
1

C H A P T E R

1
ORACLE Chapter, First Edition

Introduction 1
SAS/ACCESS LIBNAME Statement 2

Data Set Options: ORACLE Specifics 8

Data Set Options for Bulk Loading 17

ACCESS Procedure: ORACLE Specifics 24

ACCESS Procedure Statements for ORACLE 24
ACCESS Procedure Examples 26

DBLOAD Procedure: ORACLE Specifics 27

DBLOAD Procedure Statements for ORACLE 27

PROC DBLOAD Statements 28

DBLOAD Procedure Examples 28

SQL Procedure Pass-Through Facility: ORACLE Specifics 29
Arguments to Connect to ORACLE 30

Pass-Through Examples 31

ORACLE Naming Conventions 32

ORACLE7 Server Data Types 32

Character Data 32
Numeric Data 33

Other Data Types 33

NULL and Default Values 33

LIBNAME Statement Data Conversions 34

ACCESS Procedure Data Conversions 35
ACCESS Procedure Data Conversions for the NUMBER Data Type 35

DBLOAD Procedure Data Conversions 36

Introduction

This chapter introduces SAS System users to ORACLE, a relational database
management system (DBMS). It accompanies and should be used with SAS/ACCESS
Software for Relational Databases: Reference (order #57204).*

This chapter focuses on the terms and concepts that help you use the SAS/ACCESS
Interface to ORACLE. Then it describes the statements and options that are specific to
ORACLE, the ACCESS and DBLOAD procedures, and the SQL procedure’s CONNECT
statement.

For general information about database management systems, including information
for the database administrator about how the SAS/ACCESS interfaces work, refer to
Appendix 2, "DBMS Overview and Information for the Database Administrator". For

* Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.

2 SAS/ACCESS LIBNAME Statement 4 Chapter 1

more information on an ORACLE concept or term, refer to your ORACLE
documentation.

SAS/ACCESS LIBNAME Statement
Chapter 3, "SAS/ACCESS LIBNAME Statement" describes options that you specify

in the LIBNAME statement to associate a SAS libref with a DBMS database, schema,
server, or group of tables and views. The following section describes DBMS-specific
options and option values that you can use in the SAS/ACCESS Interface to ORACLE.

LIBNAME Statement: ORACLE Specifics

Associates a SAS libref with a DBMS database, schema, server, or group of tables and views.

Valid: Anywhere

Syntax
LIBNAME libref SAS/ACCESS-engine-name

<SAS/ACCESS-engine-connection-options> < SAS/ACCESS-LIBNAME-options>;

Arguments

libref
is any SAS name that serves as an alias to associate the SAS System with a
database, schema, server, or group of tables and views.

SAS/ACCESS-engine-name
is the SAS/ACCESS engine name for your DBMS, in this case,

oracle

SAS/ACCESS engines are implemented differently in different operating
environments. The engine name is required.

SAS/ACCESS-engine-connection-options
are options that you specify to connect to ORACLE. If the connection options contain
characters that are not allowed in SAS names, enclose the values of the options in
quotation marks. If you specify the appropriate system options or environment
variables for ORACLE, you can often omit the SAS/ACCESS engine connection
options. See your ORACLE documentation for details.

SAS/ACCESS-LIBNAME-options
are options that apply to the processing of objects and data in a DBMS, such as its
tables or indexes. For example, the UPDATEBUFF= option enables you to specify
the number of rows to update or delete in a single ORACLE UPDATE or DELETE
transaction. Support for many of these options is DBMS specific.

Some SAS/ACCESS LIBNAME options have the same names as SAS/ACCESS
data set options. When you specify an option in the LIBNAME statement, it applies
to objects and data that are referenced by the libref. A SAS/ACCESS data set option

ORACLE Chapter, First Edition 4 LIBNAME Statement: ORACLE Specifics 3

applies only to the data set on which it is specified. If a like-named option is specified
in both the SAS/ACCESS engine LIBNAME statement and after a data set name
(which references a DBMS table or view), the SAS System uses the value that is
specified later, on the data set name. See “Data Set Options: ORACLE Specifics” on
page 8 for more information.

