name of the
column. You may also reference symbols that you declared in a DYNAMIC, MVAR, or

The TEMPLATE Procedure 4 DEFINE HEADER Statement 173

NVAR statement in the current definition. In addition, if the column has values in
the data component, you may reference the column itself in the expression. However,
if you are creating a column that does not exist in the data component, you cannot
reference the column in the expression because there is no underlying value to use.

For example, the following DEFINE COLUMN block defines a column that
contains the square root of the value in the column called source:

define column sqroot;
compute as sqrt(source);
header=’Square Root’;
format=6.4;

end;

Tip: The COMPUTE AS statement can alter values in an output object. None of the
definitions that SAS Institute provides modifies any values. If you want to
determine if a definition was provided by SAS Institute, use the ODS VERIFY
statement (see “ODS VERIFY Statement” on page 72). If the definition is not from
SAS Institute, the ODS VERIFY statement returns a warning when it runs the
SAS program that uses the definition. If you receive such a warning, you can use
the SOURCE statement to look at the definition and determine if the COMPUTE
AS statement is used to alter values. (See “SOURCE Statement” on page 232.)

Tip: Because you can use column names in expression, _VAL_ is not recognized as
an alias for the current column.

DEFINE HEADER Statement

Creates a definition for a header inside a column definition.

Main discussion: “DEFINE HEADER Statement” on page 177

DEFINE HEADER definition-name ;
statements-and-attributes

END;

Required Arguments

definition-name
specifies the name of the new header.
Restriction: definition-name must be a single-level name.

Note: If you want to reference the header definition that you are creating from
another definition, you must create it outside the column definition. 4

174 DYNAMIC Statement 4 Chapter 5

DYNAMIC Statement

Defines a symbol that references a value that the data component supplies from the procedure or
DATA step.

Scope: You can use the DYNAMIC statement in the definition of a table, column,
header, or footer. A dynamic variable that is defined in a definition is available to that
definition and to all the definitions that it contains.

Main discussion: “DYNAMIC Statement” on page 222

DYNAMIC variable-1 <’text-1’> <… variable-n <’text-n’>>;

MVAR Statement

Defines a symbol that references a macro variable. ODS will use the value of the variable as a
string. References to the macro variable are resolved when ODS binds the definition and the data
component to produce an output object.

Scope: You can use the MVAR statement in the definition of a table, column, header, or
footer. A macro variable that is defined in a definition is available to that definition and
to all the definitions that it contains.

Main discussion: “MVAR Statement” on page 224

MVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

NMVAR Statement

Defines a symbol that references a macro variable. ODS will convert the variable’s value to a
number (stored as a double) before using it. References to the macro variable are resolved when
ODS binds the definition and the data component to produce an output object.

Scope: You can use the NMVAR statement in the definition of a table, column, header,
or footer. A macro variable that is defined in a definition is available to that definition
and to all the definitions that it contains.

Main discussion: “NMVAR Statement” on page 225

NMVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

The TEMPLATE Procedure 4 TRANSLATE-INTO Statement 175

NOTES Statement

Provides information about the column.

Tip: The NOTES statement becomes part of the compiled column definition, which you
can view with the SOURCE statement, whereas SAS comments do not.

NOTES ’text’;

Required Arguments

text
provides information about the column.

TRANSLATE-INTO Statement

Translates the specified values to other values.

TRANSLATE expression-1 INTO expression-2 <…,expression-n INTO expression-m>;

Required Arguments

expression-1
is an expression that is evaluated for each table cell in the column. It can be any
expression that is valid in the WHERE statement (or the WHERE= data set option).
For information on expressions that you can use in the WHERE statement, see
“Statements” in SAS Language Reference: Dictionary. Use _VAL_ to represent the
value of the current column. You may also reference symbols that you declared in a
DYNAMIC, MVAR, or NVAR statement in the table definition.

If expression-1 resolves to TRUE (a non-zero value), the translation that is
specified is used for the current cell. If expression-1 is FALSE (zero), the next
expression in the statement is evaluated. Thus, you can string multiple expressions
together to format cells conditionally.
Restriction: You may not reference the values of other columns in expression-1.
Tip: Using an expression of 1 as the last expression in the TRANSLATE–INTO

statement specifies a translation for any cells that did not meet an earlier
condition.

expression-2
is an expression that specifies the value to use in the cell in place of the variable’s
actual value. It can be any expression that is valid in the WHERE statement (or the
WHERE= data set option). For information on expressions that you can use in the

176 END Statement 4 Chapter 5

WHERE statement, see “Statements” in SAS Language Reference: Dictionary. Use
VAL to represent the value of the current column. You may also reference symbols
that you declared in a DYNAMIC, MVAR, or NVAR statement in the table definition.

Restriction: expression-2 must resolve to a character value, not a numeric value.

Restriction: You may not reference the values of other columns in expression-2.

Tip: When you translate a numeric value to a character value, the column definition
does not try to apply the numeric format that is associated with the column.
Instead, it simply writes the character value into the format field, starting at the
left. If you want the value to be right justified, use the JUSTIFY=ON attribute.

See also: JUSTIFY= on page 166

END Statement

Ends the definition.

END;

DEFINE FOOTER Statement

Creates a definition for a table footer.

Requirement: An END statement must be the last statement in the definition.

Featured in: Example 2 on page 238 and Example 4 on page 252

See: “DEFINE HEADER Statement” on page 177

DEFINE FOOTER footer-path< / STORE=libname.template-store>;

<footer-attribute-1; <… footer-attribute-n; >>

DYNAMIC variable-1 <’text-1’> <… variable-n <’text-n’>>;

MVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

NMVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

NOTES ’text’;

TEXT footer-specification;

TEXT2 footer-specification;

TEXT3 footer-specification;

END;

The substatements in DEFINE FOOTER and the footer attributes are the same as
the substatements in DEFINE HEADER and the header attributes. For details about
substatements and footer attributes, see “DEFINE HEADER Statement” on page 177.

The TEMPLATE Procedure 4 DEFINE HEADER Statement 177

DEFINE HEADER Statement

Creates a definition for a header.

Requirement: An END statement must be the last statement in the definition.
Featured in: Example 2 on page 238

DEFINE HEADER header-path </ STORE=libname.template-store>;
<header-attribute-1; <… header-attribute-n; >>
DYNAMIC variable-1 <’text-1’> <… variable-n <’text-n’>>;
MVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;
NMVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;
NOTES ’text’;
TEXT header-specification;
TEXT2 header-specification;
TEXT3 header-specification;
END;

To do this … Use this statement

Set one or more header attributes. header-attribute(s)

Define a symbol that references a value that the data
component supplies from the procedure or DATA step.

DYNAMIC

Define a symbol that references a macro variable.
ODS will use the value of the variable as a string.
References to the macro variable are resolved when
ODS binds the definition and the data component to
produce an output object.

MVAR

Define a symbol that references a macro variable.
ODS will convert the variable’s value to a number
(stored as a double) before using it. References to the
macro variable are resolved when ODS binds the
definition and the data component to produce an
output object.

NMVAR

Provide information about the table. NOTES

Specify the text of the header. TEXT

Specify an alternative header to use in the Listing
output if the header that is provided by the TEXT
statement is too long.

TEXT2

Specify an alternative header to use in the Listing
output if the header that is provided by the TEXT2
statement is too long.

TEXT3

End the header definition. END

178 DEFINE HEADER Statement 4 Chapter 5

Required Arguments

header-path
specifies where to store the header definition. A header-path consists of one or more
names, separated by periods. Each name represents a directory in a template store.
(A template store is a type of SAS file.) PROC TEMPLATE writes the definition to
the first template store that you can write to in the current path.
Restriction: If the definition is nested inside another definition, definition-path

must be a single-level name.
Restriction: If you want to reference the definition that you are creating from

another definition, do not nest the definition inside another one. For example, if
you want to reference a header definition from multiple columns, do not define the
header inside a column definition.

Options

STORE=libname.template-store
specifies the template store in which to store the definition. If the template store
does not exist, it is created.
Restriction: If the definition is nested inside another definition, you cannot use the

STORE= option.
Availability: Version 8 of the SAS System

Header Attributes
This section lists all the attributes that you can use in a header definition. A column

header spans a single column. A spanning header spans multiple columns. These two
kinds of headers are defined in the same way except that a spanning header uses the
START= or the END= attribute, or both.

For all attributes that support a value of ON, the following forms are equivalent:

ATTRIBUTE-NAME
ATTRIBUTE-NAME=ON

For all attributes that support a value of variable, variable can be any variable that you
declare in the table definition with the DYNAMIC, MVAR, or NMVAR statement. If the
attribute is a boolean, the value of variable should resolve to one of the following:

ON YES 0

ON _YES_ FALSE

1 OFF NO

TRUE _OFF_ _NO_

The TEMPLATE Procedure 4 DEFINE HEADER Statement 179

To do this …* Use this attribute

Influence the appearance of the contents of the header

Specify whether or not to try to expand the
column width to accommodate the longest word
in the column header.

FORCE=

Specify the horizontal justification for the
column header.

JUST=

Specify whether to try to divide the text equally
among all lines or to maximize the amount of
text in each line when the text in the header
uses more than one line.

MAXIMIZE=

Specify whether or not to draw a continuous line
above the header.

OVERLINE=

Specify whether or not to treat the text as
preformatted text.

PREFORMATTED=

Specify whether or not to print the header. PRINT=

Specify the number of blank lines to place
between the current header and the next one or
between the current footer and the previous one.

SPACE=

Specify the split character for the header. SPLIT=

Specify the style element and any changes to its
attributes to use for the header.

STYLE=

Specify whether or not to start a new line of the
header in the middle of a word.

TRUNCATE=

Specify whether or not to draw a continuous line
underneath the header.

UNDERLINE=

Specify vertical justification for the header. VJUST=

Specify the width of the header in characters. WIDTH=

Influence the content of the header

Specify a character to use to expand the header
to fill the space over the column or columns that
the header spans.

EXPAND=

Specify whether or not to repeat the text of the
header until the space that is allotted for the
header is filled.

REPEAT=

Influence the placement of the header

Specify the last column that a spanning header
covers.

END=

Specify the first column that a spanning header
covers.

START=

Specify whether or not to expand the header to
reach the sides of the page.

EXPAND_PAGE=

Specify whether or not a spanning header
appears only on the first data panel if the table
is too wide to fit in the space that is provided.

FIRST_PANEL=

180 DEFINE HEADER Statement 4 Chapter 5

To do this …* Use this attribute

Specify whether or not a table footer appears
only on the last data panel if the table is too
wide to fit in the space that is provided.

LAST_PANEL

Specify whether or not to extend the text of the
header into the header space of adjacent
columns.

SPILL_ADJ=

Specify whether or not to extend the text of the
header into the adjacent margin.

SPILL_MARGIN

Specify whether or not multiple columns can use the
header.

GENERIC=

Specify the header definition that the current
definition inherits from.

PARENT=

* Different attributes affect different ODS destinations. For details, consult the documentation
for a specific attribute.

END=column-name | variable
specifies the last column that a spanning header covers.
Default: the last column
See also: START= on page 183
ODS Destinations: All but Output

EXPAND=’string’ | variable
specifies a character to use to expand the header to fill the space over the column or
columns that the header spans.
Default: none
Interaction: If you specify both REPEAT=ON and EXPAND=ON, PROC

TEMPLATE honors EXPAND=.
See also: REPEAT= on page 182
Tip: If the string or the variable that you specify contains more than one character,

PROC TEMPLATE uses only the first character.
See also: EXPAND_PAGE= on page 180
ODS Destinations: Listing

EXPAND_PAGE<= ON | OFF | variable>
specifies whether or not to expand the header to reach the sides of the page.
Default: OFF
See also: EXPAND= on page 180
ODS Destinations: Listing

FIRST_PANEL<= ON | OFF | variable>
specifies whether or not a spanning header appears only on the first data panel if the
table is too wide to fit in the space that is provided.
Default: OFF
Restriction: Applies only to headers, not to footers
See also: LAST_PANEL= on page 181
ODS Destinations: Listing and Printer

The TEMPLATE Procedure 4 DEFINE HEADER Statement 181

FORCE<= ON | OFF | variable>
specifies whether or not to try to expand the column width to accommodate the
longest word in the column header. The column width can be anything between the
values for the WIDTH= and WIDTH_MAX= column attributes.

Default: ON

See also: WIDTH= on page 185 and WIDTH_MAX= on page 171

ODS Destinations: Listing

GENERIC<= ON | OFF | variable>
specifies whether or not multiple columns can use the header.

Default: OFF

Restriction: This attribute is primarily for writers of SAS procedures and for DATA
step programmers.

ODS Destinations: All but Output

JUST=justification | variable
specifies the horizontal justification for the column header, where justification can be
one of the following:

Left
specifies left justification.

Alias: L

Right
specifies right justification.

Alias: R

Center
specifies center justification.

Alias: C

Default: The justification for the column

ODS Destinations: All but Output

Featured in: Example 1 on page 233

LAST_PANEL<= ON | OFF | variable>
specifies whether or not a table footer appears only on the last data panel if the table
is too wide to fit in the space that is provided.

Default: OFF

Restriction: Applies only to footers, not to headers

See also: FIRST_PANEL on page 180

ODS Destinations: Listing and Printer

MAXIMIZE<=ON | OFF | variable>
specifies whether to try to divide the text equally among all lines or to maximize the
amount of text in each line when the text in the header uses more than one line. For
example, if the text spans three lines, MAXIMIZE=ON might result in 45% of the
text on the first line, 45% of the text on the second line, and 10% of the text on the
third line. MAXIMIZE=OFF would may result in 33% of the text on each line.
MAXIMIZE=ON may write lines of text that vary greatly in length.
MAXIMIZE=OFF may result in using less than the full column width.

Default: OFF

ODS Destinations: Listing

182 DEFINE HEADER Statement 4 Chapter 5

OVERLINE<=ON | OFF | variable>
specifies whether or not to draw a continuous line above the header. PROC
TEMPLATE uses the second formatting character to draw the line. (See the
discussion of FORMCHAR= on page 215.)
Default: OFF
ODS Destinations: Listing

PARENT=header-path
specifies the header definition that the current definition inherits from. A
header-path consists of one or more names, separated by periods. Each name
represents a directory in a template store. (A template store is a type of SAS file.)
The current definition inherits from the the specified header definition in the first
template store that you can read from in the current path.

When you specify a parent, all the attributes and statements that are specified in
the parent’s definition are used in the current definition unless the current definition
specifically overrides them.
ODS Destinations: All

PREFORMATTED<=ON | OFF | variable>
specifies whether or not to treat the text as preformatted text. When text is
preformatted, ODS honors line breaks as well as leading, trailing, and internal
spaces. It also renders the text in a monospace font.
Default: OFF
Interaction: When PREFORMATTED=ON, and you are defining a table header or

a footer, ODS uses the headerfixed or the footerfixed style element unless you
specify another style element with the STYLE= column attribute.

When PREFORMATTED=ON, and you are defining a column header, ODS uses
the rowheaderfixed style element unless you specify another style element with
the STYLE= column attribute.

ODS Destinations: HTML and Printer

PRINT<=ON | OFF | variable>
specifies whether or not to print the header.
Default: ON
Tip: When PRINT=ON, the column header becomes the label of the corresponding

variable in any output data sets that the Output Destination creates if neither the
column definition nor the data component provides a label.

ODS Destinations: All

REPEAT<=ON | OFF | variable>
specifies whether or not to repeat the text of the header until the space that is
allotted for the header is filled.
Default: OFF
Interaction: If you specify both REPEAT=ON and EXPAND=ON, PROC

TEMPLATE honors EXPAND=.
See also: EXPAND= on page 180
ODS Destinations: Listing

SPACE=positive-integer | variable
specifies the number of blank lines to place between the current header and the next
one or between the current footer and the previous one.
Default: 0
Tip: A row of underlining or overlining is considered a header or a footer.
ODS Destinations: Listing

The TEMPLATE Procedure 4 DEFINE HEADER Statement 183

Featured in: Example 2 on page 238

SPILL_ADJ<=ON | OFF | variable>
specifies whether or not to extend the text of the header into the header space of
adjacent columns.

Default: OFF

Interaction: FORCE=, SPILL_MARGIN=, SPILL_ADJ=, and TRUNCATE= are
mutually exclusive. If you specify more than one, PROC TEMPLATE honors only
one. FORCE= takes precedence over the other three attributes, followed by
SPILL_MARGIN= and SPILL_ADJ=.

See also: FORCE= on page 181, SPILL_MARGIN= on page 183, and TRUNCATE=
on page 185

ODS Destinations: Listing

SPILL_MARGIN<=ON | OFF | variable>
specifies whether or not to extend the text of the header into the adjacent margin.

Default: OFF

Restriction: SPILL_MARGIN= applies only to a spanning header that spans all
the columns in a data panel.

Interaction: FORCE=, SPILL_MARGIN=, SPILL_ADJ=, and TRUNCATE= are
mutually exclusive. If you specify more than one, PROC TEMPLATE honors only
one. FORCE= takes precedence over the other three attributes, followed by
SPILL_MARGIN= and SPILL_ADJ=.

See also: FORCE= on page 181, SPILL_ADJ on page 183, and TRUNCATE= on
page 185

ODS Destinations: Listing

SPLIT=’character’ | variable
specifies the split character for the header. PROC TEMPLATE starts a new line
when it reaches that character and continues the header on the next line. The split
character itself is not part of the header although each occurrence of the split
character counts toward the maximum length for a label.

Tip: The first character in a header is automatically treated as a split character if
it is not one of the following:

� an alphanumeric character

� a blank

� an underscore (_)

� a hyphen (-)

� a period (.)

� a percent sign (%).

ODS Destinations: All but Output

START=column-name | variable
specifies the first column that a spanning header covers.

Default: the first column

See also: END= on page 180

ODS Destinations: All but Output

184 DEFINE HEADER Statement 4 Chapter 5

STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies the style element and any changes to its attributes to use for the header.
Neither style-attribute-specification nor style-element-name is required. However, you
must use at least one of them.

Note: You can use braces ({ and }) instead of square brackets ([and]). 4

style-element-name
is the name of the style element to use to render the header. The style element
must be part of a style definition that is registered with the Output Delivery
System. SAS Institute provides some style definitions. Users can create their own
style definitions with PROC TEMPLATE (see “DEFINE STYLE Statement” on
page 188). By default, ODS renders different parts of ODS output with different
elements. For instance, by default, a table header is rendered with the style
element header. The style elements that you would be most likely to use with the
STYLE= attribute for a table header are

� header
� headerfixed
� headerempty
� headeremphasis
� headeremphasisfixed
� headerstrong
� headerstrongfixed.
The style elements that you would be most likely to use with the STYLE=

attribute for a table footer are
� footer
� footerfixed
� footerempty
� footeremphasis
� footeremphasisfixed
� footerstrong
� footerstrongfixed.
The style elements that you would be most likely to use with the STYLE=

attribute for a column header are
� rowheader
� rowheaderfixed
� rowheaderempty
� rowheaderemphasis
� rowheaderemphasisfixed
� rowheaderstrong
� rowheaderstrongfixed.
The style element provides the basis for rendering the header. Additional style

attributes that you provide can modify the rendering.
For information on finding an up-to-date list of the style definitions and for

viewing a style definition so that you can see the style elements that are available,
see “Customizing Presentation Aspects of ODS Output” on page 42. For
information about the default style definition that ODS uses, see “What Is the
Default Style Definition Like?” on page 133.

style-element-name can be either the name of a style element or a variable
whose value is a style element.
Default: header

The TEMPLATE Procedure 4 DEFINE HEADER Statement 185

style-attribute-specification
describes the style attribute to change. Each style-attribute-specification has this
general form:

style-attribute-name=style-attribute-value

For information on the style attributes that you can specify, see “Style
Attributes” on page 192.