Details The LIBNAME statement associates a libref with a SAS/ACCESS engine to
access tables or views in a database management system (DBMS). The SAS/ACCESS
engine enables you to connect to a particular DBMS and to specify a DBMS table or
view name in a two-level SAS name.

For example, in MYDBLIB.EMPLOYEES_Q2, MYDBLIB is a SAS libref that points
to a particular group of DBMS objects, and EMPLOYEES_Q2 is a DBMS table name in
the default schema. When you specify MYDBLIB.EMPLOYEES_Q2 in a DATA step or
procedure, you dynamically access the DBMS table. Beginning in Version 7, SAS
software supports reading, updating, creating, and deleting DBMS tables dynamically.

To disassociate or clear a libref from a DBMS, use a LIBNAME statement, specifying
the libref (for example, MYDBLIB) and the CLEAR options as follows:

libname mydblib CLEAR;

The database engine will disconnect from the database and close any free threads or
resources that are associated with that connection.

SAS/ACCESS Engine Connection Options The SAS/ACCESS engine connection options
for ORACLE are as follows:

USER= on page 3
PASSWORD= on page 3
PATH= on page 3

USER=<’>ORACLE-user-name<’>
specifies an optional ORACLE user name. If the user name contains blanks or
national characters, enclose the name in quotation marks. If you omit an
ORACLE user name and password, the default ORACLE user ID OPS$sysid is
used, if it is enabled. USER= must be used with PASSWORD=.

USER= can also be specified with the USERNAME= alias.

PASSWORD=<’> ORACLE-password<’>
specifies an optional ORACLE password that is associated with the ORACLE user
name. If you omit PASSWORD=, the password for the default ORACLE user ID
OPS$sysid is used, if it is enabled. PASSWORD= must be used with USER=.

PASSWORD= can also be specified with the PW=, PASS=, ORACLEPW=, and
ORAPW= aliases.

PATH=<’>ORACLE-database-specification<’>
specifies the ORACLE driver, node, and database. Aliases are required if you are
using SQL*Net Version 2.0 or later. In some operating environments, you can
enter the information that is required by the PATH= statement before invoking
the SAS System.

SAS/ACCESS uses the same ORACLE path designation that you use to connect
to ORACLE directly. See your database administrator to determine the databases
that have been set up in your operating environment, and to determine the default
values if you do not specify a database. On UNIX systems, the TWO_TASK
environment variable is used, if set. If neither PATH= nor TWO_TASK have been
set, the default value is the local driver.

SAS/ACCESS LIBNAME Options When you specify any of the following options in the
LIBNAME statement, the option is applied to all objects (such as tables and views) in
the database that the libref represents.

4 LIBNAME Statement: ORACLE Specifics 4 Chapter 1

The SAS/ACCESS interface to ORACLE supports all of the SAS/ACCESS LIBNAME
options listed in Chapter 3, "SAS/ACCESS LIBNAME Statement" . In addition to the
supported options, the following LIBNAME options are used only in the interface to
ORACLE or have ORACLE–specific aspects to them:

DBINDEX= on page 4
DBLINK= on page 4
DBPROMPT= on page 4
INSERTBUFF= on page 4
LOCKWAIT= on page 5
ORACLE_73_OR_ABOVE= on page 5
PRESERVE_COL_NAMES= on page 5
PRESERVE_TAB_NAMES= on page 5
READ_ISOLATION_LEVEL= on page 6
READ_LOCK_TYPE= on page 6
READBUFF= on page 6
SCHEMA= on page 6
SHOW_SYNONYMS= on page 6
SPOOL= on page 7
UPDATE_ISOLATION_LEVEL= on page 7
UPDATE_LOCK_TYPE= on page 7
UPDATEBUFF= on page 8

DBINDEX=YES | NO
indicates whether SAS calls the DBMS to find indexes on the specified table.

If you omit DBINDEX=, the default value is DBINDEX=NO.
For a full description of this option, refer to Chapter 3, "SAS/ACCESS

LIBNAME Statement".

DBLINK=database-link
specifies a link in the local database that enables access to tables and views in a
remote database.

If you omit DBLINK=, SAS accesses objects in the local database.
A link is a database object that is used to identify an object stored in a remote

database. A link contains stored path information and may also contain user name
and password information for connecting to the remote database.

DBPROMPT=YES | NO
specifies whether SAS displays a prompting window that enables you to enter
SAS/ACCESS engine connection options instead of specifying them on the
LIBNAME statement.

If you omit DBPROMPT=, the default value is DBPROMPT=NO. The
SAS/ACCESS Interface to ORACLE allows you to enter 30 characters for the
USERNAME and PASSWORD and up to 70 characters for the PATH, depending
on your platform.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement" .

INSERTBUFF=positive-integer
specifies the number of rows in a single ORACLE insert operation.

If you omit INSERTBUFF=, the default value is INSERTBUFF=10. SAS allows
the maximum number that is allowed by ORACLE.

ORACLE Chapter, First Edition 4 LIBNAME Statement: ORACLE Specifics 5

Note: When you assign a value that is greater than INSERTBUFF=1, the SAS
application notes that indicate the success or failure of the insert operation may be
incorrect because these notes only represent information for a single insert, even
when multiple inserts are performed. 4

Note: If specified, the value of the DBCOMMIT= option overrides the value of
INSERTBUFF=. 4

LOCKWAIT=YES | NO
specifies whether to wait indefinitely until rows are available for locking.

If you specify LOCKWAIT=YES, SAS waits until rows are available for locking.
If you specify LOCKWAIT=NO, SAS does not wait and returns an error to indicate
that the lock is not available. If you omit LOCKWAIT=, the default value is
LOCKWAIT=YES.

ORACLE_73_OR_ABOVE=YES | NO
specifies whether the ORACLE server version is 7.3 or later.

If you specify ORACLE_73_OR_ABOVE=YES or omit this option, SAS can use
the SERIALIZABLE isolation level for update locking that is available in ORACLE
7.3 and above. Users with version 7.3 or above may set the
ORACLE_73_OR_ABOVE= option to either YES or NO.

For Oracle versions prior to 7.3, updates without locking are performed as they
were in SAS Version 6. In Version 6, a row is updated with an additional WHERE
clause to ensure that the row has not changed since the time it was read. The
update fails if the row has changed. For versions 7.3 and above, updates are
performed in serializable transactions. An update on a row automatically fails if
the row has been changed since the time the serializable transaction started. (This
is not always true; due to current, published ORACLE bug 440366, sometimes an
update on a row fails even if the row has not changed. ORACLE offers the
following solution: When creating a table, users can increase the number of
INITRANS to at least 3 for the table.)

In a scenario where ORACLE_73_OR_ABOVE= is incorrectly set to YES when
it should be NO, the Oracle engine detects this error and automatically makes the
assumption that the Oracle version is below 7.3. In a scenario where
ORACLE_73_OR_ABOVE= is incorrectly set to NO when it should be YES, the
Oracle engine does not detect the incorrect setting. The update is performed
without using a serializable transaction.

The advantages of setting ORACLE_73_OR_ABOVE=YES are that no extra
WHERE clause overhead is incurred, and WHERE clause floating point number
comparison problems (precision problems) are avoided.

ORACLE_73_OR_ABOVE= can also be specified with the ORACLE_73= alias.
See also READ_ISOLATION_LEVEL=, UPDATE_ISOLATION_LEVEL=.

PRESERVE_COL_NAMES=YES | NO
preserves spaces, special characters, and mixed case in column names.

If you omit PRESERVE_COL_NAMES=, the default value is
PRESERVE_COL_NAMES=NO. If you want to preserve the case or allow
characters that are not supported in SAS names, such as ’$’, in your column
names, set PRESERVE_COL_NAMES=YES.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement".