ODS destinations: HTML and Printer
Featured in: Example 1 on page 233 and Example 2 on page 238

TRUNCATE<=ON | OFF | variable>
specifies whether or not to start a new line of the header in the middle of a word.

ON
Starts a new line of the header when the text fills the specified column width.

OFF
Extends the width of the column to accommodate the longest word in the column
header, if possible.

Note: TRUNCATE=OFF is the same as FORCE=ON. 4
Default: OFF
Interaction: If you specify FORCE=, SPILL_MARGIN=, or SPILL_ADJ=, the

TRUNCATE= attribute is ignored.
See also: FORCE= on page 181, SPILL_MARGIN= on page 183, and SPILL_ADJ=

on page 183
ODS Destinations: Listing

UNDERLINE<=ON | OFF | variable>
specifies whether or not to draw a continuous line below the header. PROC
TEMPLATE uses the second formatting character to draw the line. (See the
discussion of FORMCHAR= on page 215.)
Default: OFF
ODS Destinations: Listing

VJUST=justification | variable
Specifies vertical justification for the header. justification can be one of the following:

TOP
places the header as high as possible.
Alias: T

CENTER
centers the header vertically.
Alias: C

BOTTOM
places the header as low as possible.
Alias: B

Default: BOTTOM
ODS Destinations: HTML and Printer

WIDTH=positive-integer | variable
specifies the width of the header in characters.
Default: If you do not specify a width, PROC TEMPLATE uses the column width.
Tip: If you want a vertical header, specify a width of 1.

186 DYNAMIC Statement 4 Chapter 5

ODS Destinations: Listing

DYNAMIC Statement

Defines a symbol that references a value that the data component supplies from the procedure or
DATA step.

Scope: You can use the DYNAMIC statement in the definition of a table, column,
header, or footer. A dynamic variable that is defined in a definition is available to that
definition and to all the definitions that it contains.
Main discussion: “DYNAMIC Statement” on page 222

DYNAMIC variable-1 <’text-1’> <… variable-n <’text-n’>>;

MVAR Statement

Defines a symbol that references a macro variable. ODS will use the value of the variable as a
string. References to the macro variable are resolved when ODS binds the definition and the data
component to produce an output object.

Scope: You can use the MVAR statement in the definition of a table, column, header, or
footer. A macro variable that is defined in a definition is available to that definition and
to all the definitions that it contains.

Main discussion: “MVAR Statement” on page 224

MVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

NMVAR Statement

Defines a symbol that references a macro variable. ODS will convert the variable’s value to a
number (stored as a double) before using it. References to the macro variable are resolved when
ODS binds the definition and the data component to produce an output object.

Scope: You can use the NMVAR statement in the definition of a table, column, header,
or footer. A macro variable that is defined in a definition is available to that definition
and to all the definitions that it contains.

Main discussion: “NMVAR Statement” on page 225

NMVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

The TEMPLATE Procedure 4 TEXT Statement 187

NOTES Statement

Provides information about the header.

Tip: The NOTES statement becomes part of the compiled header definition, which you
can view with the SOURCE statement, whereas SAS comments do not.

NOTES ’text’;

Required Arguments

text
provides information about the header.

TEXT Statement

Specifies the text of the header or the label of a variable in an output data set.

Featured in: Example 2 on page 238

TEXT header-specification(s);

Required Arguments

header-specification(s)
specifies the text of the header. Each header-specification can be one of the following:

LABEL
uses the label of the object that the header applies to as the text of the header. For
instance, if the header is for a column, _LABEL_ specifies the label for the
variable that is associated with the column. If the header is for a table, _LABEL_
specifies the label for the data set that is associated with the table.

text-specification(s)
specifies the text to use in the header. Each text-specification can be

� a quoted string
� a variable, followed by an optional format. The variable can be any variable

that is declared in a DYNAMIC, MVAR, or NMVAR statement.

Note: If the first character in a quoted string is neither a blank character nor
an alphanumeric character, and SPLIT is not in effect, the TEXT statement treats
that character as the split character. (See the discussion of SPLIT= on page 183.) 4
Default: If you don’t use a TEXT statement, the text of the header is the label of

the object that the header applies to.
Tip: If the quoted string is a blank and it is the only item in the header

specification, the header is a blank line.
Featured in: Example 2 on page 238

188 TEXT2 Statement 4 Chapter 5

TEXT2 Statement

Provides an alternative header to use in the Listing output if the header that is provided by the
TEXT statement is too long.

See: “TEXT Statement” on page 187

TEXT3 Statement

Provides an alternative header to use in the Listing output if the header that is provided by the
TEXT2 statement is too long.

See: “TEXT Statement” on page 187

DEFINE STYLE Statement

Creates a style definition for any destination that supports the STYLE= option.

Requirement: An END statement must be the last statement in the definition.

Featured in: Example 4 on page 252

DEFINE STYLE style-path </ STORE=libname.template-store>;

<PARENT=style-path;>

NOTES ’text’;

REPLACE new-style-element-name <FROM existing-style-element-name><’text’>
< / style-attribute-specification(s)>;

STYLE new-style-element-name <FROM existing-style-element-name><’text’>
</ style-attribute-specification(s)>;

END;

Required Arguments

style-path
specifies where to store the style definition. A style-path consists of one or more
names, separated by periods. Each name represents a directory in a template store.
(A template store is a type of SAS file.) PROC TEMPLATE writes the definition to
the first template store that you can write to in the current path.

The TEMPLATE Procedure 4 NOTES Statement 189

Options

STORE=libname.template-store
specifies the template store in which to store the definition. If the template store
does not exist, it is created.

Availability: Version 8 of the SAS System

Style-definition Attributes

PARENT=style-path
specifies the style definition that the current definition inherits from. A style-path
consists of one or more names, separated by periods. Each name represents a
directory in a template store. (A template store is a type of SAS file.) The current
definition inherits from the specified style definition in the first template store that
you can read from in the current path.

When you specify a parent, all the style elements and attributes and statements
that are specified in the parent’s definition are used in the current definition unless
the current definition overrides them.

SAS Institute provides some style definitions. You can specify one of these style
definitions for style-path, or you can specify a user-defined style definition. Some of
the style definitions that are currently shipped with the SAS System include:

� styles.default

� styles.beige

� styles.brick

� styles.brown

� styles.d3d

� styles.minimal

� styles.printer

� styles.statdoc.

For information on finding an up-to-date list of the style definitions and for viewing
a style definition, see “Customizing Presentation Aspects of ODS Output” on page 42.

NOTES Statement

Provides information about the style definition.

Tip: The NOTES statement becomes part of the compiled style definition, which you
can view with the SOURCE statement, whereas SAS comments do not.

NOTES ’text’;

Required Arguments

190 REPLACE Statement 4 Chapter 5

text
provides information about the style definition. Text of this type becomes part of the
compiled definition, which you can view with the SOURCE statement, whereas SAS
comments do not.

REPLACE Statement

Adds to the child style definition a style element that also exists in the parent style definition. You
can think of the REPLACE statement as replacing the statement that defines the like-named style
element in the parent style defintion. The REPLACE statement doesn’t actually change the parent
style definition, but PROC TEMPLATE builds the child style definition as if it had changed the
parent. All style elements that inherit attributes from this style element inherit the ones that are
specified in the REPLACE statement, not the ones that are used in the parent style definition.

Restriction: To use the REPLACE statement, you must specify a parent style definition
with PARENT= in the DEFINE STYLE statement.
See also: “How Do Style-Definition Inheritance and Style-Element Inheritance Work?”
on page 139
Featured in: Example 6 on page 265

REPLACE style-element-name-1 <FROM style-element-name-2><’text’>
</ style-attribute-specification(s)>;

Required Arguments

style-element-name-1
names the style element to replace. A like-named style element must exist in the
parent style definition. PROC TEMPLATE stores style-element-name-1 in the current
style definition and replaces all its attributes with the attributes that you specify in
the REPLACE statement. If an attribute is defined in the like-named style element
in the parent and you do not explicitly specify it in the REPLACE statement, the
value of the attribute defaults to the value that was inherited from the parent of the
like-named style element.

Options

style-element-name-2
names the style element that style-element-name-1 inherits from. The style element
must exist in the current style definition or in the parent of the current style
definition. PROC TEMPLATE looks first in the current style definition for the style
element. If it doesn’t find it, it looks in the parent style definition.

style-attribute-specification(s)
specifies the style attributes for style-element-name-1. The new style element inherits
from the parent style element all the attributes that the parent inherits. However,
all the attributes that are explicitly specified in the definition of style-element-name-2
must be respecified in the REPLACE statement if you want to keep them. You can
override any attribute of the parent style element, whether it is inherited or
explicitly defined, by specifying it in the REPLACE statement. Each
style-attribute-specification has the following general form:

The TEMPLATE Procedure 4 STYLE Statement 191

style-attribute-name=style-attribute-value

style-attribute-name
can be the name of an attribute that is listed in “Style Attributes” on page 192, or
it can be the name of a user-defined attribute.

Restriction: If style-attribute-name refers to a user-defined attribute, you must
enclose the name in quotation marks. If style-attribute-name refers to an
attribute that is listed in “Style Attributes” on page 192 , do not enclose the
name in quotation marks. For more information on user-defined attributes, see
“Style Attributes” on page 192.

style-attribute-value
assigns the value to the attribute. For information on style-attribute values, see
“Style Attributes” on page 192.

’text’
provides information about the REPLACE statement. Text of this type becomes part
of the compiled definition, which you can view with the SOURCE statement, whereas
SAS comments do not.

STYLE Statement

Creates a new style-element.

Featured in: Example 4 on page 252

STYLE new-style-element-name <FROM existing-style-element-name><’text’>
</ style-attribute-specification(s)>;

Required Arguments

new-style-element-name
names the style element to create. PROC TEMPLATE stores the style element in the
current style definition.

Options

existing-style-element-name
names an existing style element to inherit from. The style element must exist in the
current style definition or in the parent of the current style definition.

style-attribute-specification(s)
specify new style attributes or modifications to existing style attributes for the new
style element. The new style element inherits all the style attributes of
existing-style-element-name. You can override any of these attributes by specifying it
in the STYLE statement. Each style-attribute-specification has the following general
form:

style-attribute-name=style-attribute-value

192 STYLE Statement 4 Chapter 5

style-attribute-name
can be the name of an attribute that is listed in “Style Attributes” on page 192, or
it can be the name of a user-defined style attribute.
Restriction: If style-attribute-name refers to a user-defined attribute, you must

enclose the name in quotation marks. If style-attribute-name refers to an
attribute that is listed in “Style Attributes” on page 192, do not enclose the
name in quotation marks.

style-attribute-value
assigns the value to the attribute. If you use an attribute from the list in “Style
Attributes” on page 192, you must use the kind of value that the attribute expects.

For more information on style-attribute values, see “Style Attributes” on page
192.

’text’
provides information about the REPLACE statement. Text of this type becomes part
of the compiled definition, which you can view with the SOURCE statement, whereas
SAS comments do not.

Style Attributes
The default value that is used for an attribute depends on the style definition that is

in use. For information on viewing the attributes in a style definition, see “Customizing
Presentation Aspects of ODS Output” on page 42. The implementation of an attribute
depends on the ODS destination that formats the output. In addition, if you are creating
HTML output, the implementation of an attribute depends on the browser that you use.

Values for style attributes are often one of the following:

’string’
is a quoted character string.

dimension
is a nonnegative number, optionally followed by one of the following units of measure:

cm centimeters

in inches

mm millimeters

pt a printer’s point

px pixels (based on the size of a pixel on the target device)

Note: In Version 8 of the SAS System, only the Printer destination supports units
of measure on dimensions. However, if you specify CSS in the ODS HTML
statement, the HTML destination supports units of measure. The CSS option is
experimental in Version 8. 4

Default: For the HTML destination, pixels; for the Printer destination, units of
1/150 of an inch

The TEMPLATE Procedure 4 STYLE Statement 193

color
is a string that identifies a color. A color can be

� any of the color names that are supported by SAS/GRAPH. These names include
� a predefined SAS color (for example, blue or VIYG)
� a red/green/blue (RGB) value (for example, CX0023FF)
� a hue/light/saturation (HLS) value (for example, H14E162D)
� a gray-scale value (for example, GRAYBB).

� An RGB value with a leading pound sign (#) rather than CX (for example,
#0023FF).

� One of the colors that exists in the SAS session when the style definition is used:
� DMSBLUE
� DMSRED
� DMSPINK
� DMSGREEN
� DMSCYAN
� DMSYELLOW
� DMSWHITE
� DMSORANGE
� DMSBLACK
� DMSMAGENTA
� DMSGRAY
� DMSBROWN
� SYSBACK
� SYSSECB
� SYSFORE.
Note: Use these colors only if you are running SAS in the windowing

environment. 4
� An English description of an HLS value. Such descriptions use a combination of

words to describe the lightness, the saturation, and the hue (in that order). The
words that you can use are shown in the following table:

Lightness Saturation Hue

black gray blue

very dark grayish purple

dark moderate red

medium strong orange | brown

light vivid yellow

very light green

white

You can combine these words to form a wide variety of colors. Some examples
are

� light vivid green
� dark vivid orange
� light yellow.

194 STYLE Statement 4 Chapter 5

Note: The Output Delivery system first tries to match a color with a SAS/GRAPH
color. Thus, although brown and orange are interchangeable in the table, if you use
them as unmodified hues, they are different. The reason for this is that ODS
interprets them as SAS colors, which are mapped to different colors. 4

You can also specify hues that are intermediate between two neighboring colors.
To do so, combine one of the following adjectives with one of its neighboring colors:

� reddish
� orangish
� brownish
� yellowish
� greenish
� bluish
� purplish.
For example, you can use the following as hues:

� bluish purple (which is the same as purplish blue)
� reddish orange
� yellowish green.

See also: For information on SAS/GRAPH colors, see SAS/GRAPH Software:
Reference.

format
is a SAS format or a user-defined format.

reference
is a reference to an attribute that is defined in the current style definition or in the
parent (or beyond). In this case, the value that you use is the name of the style
element followed, in parentheses, by the name of an attribute name within that
element. For example, suppose that you create a style element called DATACELL
that uses the FOREGROUND= and BACKGROUND= style elements this way:

style datacell / background=blue
foreground=white;

Later, you can ensure that another style element, NEWCELL, uses the same
background color by defining it this way:

style newcell / background=datacell(background);

Similarly, suppose that you create a style element called HIGHLIGHTING that
defines three attributes this way:

style highlighting /
"go"=green
"caution"=yellow
"stop"=red;

Later, you can define a style element called MESSAGES that uses the colors that are
defined in HIGHLIGHTING:

style messages;
"note"=highlighting("go")
"warning"=highlighting("caution")
"error"=highlighting("stop");

In this way, multiple style elements could use the colors that you define in
HIGHLIGHTING. If you decide to change the value of go to blue, you simply change

The TEMPLATE Procedure 4 STYLE Statement 195

its value in the definition of HIGHLIGHTING, and every style element that
references highlighting (“go”) will use blue instead of green.

Note: In the first example, the style attribute BACKGROUND= is a predefined
style attribute. Therefore, when you reference it, you do not put it in quotation
marks. However, in the second example, go is a user-defined attribute. You define it
with quotation marks, and when you reference it, you must use quotation marks.
(This section describes all the predefined style attributes that are available.) 4

You can use a special form of reference to get a value for a style attribute from the
macro table at the time that the style element is used. For instance, the following
STYLE statement uses the current value of the macro variable bkgr for the
background color of the style element cell:

style cell / background=symget("bkgr");

Featured in: Example 5 on page 258

font-definition
A value can also be a font definition. A font definition has the following general
format:

(“font-face-1 <… , font-face-n>”, font-size, keyword-list)

If you specify only one font face and if its name does not include a space character,
you can omit the quotation marks. If you specify more than one font face, the
browser uses the first one that is installed on your system.

font-size specifies the size of the font. font-size can be a dimension or a number
without units of measure. If you specify a dimension, you must specify a unit of
measure. Without a unit of measure the number becomes a size that is relative to all
other font sizes in the document. See the discussion of dimensions on page 192.

keyword-list specifies the font weight, font style, and font width. You can include
one value for each, in any order. The following table shows the keywords that you
can use:

Keywords for Font Weight Keywords for Font Style Keywords for Font Width

MEDIUM ITALIC NORMAL*

BOLD ROMAN COMPRESSED*

DEMI_BOLD* SLANT EXTRA_COMPRESSED*

EXTRA_BOLD* NARROW*

LIGHT WIDE*

DEMI_LIGHT* EXPANDED*

EXTRA_LIGHT*

* Few fonts honor these values.

Featured in: Example 5 on page 258

To do this …* Use this attribute

Influence the characteristics of individual cells

Specify how to handle leading spaces, trailing
spaces, and line breaks.

ASIS=

Specify the height of the cell. CELLHEIGHT=

196 STYLE Statement 4 Chapter 5

To do this …* Use this attribute

Specify the width of the cell. CELLWIDTH=

Specify the text to show in a tool tip for the cell. FLYOVER=

Specify the window or frame in which to open
the target of the link.

HREFTARGET=

Specify how to handle space characters. NOBREAKSPACE=

Specify text to insert in the HTML TAGATTR=

Specify a URL to link to. URL=

Specify vertical justification. VJUST=

Influence the characteristics of individual tables or
cells

Specify a font definition. FONT=

Specify the font face to use. FONT_FACE=

Specify the size of the font. FONT_SIZE=

Specify the style of the font. FONT_STYLE=

Specify the font weight. FONT_WEIGHT=

Specify the font width compared to the width of
the usual design.

FONT_WIDTH=

Specify the color of the foreground, which is
primarily the color of the text.

FOREGROUND=

Specify the name of the stylesheet class to use
for the table or cell.

HTMLCLASS=

Specify an ID for the table or cell. HTMLID=

Specify individual attributes and values for the
table or cell.

HTML_STYLE=

Specify justification. JUST=

Specify the HTML code to place after the HTML
table or cell.

POSTHTML=

Specify an image to place after the HTML table
or cell.

POSTIMAGE=

Specify text to place after the cell or HTML
table.

POSTTEXT=

Specify the HTML code to place before the
HTML table or cell.

PREHTML=

Specify an image to place before the HTML table
or cell.

PREIMAGE=

Specify text to place before the cell or HTML
table.

PRETEXT=

Determine how less-than signs (<), greater-than
signs (>), and ampersands (&) are interpreted.

PROTECTSPECIALCHARACTERS=

Influence the characteristics of tables

The TEMPLATE Procedure 4 STYLE Statement 197

To do this …* Use this attribute

Specify the amount of white space on each of the
four sides of the text in a cell.

CELLPADDING=

Specify the thickness of the spacing between
cells.

CELLSPACING=

Specify the type of frame to use on an HTML
table.

FRAME=

Specify the width of the HTML table. OUTPUTWIDTH=

Specify the types of rules to use in an HTML
table.

RULES=

Influence the characteristics of individual frames in
HTML output

Specify the string to use for bullets in the
contents file.

BULLETS=

Specify the position, within the frame file, of the
frames that display the contents and the page
files.

CONTENTPOSITION=

Specify whether or not to put a scrollbar in the
frames in the frame file that display the
contents and the page files.

CONTENTSCROLLBAR=

Specify the width of the frames in the frame file
that display the contents and the page files.

CONTENTSIZE=

Specify whether or not to put a border around
the frame for an HTML file that uses frames.

FRAMEBORDER=

Specify the width of the border around the
frames for an HTML file that uses frames.

FRAMEBORDERWIDTH=

Specify the width of the space between frames
for HTML that uses frames.