PRESERVE_TAB_NAMES=YES | NO
preserves spaces, special characters, and mixed case in table names.

If you omit PRESERVE_TAB_NAMES=, the default value is
PRESERVE_TAB_NAMES=NO. If you want to preserve case or allow characters

6 LIBNAME Statement: ORACLE Specifics 4 Chapter 1

that are not supported in SAS names, such as ’$’, in your object names, including
table names, schema names, and link names, set PRESERVE_TAB_NAMES=YES.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement".

READ_ISOLATION_LEVEL=READCOMMITTED | SERIALIZABLE
specifies which isolation level for ORACLE to use when it reads tables and views.

If you are using ORACLE Version 7.3 or later, you can set
READ_ISOLATION_LEVEL= to READCOMMITTED or SERIALIZABLE. If you
specify READ_ISOLATION_LEVEL=READCOMMITTED, SAS uses the standard
method of read locking that is available in all ORACLE versions. If you specify
READ_ISOLATION_LEVEL=SERIALIZABLE, SAS uses the SERIALIZABLE
method of read locking that is available in ORACLE versions 7.3 and later. The
ORACLE_73= option must be set to ORACLE_73=YES to use the SERIALIZABLE
isolation level.

The SPOOL= option overrides the READ_ISOLATION_LEVEL= option. If
SPOOL=DBMS, SAS automatically sets
READ_ISOLATION_LEVEL=SERIALIZABLE for ORACLE 7.3 or later and to
READ_ONLY for prior versions. If you omit READ_ISOLATION_LEVEL=, the
default value is based on the value of the SPOOL= option. In all other cases, the
default value is READCOMMITTED.

When READ_ISOLATION_LEVEL is set to SERIALIZABLE, the
CONNECTION option must be set to UNIQUE. If not, an error occurs.

Note: This option should be rarely needed because the SAS/ACCESS engine
chooses the appropriate isolation level based on other locking options. 4

See also UPDATE_ISOLATION_LEVEL=.

READ_LOCK_TYPE=NOLOCK |ROW | TABLE
specifies how a table is locked during read operations.

If you omit READ_LOCK_TYPE=, the default value is
READ_LOCK_TYPE=NOLOCK. If you specify READ_LOCK_TYPE=NOLOCK,
table locking is not used during the reading of tables and views. If you specify
READ_LOCK_TYPE=ROW, the ORACLE “ROW SHARE” table lock is used during
the reading of tables and views. If you specify READ_LOCK_TYPE=TABLE, the
ORACLE “SHARE” table lock is used during the reading of tables and views.

When READLOCK_TYPE is set to either TABLE or ROW, the CONNECTION
option must be set to UNIQUE. If not, an error occurs.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement".

READBUFF=positive-integer
specifies the number of rows in a single ORACLE fetch.

If you omit READBUFF=, the default value is READBUFF=25. SAS allows the
maximum number that is allowed by ORACLE.

READBUFF= can also be specified with the BUFFSIZE= alias.

SCHEMA=schema-name
specifies a schema name to be used when referring to database objects. SAS can
access another user’s database objects by using a specified schema name.

If you omit SCHEMA=, SAS accesses objects in the default and public schemas.
If PRESERVE_TAB_NAMES=NO, SAS converts the SCHEMA= value to uppercase
because all values in the ORACLE data dictionary are uppercase unless quoted.

SHOW_SYNONYMS=<YES | NO>
When set to NO, PROC DATASETS shows only tables and views for the current
user or schema, if the SCHEMA= option is specified. The default value is NO.
When set to YES, PROC DATASETS shows only the synonyms that represent the

ORACLE Chapter, First Edition 4 LIBNAME Statement: ORACLE Specifics 7

tables and views for the current user or schema, if the SCHEMA= option is
specified.

Instead of submitting PROC DATASETS, you can click on the libref for the SAS
Explorer window to get this same information.

SPOOL=YES | NO | DBMS
specifies whether SAS creates a utility spool file during read operations that are
performed with the specified libref.

If you omit SPOOL=, the default value is SPOOL=YES. If SPOOL=DBMS, the
SAS/ACCESS Interface to ORACLE satisfies the two-pass requirement by starting
a read-only transaction. SPOOL=YES and SPOOL=DBMS have comparable
performance results for ORACLE; however, SPOOL=DBMS does not use any disk
space.

When SPOOL is set to DBMS, the CONNECTION option must be set to
UNIQUE. If not, an error occurs.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement".

UPDATE_ISOLATION_LEVEL=READCOMMITTED | SERIALIZABLE
specifies which isolation level for ORACLE to use when it updates tables and views.

If you are using ORACLE Version 7.3 or later, you can set
UPDATE_ISOLATION_LEVEL to READCOMMITTED or SERIALIZABLE. If you
specify UPDATE_ISOLATION_LEVEL=READCOMMITTED, SAS uses the
standard method of update locking that is available in all ORACLE versions. If
you specify UPDATE_ISOLATION_LEVEL=SERIALIZABLE, SAS uses the
SERIALIZABLE method of update locking that is available in ORACLE versions
7.3 and later. The ORACLE_73 option must be set to ORACLE_73=YES to use the
SERIALIZABLE isolation level.

If you omit UPDATE_ISOLATION_LEVEL=, the default value is based on the
value of the UPDATE_LOCK_TYPE= option. If UPDATE_LOCK_TYPE=NOLOCK,
SAS automatically sets UPDATE_ISOLATION_LEVEL=SERIALIZABLE for
ORACLE 7.3 or later and READ_ONLY for prior versions. In all other cases, the
default value is READCOMMITTED.

Note: This option should be rarely needed because the SAS/ACCESS engine
chooses the appropriate isolation level based on other locking options. 4

UPDATE_LOCK_TYPE=NOLOCK | ROW | TABLE
specifies how a table is locked during update operations.

If you omit UDPATE_LOCK_TYPE, the default value is
UPDATE_LOCK_TYPE=NOLOCK. If you specify
UPDATE_LOCK_TYPE=NOLOCK, table locking is not used during the reading of
tables and views for update. If you specify UPDATE_LOCK_TYPE=ROW, the
ORACLE “ROW SHARE” table lock is used during the reading of tables and views
for update. If you specify UPDATE_LOCK_TYPE=TABLE, the ORACLE
“EXCLUSIVE” table lock is used during the reading of tables and views for update.

If UPDATE_LOCK_TYPE=NOLOCK and ORACLE_73=YES, updates are
performed using serializable transactions. If UPDATE_LOCK_TYPE=NOLOCK
and ORACLE_73=NO, updates are performed using an extra WHERE clause to
ensure that the row has not been updated since it was first read. Updates might
fail when UPDATE_LOCK_TYPE=NOLOCK because other users might modify a
row after the row was read for update.

If the ORACLE_73_OR_ABOVE= option is incorrectly set to YES (meaning that
the Oracle server version is below 7.3), the Oracle engine detects this, and the
update is performed as if ORACLE_73_OR_ABOVE= were correctly set.

For a full description of this option, refer to Chapter 3, "SAS/ACCESS
LIBNAME Statement".

8 Data Set Options: ORACLE Specifics 4 Chapter 1

UPDATEBUFF=positive-integer
specifies the number of rows in a single ORACLE update/delete operation.

If you omit UPDATEBUFF=, the default value is UPDATEBUFF=1. SAS allows
the maximum that ORACLE allows.