FRAMESPACING=

Influence the characteristics of the document

Specify the bottom margin for the document. BOTTOMMARGIN=

Provide the value of the content type for pages
that you send directly to a web server rather
than to a file.

HTMLCONTENTTYPE=

Specify the entire doctype declaration for the
HTML document, including the opening
"<!DOCTYPE" and the closing ">".

HTMLDOCTYPE=

Specify the left margin for the document. LEFTMARGIN=

Specify the color for links that have not yet been
visited.

LINKCOLOR=

Specify whether or not to make this entry in the
table of contents a link to the body file.

LISTENTRYANCHOR=

Specify whether or not to double space between
entries in the table of contents.

LISTENTRYDBLSPACE=

Specify the height for graphics in the document. OUTPUTHEIGHT=

198 STYLE Statement 4 Chapter 5

To do this …* Use this attribute

Specify an upper limit for extending the width of
the column.

OVERHANGFACTOR=

Specify HTML to place at page breaks. PAGEBREAKHTML=

Specify the right margin for the document. RIGHTMARGIN=

Specify the top margin for the document. TOPMARGIN=

Specify whether or not to make the image that
is specified by BACKGROUNDIMAGE= into a
“watermark.” A watermark appears in a fixed
position as the window is scrolled.

WATERMARK=

* Different attributes affect different ODS destinations. For details, consult the documentation
for a specific attribute.

Note: You can use the value _UNDEF_ for any style attribute. ODS treats an
attribute that is set to _UNDEF_ as if its value had never been set, even in the parent
or beyond. 4

In the list of style attributes that follows, any attribute that is not documented as
applying to a particular destination applies to all destinations that support the STYLE=
option in the ODS statement that opens the destination. In Version 8 of the SAS
System, the two destinations that support STYLE= are the HTML destination and the
Printer destination.

ASIS=ON|OFF
specifies how to handle leading spaces, trailing spaces, and line breaks.

ON
prints text with leading spaces, trailing spaces, and line breaks as they are.

OFF
trims leading spaces and trailing spaces. OFF ignores line breaks.

Applies to: cells

BACKGROUND=color
specifies the color of the background.
Tip: Generally, the background color of the cell overrides the background color of

the table. You see the background color for the table only as the space between
cells (see CELLSPACING= on page 200).

Applies to: tables or cells
Featured in: Example 4 on page 252 and Example 6 on page 265

BACKGROUNDIMAGE=’string’
specifies an image to use as the background. Viewers that can tile the image as the
background for the HTML table that the procedure creates will do so. string is the
name of a GIF or JPEG file. You can use a simple file name, a complete path, or a
URL. However, the most versatile approach is to use a simple filename and to place
all image files in the local directory.
Applies to: tables or cells
ODS Destinations: HTML

BODYSCROLLBAR=YES | NO |AUTO
specifies whether or not to put a scrollbar in the frame that references the body file.

The TEMPLATE Procedure 4 STYLE Statement 199

Tip: Typically, BODYSCROLLBAR is set to AUTO.

Applies to: frame

ODS Destinations: HTML

BODYSIZE=dimension | number % | *
specifies the width of the frame that displays the body file in the HTML frame file.
(For information on the HTML files that ODS creates, see “Files Produced by the
HTML Destination” on page 36.)

dimension
is a nonnegative number. The unit of measure is pixels.

number %
specifies the width of the frame as a percentage of the entire display.

*
specifies to use whatever space is left after displaying the content and page files as
specified by the CONTENTSIZE= attribute.

Applies to: frame

ODS Destinations: HTML

BORDERCOLOR=color
specifies the color of the border if the border is just one color.

Applies to: tables or cells

BORDERCOLORDARK=color
specifies the darker color to use in a border that uses two colors to create a
three-dimensional effect.

Applies to: tables or cells

ODS Destinations: HTML

Featured in: Example 4 on page 252 and Example 6 on page 265

BORDERCOLORLIGHT=color
specifies the lighter color to use in a border that uses two colors to create a
three-dimensional effect.

Applies to: tables or cells

ODS Destinations: HTML

Featured in: Example 4 on page 252 and Example 6 on page 265

BORDERWIDTH=dimension
specifies the width of the border of the table.

Applies to: tables

Tip: Typically, when BORDERWIDTH=0, the ODS destination sets RULES=NONE
(see the discussion of RULES= on page 207) and FRAME=VOID (see the
discussion of FRAME= on page 203).

Featured in: Example 4 on page 252 and Example 6 on page 265

BOTTOMMARGIN=dimension
specifies the bottom margin for the document.

Applies to: document

200 STYLE Statement 4 Chapter 5

BULLET=’string’
specifies the string to use for bullets in the contents file. ODS uses bullets in the
contents file. string can be one of the following:

� circle

� decimal

� disc

� lower-alpha

� lower-roman

� none

� square

� upper-alpha

� upper-roman.

Applies to: contents

ODS Destinations: HTML

CELLHEIGHT=dimension|integer%
specifies the height of the cell. If you specify a percent, it represents a percentage of
the height of the table. A row of cells will have the height of the highest cell in the
row.

Tip: HTML automatically sets cell height appropriately. You should seldom need to
specify this attribute.

Applies to: cells

ODS Destinations: HTML and Printer

CELLPADDING=dimension | integer%
specifies the amount of white space on each of the four sides of the text in a cell.

Applies to: tables

Featured in: Example 6 on page 265

CELLSPACING=dimension
specifies the thickness of the spacing between cells.

Applies to: tables

Interaction: If BORDERWIDTH= is nonzero, and if the background color of the
cells contrasts with the background color of the table, the color of the cell spacing
is determined by the table’s background.

Featured in: Example 4 on page 252 and Example 6 on page 265

CELLWIDTH=dimension | integer%
specifies the width of the cell. If you specify a percent, it represents a percentage of
the width of the table. A column of cells will have the width of the widest cell in the
column.

Applies to: cells

Tip: The ODS destination sets cell width appropriately. You should seldom need to
specify this attribute.

ODS Destinations: HTML and Printer

CONTENTPOSITION=position
specifies the position, within the frame file, of the frames that display the contents
and the page files. (For information on the HTML files that ODS creates, see “Files
Produced by the HTML Destination” on page 36.) position can be

The TEMPLATE Procedure 4 STYLE Statement 201

LEFT
places the frames on the left.
Alias: L

RIGHT
places the frames on the right.
Alias: R

TOP
places the frames at the top.
Alias: T

BOTTOM
places the frames at the bottom.
Alias: B

Applies to: frame
ODS Destinations: HTML

CONTENTSCROLLBAR=YES | NO |AUTO
specifies whether or not to put a scrollbar in the frames in the frame file that display
the contents and the page files. (For information on the HTML files that ODS
creates, see “Files Produced by the HTML Destination” on page 36.)
Tip: Typically, CONTENTSCROLLBAR is set to AUTO.
Applies to: frame
ODS Destinations: HTML

CONTENTSIZE=dimension | number % | *
specifies the width of the frames in the frame file that display the contents and the
page files. (For information on the HTML files that ODS creates, see “Files Produced
by the HTML Destination” on page 36.)

dimension
is a nonnegative number. The unit of measure is pixels.

number %
specifies the width of the frames as a percentage of the entire display.

*
specifies to use whatever space is left after displaying the body file as specified by
the BODYSIZE= attribute.

See also: BODYSIZE= on page 199
Applies to: frame
ODS Destinations: HTML

FLYOVER=’string’
specifies the text to show in a tool tip for the cell.
Applies to: cells
ODS Destinations: HTML

FONT=font-definition
specifies a font definition to use. For more information, see the discussion of font
definition on page 195.
Applies to: tables and cells
Tip: When you specify this attribute for a table, it affects only the text that is

specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML=
attributes. To alter the font for the text that appears in the table, you must set the
attribute for a cell.

202 STYLE Statement 4 Chapter 5

Featured in: Example 6 on page 265

FONT_FACE=’string-1<…, string-n>’
specifies the font face to use. If you supply multiple font faces, the browser uses the
first one that is installed on your system.

You cannot be sure what fonts are available to someone who is viewing your
output in a browser or printing it on a high-resolution printer. Most devices support

� times

� courier

� arial, helvetica.

Applies to: cells

Tip: When you specify this attribute for a table, it affects only the text that is
specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML=
attributes. To alter the font for the text that appears in the table, you must set the
attribute for a cell.

Featured in: Example 4 on page 252

FONT_SIZE=dimension | size
specifies the size of the font. The value of size is relative to all other font sizes in the
document.

Applies to: table and cells

Range: 1 to 7, for size

Restriction: If you specify a dimension, you must specify a unit of measure.
Without a unit of measure, the number becomes a relative size. See the discussion
of dimensions on page 192.

Tip: When you specify this attribute for a table, it affects only the text that is
specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML=
attributes. To alter the font for the text that appears in the table, you must set the
attribute for a cell.

Featured in: Example 4 on page 252

FONT_STYLE=ITALIC | ROMAN | SLANT
specifies the style of the font. In many cases, italic and slant map to the same font.

Applies to: tables and cells

Tip: When you specify this attribute for a table, it affects only the text that is
specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML=
attributes. To alter the font for the text that appears in the table, you must set the
attribute for a cell.

Featured in: Example 4 on page 252 and Example 6 on page 265

FONT_WEIGHT=weight
specifies the font weight. weight can be any of the following:

� MEDIUM

� BOLD

� DEMI_BOLD

� EXTRA_BOLD

� LIGHT

� DEMI_LIGHT

� EXTRA_LIGHT.

Applies to: tables and cells

The TEMPLATE Procedure 4 STYLE Statement 203

Restriction: You cannot be sure what font weights are available to someone who is
viewing your output in a browser or printing it on a high-resolution printer. Most
devices support only MEDIUM and BOLD, and possibly LIGHT.

Tip: When you specify this attribute for a table, it affects only the text that is
specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML=
attributes. To alter the font for the text that appears in the table, you must set the
attribute for a cell.

Featured in: Example 4 on page 252

FONT_WIDTH=relative-width
specifies the font width compared to the width of the usual design. relative-width can
be any of the following:

� NORMAL
� COMPRESSED
� EXTRA_COMPRESSED
� NARROW
� WIDE
� EXPANDED.

Applies to: tables and cells
Restriction: Few fonts honor these values.
Tip: When you specify this attribute for a table, it affects only the text that is

specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML=
attributes. To alter the font for the text that appears in the table, you must set the
attribute for a cell.

Featured in: Example 4 on page 252

FOREGROUND=color
specifies the color of the foreground, which is primarily the color of text.
Applies to: tables or cells
Tip: When you specify this attribute for a table, it affects only the text that is

specified with the PRETEXT=, POSTTEXT=, PREHTML=, and POSTHTML=
attributes. To alter the font for the text that appears in the table, you must set the
attribute for a cell.

Featured in: Example 4 on page 252 and Example 6 on page 265

FRAME=frame-type
specifies the type of frame to use on a table. The following table shows the possible
values of frame-type and their meanings:

This value of frame-type … Creates this kind of frame around the table

ABOVE a border at the top

BELOW a border at the bottom

BOX borders at the top, bottom, and both sides

HSIDES borders at the top and bottom

LHS a border at the left side

RHS a border at the right side

VOID no borders

VSIDES borders at the left and right sides

Applies to: tables

204 STYLE Statement 4 Chapter 5

Featured in: Example 6 on page 265

FRAMEBORDER=ON | OFF
specifies whether or not to put a border around the frame for an HTML file that uses
frames.
Applies to: frame

ODS Destinations: HTML

FRAMEBORDERWIDTH=dimension
specifies the width of the border around the frames for an HTML file that uses
frames.

Applies to: frame

ODS Destinations: HTML

FRAMESPACING=dimension
specifies the width of the space between frames for HTML that uses frames.

Applies to: frame

ODS Destinations: HTML

HREFTARGET=target
specifies the window or frame in which to open the target of the link. target can be

_BLANK
opens the target in a new, blank window. The window has no name.

_PARENT
opens the target in the window from which the current window was opened.

_SEARCH
opens the target in the browser’s search pane.

Restriction: Only available in Internet Explorer 5.0 or later.

_SELF
opens the target in the current window.

_TOP
opens the target in the topmost window.

’name’
opens the target in the specified window or the frame.

Default: _SELF

Applies to: cells

ODS Destinations: HTML

HTMLCLASS=’string’
specifies the name of the stylesheet class to use for the table or cell.

Applies to: tables and cells

Availability: Version 8 of the SAS System

ODS Destinations: HTML

HTMLCONTENTTYPE=’string’
provides the value of the content type for pages that you send directly to a web
server rather than to a file.

Tip: The value of string is usually “text/html”.
Applies to: document

ODS Destinations: HTML

The TEMPLATE Procedure 4 STYLE Statement 205

HTMLDOCTYPE=’string’
specifies the entire doctype declaration for the HTML document, including the
opening “<!DOCTYPE” and the closing “>”.
Tip: Most users will never need to use this attribute.
Applies to: document
ODS Destinations: HTML

HTMLID=’string’
specifies an id for the table or cell. The id is for use by a Java script.
Applies to: tables and cells
ODS Destinations: HTML

HTMLSTYLE=’string’
specifies individual attributes and values for the table or cell.
Applies to: tables and cells
ODS Destinations: HTML

JUST=justification
specifies justification, where justification can be

CENTER
specifies center justification.
Alias: C
Applies to: tables and cells

LEFT
specifies left justification.
Alias: L
Applies to: tables and cells

RIGHT
specifies right justification.
Alias: R
Applies to: tables and cells
Restriction: Not all contexts support RIGHT. If RIGHT is not supported, it is

interpreted as CENTER.

LEFTMARGIN=dimension
specifies the left margin for the document.
Applies to: document

LINKCOLOR=color
specifies the color for links that have not yet been visited.
Applies to: document
ODS Destinations: HTML

LISTENTRYANCHOR=ON | OFF
specifies whether or not to make this entry in the table of contents a link to the body
file.
Applies to: document
ODS Destinations: HTML
Availability: Version 8 of the SAS System

NOBREAKSPACE=ON | OFF
specifies how to handle space characters.

206 STYLE Statement 4 Chapter 5

ON
does not allow SAS to break a line at a space character.

OFF
allows SAS to break a line at a space character if appropriate.

Applies to: cells

OUTPUTHEIGHT=dimension
specifies the height for graphics in the document.
Applies to: document
ODS Destinations: HTML

OUTPUTWIDTH=dimension | number%
specifies the width of the table. If you specify a percent, it represents a percentage of
the width of the browser window.
Applies to: tables
Tip: Use OUTPUTWIDTH=100% to make the table as wide as the window that it is

open in.
ODS Destinations: HTML

OVERHANGFACTOR=nonnegative-number
specifies an upper limit for extending the width of the column. The HTML that is
generated by ODS tries to ensure that the text in a column wraps when it reaches
the requested column width. If you make the overhang factor greater than 1, the text
can extend beyond the specified width.
Tip: Typically, an overhang factor between 1 and 2 works well.
Applies to: document
ODS Destinations: HTML

PAGEBREAKHTML=’string’
specifies HTML to place at page breaks.
Applies to: document
ODS Destinations: HTML

POSTHTML=’string’
specifies the HTML code to place after the table or cell.
Applies to: tables or cells
ODS Destinations: HTML
Featured in: Example 6 on page 265

POSTIMAGE=’string’
specifies an image to place after the table or cell. string is the name of a GIF or
JPEG file. You can use a simple filename, a complete path, or a URL. However, the
most versatile approach is to use a simple filename and to place all image files in the
local directory.
Applies to: tables or cells
ODS Destinations: HTML

POSTTEXT=’string’
specifies text to place after the cell or table.
Applies to: tables or cells

PREHTML=’string’
specifies the HTML code to place before the table or cell.
Applies to: tables or cells

The TEMPLATE Procedure 4 STYLE Statement 207

ODS Destinations: HTML

PREIMAGE=’string’
specifies an image to place before the table or cell. string is the name of a GIF or
JPEG file. You can use a simple filename, a complete path, or a URL. However, the
most versatile approach is to use a simple filename and to place all image files in the
local directory.
Applies to: tables or cells
ODS Destinations: HTML

PRETEXT=’string’
specifies text to place before the cell or table.
Applies to: tables or cells

PROTECTSPECIALCHARACTERS=ON | OFF | AUTO
determines how less-than signs (<), greater-than signs (>), and ampersands (&) are
interpreted. In HTML, these characters indicate the beginning of a markup tag, the
end of a markup tag, and the beginning of the name of a file or character entity.

ON
interprets special characters as the characters themselves. That is, when ON is in
effect the characters are protected before they are passed to the HTML destination
so that HTML does not interpret them as part of the markup language. Using ON
enables you to show HTML markup in your document.

OFF
interprets special characters as HTML code. That is, when OFF is in effect, the
characters are passed to the HTML destination without any protection so that
HTML interprets them as part of the markup language.

AUTO
interprets any string that starts with a < and ends with a > as HTML (ignoring
spaces that immediately precede the <, spaces that immediately follow the >, and
spaces at the beginning and end of the string). In any other string, AUTO protects
the special characters from their HTML meaning.

Applies to: cells
ODS Destinations: HTML

RIGHTMARGIN=dimension
specifies the right margin for the document.
Applies to: document

RULES=rule-type
specifies the types of rules to use in a table. The following table shows the possible
values of rule and their meanings:

This value of rule … Creates rules in these locations

ALL between all rows and columns

COLS between all columns

GROUP between the table header and the table and
between the table and the table footer, if there
is one

NONE no rules anywhere

ROWS between all rows

Applies to: tables

208 END Statement 4 Chapter 5

Featured in: Example 6 on page 265

TAGATTR=’string’
specifies text to insert in the HTML. The string must be valid HTML for the context
in which the style element is rendered. Many style elements are rendered between
<TD> and </TD> tags. To determine how a style element is rendered, look at the
source for the output.
Applies to: cells
ODS Destinations: HTML

TOPMARGIN=dimension
specifies the top margin for the document.
Applies to: document

URL=’uniform-resource-locator’
specifies a URL to link to from the current cell.
Applies to: cells
ODS Destinations: HTML

VISITEDLINKCOLOR=color
specifies the color for links that have been visited.
Applies to: document
ODS Destinations: HTML

VJUST=’justification’
specifies vertical justification, where justification can be

TOP
specifies top justification.
Alias: T

BOTTOM
specifies bottom justification.
Alias: B

MIDDLE
specifies center justification.
Alias: M

Applies to: cells

WATERMARK=ON | OFF
specifies whether or not to make the image that is specified by
BACKGROUNDIMAGE= into a “watermark.” A watermark appears in a fixed
position as the window is scrolled.
Applies to: document
ODS Destinations: HTML

END Statement

Ends the style definition.

END;

The TEMPLATE Procedure 4 DEFINE TABLE Statement 209

DEFINE TABLE Statement

Creates a table definition.

Requirement: An END statement must be the last statement in the definition.

Interaction: A table definition can contain one or more column, header, or footer
definitions.

Featured in: Example 2 on page 238, Example 3 on page 247, and Example 4 on page 252

DEFINE TABLE table-path </ STORE=libname.template-store>;

<table-attribute-1; <… table-attribute-n; >>

CELLSTYLE expression-1 AS <style-element-name><[style-attribute-specification(s)]
><…, expression-n AS <style-element-name><[style-attribute-specification(s)]>>;

COLUMN column(s);

DEFINE definition-type definition-path;
statements-and-attributes
END;

DYNAMIC variable-1 <’text-1’> <… variable-n <’text-n’>>;

FOOTER footer-name(s);

HEADER header-name(s);

MVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

NMVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

NOTES ’text’;

TRANSLATE expression-1 INTO expression-2 <… , expression-n INTO
expression-m;>

END;

To do this … Use this statement

Set one or more table attributes. table-attribute(s)

Set the style element of the cells in the table that
contain numeric variables according to the values of
the variables.

CELLSTYLE-AS

Declare a symbol as a column in the table and specify
the order of the columns.

COLUMN

Create a definition for a column, header, or footer. DEFINE

Define a symbol that references a value that the data
component supplies from the procedure or DATA step.

DYNAMIC

Declare a symbol as a footer in the table and specify
the order of the footers.

FOOTER

Declare a symbol as a header in the table and specify
the order of the headers.

HEADER

210 DEFINE TABLE Statement 4 Chapter 5

To do this … Use this statement

Define a symbol that references a macro variable.
ODS will use the value of the variable as a string.
References to the macro variable are resolved when
ODS binds the definition and the data component to
produce an output object.

MVAR

Define a symbol that references a macro variable.
ODS will convert the value of the variable to a
number (stored as a double) before use. References to
the macro variable are resolved when ODS binds the
definition and the data component to produce an
output object.

NMVAR

Provide information about the table. NOTES

Translate the specified numeric values to other values. TRANSLATE-INTO

End a definition, or end the editing of a definition. END

Required Arguments

table-path
specifies where to store the table definition. A table-path consists of one or more
names, separated by periods. Each name represents a directory in a template store.
(A template store is a type of SAS file.) PROC TEMPLATE writes the definition to
the first template store in the current path that you can write to.

Options

STORE=libname.template-store
specifies the template store in which to store the definition. If the template store
does not exist, it is created.
Availability: Version 8 of the SAS System

Table Attributes
This section lists all the attributes that you can use in a table definition. For all

attributes that support a value of ON, the following forms are equivalent:

ATTRIBUTE-NAME
ATTRIBUTE-NAME=ON

For all attributes that support a value of variable, variable can be any variable that you
declare in the table definition with the DYNAMIC, MVAR, or NMVAR statement. If the
attribute is a boolean, the value of variable should resolve to one of the following:

The TEMPLATE Procedure 4 DEFINE TABLE Statement 211

ON YES 0

ON _YES_ FALSE

1 OFF NO

TRUE _OFF_ _NO_

To do this …* Use this attribute

Influence the layout of the table

Specify whether or not to try to place the same
number of columns in each data panel if the
entire table does not fit in one data panel

BALANCE=

Specify whether or not to center each data panel
independently if the entire table does not fit in
one data panel

CENTER=

Specify whether or not to force a new page
before printing the table

NEWPAGE=

Specify the number of sets of columns to place
on a page

PANELS=

Specify the number of blank characters to place
between sets of columns when PANELS= is in
effect

PANELSPACE=

Specify the number of lines that must be
available on the page in order to print the body
of the table

REQUIRED_SPACE=

Specify the number of lines to place between the
previous output object and the current one

TOPSPACE=

Influence the layout of rows and columns

Specify the maximum number of blank
characters to place between columns

COL_SPACE_MAX=

Specify the minimum number of blank
characters to place between columns

COL_SPACE_MIN=

Specify the name of the column whose value
provides formatting information about the space
before each row of the definition

CONTROL=

Specify whether or not to double space between
the rows of the table

DOUBLE_SPACE=

Specify whether or not extra space is evenly
divided among all columns of the table

EVEN=

Specify whether or not to split a long stacked
column across page boundaries

SPLIT_STACK=

Influence the display of the values in header cells and
data cells

212 DEFINE TABLE Statement 4 Chapter 5

To do this …* Use this attribute

Specify whether or not to suppress the blanking
of the value in a column that is marked with the
BLANK_DUPS column attribute if the value
changes in a previous column that is also
marked with the BLANK_DUPS attribute

CLASSLEVELS=

Specify which format to use if both a column
definition and a data component specify one

DATA_FORMAT_OVERRIDE=

Specify whether to justify the format fields
within the columns or to justify the values
within the columns without regard to the format
fields

JUSTIFY=

Specify whether or not to order the columns by
their order in the data component

ORDER_DATA=

Specify the source of the values for the format
width and the decimal width if they are not
specified

USE_FORMAT_DEFAULTS=

Use the column name as the column header if
neither the column definition nor the data
component specifies a header

USE_NAME=

Influence the layout of headers and footers

Specify the number of blank lines to place
between the last row of data and the first row of
output

FOOTER_SPACE=

Specify the number of blank lines to place
between the last row of headers and the first
row of data

HEADER_SPACE=

Specify whether or not to draw a continuous line
above the first table footer (or, if there is no table
footer, below the last row of the data on a page)

OVERLINE=

Specify whether or not to print table footers and
any overlining of the table footers

PRINT_FOOTERS=

Specify whether or not to print table headers
and any underlining of the table headers

PRINT_HEADERS=

Specify whether or not to draw a continuous line
under the last table header (or, if there is no
table header, under the last row of the data on a
page)

UNDERLINE=

Influence the HTML output

Specify whether or not to place the object in a
table of contents if you create one

CONTENT=

Specify the label to use for the output object in
the contents file, the Results window, and the
trace record

CONTENTS_LABEL=

Specify whether or not to print the current byline
before the table

BYLINE=

The TEMPLATE Procedure 4 DEFINE TABLE Statement 213

To do this …* Use this attribute

Define the characters to use as the line-drawing
characters in the table

FORMCHAR=

Specify a label for the table LABEL=

Specify the table that the current definition inherits
from

PARENT=

Specify the style element to use for the table and any
changes to the attributes

STYLE=

Specify the special data set type of a SAS data set TYPE=

* Different attributes affect different ODS destinations. For details, consult the documentation
for a specific attribute.

BALANCE<=ON | OFF | variable>
specifies whether or not to try to place the same number of columns in each data
panel if the entire table does not fit in one data panel.
Default: OFF
ODS Destinations: Listing and Printer

BYLINE<=ON | OFF | variable>
specifies whether or not to print the current byline before the table.
Default: OFF
Restriction: This attributes applies only if the table is not the first one on the page.

If BY-group processing is in effect, a byline automatically precedes the first table
on the page.

ODS Destinations: All but Output

CENTER<=ON | OFF | variable>
specifies whether or not to center each data panel independently if the entire table
does not fit in the space that is provided.
Default: ON
ODS Destinations: Listing and Printer

CLASSLEVELS<=ON | OFF | variable>
specifies whether or not to suppress the blanking of the value in a column that is
marked with the BLANK_DUPS column attribute if the value changes in a previous
column that is also marked with the BLANK_DUPS attribute.
Default: OFF
ODS Destinations: All but Output
Featured in: Example 4 on page 252

COL_SPACE_MAX=positive-integer | variable
specifies the maximum number of blank characters to place between the columns.
Default: 4
ODS Destinations: Listing

COL_SPACE_MIN=positive-integer | variable
specifies the minimum number of blank characters to place between the columns.
Default: 2
ODS Destinations: Listing

214 DEFINE TABLE Statement 4 Chapter 5

CONTENTS<=ON | OFF | variable>
specifies whether or not to place the object in a table of contents if you create one.
Default: ON
ODS Destinations: HTML

CONTENTS_LABEL=’string’ | variable
specifies the label to use for the output object in the contents file, the Results
window, and the trace record.
Default: If the SAS system option LABEL is in effect, the default label is the

object’s label. If LABEL is not in effect, the default label is the object’s name.
ODS Destinations: HTML

CONTROL=column-name | variable
specifies the name of the column whose values provide formatting information about
the space before each row of the definition. The value of CONTROL= should be the
name of a column of type character with a length equal to 1.

If the value in the control column is … This occurs before the row is created …

a digit from 1-9 the specified number of blank lines precedes
the current row

a hyphen (-) a row of underlining precedes the current row

a ’b’ or a ’B’ ODS tries to insert a panel break if the entire
table does not fit in the space that is provided

Default: none
ODS Destinations: Listing and Printer

DATA_FORMAT_OVERRIDE<=ON | OFF | variable>
specifies which format to use if both a column definition and a data component
specify one.

ON
uses the format that the data component specifies.

OFF
use the format that the column definition specifies.

Default: OFF
Availability: Version 8 of the SAS System
ODS Destinations: All

DOUBLE_SPACE<=ON | OFF | variable>
specifies whether or not to double space between the rows of the table.
Default: OFF
ODS Destinations: Listing
Featured in: Example 1 on page 233 and Example 2 on page 238

EVEN<=ON | OFF | variable>
specifies whether or not extra space is evenly divided among all columns of the table.
Default: OFF
ODS Destinations: Listing

FOOTER_SPACE=0 | 1 | 2 | variable
specifies the number of blank lines to place between the last row of data and the first
row of footers.

The TEMPLATE Procedure 4 DEFINE TABLE Statement 215

Default: 1
ODS Destinations: Listing

FORMCHAR=’string’ | variable
Defines the characters to use as the line-drawing characters in the table. Currently,
PROC TEMPLATE uses only the second of the 20 possible formatting characters.
This formatting character is used for underlining and overlining. To change the
second formatting character, you must specify both the first and second formatting
characters. For instance, the following option assigns the asterisk (*) to the first
formatting character, the plus sign (+) to the second character, and does not alter the
remaining characters:

formchar=’*+’

Default: The SAS system option FORMCHAR= specifies the default formatting
characters.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, you must put an x after the closing
quote. For instance, the following option assigns the hexadecimal character 2D to
the first formatting character, the hexadecimal character 7C to the second
character, and does not alter the remaining characters:

formchar=’2D7C’x
ODS Destinations: Listing

HEADER_SPACE=0 | 1 | 2 | variable
specifies the number of blank lines to place between the last row of headers and the
first row of data. A row of underlining is a header.
Default: 1
ODS Destinations: Listing

JUSTIFY<=ON | OFF | variable>
specifies whether to justify the format fields within the columns or to justify the
values within the columns without regard to the format fields. For a discussion of
how the Listing destination justifies data, see “How Are Values in Table Columns
Justified?” on page 138.
Default: OFF
Interaction: JUSTIFY=ON can interfere with decimal alignment.
Tip: If you translate numeric data to character data, you may need to use

JUSTIFY= to align the data as you wish.
ODS Destinations: Listing

LABEL=’text’ | variable
specifies a label for the table.
Default: PROC TEMPLATE uses the first of the following that it finds:

� a label that the table definition provides.
� a label that the data component provides.
� the first spanning header in the table.

ODS Destinations: All

NEWPAGE<=ON | OFF | variable>
specifies whether or not to force a new page before printing the table.
Default: OFF
Restriction: If the table is the first item on the page, ODS ignores this attribute.

216 DEFINE TABLE Statement 4 Chapter 5

ODS Destinations: All but Output

ORDER_DATA<=ON | OFF | variable>
specifies whether or not to order the columns by their order in the data component.
Default: OFF

When ORDER_DATA=OFF, the default order for columns is the order that they
are specified in the COLUMN statement. If you do not use a COLUMN statement,
the default order for columns is the order in which you define them in the
definition.

Tip: The Output destination always uses the order of the columns in the data
component when it creates an output data set.

Interaction: ORDER_DATA is most useful for ordering generic columns.
ODS Destinations: All but Output

OVERLINE<=ON | OFF | variable>
specifies whether or not to draw a continuous line above the first table footer (or, if
there is no table footer, below the last row of data on a page). PROC TEMPLATE
uses the second formatting character to draw the line. (See the discussion of
FORMCHAR= on page 215.)
Default: OFF
See also: UNDERLINE= on page 218 (for tables), UNDERLINE= on page 170 (for

columns), and OVERLINE= on page 167 (for columns)
ODS Destinations: Listing
Featured in: Example 1 on page 233

PANELS=positive-integer | variable
specifies the number of sets of columns to place on a page. If the width of all the
columns is less than half of the line size, you can display the data in multiple sets of
columns so that rows that would otherwise appear on multiple pages appear on the
same page.
Tip: If the number of panels that is specified is larger than the number of panels

that can fit on the page, the definition creates as many panels as it can. Let the
table definition put your data in the maximum number of panels that can fit on
the page by specifying a large number of panels (for example, 99).

ODS Destinations: Listing and Printer

PANEL_SPACE=positive-integer | variable
specifies the number of blank characters to place between sets of columns when
PANELS= is in effect.
Default: 2
ODS Destinations: Listing

PARENT=table-path
specifies the table that the current definition inherits from. A table-path consists of
one or more names, separated by periods. Each name represents a directory in a
template store. (A template store is a type of SAS file.) The current definition
inherits from the specified table in the first template store in the current path that
you can read from.

When you specify a parent, all the attributes and statements that are specified in
the parent’s definition are used in the current definition unless the current definition
specifically overrides them.
ODS Destinations: All

PRINT_FOOTERS<=ON | OFF | variable>
specifies whether or not print table footers and any overlining of the table footers.

The TEMPLATE Procedure 4 DEFINE TABLE Statement 217

Default: ON

See also: OVERLINE= on page 216

ODS Destinations: All but Output

PRINT_HEADERS<=ON | OFF | variable>
specifies whether or not to print the table headers and any underlining of the table
headers.

Default: ON

Interaction: When used in a table definition, PRINT_HEADERS affects only
headers for the table, not the headers for individual columns. (See the discussion
of the PRINT_HEADERS column attribute on page 168.)

See also: UNDERLINE= on page 218

ODS Destinations: All but Output

REQUIRED_SPACE=positive-integer | variable
specifies the number of lines that must be available on the page in order to print the
body of the table (The body of the table is the part of the table that contains the data.
It does not include headers and footers.)

Default: 3

ODS Destinations: Listing and Printer

SPLIT_STACK<=ON | OFF | variable>
specifies whether or not to split a long stacked column across page boundaries.

Default: OFF

ODS Destinations: Listing

STYLE=<style-element-name><[style-attribute-specification(s)]>
specifies the style element and any changes to its attributes to use for the table.
Neither style-attribute-specification nor style-element-name is required. However, you
must use at least one of them.

Note: You can use braces ({ and }) instead of square brackets ([and]). 4

style-element-name
is the name of the style element to use to render the table. The style element must
be part of a style definition that is registered with the Output Delivery System.
SAS Institute provides some style definitions. Users can create their own style
definitions with PROC TEMPLATE (see “DEFINE STYLE Statement” on page
188). By default, ODS renders different parts of ODS output with different
elements. For instance, by default, a table is rendered with the style element
table. The style definitions that SAS Institute provides do not provide another
style element that you would be likely to want to use instead of table. However,
you may have a user-defined style element at your site that would be appropriate
to specify.

The style element provides the basis for rendering the table. Additional style
attributes that you provide can modify the rendering.

For information on finding an up-to-date list of the style definitions and for
viewing a style definition so that you can see the style elements that are available,
see “Customizing Presentation Aspects of ODS Output” on page 42. For
information about the default style definition that ODS uses, see “What Is the
Default Style Definition Like?” on page 133.

style-element-name can be either the name of a style element or a variable
whose value is a style element.

Default: table

218 DEFINE TABLE Statement 4 Chapter 5

style-attribute-specification
describes the style attribute to change. Each style-attribute-specification has this
general form:

style-attribute-name=style-attribute-value

For information on the style attributes that you can specify, see “Style
Attributes” on page 192.

ODS Destinations: HTML and Printer

TOP_SPACE=positive-integer | variable
specifies the number of lines to place between the previous output object and the
current one.
Default: 1
ODS Destinations: Listing and Printer

TYPE=string | variable
specifies the special data set type of a SAS data set.
Restriction: PROC TEMPLATE does not verify that

� the SAS data set type that you specify is a valid data set type
� the structure of the data set that you create is appropriate for the type that

you have assigned.
Tip: Most SAS data sets have no special type. However, certain SAS procedures,

like the CORR procedure, can create a number of special SAS data sets. In
addition, SAS/STAT software and SAS/EIS software support special data set types.

Destination: Output

UNDERLINE<=ON | OFF | variable>
specifies whether or not to draw a continuous line under the last table header (or, if
there is no table header, above the first row of data on a page). PROC TEMPLATE
uses the second formatting character to draw the line. (See the discussion of
FORMCHAR= on page 215.)
Default: OFF
See also: OVERLINE= on page 216 (for tables), UNDERLINE= on page 170 (for

columns), and OVERLINE= on page 167 (for columns)
ODS Destinations: Listing
Featured in: Example 1 on page 233 and Example 2 on page 238

USE_FORMAT_DEFAULTS<=ON | OFF | variable>
specifies the source of the values for the format width and the decimal width if they
are not specified.

ON
uses the default values, if any, that are associated with the format name.

OFF
uses the PROC TEMPLATE defaults.

Default: OFF
ODS Destinations: All but Output

USE_NAME<=ON | OFF | variable>
uses the column name as the column header if neither the column definition nor the
data component specifies a header.
Default: OFF

The TEMPLATE Procedure 4 CELLSTYLE–AS Statement 219

Tip: Use this attribute when column names are derived from a data set and the
columns are generic.

ODS Destinations: All but Output

WRAP<=ON | OFF | variable>
specifies whether to split a table that is too wide to fit in the space that is provided
into multiple data panels or to wrap each row of the table so that an entire row is
printed before the next row starts.
Default: OFF
Interaction: When ODS wraps the rows of a table, it does not place multiple

values in any column that contains an ID column.
See also: WRAP_SPACE= on page 219 and ID= on page 165
ODS Destinations: Listing and Printer

WRAP_SPACE<=ON | OFF | variable>
specifies whether or not to double space after the last line of a single row of the table
when the row is wrapped onto more than one line.
Default: OFF
See also: WRAP= on page 219
ODS Destinations: Listing and Printer

CELLSTYLE–AS Statement

Sets the style element of the cells in the table that contain numeric variables according to the
values of the variables. Use this statement to set the presentation characteristics (such as
foreground color, font face, flyover) of individual cells.

Restriction: The CELLSTYLE-AS statement in a table definition applies only to numeric
variables. To specify style elements for individual values of a character variable, use
CELLSTYLE-AS in the definition of that column. (See “DEFINE COLUMN Statement”
on page 159.)

CELLSTYLE expression-1 AS <style-element-name><[style-attribute-specification(s)]>
<…, expression-n AS <style-element-name><[style-attribute-specification(s)]>>;

Required Arguments

expression
is an expression that is evaluated for each table cell that contains a numeric variable.
It can be any numeric expression that is valid in the WHERE statement (or the
WHERE= data set option). For information on expressions that you can use in the
WHERE statement, see “Statements” in SAS Language Reference: Dictionary. Use
VAL to represent the value of the current column. You may also reference symbols
that you declared in a DYNAMIC, MVAR, or NVAR statement in the table definition.

If expression resolves to TRUE (a non-zero value), the style element that is
specified is used for the current cell. If expression is FALSE (zero), the next
expression in the statement is evaluated. Thus, you can string multiple expressions
together to format cells conditionally.

220 COLUMN Statement 4 Chapter 5

Restriction: You may not reference the values of other columns in expression.
Tip: Using an expression of 1 as the last expression in the CELLSTYLE-AS

statement sets the style element for any cells that did not meet an earlier
condition.

style-attribute-specification
describes a style attribute to set. Each style-attribute-specification has this general
form:

style-attribute-name=style-attribute-value

For information on the style attributes that you can set in a table definition, see
“Style Attributes” on page 192.

Options

style-element-name
is the name of a style element that is part of a style definition that is registered with
the Output Delivery System. SAS Institute provides some style definitions. You can
create your own style definitions and style elements with PROC TEMPLATE. (See
“DEFINE STYLE Statement” on page 188.)

The style elements that you would be most likely to use with the CELLSTYLE-AS
statement are

� data
� datafixed
� dataempty
� dataemphasis
� dataemphasisfixed
� datastrong
� datastrongfixed.
The style element provides the basis for rendering the cell. Additional style

attributes that you provide can modify the rendering.

COLUMN Statement

Declares a symbol as a column in the table and specifies the order of the columns.