Example: Specifying a LIBNAME Statement to Access ORACLE Data
In this example, the libref MYDBLIB uses the SAS/ACCESS Interface to ORACLE to
connect to an ORACLE database. The SAS/ACCESS engine connection options are
USER=, PASSWORD=, and PATH=, where PATH= specifies an alias for the database
specification (as required by SQL*Net).

libname mydblib oracle user=scott
password=tiger path=’hrdept_002’;

proc print data=mydblib.employees;
where dept=’CSR010’;

run;

To access an ORACLE object in another schema, use the SCHEMA= option as in the
following example. The schema name is typically a person’s user name or ID.

libname mydblib oracle user=gona
password=twins path=’hrdept_002’ schema=john;

proc sql;
select * from mydblib.superv

where jobcat=’BC’;

Data Set Options: ORACLE Specifics
Chapter 4, "SAS/ACCESS Data Set Options" describes the SAS/ACCESS options

that you can use when you specify a SAS data set in a DATA or PROC step; in this
case, the SAS data set accesses data from a DBMS table or view. The following section
describes the DBMS-specific options and option values that you can use in the
SAS/ACCESS Interface to ORACLE. A data set option applies only to the data set, or
DBMS object, on which it is specified.

Unless otherwise noted, when you omit a SAS/ACCESS data set option, and you have
specified a like-named LIBNAME option in the LIBNAME statement, the value of the
LIBNAME option applies to all data sets within the libref.

Note: Not all LIBNAME options have corresponding data set options. Refer to
Chapter 3, "SAS/ACCESS LIBNAME Statement" , Chapter 4, "SAS/ACCESS Data Set
Options" , and this chapter for a full listing of SAS/ACCESS LIBNAME options, data
set options, and ORACLE specific LIBNAME and data set options. 4

The SAS/ACCESS data set options for ORACLE are as follows:
“DBFORCE=” on page 9
“DBINDEX=” on page 9
“DBLINK=” on page 9
“DBNULL=” on page 10
“DBPROMPT=” on page 10

ORACLE Chapter, First Edition 4 DBLINK= 9

“DBSASTYPE=” on page 11

“DBTYPE=” on page 12

“INSERTBUFF=” on page 12

“ORHINTS=” on page 13

“READ_ISOLATION_LEVEL=” on page 13

“READ_LOCK_TYPE=” on page 14

“READBUFF=” on page 14

“SASDATEFMT=” on page 15

“SCHEMA=” on page 15

“UPDATEBUFF=” on page 17

“UPDATE_ISOLATION_LEVEL=” on page 16

“UPDATE_LOCK_TYPE=” on page 16

DBFORCE=

Specifies whether to force the truncation of character data during insert and update processing.

Default value: NO

Details For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data
Set Options".

Note: This option does not override the FORCE statement in the APPEND
procedure. 4

DBINDEX=

Indicates whether SAS calls the DBMS to find indexes on the specified table.

Default value: Defaults to the value of the LIBNAME option.

Details For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data
Set Options".

DBLINK=

Specifies an object in the local database that allows access to objects in a remote database.

Default value: Defaults to the value of the LIBNAME option.

10 DBNULL= 4 Chapter 1

Syntax
DBLINK=database-link

database-link
specifies a link to a remote object, such as a table or view in another database.

Details If you specify a link, SAS uses the link to access remote objects. If you omit
DBLINK=, SAS accesses objects in the local database.

A link is a database object that identifies an object that is stored in a remote
database. A link contains stored path information and may also contain user name and
password information for connecting to the remote database.

Example: Referencing a Remote ORACLE Table By Using DBLINK=
In this example, SAS sends myoradb.employees to ORACLE as
employees@sales.hq.acme.com.

proc print data=myoradb.employees(dblink=
’sales.hq.acme.com’);

run;

DBNULL=

Indicates whether NULL is a valid value for the specified column(s).

Default value: YES

Details For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data
Set Options".

DBPROMPT=

Specifies whether SAS displays a prompting window that enables you to enter SAS/ACCESS engine
connection options instead of specifying them in the LIBNAME statement.

Default value: Defaults to the value of the LIBNAME option.