Featured in: Example 2 on page 238

COLUMN column(s);

Required Arguments

column
is one or more columns. If the column is defined outside the current table definition,
you must reference it by its path in the template store. Columns in the definition are
laid out from left to right in the same order that you specify them in the COLUMN
statement.

To stack values for two or more variables in the same column, put parentheses
around the variables that you want to stack. In such a case, the column header for

The TEMPLATE Procedure 4 DEFINE Statement 221

the first column inside the parentheses becomes the header for the column that
contains all the variables inside parentheses. For instance, the following COLUMN
statement produces a definition in which

� the value of NAME is in the first column by itself.
� the values of CITY and STATE appear in the second column with CITY above

STATE. The header for this column is the header that is associated with CITY.
� the values HOMEPHONE and WORKPHONE appear in the third column with

HOMEPHONE above WORKPHONE. The header for this column is the header
that is associated with HOMEPHONE.

column name (city state) (homephone workphone);

You can use the asterisk (*) in the COLUMN statement to change the layout of
stacking variables. An asterisk between groups of variables in parentheses stacks
the first item in the first set of parentheses above the first item in the next set of
parentheses, and so on until the last group of parentheses is reached. Then, the
second item in the first group is stacked above the second item in the second group,
and so on. For instance, the following COLUMN statement produces a report in
which

� the value of NAME is in the first column by itself.
� the values of CITY and HOMEPHONE appear in the second column with CITY

above HOMEPHONE. The header for this column is the header that is
associated with CITY.

� the values STATE and WORKPHONE appear in the third column with STATE
above WORKPHONE. The header for this column is the header that is
associated with STATE.

column name (city state) * (homephone workphone);

Default: If you do not use a COLUMN statement, ODS makes a column for each
column definition (DEFINE COLUMN statement), and places the columns in the
same order that the column definitions have in the table definition.

If you use a COLUMN statement but do not use a DEFINE COLUMN
statement for any of the columns, ODS uses a default column definition that is
based on the type of data in the column.

Tip: You can use a list of variable names, such as DAY1–DAY10, to specify multiple
variables.

DEFINE Statement

Creates a definition inside a table definition.

Main discussion: “DEFINE COLUMN Statement” on page 159, “DEFINE FOOTER
Statement” on page 176, and “DEFINE HEADER Statement” on page 177

DEFINE definition-type definition-name;
statements-and-attributes
END;

Required Arguments

222 DYNAMIC Statement 4 Chapter 5

definition-type
specifies the type of definition to create, where definition-type is one of the following:

COLUMN

FOOTER

HEADER
The definition-type determines what other statements and what attributes can go

in the definition. For details, see the documentation for the corresponding DEFINE
statement.

definition-name
specifies the name of the new object.
Restriction: definition-name must be a single-level name.

Note: If you want to reference the definition that you are creating from
another definition, you must create it outside the table definition. 4

DYNAMIC Statement

Defines a symbol that references a value that the data component supplies from the procedure or
DATA step.

Scope: You can use the DYNAMIC statement in the definition of a table, column,
header, or footer. A dynamic variable that is defined in a definition is available to that
definition and to all the definitions that it contains.
Featured in: Example 4 on page 252

DYNAMIC variable-1 <’text-1’> <… variable-n <’text-n’>>;

Required Arguments

variable
Names a variable that the data component supplies. ODS resolves the value of the
variable when it binds the definition and the data component.
Tip: Dynamic variables are most useful to the authors of SAS procedures and to

DATA step programmers.

Options

text
is text that you can place in the definition to explain the dynamic variable’s use. Text
of this type becomes part of the compiled definition, which you can view with the
SOURCE statement, whereas SAS comments do not.

FOOTER Statement

Declares a symbol as a footer in the table and specifies the order of the footers.

The TEMPLATE Procedure 4 HEADER Statement 223

FOOTER footer-specification(s);

Required Arguments

footer-specification
is one or more footers. If the footer is defined outside the current table definition, you
must reference it by its path in the template store. Footers in the definition are laid
out from top to bottom in the same order that you specify them in the FOOTER
statement. Each footer-specification can be

"string"
specifies the text to use for the footer. If you use a string, you do not need to use a
DEFINE FOOTER statement. However, you cannot specify any footer attributes
except for a split character. If SPLIT= is not in effect and if the first character of
the footer that you specify is neither a blank character nor an alphanumeric
character, PROC TEMPLATE treats it as the split character.
See also: SPLIT=

footer-path
is the path of the footer definition to use. A footer-path consists of one or more
names, separated by periods. Each name represents a directory in a template
store. (A template store is a type of SAS file.)

LABEL
uses the label of the output object as the footer. Each SAS procedure specifies a
label for each output object that it creates. The DATA step uses the value of the
OBJECTLABEL= option as the label of the output object. If OBJECTLABEL= is
not specified, it uses the text of the first TITLE statement as the label.

Default: If you do not use a FOOTER statement, ODS makes a footer for each
footer definition (DEFINE FOOTER statement), and places the footers in the same
order that the footer definitions have in the table definition.

HEADER Statement

Declares a symbol as a header in the table and specifies the order of the headers.

HEADER header-specification(s);

Required Arguments

header-specification
is one or more headers. If the header is defined outside the current table definition,
you must reference it by its path in the template store. Headers in the definition are
laid out from top to bottom in the same order that you specify them in the HEADER
statement. Each header-specification can be

"string"
specifies the text to use for the header. If you use a string, you do not need to use
a DEFINE HEADER statement. However, you cannot specify any header
attributes except for a split character. If SPLIT= is not in effect and if the first
character of the header that you specify is neither a blank character nor an
alphanumeric character, PROC TEMPLATE treats it as the split character.

224 MVAR Statement 4 Chapter 5

See also: SPLIT=

header-path
is the path of the header definition to use. A header-path consists of one or more
names, separated by periods. Each name represents a directory in a template
store. (A template store is a type of SAS file.)

LABEL
uses the label of the output object as the header. Each SAS procedure specifies a
label for each output object that it creates. The DATA step uses the value of the
OBJECTLABEL= option as the label of the output object. If OBJECTLABEL= is
not specified, it uses the text of the first TITLE statement as the label.

Default: If you do not use a HEADER statement, ODS makes a header for each
header definition (DEFINE HEADER statement), and places the headers in the
same order that the header definitions have in the table definition.

Featured in: Example 2 on page 238

MVAR Statement

Defines a symbol that references a macro variable. ODS will use the value of the variable as a
string. References to the macro variable are resolved when ODS binds the definition and the data
component to produce an output object.

Scope: You can use the MVAR statement in the definition of a table, column, header, or
footer. A macro variable that is defined in a definition is available to that definition and
to all the definitions that it contains.
Featured in: Example 2 on page 238 and Example 4 on page 252

MVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

Required Arguments

variable
Names a macro variable to reference in the definition. ODS will use the value of the
macro variable as a string. ODS does not resolve the value of the macro variable
until it binds the definition and the data component.
Tip: You must declare macro variables this way in a definition. For example, to use

the automatic macro variable SYSDATE9 in a definition, declare it in an MVAR
statement and reference it as SYSDATE9, without an ampersand, in your PROC
TEMPLATE step. If you use the ampersand, the macro resolves when the
definition is compiled instead of when ODS binds the definition to the data
component.

Options

text
is text that you can place in the definition to explain the macro variable’s use. Text of
this type becomes part of the compiled definition, which you can view with the
SOURCE statement, whereas SAS comments do not.

The TEMPLATE Procedure 4 NOTES Statement 225

NMVAR Statement

Defines a symbol that references a macro variable. ODS will convert the variable’s value to a
number (stored as a double) before using it. References to the macro variable are resolved when
ODS binds the definition and the data component to produce an output object.

Scope: You can use the NMVAR statement in the definition of a table, column, header,
or footer. A macro variable that is defined in a definition is available to that definition
and to all the definitions that it contains.

Featured in: Example 3 on page 247

NMVAR variable-1 <’text-1’> <… variable-n <’text-n’>>;

Required Arguments

variable
Names a macro variable to reference in the definition. ODS will convert the
variable’s value to a number (stored as a double) before using it. ODS does not
resolve the macro variable until it binds the definition and the data component.

Tip: You must declare macro variables this way in a definition. For instance, to use
a macro variable as a number, declare it in an NMVAR statement and reference it
without an ampersand. If you use the ampersand, the macro resolves when the
definition is compiled instead of when ODS binds the definition to the data
component.

Options

text
is text that you can place in the definition to explain the macro variable’s use. Text of
this type becomes part of the compiled definition, which you can view with the
SOURCE statement, whereas SAS comments do not.

NOTES Statement

Provides information about the table.

Tip: The NOTES statement becomes part of the compiled column definition, which you
can view with the SOURCE statement, whereas SAS comments do not.

Featured in: Example 3 on page 247

NOTES ’text’;

Required Arguments

226 TRANSLATE-INTO Statement 4 Chapter 5

text
provides information about the table.

TRANSLATE-INTO Statement

Translates the specified numeric values to other values.

Restriction: The TRANSLATE-INTO statement in a table definition applies only to
numeric variables. To translate the values of a character variable, use
TRANSLATE-INTO in the definition of that column. (See “DEFINE COLUMN
Statement” on page 159).

Featured in: Example 3 on page 247

TRANSLATE expression-1 INTO expression-2 <…, expression-n INTO expression-m>;

Required Arguments

expression-1
is an expression that is evaluated for each table cell that contains a numeric variable.
It can be any numeric expression that is valid in the WHERE statement (or the
WHERE= data set option). For information on expressions that you can use in the
WHERE statement, see “Statements” in SAS Language Reference: Dictionary. Use
VAL to represent the value of the current column. You may also reference symbols
that you declared in a DYNAMIC, MVAR, or NVAR statement in the table definition.

If expression-1 resolves to TRUE (a non-zero value), the translation that is
specified is used for the current cell. If expression-1 is FALSE (zero), the next
expression in the statement is evaluated. Thus, you can string multiple expressions
together to format cells conditionally.

Restriction: You may not reference the values of other columns in expression-1.

Tip: Using an expression of 1 as the last expression in the TRANSLATE–INTO
statement specifies a translation for any cells that did not meet an earlier
condition.

expression-2
is an expression that specifies the value to use in the cell in place of the variable’s
actual value. It can be any expression that is valid in the WHERE statement (or the
WHERE= data set option). For information on expressions that you can use in the
WHERE statement, see “Statements” in SAS Language Reference: Dictionary. Use
VAL to represent the value of the current column. You may also reference symbols
that you declared in a DYNAMIC, MVAR, or NVAR statement in the table definition.

Restriction: expression-2 must resolve to a character value, not a numeric value.

Restriction: You may not reference the values of other columns in expression-2.

Tip: When you translate a numeric value to a character value, the table definition
does not try to apply the numeric format that is associated with the column.
Instead, it simply writes the character value into the format field, starting at the
left. If you want the value to be right justified, use the JUSTIFY=ON attribute.

See also: JUSTIFY= on page 215

The TEMPLATE Procedure 4 EDIT Statement 227

END Statement

Ends the table definition.

END;

DELETE Statement

Deletes the specified definitions.

DELETE definition-path;

Required Arguments

definition-path
specifies a definition to delete. A definition-path consists of one or more names,
separated by periods. Each name represents a directory in a template store. (A
template store is a type of SAS file.) If the same definition exists in multiple
template stores, PROC TEMPLATE deletes the definition from the first template
store in the current path that the user can write to.

CAUTION:
Deleting a Directory in a Template Store If the path that you specify is a directory
rather than a definition, PROC TEMPLATE deletes all the definitions in that
directory. 4

EDIT Statement

Edits an existing definition for a table, column, header, or footer

Requirement: An END statement must follow the EDIT statement, after all the editing
instructions.

Interaction: In some cases, you can use an EDIT statement inside a set of editing
instructions.

When you edit a table, you can also edit one or more columns, headers, or footers
that are defined in the table.

When you edit a column definition, you can also edit one or more headers that are
defined for that column.

Restriction: If you edit a definition that is a link, you break the link and create a
separate definition.

Featured in: Example 1 on page 233

228 EDIT Statement 4 Chapter 5

EDIT definition-path-1 <AS definition-path-2 > </ STORE=libname.template-store>;
statements-and-attributes
END;

Required Arguments

definition-path-1
specifies a definition to edit. definition-path-1 consists of one or more names,
separated by periods. Each name represents a directory in a template store. (A
template store is a type of SAS file.)

There are two steps to editing: opening a copy of the specified file and saving the
modified file. By default, PROC TEMPLATE looks for definition-path-1 in the list of
template stores that is defined by the PATH statement (see “PATH Statement” on
page 231). It opens a copy of the first one that it finds in a template store that you
can read. PROC TEMPLATE writes the modified definition to the first template store
in the current path that you can write to. If you do not specify a second
definition-path to write to, it uses definition-path-1. Therefore, if you have update
access to the template store from which you read definition-path-1, you actually
modify the original definition. Otherwise, the modified file is written to a template
store to which you do have update access.

If you do specify a second definition-path, PROC TEMPLATE writes the edited
definition to the specified path in the first template store to which you have write
access.
Interaction: The STORE= option specifies a particular template store to read from

and to write to.
Tip: You can determine what definitions a procedure or DATA step uses by

submitting the ODS TRACE ON statement before you run the SAS program (see
“ODS TRACE Statement” on page 71).

Options

AS definition-path-2
specifies the location in which to store the edited definition, where definition-path-2
consists of one or more names, separated by periods. Each name represents a
directory in a template store. (A template store is a type of SAS file.) By default,
PROC TEMPLATE writes the edited definition to the first template store that you
can write to in the current path.
Default: If you do not specify AS definition-path-2, PROC TEMPLATE writes the

edited definition to definition-path-1 in the first template store that you can write
to.

Restriction: You cannot use AS if the current EDIT statement is inside a set of
editing instructions.

STORE=libname.template-store
specifies the template store in from which to read definition-path-1 and in which to
store definition-path-2.
Availability: Version 8 of the SAS System

Statements and Attributes
The EDIT statement supports the same statements and attributes as the DEFINE

statement. For more information, see “DEFINE Statement” on page 157.

The TEMPLATE Procedure 4 LIST Statement 229

LINK Statement

Creates a link to an existing definition.

LINK definition-path-1 definition-path-2 </ NOTES=’text’;>

Creating a link to a definition has the same effect as creating a new definition that
inherits its characteristics from another definition (see the discussion of PARENT= on
page 216). However, using a link is more efficient than using inheritance because
linking does not actually create a new definition.

Note: To maximize efficiency, PROC TEMPLATE implements any definition that
consists solely of the declaration of a parent and of notes as a link. 4

Required Arguments

definition-path-1
specifies the path of the definition to create. PROC TEMPLATE creates the definition
in the first template store in the path that you can write to.

definition-path-2
specifies the path of the definition to link to. If the same definition exists in multiple
template stores, PROC TEMPLATE uses the one from the first template store in the
current path that you can read.

Tip: PROC TEMPLATE does not confirm that definition-path-2 exists when it
compiles the defintion.

Options

NOTES= ’text’
specifies notes to store in the definition.

Tip: Notes of this type become part of the compiled definition, which you can view
with the SOURCE statement, whereas SAS comments do not.

LIST Statement

Lists the definitions in one or more template stores.

Availability: Version 8 of the SAS System

LIST <starting-path></ option(s)>;

Options

230 LIST Statement 4 Chapter 5

starting-path
specifies a level within each template store where PROC TEMPLATE starts listing
definitions. For instance, if starting-path is base.univariate, PROC TEMPLATE
lists only base.univariate and the items within it and within all the levels that it
contains.
Default: If you do not specify a starting-path, the LIST statement lists all

definitions in the specified template stores.
Restriction: This option must precede the forward slash (/) in the LIST statement.

SORT=statistic <sorting-order>
sorts the list of definitions by the specified statistic in the specified sorting order.

statistic
can be one of the following:

CREATED
is the date that the definition was created.

NOTES
is the content of any NOTES statement in the PROC TEMPLATE step that
created the item.
Alias: LABEL

LINK
is the name of the definition that the current definition links to (see “LINK
Statement” on page 229).

PATH
is the path to the current definition in the template store. (The path does not
include the name of the template store).

SIZE
is the size of the definition.

TYPE
is the type of definition: COLUMN, FOOTER, HEADER, LINK, STYLE, or
TABLE. If the item is not a definition, but simply a level in the item store, its
type is DIR.

Default: PATH

sorting-order
specifies whether SORT= sorts from low values to high values or from high values
to low values.

ASCENDING
sorts from low values to high values.
Alias: A

DESCENDING
sorts from high values to low values.
Alias: D

Default: ASCENDING

STATS=ALL | (statistic-1 <, … statistic-n>)
specifies the information to include in the list of definitions.

ALL
includes all available information.

(statistic-1 <, … statistic-n>)
includes the specified information. statistic can be one or more of the following:

The TEMPLATE Procedure 4 PATH Statement 231

CREATED
is the date that the definition was created.

NOTES
is the content of any NOTES statement in the PROC TEMPLATE step that
created the item.
Alias: LABEL

LINK
is the name of the definition that the current definition links to (see “LINK
Statement” on page 229).

SIZE
is the size of the definition.

Default: Whether or not you specify STATS=, the list of definitions always includes
an observation number, the path to the definition, and its type.

STORE=’libname.template-store’
specifies the template store to process.
Default: all template stores in the current template path (see “PATH Statement” on

page 231).

PATH Statement

Specifies which locations to search for definitions that were created by PROC TEMPLATE, as well
as the order in which to search for them. This statement overrides the ODS PATH statement for
the duration of the PROC TEMPLATE step.

PATH location(s);

Required Arguments

location(s)
specifies one or more locations to search for definitions that were created by PROC
TEMPLATE. ODS searches the locations in the order that they appear on the
statement. It uses the first definition that it finds that has the appropriate access
mode (read, write, or update) set. Each use of the PATH statement completely
re-establishes the list of paths.

Each location has the following form:

<libname.>item-store <(READ | UPDATE | WRITE)>

<libname>.item-store
identifies an item store that contains style definitions, table definitions, or both.

(READ | UPDATE | WRITE)
specifies the access mode for the definition, where

READ
provides read-only access.

232 SOURCE Statement 4 Chapter 5

WRITE
provides write access (overwriting an existing definition) as well as read access.

UPDATE
provides update access (adding to the existing definition) as well as read access.

Default: If you do not use the PATH statement, PROC TEMPLATE uses the
current path list. The path list is set by the ODS PATH statement (see “ODS
PATH Statement” on page 64.) You can see this list by submitting the following
statement:

ods path show;

Tip: If you want to be able to ignore all user-defined definitions, keep them in their
own item stores so that you can leave them out of the list of items stores that ODS
searches.

SOURCE Statement

Writes the source code for the specified definition to the SAS log.

SOURCE definition-path </ FILE=’file-specification’>;

Required Arguments

definition-path
specifies the path of the definition to display. If the same definition exists in multiple
template stores, PROC TEMPLATE uses the one from the first template store in the
current path that you can read.
Tip: PROC TEMPLATE stores definitions in compiled form. The SOURCE

statement actually decompiles the definition. Because SAS comments are not
compiled, comments that are in the source code do not appear when you decompile
the definition. If you want to annotate your definition, use the NOTES statement
inside the definition or the block of editing instructions, or use the NOTES= option
in the LINK statement. These notes do become part of the compiled definition.
(See “NOTES Statement” on page 225 and the discussion of the NOTES= option on
page 229. You can also specify notes as quoted strings in the DYNAMIC, MVAR,
NMVAR, REPLACE, and STYLE statements.

Options

FILE=’file-specification’
specifies a file to write the definition to.

file-specification can be one of the following:

’external-file’
is the name of an external file to write to.

fileref
is a fileref that has been assigned to an external file. Use the FILENAME
statement to assign a fileref. (For information on the FILENAME statement, see
“Statements” in SAS Language Reference: Dictionary.)

The TEMPLATE Procedure 4 Example 1: Customizing a Table Definition that a SAS Procedure Uses 233

Default: If you don’t specify FILE=, the SOURCE statement writes to the SAS log.

TEST Statement

Tests the most recently created definition by binding it to the specified data set.

TEST DATA=SAS-data-set </ STORE=libname.template-store>;

Required Arguments

DATA=SAS-data-set
specifies the data set to bind to the most recently created definition. ODS sends this
output object to all open ODS destinations.

Options

STORE=libname.template-store
specifies the template store in which the most recently created definition was stored.
If you specify this option, the template store that you specify must match the
template store in the DEFINE statement that created the definition.
Availability: Version 8 of the SAS System

Examples

Example 1: Customizing a Table Definition that a SAS Procedure Uses

PROC TEMPLATE features:
EDIT statement
Header attributes

JUST=
STYLE=

Table attributes
DOUBLE_SPACE=
OVERLINE=
UNDERLINE=

Other ODS features:
ODS HTML statement
ODS SELECT statement

Data set: STATEPOP on page 73

234 Program 1: Using the Table Definition that SAS Provides 4 Chapter 5

This example customizes the table definition for the Moments output object from
PROC UNIVARIATE. The first program uses the table definition that SAS Institute
supplies to generate both Listing and HTML output of the Moments object.

The second program
� Creates and edits a copy of the default template.
� Edits a header within the template.
� Sets column attributes to enhance the appearance of both the HTML and the

Listing output.

Note: This example uses file names that may not be valid in all operating
environments. To successfully run the example in your operating environment, you may
need to change the file specifications. See Appendix 1, “Alternative ODS HTML
Statements for Running Examples in Different Operating Environments,” on page
275. 4

Program 1: Using the Table Definition that SAS Provides

The OPTIONS statement controls several aspects of the Listing output. None of these options
affects the HTML output.

options nodate pageno=1 pagesize=60 linesize=72;

The ODS HTML statement opens the HTML destination and creates HTML output. It sends all
output objects to the external file defaultmoments-body.htm in the current directory. Some
browsers require an extension of .HTM or .HTML on the filename.

ods html body=’defaultmoments-body.htm’;

The ODS SELECT statement sends one output object, Moments, to the open ODS destinations.
Both the Listing and the HTML destinations are open. (To learn the names of the output objects,
run the procedure with the ODS TRACE ON statement in effect. See Example 1 on page 73.)

ods select moments;

PROC UNIVARIATE computes the univariate statistics for one variable, CityPop_90. It uses the
default table definition, base.univariate.moments from the template store
sashelp.tmplmst.

proc univariate data=statepop mu0=3.5;
var citypop_90;

title ’Default Moments Table’;
run;

The TEMPLATE Procedure 4 Program 2: Using a Customized Table Definition 235

The ODS HTML statement closes the HTML destination and all the files that are associated
with it. You must close the destination before you can view the output with a browser.

ods html close;

Default Listing Output

Output 5.1 Listing Output from PROC UNIVARIATE (Default Moments Table)

Default Moments Table 1

The UNIVARIATE Procedure
Variable: CityPop_90 (1990 metropolitan pop in millions)

Moments

N 51 Sum Weights 51
Mean 3.87701961 Sum Observations 197.728
Std Deviation 5.16465302 Variance 26.6736408
Skewness 2.87109259 Kurtosis 10.537867
Uncorrected SS 2100.27737 Corrected SS 1333.68204
Coeff Variation 133.21194 Std Error Mean 0.72319608

Default HTML Output

Display 5.10 HTML Output from PROC UNIVARIATE (Default Moments Table)

Program 2: Using a Customized Table Definition

236 Program 2: Using a Customized Table Definition 4 Chapter 5

This statement specifies which locations to search for definitions that were created by PROC
TEMPLATE, as well as the order in which to search for them. The statement is included to
ensure that the example works correctly. However, if you have not changed the path, you do not
need to include this statement because it specifies the default path.

ods path sasuser.templat(update) sashelp.tmplmst(read);

The EDIT statement looks in the available template stores for a table definition called
base.univariate.moments. By default, it first looks in SASUSER.TEMPLAT, but it finds
nothing. Next, it looks in SASHELP.TMPLMST, which contains the table definitions that SAS
Institute provides. Because EDIT can read this definition, this is the one that it uses. The
program does not specify a destination for the edited definition, so PROC TEMPLATE writes to
the first template store in the path that it can write to, which is SASUSER.TEMPLAT.
Therefore, it creates a table definition of the same name as the original one in
SASUSER.TEMPLAT. (See “ODS PATH Statement” on page 64).

(To learn the name of the table definition that a procedure uses, you run the procedure with the
ODS TRACE ON statement in effect. See Example 1 on page 73).

proc template;
edit base.univariate.moments;

These three table attributes affect the presentation of the Moments output object in the Listing
output. They have no effect on its presentation in the HTML output. DOUBLE_SPACE= double
spaces between the rows of the output object. OVERLINE= and UNDERLINE= draw a
continuous line before the first row of the table and after the last row of the table.

double_space=on;
underline=on;
overline=on;

This EDIT statement edits the table element head within the table definition.

edit head;

The STYLE= attribute alters the style element that renders the head table element. The style
element header is defined in the default style definition, styles.default. Many procedures,
including PROC UNIVARIATE, use this style element to render headers for tables and columns.
(For information on viewing a style definition, see “Customizing Presentation Aspects of ODS
Output” on page 42.) In this case, the STYLE= attribute specifies green for the foreground color
and italic for the font style. All other attributes that are included in header remain in effect.
The STYLE= attribute affects only the HTML output.

style=header{foreground=green font_style=italic};

The JUST= attribute left-justifies the text of the header in both the Listing and the HTML
output.

just=left;

The TEMPLATE Procedure 4 Program 2: Using a Customized Table Definition 237

The first END statement ends the editing of the the table element head. The second END
statement ends the editing of the table base.univariate.moments.

end;
end;

run;

The ODS HTML statement opens the HTML destination and creates HTML output. It sends all
output objects to the external file custommoments-body.htm in the current directory. Some
browsers require an extension of .htm or .html on the filename.

ods html body=’custommoments-body.htm’;

The ODS SELECT statement sends one output object, Moments, to the open ODS destinations.
Both the Listing and HTML destinations are open. (To learn the names of the output objects,
run the procedure with the ODS TRACE ON statement in effect. See Example 1 on page 73.)

ods select moments;

PROC UNIVARIATE computes the univariate statistics for one variable, CityPop_90. This is the
same PROC UNIVARIATE step that was used in “Program 1: Using the Table Definition that
SAS Provides” on page 234. The actual results of the procedure step are the same in this case,
but they are presented differently because the procedure uses the edited table definition. It does
so because when it looks for base.univariate.moments, it looks in the first template store in
the path, SASUSER.TEMPLAT. If you wanted to use the Institute-supplied table definition at
this point, you would have to change the path with the ODS PATH statement (see “ODS PATH
Statement” on page 64).

proc univariate data=statepop mu0=3.5;
var citypop_90;

title ’Custom Moments Table’;
run;

The ODS HTML statement closes the HTML destination and all the files that are associated
with it. You must close the destination before you can view the output with a browser.

ods html close;

238 Customized Listing Output 4 Chapter 5

Customized Listing Output

Output 5.2 Listing Output from PROC UNIVARIATE (Customized Moments Table)

Custom Moments Table 1

The UNIVARIATE Procedure
Variable: CityPop_90 (1990 metropolitan pop in millions)

Moments

N 51 Sum Weights 51

Mean 3.87701961 Sum Observations 197.728

Std Deviation 5.16465302 Variance 26.6736408

Skewness 2.87109259 Kurtosis 10.537867

Uncorrected SS 2100.27737 Corrected SS 1333.68204

Coeff Variation 133.21194 Std Error Mean 0.72319608

Customized HTML Output

Display 5.11 HTML Output from PROC UNIVARIATE (Customized Moments Table)

Example 2: Creating a New Table Definition
PROC TEMPLATE features:

Table attributes:

The TEMPLATE Procedure 4 Program 1: Producing an Output Data Set with PROC MEANS 239

DOUBLE_SPACE=
OVERLINE=
UNDERLINE=

DEFINE TABLE statement:

COLUMN statement
DEFINE statement (for columns)

GENERIC= attribute
HEADER= attribute
ID= attribute
STYLE= attribute
VJUST= attribute

DEFINE statement (for headers)

TEXT statement
STYLE= attribute
SPACE= attribute

DEFINE FOOTER statement
HEADER statement
MVAR statement

Other ODS features:
ODS HTML statement

FILE statement with ODS= option

PUT statement with _ODS_ argument

This example creates a custom table definition for an output data set that PROC
MEANS produces.

Note: This example uses file names that may not be valid in all operating
environments. To successfully run the example in your operating environment, you may
need to change the file specifications. See Appendix 1, “Alternative ODS HTML
Statements for Running Examples in Different Operating Environments,” on page
275. 4

Program 1: Producing an Output Data Set with PROC MEANS

The OPTIONS statement controls several aspects of the Listing output. None of these options
affects the HTML output.

options nodate pageno=1 pagesize=60 linesize=72;

PROC FORMAT creates formats for Year and School.

proc format;
value yrFmt . = " All";
value $schFmt ’ ’ = "All ";
run;

240 Program 1: Producing an Output Data Set with PROC MEANS 4 Chapter 5

The data set Charity contains information about high-school students’ volunteer work for charity.
The variables give the name of the high school, the year of the fundraiser, the first name of each
student, the amount of money that each student raised, and the number of hours that each
student volunteered. The RETAIN statement and two sum statements compute the minimum
and maximum values of Year. The CALL SYMPUT statements store these values in the macro
variables FIRST_YEAR and LAST_YEAR. A DATA step on page 279 creates this data set.

data Charity;
input School $ 1-7 Year 9-12 Name $ 14-20 moneyRaised 22-26

hoursVolunteered 28-29;
format moneyRaised dollar8.2;
format hoursVolunteered f3.0;
format Year yrFmt.;
format School schFmt.;
label School = "Schools";
label Year = "Years";
retain yearmin yearmax;
yearmin=min(yearmin,year);
yearmax=max(yearmax,year);
call symput(’first_year’,put(yearmin,4.));
call symput(’last_year’, put(yearmax,4.));
datalines;

Monroe 1992 Allison 31.65 19
Monroe 1992 Barry 23.76 16
Monroe 1992 Candace 21.11 5

… more lines of data …

Kennedy 1994 Sid 27.45 25
Kennedy 1994 Will 28.88 21
Kennedy 1994 Morty 34.44 25
;

This PROC MEANS step analyzes the data for the one-way combination of the class variables
and across all observations. It creates an output data set that includes variables for the total
and average amount of money raised. The data set also includes new variables for the top three
amounts of money raised, the names of the three students who raised the money, the years
when the students raised the money, and the schools that the students attended.

For a detailed explanation of a similar PROC MEANS step, see the example “Identifying the
Top Three Extreme Values with the Output Statistics” in the documentation for the MEANS
procedure in SAS Procedures Guide.

proc means data=Charity descendTypes charType noprint;
class School Year;
var moneyRaised;
types () School year;
output out=top3list sum= mean=

idgroup (max(moneyRaised) out[3](moneyRaised name school year)=)
/ autoname;

run;

This PROC PRINT step generates traditional Listing output of the output data set that PROC
MEANS created.

proc print data=top3list noobs;
title ’Simple PROC PRINT of the Output Data Set’;

The TEMPLATE Procedure 4 Program 2: Building a Custom Table Definition for the TopN Report 241

run;

Listing Output from PROC PRINT

Output 5.3 PROC PRINT Listing Output for the Output Data Set from PROC MEANS

Simple PROC PRINT of the Output Data Set 1

money money
Raised_ Raised_ money money money

School Year _TYPE_ _FREQ_ Sum Mean Raised_1 Raised_2 Raised_3

Kennedy All 10 53 $1575.95 $29.73 $72.22 $52.63 $43.89
Monroe All 10 56 $1616.80 $28.87 $78.65 $65.44 $56.87
All 1992 01 31 $892.92 $28.80 $55.16 $53.76 $52.63
All 1993 01 32 $907.92 $28.37 $65.44 $47.33 $42.23
All 1994 01 46 $1391.91 $30.26 $78.65 $72.22 $56.87
All All 00 109 $3192.75 $29.29 $78.65 $72.22 $65.44

Name_1 Name_2 Name_3 School_1 School_2 School_3 Year_1 Year_2 Year_3

Luther Thelma Jenny Kennedy Kennedy Kennedy 1994 1992 1992
Willard Cameron L.T. Monroe Monroe Monroe 1994 1993 1994
Tonya Edward Thelma Monroe Monroe Kennedy 1992 1992 1992
Cameron Myrtle Bill Monroe Monroe Kennedy 1993 1993 1993
Willard Luther L.T. Monroe Kennedy Monroe 1994 1994 1994
Willard Luther Cameron Monroe Kennedy Monroe 1994 1994 1993

Program 2: Building a Custom Table Definition for the TopN Report

The OPTIONS statement controls several aspects of the Listing output. None of these options
affects the HTML output.

options nodate pageno=1 pagesize=60 linesize=72;

The ODS HTML statement opens the HTML destination and creates HTML output. It sends all
output objects to the external file topn-body.htm in the current directory. Some browsers
require an extension of .htm or .html on the filename.

column name (city state) * (homephone workphone);

ods html body=’topn-body.htm’;

The DEFINE statement creates the table definition means.topn in the first template store in
the path that is available to write to. By default, this template store is SASUSER.TEMPLAT.

proc template;
define table means.topn;

The MVAR statement defines three symbols that reference macro variables. ODS will use the
values of these variables as strings. References to the macro variables are resolved when ODS
binds the definition and the data component to produce an output object. FIRST_YEAR and
LAST_YEAR will contain the values of the first and last years for which there are data. Their
values are assigned by the SYMPUT statements in the DATA step. SYSDATE9 is an automatic
macro variable whose value is always available.

mvar first_year last_year sysdate9;

242 Program 2: Building a Custom Table Definition for the TopN Report 4 Chapter 5

The COLUMN statement declares these symbols as columns in the table and specifies their
order in the table. If a column name appears in parentheses, PROC TEMPLATE stacks the
values of all variables that use that column definition one below the other in the output object.
Variables are assigned a column definition in the DATA step that appears later in the program.

column class sum mean (raised) (name) (school) (year);

These three table attributes affect the presentation of the output object in the Listing output.
They have no effect on its presentation in the HTML output. DOUBLE_SPACE= double spaces
the rows of the output object. OVERLINE= and UNDERLINE= draw a continuous line before
the first row of the table and after the last row of the table.

double_space=on;
overline=on;
underline=on;

The HEADER statement declares table_header_1 and table_header_2 as headers in the
table and specifies the order in which the headers appear in the output object.

header table_header_1 table_header_2;

The DEFINE statement and its substatement and attribute define table_header_1. The
TEXT statement specifies the text of the header. The STYLE= attribute alters the style element
that renders the table header. The style element header is defined in the default style
definition, styles.default. (For information on viewing a style definition, see “Customizing
Presentation Aspects of ODS Output” on page 42.) In this case, the STYLE= attribute specifies a
large font size. All other attributes that are included in header remain in effect. This attribute
affects only the HTML output.

The END statement ends the header definition.

define table_header_1;
text "Top Three Fund Raisers";
style=header{font_size=6};

end;

The DEFINE statement and its substatement and attribute define table_header_2. The
TEXT statement uses text and the macro variables FIRST_YEAR and LAST_YEAR to specify
the contents of the header. When ODS binds the data component to the table definition (in the
DATA step that follows), it will resolve the values of the macro variables FIRST_YEAR and
LAST_YEAR. The table definition itself contains references to the macro variables.

The SPACE= attribute inserts a blank line after the header (in the Listing output only).

The END statement ends the header definition.

define table_header_2;
text "from " first_year " to " last_year;
space=1;

end;

The TEMPLATE Procedure 4 Program 2: Building a Custom Table Definition for the TopN Report 243

The DEFINE statement and its substatement and attribute define table_footer. The
FOOTER argument declares table_footer as a footer. (Compare this approach with the
creation of the headers. You could use a FOOTER statement instead of the FOOTER argument
in the DEFINE statement.)

The TEXT statement specifies the text of the footer. When ODS binds the data component to the
table definition (in the DATA step that follows), it will resolve the value of the macro variable
SYSDATE9. The table definition itself contains a reference to the macro variable. The SPLIT=
attribute specifies the asterisk as the split character. This prevents the header from splitting at
the open parenthesis. If no split character were specified, ODS would interpret the
nonalphabetic, leading character as the split character (see the discussion of text-specification(s)
in “TEXT Statement” on page 187.) Alternatively, you could place a space character before the
open parenthesis.

The STYLE= attribute alters the style element that renders the table header. The style element
header is defined in the default style definition, styles.default. (For information on viewing
a style definition, see “Customizing Presentation Aspects of ODS Output” on page 42.) In this
case, the STYLE= attribute specifies a small font size. All other attributes that are included in
header remain in effect. This attribute affects only the HTML output.

The END statement ends the footer definition.

define footer table_footer;
text "(report generated on " sysdate9 ")";
split="*";
style=header{font_size=2};

end;

The DEFINE statement and its attributes create the column definition class. (The COLUMN
statement earlier in the program declared class as a column.) GENERIC= specifies that
multiple variables can use the same column definition. ID= specifies that this column should be
repeated on every data panel if the report uses multiple data panels. VJUST= specifies that the
text appear at the top of the HTML table cell that it is in. STYLE= specifies that the column
uses the DATA table element. This table element is defined in the default style definition, which
is the style definition that is being used.VJUST= and STYLE= affect only the HTML output.
ID= affects only the Listing output. GENERIC= is not specific to a destination. The END
statement ends the definition.

Notice that, unlike subsequent column definitions, this column definition does not include a
header. This is because the same header is not appropriate for all the variables that use this
column definition. Because there is no header specified here or in the FILE statement, the
header comes from the label that was assigned to the variable in the DATA step.

define class;
generic=on;
id=on;
vjust=top;
style=data;

end;

Each of these DEFINE statements and its attributes creates a column definition. GENERIC=
specifies that multiple variables can use a column definition (although in the case of sum and
mean, only one variable uses the definition). HEADER= specifies the text for the column header.
VJUST= specifies that the text appear at the top of the HTML table cell that it is in. The END
statement ends the definition.

define sum;
generic=on;
header="Total Dollars Raised";

244 Program 2: Building a Custom Table Definition for the TopN Report 4 Chapter 5

vjust=top;
end;

define mean;
generic=on;
header="Average Dollars per Student";
vjust=top;

end;

define raised;
generic=on;
header="Individual Dollars";

end;

define name;
generic=on;
header="Student";

end;

define school;
generic=on;
header="School";

end;

define year;
generic=on;
header="Year";

end;

This END statement ends the table definition. The RUN statement ends the PROC TEMPLATE
step.

end;
run;

This DATA step does not create a data set. Instead, it creates a data component and, eventually,
an output object. The SET statement reads the data set TOP3LIST, which PROC MEANS
created.

data _null_;
set top3list;

The combination of the fileref PRINT and the ODS option in the FILE statement routes the
results of the DATA step to ODS. (For more information on using the DATA step with ODS, see
Chapter 4, “Using the Output Delivery System in the DATA Step,” on page 105.) The
TEMPLATE= suboption tells ODS to use the table definition named means.topn, which was
just created with PROC TEMPLATE.

file print ods = (
template=’means.topn’

The COLUMNS= suboption places DATA step variables into columns that are defined in the
table definition. For instance, the first column-specification specifies that the first column of the
output object contains the values of the variable SCHOOL and that it uses the column definition
named class. GENERIC= must be set to ON in both the table definition and each column
assignment in order for multiple variables to use the same column definition.