Details If you omit DBPROMPT=, the default value is DBPROMPT=NO. The
SAS/ACCESS Interface to ORACLE allows you to enter 30 characters each for the
USERNAME and PASSWORD and up to 70 characters for the PATH, depending on
your platform and terminal type.

Note: This option is appropriate only for view descriptors. 4

ORACLE Chapter, First Edition 4 DBSASTYPE= 11

For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set
Options".

DBSASTYPE=

Specifies data type(s) to override the default SAS data type(s) during input processing of data from
ORACLE.

Default value: Option is omitted

Syntax
DBSASTYPE=(<column-name-1=<’>SAS-data-type<’>>

<...<column-name-n=<’SAS-data-type<’>>>)

column-name
specifies a DBMS column name.

SAS-data-type
specifies a SAS data type, which can be one of the following: CHAR(length),
NUMERIC, DATETIME, DATE, or TIME.

Details This option is valid only when you read ORACLE data into SAS.
By default, the SAS/ACCESS Interface to ORACLE converts each ORACLE data type

to a predetermined SAS data type when processing data from ORACLE. When you need
a different data type, you can use DBSASTYPE= to override the default data type
chosen by the SAS/ACCESS engine.

In the following example, the data stored in the DBMS FIBERSIZE column has a
data type that provides more precision than what SAS could accurately support, such
as DECIMAL(20). If you just used a PROC PRINT on the DBMS table, the data might
be rounded or displayed as a missing value. Instead, you could use the DBSASTYPE=
option to convert the column to a character field of the length 21. Because the ORACLE
performs the conversion before the data is brought into SAS, there is no loss of precision.

proc print data=mylib.specprod
(DBSASTYPE=(fibersize=’CHAR(21)’));

run;

You can also use the DBSASTYPE= option in cases where you are appending one
DBMS table to another table, and the data types are not comparable. If the SAS data
set has a variable CITY defined as CHAR(20) and the table has a column defined as
DECIMAL (20), you can use DBSASTYPE= to make them match:

proc append base=dblib.hrdata (DBSASTYPE=(city=’CHAR(20)’));
data=saslib.personnel;

run;

DBSASTYPE= specifies to SAS that the CITY is defined as a character field of length
20. When a row is inserted from the SAS data set into a DBMS table, ORACLE
performs a conversion of the character field to the DBMS data type, DECIMAL(20).

12 DBTYPE= 4 Chapter 1

See “LIBNAME Statement Data Conversions” on page 34 for more details about the
default data types for ORACLE.

DBTYPE=

Specifies data type(s) to override the default ORACLE data type(s) when SAS outputs data to
ORACLE.

Default value: VARCHAR2(size) for characters, where size is derived from the SAS
variable length; NUMBER(p, s) for numbers, where p and s are derived from the SAS
variable format; and NUMBER for numbers where p and s cannot be derived.

Syntax

DBTYPE=(<column-name-1=<’>DBMS-type<’>>
<...<column-name-n=<’>DBMS-type<’>>>)

Details For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data
Set Options".

INSERTBUFF=

Specifies the number of rows in a single ORACLE insert.

Default value: Defaults to the value of the LIBNAME option.

Syntax

INSERTBUFF=positive-integer

positive-integer
specifies the number of rows to insert.

Details SAS allows the maximum that is allowed by ORACLE.

Note: When you assign a value that is greater than INSERTBUFF=1, the SAS
application notes that indicate the success or failure of the insert operation may be
incorrect because these notes only represent information for a single insert, even when
multiple inserts are performed. 4

Note: If specified, the value of the DBCOMMIT= option overrides the value of
INSERTBUFF=. 4

ORACLE Chapter, First Edition 4 READ_ISOLATION_LEVEL= 13

ORHINTS=

Specifies ORACLE hints to pass to ORACLE from a SAS statement or SQL procedure.

Default value: None

Syntax
ORHINTS =’ORACLE-hint’

ORACLE-hint
specifies an ORACLE hint.

Details If you specify an ORACLE hint, SAS passes the hint to ORACLE. If you omit
ORHINTS=, SAS does not send any hints to ORACLE.