The TEMPLATE Procedure 4 Listing Output for the TopN Report 245

columns=(
class=school(generic=on)
class=year(generic=on)
sum=moneyRaised_sum(generic=on)
mean=moneyRaised_mean(generic=on)
raised=moneyRaised_1(generic=on)
raised=moneyRaised_2(generic=on)
raised=moneyRaised_3(generic=on)
name=name_1(generic=on)
name=name_2(generic=on)
name=name_3(generic=on)
school=school_1(generic=on)
school=school_2(generic=on)
school=school_3(generic=on)
year=year_1(generic=on)
year=year_2(generic=on)
year=year_3(generic=on)
)

);

The _ODS_ option and the PUT statement write the data values for all columns to the data
component.

put _ods_;
run;

The ODS HTML statement closes the HTML destination and all the files that are associated
with it. You must close the destination before you can view the output with a browser.

ods html close;

Listing Output for the TopN Report
Compare this customized output to the PROC PRINT Listing output in Output 5.3 on

page 241.

246 HTML Output for the TopN Report 4 Chapter 5

Output 5.4 Using a Customized Table to Produce Listing Output

1
Top Three Fund Raisers

from 1992 to 1994

Average
Total Dollars

Dollars per Individual
Schools Years Raised Student Dollars Student School Year
--
Kennedy All $1575.95 $29.73 $72.22 Luther Kennedy 1994

$52.63 Thelma Kennedy 1992
$43.89 Jenny Kennedy 1992

Monroe All $1616.80 $28.87 $78.65 Willard Monroe 1994
$65.44 Cameron Monroe 1993
$56.87 L.T. Monroe 1994

All 1992 $892.92 $28.80 $55.16 Tonya Monroe 1992
$53.76 Edward Monroe 1992
$52.63 Thelma Kennedy 1992

All 1993 $907.92 $28.37 $65.44 Cameron Monroe 1993
$47.33 Myrtle Monroe 1993
$42.23 Bill Kennedy 1993

All 1994 $1391.91 $30.26 $78.65 Willard Monroe 1994
$72.22 Luther Kennedy 1994
$56.87 L.T. Monroe 1994

All All $3192.75 $29.29 $78.65 Willard Monroe 1994
$72.22 Luther Kennedy 1994
$65.44 Cameron Monroe 1993

--
(report generated on 12MAR1999)

HTML Output for the TopN Report

The TEMPLATE Procedure 4 Program 247

Example 3: Setting the Style Element for Cells Based on Their Values

PROC TEMPLATE features:
DEFINE TABLE statement

NMVAR statement
NOTES statement
TRANSLATE-INTO statement

DEFINE COLUMN statement

BLANK_DUPS= attribute
CELLSTYLE-AS statement
GENERIC= attribute

Other ODS features:
ODS HTML statement
FILE statement with ODS= option
PUT statement with _ODS_ argument

Data set: GRAIN_PRODUCTION on page 93

Format: $CNTRY. on page 94

This example creates a template that uses different colors for the text inside cells,
depending on their values.

Note: This example uses file names that may not be valid in all operating
environments. To successfully run the example in your operating environment, you may
need to change the file specifications. See Appendix 1, “Alternative ODS HTML
Statements for Running Examples in Different Operating Environments,” on page
275. 4

Program

The OPTIONS statement controls several aspects of the Listing output. None of these options
affects the HTML output. The TITLE statement specifies a title.

options nodate pageno=1 pagesize=60 linesize=72;
title ’Leading Grain Producers’;

The DEFINE statement creates the table definition shared.cellstyle in the first template
store in the path that is available to write to. By default, this template store is
SASUSER.TEMPLAT.

proc template;
define table shared.cellstyle;

The TRANSLATE-INTO statement translates missing values (.) into the string No data.

translate _val_=. into ’No data’;

248 Program 4 Chapter 5

The NOTES statements provides information about the table. NOTES statements remain a part
of the compiled table definition whereas SAS comments do not.

notes "NMVAR defines symbols that will be used";
notes "to determine the colors of the cells.";

The NMVAR statement defines three symbols that reference macro variables. ODS will convert
the variable’s values to numbers (stored as doubles) before using them. References to the macro
variables are resolved when ODS binds the definition and the data component to produce an
output object. The text inside quotation marks provides information about the symbols. This
information becomes a part of the compiled table definition whereas SAS comments do not.

LOW, MEDIUM, and HIGH will contain the values to use as the determinants of the style
element that is used to render the cell. The values are provided just before the DATA step that
produces the report.

nmvar low ’Use default style.’
medium ’Use yellow foreground and bold font weight’
high ’Use red foreground and a bold, italic font.’;

The CLASSLEVELS= attribute suppresses the blanking of the value in a column that is marked
with BLANK_DUPS=ON if the value changes in a previous column that is also marked with
BLANK_DUPS=ON. Because BLANK_DUPS= is set in a generic column, it is wise to set this
attribute as well.

classlevels=on;

The DEFINE statement and its attributes create the column definition char_var. GENERIC=
specifies that multiple variables can use the same column definition. BLANK_DUPS=
suppresses the display of the value in the column if it does not change from one row to the next
(and, because CLASSLEVELS=ON for the table, if no value changes in a preceding column that
is marked with BLANK_DUPS=ON changes).

The END statement ends the definition.

define column char_var;
generic=on;
blank_dups=on;

end;

The DEFINE statement and its attributes create the column definition num_var. GENERIC=
specifies that multiple variables can use the same column definition.

define column num_var;
generic=on;

JUSTIFY= justifies the values in the column without regard to the format field. For numeric
variables, the default justification is RIGHT, so even the translated character value No data
that is used for missing values is right-justified. Without JUSTIFY=ON in this column
definition, the value No data is formatted as a character variable (left justified) within a format
field that is the same width as the column.

justify=on;

The TEMPLATE Procedure 4 Program 249

The CELLSTYLE-AS statement specifies the style element and style attributes to use for
different values in this column. If a value is less than or equal to the value of the variable LOW,
the cell uses the unaltered Data style element. If a value is greater than LOW but less than or
equal to the value of MEDIUM, the cell uses the style element Data with a foreground color of
green and an italic font. Similarly, other values use a foreground color of yellow or red and
combinations of a bold font weight and an italic font style. The CELLSTYLE-AS statement
affects only the HTML destination.

The END statement ends the column definition.

cellstyle _val_ <= low as data,
val <= medium as data

{foreground=green font_style=italic},
val <= high as data

{foreground=yellow font_weight=bold},
1 as data

{foreground=red font_style=italic
font_weight=bold};

end;

This END statement ends the table definition. The RUN statement ends the PROC TEMPLATE
step.

end;
run;

The ODS HTML statement opens the HTML destination and creates HTML output. It sends all
output objects to the external file cellstyle-body.htm in the current directory. Some
browsers require an extension of .htm or .html on the filename.

ods html body=’cellstyle-body.htm’;

The %LET statements assign values to the macro variables LOW, MEDIUM, and HIGH.

%let low=10000;
%let medium=50000;
%let high=100000;

This DATA step does not create a data set. Instead, it creates a data component, and,
eventually, an output object. The SET statement reads the data set GRAIN_PRODUCTION.

data _null_;
set grain_production;

The combination of the fileref PRINT and the ODS option in the FILE statement routes the
results of the DATA step to ODS. (For more information on using the DATA step with ODS, see
Chapter 4, “Using the Output Delivery System in the DATA Step,” on page 105.) The
TEMPLATE= suboption tells ODS to use the table definition named shared.cellstyle, which
was just created with PROC TEMPLATE.

file print ods=(
template=’shared.cellstyle’

250 Listing Output 4 Chapter 5

The COLUMNS= suboption places DATA step variables into columns that are defined in the
table definition. For instance, the first column-specification specifies that the first column of the
output object contains the values of the variable YEAR and that it uses the column definition
named char_var. GENERIC= must be set to ON, both in the table definition and in each
column assignment, in order for multiple variables to use the same column definition.

columns=(
char_var=year(generic=on)
char_var=country(generic=on format=$cntry.)
char_var=type(generic=on)
num_var=kilotons(generic=on format=comma12.)
)

);

The _ODS_ option and the PUT statement write the data values for all columns to the data
component.

put _ods_;
run;

The ODS HTML statement closes the HTML destination and all the files that are associated
with it. You must close the destination before you can view the output with a browser.

ods html close;

Listing Output

Output 5.5 Listing Output of a Customized Table

Only the table customizations appear in the Listing output. Table customizations include the
suppression of values that do not change from one row to the next and the translation of
missing values to No data. The style customizations that are specified in the CELLSTYLE-AS
statement do not appear in the Listing output.

The TEMPLATE Procedure 4 HTML Output 251

Leading Grain Producers 1
Year Country Type Kilotons

1995 Brazil Corn 36,276
Rice 11,236
Wheat 1,516

China Corn 112,331
Rice 185,226
Wheat 102,207

India Corn 9,800
Rice 122,372
Wheat 63,007

Indonesia Corn 8,223
Rice 49,860
Wheat No data

United States Corn 187,300
Rice 7,888
Wheat 59,494

1996 Brazil Corn 31,975
Rice 10,035
Wheat 3,302

China Corn 119,350
Rice 190,100
Wheat 109,000

India Corn 8,660
Rice 120,012
Wheat 62,620

Indonesia Corn 8,925
Rice 51,165
Wheat No data

United States Corn 236,064
Rice 7,771
Wheat 62,099

HTML Output

Display 5.12 HTML Output of a Customized Table

Both the table customizations and the style customizations appear in the HTML output. Table
customizations include the suppression of values that do not change from one row to the next
and the translation of missing values to No data. The style customizations include the colors
and font styles that are specified in the CELLSTYLE-AS statement.

252 Example 4: Creating a Stand-alone Style Definition 4 Chapter 5

Example 4: Creating a Stand-alone Style Definition
PROC TEMPLATE features:

DEFINE STYLE statement
STYLE statement

BACKGROUND=
BORDERCOLORDARK=
BORDERCOLORLIGHT=
BORDERWIDTH=
CELLSPACING=
FONT_FACE=
FONT_SIZE=
FONT_STYLE=
FONT_WEIGHT=
FOREGROUND=

The TEMPLATE Procedure 4 Program 253

DEFINE TABLE statement

CLASSLEVELS= table attribute
DYNAMIC statement
MVAR statement

DEFINE COLUMN statement

BLANK_DUPS=
GENERIC=
HEADER=
STYLE=

DEFINE FOOTER statement

TEXT statement

Other ODS features:
ODS HTML statement

ODS LISTING statement

FILE statement with ODS= option

PUT statement with _ODS_ argument

Data set: GRAIN_PRODUCTION on page 93

Format: $CNTRY. on page 94

This example creates a style definition that is not based on any other style definition.
In general, when you create a style definition, you are likely to base it on one of the
definitions that SAS Institute provides (see Example 6 on page 265). However, this
example is provided to show you some of the basics of creating a style definition.

It is important to understand that by default, certain table elements are rendered
with certain style elements. For instance, unless you specify a different style element
with the STYLE= attribute, ODS renders SAS titles with the systemtitle style
element. Similarly, unless you specify otherwise, ODS renders headers with the header
style element. (For information of what each style element does, see “What Is the
Default Style Definition Like?” on page 133.)

Program

The PROC TEMPLATE statement starts the TEMPLATE procedure. The DEFINE STYLE
statement creates a new style definition called newstyle. This STYLE statement defines the
style element cellcontents. This style element is composed of the style attributes that appear
on the STYLE statement. The FONT_FACE= attribute tells the browser to use the Arial font if
it is available, and to look for the Helvetica font if Arial is not available.

proc template;
define style newstyle;

style cellcontents /
background=blue
foreground=white
font_face="arial, helvetica"
font_weight=medium
font_style=roman
font_size=4;

254 Program 4 Chapter 5

This STYLE statement creates the style element header. By default, ODS uses header to
render both spanning headers and column headers. This style element uses different foreground
and background colors from cellcontents. It uses the same font face (Arial or Helvetica) and
the same font_style (roman) as cellcontents. However, it uses a bold font weight and a large
font size.

style header /
background=very light blue
foreground=blue
font_face="arial, helvetica"
font_weight=bold
font_style=roman
font_size=5;

This STYLE statement creates the style element systemtitle. By default, ODS uses
systemtitle to render SAS titles. This style element uses a color scheme of a red foreground
on a white backgound. It uses the same font face and font_weight as header, but it adds an
italic font style and uses a larger font size.

style systemtitle /
background=white
foreground=red
font_face="arial, helvetica"
font_weight=bold
font_style=italic
font_size=6;

This STYLE statement creates the style element footer. This style element inherits all the
attributes of systemtitle. However, the font_size that it inherits is overwritten by the
FONT_SIZE= attribute in its definition.

style footer from systemtitle /
font_size=3;

This STYLE statement creates the style element table. By default, ODS uses this style
element to render tables.

style table /
cellspacing=5
borderwidth=10
bordercolorlight=very light blue
bordercolordark=blue;

The END statement ends the style definition. The RUN statement executes the TEMPLATE
procedure.

end;
run;

The PROC TEMPLATE statement starts the TEMPLATE procedure. The DEFINE TABLE
statement creates a new table definition called table1.

proc template;
define table table1;

The TEMPLATE Procedure 4 Program 255

The MVAR statement defines a symbol, sysdate9, that references a macro variable. ODS will
use the value of this macro variable as a string. References to the macro variable are resolved
when ODS binds the table definition to the data component to produce an output object.
SYSDATE9 is an automatic macro variable whose value is always available.

mvar sysdate9;

The DYNAMIC statement defines a symbol, colhd, that references a value that the data
component supplies when ODS binds the definition and the data component to produce an
output object. The values for colhd are provided in the FILE statement in the DATA step that
appears later in the program. Using dynamic column headers gives you more flexibility than
does hard-coding the headers in the table definition.

dynamic colhd;

The CLASSLEVELS= attribute suppresses the blanking of the value in a column that is marked
with BLANK_DUPS=ON if the value changes in a previous column that is also marked with
BLANK_DUPS=ON. Because BLANK_DUPS= is set in a generic column, it is wise to set this
attribute as well.

classlevels=on;

This DEFINE statement and its attributes create the column definition char_var. GENERIC=
specifies that multiple variables can use the same column definition. BLANK_DUPS=
suppresses the display of the value in the column if it does not change from one row to the next
(and, because CLASSLEVELS=ON for the table, if no values in preceding columns that are
marked with BLANK_DUPS=ON changes). HEADER= specifies that the header for the column
will be the text of the dynamic variable COLHD, whose value will be set by the data component.
The STYLE= attribute specifies that the style element for this column definition is
cellcontents.
The END statement ends the definition.

define column char_var;
generic=on;
blank_dups=on;
header=colhd;
style=cellcontents;

end;

This DEFINE statement and its attributes create the column definition num_var. GENERIC=
specifies that multiple variables can use the same column definition. HEADER= specifies that
the header for the column will be the text of the dynamic variable COLHD, whose value will be
set by the data component.
The STYLE= attribute specifies that the style element for this column definition is
cellcontents.
The END statement ends the definition.

define column num_var;
generic=on;
header=colhd;
style=cellcontents;

end;

The DEFINE statement and its substatement define the table element table_footer. The
FOOTER argument declares table_footer as a footer. The TEXT statement specifies the text
of the footer. When ODS binds the data component to the table definition (in the DATA step that
follows), it will resolve the value of the macro variable SYSDATE9.

256 Program 4 Chapter 5

define footer table_footer;
text ’Prepared on ’ sysdate9;

end;

This END statement ends the table definition. The RUN statement executes the PROC
TEMPLATE step.

end;
run;

The ODS LISTING statement closes the Listing destination to conserve resources. The Listing
destination is open by default.

ods listing close;

The ODS HTML statement opens the HTML destination and creates HTML output. It sends all
output objects to the external file newstyle-body.htm in the current directory. The STYLE=
option tells ODS to use newstyle as the style definition when it formats the output.

ods html body=’newstyle-body.htm’
style=newstyle;

The TITLE statements provide two titles for the output.

title ’Leading Grain Producers’;
title2 ’in 1996’;

This DATA step does not create a data set. Instead, it creates a data component and, eventually,
an output object.

The SET statement reads the data set GRAIN_PRODUCTION. The WHERE statement subsets
the data set so that the output object cotains information only for rice and corn production in
1996. (This is done simply to make the entire table visible in the screen dumps that are used in
the hardcopy book.)

data _null_;
set grain_production;
where type in (’Rice’, ’Corn’) and year=1996;

The combination of the fileref PRINT and the ODS option in the FILE statement routes the
results of the DATA step to ODS. (For more information on using the DATA step with ODS, see
Chapter 4, “Using the Output Delivery System in the DATA Step,” on page 105.) The
TEMPLATE= suboption tells ODS to use the table definition named table1, which was just
created with PROC TEMPLATE.

file print ods=(
template=’table1’

The COLUMNS= suboption places DATA step variables into columns that are defined in the
table definition. For instance, the first column-specification specifies that the first column of the
output object contains the values of the variable COUNTRY and that it uses the column
definition named char_var. GENERIC= must be set to ON in both the table definition and
each column assignment in order for multiple variables to use the same column definition. The
FORMAT= suboption specifies a format for the column. The DYNAMIC= suboption provides the
value of the dynamic variable COLHD for the current column. Notice that for the first column
the column header is Country, and for the second column, which uses the same column
definition, the column header is Year.

The TEMPLATE Procedure 4 Program 257

columns=(
char_var=country(generic=on format=$cntry.

dynamic=(colhd=’Country’))
char_var=type(generic dynamic=(colhd=’Year’))
num_var=kilotons(generic=on format=comma12.

dynamic=(colhd=’Kilotons’))
)

);

The _ODS_ option and the PUT statement write the data values for all columns to the data
component. The RUN statement executes the DATA step.

put _ods_;
run;

The ODS HTML statement closes the HTML destination and all the files that are associated
with it. You must close the destination before you can view the output with a browser. The ODS
LISTING statement opens the Listing destination to return ODS to its default setup.

ods html close;
ods listing;

258 HTML Output 4 Chapter 5

HTML Output

Display 5.13 Specifying Colors and Fonts with User-Defined Attributes

You can use the fonts to confirm that SAS titles use the systemtitle style element, that
column headers use the header style element, that the footer uses the table-footer style
element, and that the contents of both character and numeric cells use the cellcontents style
element. Use the width of the table border and the spacing between cells to confirm that the
table itself is rendered with the table style element.

Example 5: Creating and Modifying a Style Definition with User-Defined
Attributes

PROC TEMPLATE features:
DEFINE STYLE statement

STYLE statement with user-defined attributes
DEFINE TABLE statement

CLASSLEVELS= table attribute
DYNAMIC statement

The TEMPLATE Procedure 4 Program 1: Creating the Style Definition 259

MVAR statement

DEFINE COLUMN statement

BLANK_DUPS=
GENERIC=
HEADER=
STYLE=

DEFINE COLUMN statement

BLANK_DUPS= attribute
CELLSTYLE-AS statement
GENERIC= attribute

DEFINE FOOTER statement

TEXT statement

Other ODS features:
ODS HTML statement
ODS LISTING statement
FILE statement with ODS= option
PUT statement with _ODS_ argument

Data set: GRAIN_PRODUCTION on page 93

Format: $CNTRY. on page 94

This example creates a style definition that is equivalent to the style definition that
Example 4 on page 252 creates. However, this style definition uses user-defined
attributes to specify colors and fonts. This technique makes it possible to easily make
changes in multiple places in your output.

Program 1: Creating the Style Definition

The PROC TEMPLATE statement starts the TEMPLATE procedure. The DEFINE STYLE
statement creates a new style definition called newstyle2. This STYLE statement defines the
style element fonts. This style element is composed of three user-defined attributes:
cellfont, headingfont, and titlefont. Each of these attributes describes a font.

proc template;
define style newstyle2;

style fonts /
"cellfont"=("arial, helvetica", 4, medium roman)
"headingfont"=("arial, helvetica", 5, bold roman)
"titlefont"=("arial, helvetica", 6, bold italic);

This STYLE statement defines the style element colors. This style element is composed of four
user-defined attributes: light, medium, dark, and bright. The values for medium and dark
are RGB values equivalent to very light blue and blue.

style colors /
"light"=white
"medium"=cxaaaaff
"dark"=cx0000ff
"bright"=red;

260 Program 1: Creating the Style Definition 4 Chapter 5

These STYLE statements create four style elements. Each style element is composed of
attributes that define the foreground and background colors as well as the font. Notice that the
style attributes are defined in terms of the user-defined attributes that were created earlier in
the style definition. For example, the foreground color in cellcontents is set to
colors("light"). Looking at the definition of colors, you can see that this is white.
However, by setting the colors up in a style element with user-defined attributes, you can
change the color of everything that uses a particular color by changing a single value in the
style element colors.

style cellcontents /
background=colors("dark")
foreground=colors("light")
font=fonts("cellfont");

style header /
background=colors("medium")
foreground=colors("dark")
font=fonts("headingfont");

style systemtitle /
background=colors("light")
foreground=colors("bright")
font=fonts("titlefont");

style footer from systemtitle /
font_size=3;

style table /
cellspacing=5
borderwidth=10
bordercolorlight=colors("medium")
bordercolordark=colors("dark");

The END statement ends the style definition. The RUN statement executes PROC TEMPLATE.

end;
run;

The PROC TEMPLATE statement starts the TEMPLATE procedure. The DEFINE TABLE
statement creates a new table definition called table1.

proc template;
define table table1;

The MVAR statement defines a symbol, sysdate9, that references a macro variable. ODS will
use the value of this macro variable as a string. References to the macro variable are resolved
when ODS binds the table definition to the data component to produce an output object.
SYSDATE9 is an automatic macro variable whose value is always available.

mvar sysdate9;

The DYNAMIC statement defines a symbol, colhd, that references a value that the data
component supplies when ODS binds the definition and the data component to produce an
output object. The values for colhd are provided in the FILE statement in the DATA step that
appears later in the program. Using dynamic column headers gives you more flexibility than
hard-coding the headers in the table definition does.

dynamic colhd;

The TEMPLATE Procedure 4 Program 1: Creating the Style Definition 261

The CLASSLEVELS= attribute suppresses the blanking of the value in a column that is marked
with BLANK_DUPS=ON if the value changes in a previous column that is also marked with
BLANK_DUPS=ON. Because BLANK_DUPS= is set in a generic column, it is wise to set this
attribute as well.

classlevels=on;

This DEFINE statement and its attributes create the column definition char_var. GENERIC=
specifies that multiple variables can use the same column definition. BLANK_DUPS=
suppresses the display of the value in the column if it does not change from one row to the next
(and, because CLASSLEVELS=ON for the table, if no values in preceding columns that are
marked with BLANK_DUPS=ON changes). HEADER= specifies that the header for the column
will be the text of the dynamic variable COLHD, whose value will be set by the data component.

The STYLE= attribute specifies that the style element for this column definition is
cellcontents.

The END statement ends the definition.

define column char_var;
generic=on;
blank_dups=on;
header=colhd;
style=cellcontents;

end;

This DEFINE statement and its attributes create the column definition num_var. GENERIC=
specifies that multiple variables can use the same column definition. HEADER= specifies that
the header for the column will be the text of the dynamic variable COLHD, whose value will be
set by the data component.

The STYLE= attribute specifies that the style element for this column definition is
cellcontents.

The END statement ends the definition.

define column num_var;
generic=on;
header=colhd;
style=cellcontents;

end;

The DEFINE statement and its substatement define the table element table_footer. The
FOOTER argument declares table_footer as a footer. The TEXT statement specifies the text
of the footer. When ODS binds the data component to the table definition (in the DATA step that
follows), it will resolve the value of the macro variable SYSDATE9.

define footer table_footer;
text ’Prepared on ’ sysdate9;

end;

This END statement ends the table definition. The RUN statement executes the PROC
TEMPLATE step.

end;
run;

The ODS LISTING statement closes the Listing destination to conserve resources. The Listing
destination is open by default.

262 Program 1: Creating the Style Definition 4 Chapter 5

ods listing close;

The ODS HTML statement opens the HTML destination and creates HTML output. It sends all
output objects to the external file newstyle2-body.htm in the current directory. The STYLE=
option tells ODS to use newstyle as the style definition when it formats the output.

ods html body=’newstyle2-body.htm’
style=newstyle2;

The TITLE statements provide two titles for the output.

title ’Leading Grain Producers’;
title2 ’in 1996’;

This DATA step does not create a data set. Instead, it creates a data component and, eventually,
an output object.

The SET statement reads the data set GRAIN_PRODUCTION. The WHERE statement subsets
the data set so that the output object contains information only for rice and corn production in
1996. (This is done simply to make the entire table visible in the screen dumps that are used in
the hardcopy book.)

data _null_;
set grain_production;
where type in (’Rice’, ’Corn’) and year=1996;

The combination of the fileref PRINT and the ODS option in the FILE statement routes the
results of the DATA step to ODS. (For more information on using the DATA step with ODS, see
Chapter 4, “Using the Output Delivery System in the DATA Step,” on page 105. The
TEMPLATE= suboption tells ODS to use the table definition named table1, which was just
created with PROC TEMPLATE.

file print ods=(
template=’table1’

The COLUMNS= suboption places DATA step variables into columns that are defined in the
table definition. For instance, the first column-specification specifies that the first column of the
output object contains the values of the variable COUNTRY and that it uses the column
definition named char_var. GENERIC= must be set to ON in both the table definition and
each column assignment in order for multiple variables to use the same column definition. The
FORMAT= suboption specifies a format for the column. The DYNAMIC= suboption provides the
value of the dynamic variable COLHD for the current column. Notice that for the first column
the column header is Country, and for the second column, which uses the same column
definition, the column header is Year.

columns=(
char_var=country(generic=on format=$cntry.

dynamic=(colhd=’Country’))
char_var=type(generic dynamic=(colhd=’Year’))
num_var=kilotons(generic=on format=comma12.

dynamic=(colhd=’Kilotons’))
)

);

The _ODS_ option and the PUT statement write the data values for all columns to the data
component. The RUN statement executes the DATA step.

The TEMPLATE Procedure 4 HTML Output 263

put _ods_;
run;

The ODS HTML statement closes the HTML destination and all the files that are associated
with it. You must close the destination before you can view the output with a browser. The ODS
LISTING statement opens the Listing destination to return ODS to its default setup.

ods html close;
ods listing;

HTML Output

Display 5.14 Specifying Colors and Fonts with User-Defined Attributes

This HTML output is identical to Display 5.13 on page 258, which was produced with a style
definition that used predefined style attributes. You can use the fonts to confirm that SAS titles
use the systemtitle style element, that column headers use the header style element, that
the footer uses the table-footer style element, and that the contents of both character and
numeric cells use the cellcontents style element. Use the width of the table border and the
spacing between cells to confirm that the table itself is rendered with the table style element.

264 Program 2: Changing User-Defined Attributes 4 Chapter 5

Program 2: Changing User-Defined Attributes
In the program in Example 4 on page 252, if you want to change the color scheme so

that the blues are replaced by pink and red, you must change each occurrence of “blue”
and “very light blue”. In this program, because colors are defined as user-defined
attributes, you need to make the change only once. To make this change, you need only
change the following section of code from

style colors /
"light"=white
"medium"=cxaaaaff
"dark"=cx0000ff
"bright"=red;

to

style colors /
"light"=white
"medium"=pink
"dark"=red
"bright"=red;

Similarly, to change the font in any style element that uses cellfont, you can
change the following section of code from

"cellfont"=("arial, helvetica", 4, medium roman)

to

"cellfont"=("courier, arial, helvetica", 4, medium roman)

The following HTML output shows the results of running the same program with
these changes.

The TEMPLATE Procedure 4 Example 6: Modifying the Default Style Definition for the HTML Destination 265

HTML Output

Display 5.15 Changing Colors and Fonts with User-Defined Attributes

You can see that the font face that is used in the cells is now Courier. This change occurs in
multiple places even though you made only one change to the code for the font.

Example 6: Modifying the Default Style Definition for the HTML Destination
PROC TEMPLATE features:

DEFINE STYLE statement
PARENT= attribute
REPLACE statement
style attributes

user-defined attributes
BACKGROUND=
BORDERCOLORDARK=
BORDERCOLORLIGHT=
BORDERWIDTH=
CELLPADDING=

266 Program 1: Using the Default Style Definition with PROC PRINT 4 Chapter 5

CELLSPACING=
FONT=
FONT_STYLE=
FOREGROUND=
FRAME=
POSTHTML=
RULES=

Other ODS features:
ODS HTML statement

STYLE= option
ODS LISTING statement
ODS PATH statement

Data set: ENERGY on page 81
Formats: DIVFMT. and USETYPE. on page 81

Generally, when you are working with style definitions, you are more likely to modify
a style definition that SAS Institute supplies than to write a completely new style
definition. This example shows you how to make changes to the default style definition
for the HTML destination. The new style definition affects both the body file and the
contents file in the HTML output. In particular, in the body file, it makes changes to

� two of the colors in the color list. One of these colors is used as the foreground color
for the table of contents, the byline, and column headers. The other is used for the
foreground of many parts of the body file, including SAS titles and footnotes.

� the font size for titles and footnotes
� the font style for headers
� the presentation of the data in the table by changing attributes like cellspacing,

rules, and borderwidth.

In the contents file, the style definition makes changes to
� the text of the header and the text that identifies the procedure that produced the

output
� the colors for some parts of the text
� the font size of some parts of the text
� the spacing in the list of entries in the table of contents.

Note: Remember that when a STYLE statement creates a style element in the new
style definition, only style elements that explicitly inherit from that style element in the
new definition inherit the change. When a REPLACE statement creates a style element
in the new style definition, all style elements that inherit from that element inherit the
definition that is in the new style definition, so the change appears in all children of the
element. 4

Program 1: Using the Default Style Definition with PROC PRINT

This statement specifies which locations to search for definitions that were created by PROC
TEMPLATE, as well as the order in which to search for them. The statement is included to
ensure that the example works correctly. However, if you have not changed the path, you do not
need to include this statement because it specifies the default path.

The TEMPLATE Procedure 4 Program 1: Using the Default Style Definition with PROC PRINT 267

ods path sasuser.templat(update) sashelp.tmplmst(read);

The ODS LISTING statement closes the Listing destination to conserve resources. The Listing
destination is open by default.

ods listing close;

The ODS HTML statement opens the HTML destination and creates HTML output. The output
from PROC PRINT goes to the body file. FRAME= and CONTENTS= create a frame that
includes a table of contents that links to the contents of the body file. The body file also appears
in the frame.

The STYLE= option tells ODS to use styles.default as the style definition when it formats
the output. Strictly speaking, this option is unnecessary because it specifies the default style
definition, but it is included for clarity.

ods html body=’sasdefaultstyle-body.htm’
contents=’sasdefaultstyle-content.htm’
frame=’sasdefaultstyle-frame.htm’
style=styles.default;

The TITLE and FOOTNOTE statements provide two titles and a footnote for the output. The
FOOTNOTE statement uses double rather than single quotes so that the macro variable
resolves.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;
footnote "Report prepared on &sysdate9";

PROC PRINT creates a report that includes three variables. ODS writes the report to the
BODY file.

proc print data=energy noobs;
var state type expenditures;
format division divfmt. type usetype. expenditures comma12.;
by division;
where division=2 or division=3;

run;

268 HTML Output from PROC PRINT with the Default Style Definition 4 Chapter 5

HTML Output from PROC PRINT with the Default Style Definition

Display 5.16 HTML Output from PROC PRINT with the Default Style Definition

Program 2: Modifying the Default Style Definition and Using It with PROC
PRINT

The PROC TEMPLATE statement starts the TEMPLATE procedure. The DEFINE STYLE
statement creates a new style definition called customdefault.

proc template;
define style customdefault;

PARENT= specifies styles.default as the style definition that the current style definition inherits
from. All the style elements and attributes and statements that are specified in the parent’s
definition are used in the current definition unless the current definition overrides them.

parent=styles.default;

The TEMPLATE Procedure 4 Program 2: Modifying the Default Style Definition and Using It with PROC PRINT 269

This REPLACE statement adds to the child style definition the style element color_list, which
also exists in the parent style definition. You can think of the REPLACE statement as replacing
the definition of color_list in the parent style defintion. The REPLACE statement doesn’t
actually change the parent style definition, but PROC TEMPLATE builds the child style
definition as if it had changed the parent. All style elements that use the user-defined attributes
that color_list defines (fgB2, fgB1, and so forth) use the attributes that are specified in the
REPLACE statement, not the ones that are specified in styles.default. Therefore, if you change a
color here, you change every occurrence of the color in the HTML output. This REPLACE
statement changes the values of fgA2 andfgA from a greenish blue to a pure blue and from a
slightly darker greenish blue to a purple. (The first two digits of the hex value represent red,
the next two represent green, and the last two represent blue.)

replace color_list /
’fgB2’ = cx0066AA
’fgB1’ = cx004488
’fgA4’ = cxAAFFAA
’bgA4’ = cx880000
’bgA3’ = cxD3D3D3

/* changed from cx0033AA */
’fgA2’ = cx0000FF
’bgA2’ = cxB0B0B0
’fgA1’ = cx000000
’bgA1’ = cxF0F0F0

/* changed from cx002288 */
’fgA’ = cx660099
’bgA’ = cxE0E0E0;

This REPLACE statement adds to the child style definition the style element titlesandfooters,
which also exists in the parent style definition. The new definition does not inherit attributes
from any style element, but it will pass its attributes to any style element that inherits from
titlesandfooters or from a child of titlesandfooters. This style element uses
systitlefg and systitlebg for colors, but it changes the font size from the relative size of 4
that is specified in titlefont2 to a relative size of 3. As a result, the titles and footnotes in
Display 5.17 on page 272 are smaller than the ones in Display 5.16 on page 268.

replace titlesandfooters /
foreground=colors("systitlefg")
background=colors("systitlebg")
font=fonts("titlefont2") font_size=3;

This REPLACE statement adds to the child style definition the style element byline, which
also exists in the parent style definition. This style element inherits all attributes from
titlesandfooters as it is specified in the previous REPLACE statement. Therefore, the
initial definition for the byline includes the foreground and background colors that are used for
system titles, and a smaller version of titlefont2. However, the FOREGROUND= attribute
replaces the foreground color with the foreground color that is used for headers. Note that in the
default style definition, the background color for the byline differs from the background color for
the document, so it appears as a gray stripe in Display 5.16 on page 268. In this customized
style definition, the stripe disappears because the background color for the byline and the
document are the same.

replace byline from titlesandfooters /
foreground=colors("headerfg");

270 Program 2: Modifying the Default Style Definition and Using It with PROC PRINT 4 Chapter 5

This STYLE statement adds the italic font style to the attributes that header inherits from the
header style element that is defined in the parent style definition. The change does not affect
headerfixed and the other style elements that inherit from header in the parent style
definition.

style header from header /
font_style=italic;

This REPLACE statement alters the text that is used in parts of the HTML output. In the
contents file, the default style definition uses “The” as the value of prefix1 and “Procedure” as
the value of suffix1. Thus, in HTML output that uses the default style definition, the output
from PROC PRINT is identfied by “1. The PRINT Procedure” (see Display 5.16 on page 268). In
the customized style definition, the text that identifies the output reads “1. PROC PRINT”. The
heading that appears at the top of the contents file has been changed from “Table of Contents”
to “Contents”, and the heading at the top of the table of pages has been changed from “Table of
Pages” to “Pages”. The banners have been changed to use mixed case. (Note that neither these
banners nor the table of pages is visible in the HTML output from this example, but the
attributes are included so that you can use the style definition in a variety of circumstances.)

replace text /
"prefix1" = "PROC "
"suffix1" = ":"
"Content Title" = "Contents"
"Pages Title" = "Pages"
"Note Banner" = "Note:"
"Warn Banner" = "Warning:"
"Error Banner" = "Error:"
"Fatal Banner" = "Fatal:"
;

This STYLE statement changes the presentation of the HTML table that contains the output
from PROC PRINT. The background color, the kind of box that surrounds the table, and the cell
padding remain the same as in styles.default, but all the other attributes are changed.
RULES=COLS draws rules only between the columns of the table. CELLSPACING=0 removes
the spacing between the cells of the table so that the data appear on a continuous background.
The border color that the default style definition uses is replaced by BORDERCOLORDARK=
and BORDERCOLORLIGHT=, and BORDERWIDTH= increases the width of the table’s border.
The changes dramatically alter the appearance of the HTML output.

style table from table /
rules=cols
cellspacing=0
bordercolorlight=colors("headerfg")
bordercolordark=colors("systitlefg")
borderwidth=5;

This STYLE statement changes the value of the VISITEDLINKCOLOR= attribute in the style
element contents so that the links in the table of contents appear in the same color as the rest
of the table of contents. It also changes the foreground color so that the title of the table of
contents appears in the same color as system titles.

style contents from contents /
visitedlinkcolor=colors("systitlefg")
foreground = colors(’systitlefg’);

The TEMPLATE Procedure 4 Program 2: Modifying the Default Style Definition and Using It with PROC PRINT 271

This STYLE statement adds the POSTHTML= attribute so that the items in the table of
contents are displayed with extra space between them.

style contentitem from contentitem /
posthtml=’<p>’;

The END statement ends the style definition. The RUN statement executes the PROC
TEMPLATE step.

end;
run;

The ODS HTML statement opens the HTML destination and creates HTML output. The output
from PROC PRINT goes to the body file. FRAME= and CONTENTS= create a frame that
includes a table of contents that links to the contents of the body file. The body file also appears
in the frame.

The STYLE= option tells ODS to use customdefault as the style definition when it formats
the output.

ods html body=’customdefaultstyle-body.htm’
contents=’customdefaultstyle-content.htm’
frame=’customdefaultstyle-frame.htm’
style=customdefault;

The TITLE and FOOTNOTE statements provide two titles and a footnote for the output. The
FOOTNOTE statement uses double rather than single quotes so that the macro variable
resolves.

title ’Energy Expenditures for Each Region’;
title2 ’(millions of dollars)’;
footnote "Report prepared on &sysdate9";

PROC PRINT creates a report that includes three variables. ODS writes the report to the body
file. This PROC PRINT step is the same one that was used with the default style definition
earlier.

proc print data=energy noobs;
var state type expenditures;
format division divfmt. type usetype. expenditures comma12.;
by division;
where division=2 or division=3;

run;

The ODS HTML statement closes the HTML destination and all the files that are associated
with it. You must close the destination before you can view the output with a browser. The ODS
LISTING statement opens the Listing destination to return ODS to its default setup.

ods html close;
ods listing;

272 HTML Output from PROC PRINT with the Customized Style Definition 4 Chapter 5

HTML Output from PROC PRINT with the Customized Style Definition

Display 5.17 HTML Output from PROC PRINT with the Customized Style Definition

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., The
Complete Guide to the SAS ® Output Delivery System, Version 8, Cary, NC: SAS Institute
Inc., 1999. 310 pp.

The Complete Guide to the SAS® Output Delivery System, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–425–X
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