ORHINTS= can also be specified with the HINTS= alias.

Example: Passing an ORACLE Hint in a SAS PROC step
When you run a SAS procedure on DBMS data, SAS converts the procedure to one or
more SQL queries. The ORHINTS= data set option enables you to specify an ORACLE
hint for SAS to pass as part of the SQL query.

libname mydblib oracle user=scott password=tiger
path=’myorapath’;

proc print data=mydblib.payroll(orhints=
’/*+ ALL_ROWS */’);
run;

In this example, SAS sends the ORACLE hint ’/*+ ALL_ROWS */’ to ORACLE as
part of the following statement:

SELECT /*+ ALL_ROWS */ * FROM PAYROLL

READ_ISOLATION_LEVEL=

Specifies which isolation level to use when reading ORACLE tables and views.

Default value: Defaults to the value of the LIBNAME option.

Syntax
READ_ISOLATION_LEVEL=READCOMMITTED | SERIALIZABLE

READCOMMITTED
instructs SAS to use the read committed isolation level when reading ORACLE
tables.

14 READ_LOCK_TYPE= 4 Chapter 1

SERIALIZABLE
instructs SAS to use the serializable isolation level when reading ORACLE tables.

Details The SPOOL= option overrides the READ_ISOLATION_LEVEL= option. The
ORACLE_73= option must be set to ORACLE_73=YES to use the SERIALIZABLE
isolation level.

If SPOOL=DBMS, SAS automatically sets
READ_ISOLATION_LEVEL=SERIALIZABLE for ORACLE versions 7.3 or later and to
READ_ONLY for prior versions. In all other cases, the default value is
READCOMMITTED.

When READ_ISOLATION_LEVEL is set to SERIALIZABLE, the CONNECTION
option must be set to UNIQUE. If not, an error occurs.

Note: This option should be rarely needed, since the SAS/ACCESS Interface to
ORACLE chooses the appropriate isolation level based on other locking options. 4

READ_LOCK_TYPE=

Specifies how a table is locked during read operations.

Default value: Defaults to the value of the LIBNAME option.

Details If you specify READ_LOCK_TYPE=NOLOCK, table locking is not used when
the data set is read. If you specify READ_LOCK_TYPE=ROW, the ORACLE “ROW
SHARE” table lock is used when the data set is read. If you specify
READ_LOCK_TYPE=TABLE, the ORACLE “SHARE” table lock is used when the data
set is read.

When READLOCK_TYPE is set to either TABLE or ROW, the CONNECTION option
must be set to UNIQUE. If not, an error occurs.

For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set
Options".

READBUFF=

Specifies the number of rows in a single ORACLE fetch.

Default value: Defaults to the value of the LIBNAME option.

Syntax
READBUFF=positive-integer

positive-integer
specifies the number of rows to buffer.

Details SAS allows the maximum that is allowed by ORACLE.

ORACLE Chapter, First Edition 4 SCHEMA= 15

READBUFF= can also be specified with the BUFFSIZE= alias.

SASDATEFMT=

Specifies the ORACLE date format to use to convert SAS date values.

Default value: DATETIME20.0

Details For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data
Set Options".

SCHEMA=

Specifies a schema name to be used when referring to any database object.

Default value: Defaults to the value of the LIBNAME option.

Syntax
SCHEMA=schema-name

schema-name
specifies a schema name.

Details If PRESERVE_TAB_NAMES=NO, SAS converts the SCHEMA= value to
uppercase because all values in the ORACLE data dictionary are converted to
uppercase unless quoted.

Example: Accessing an ORACLE table using SCHEMA=
In this example, SAS sends any reference to employees as scott.employees.

libname mydblib oracle user=marie password=amore path="myorapath";
proc print data=employees (schema=scott);
run;

Example: Printing a “Three-level” ORACLE table using SCHEMA=
In this example, the ORACLE SCHEDULE table resides in the AIRPORTS schema,
and is specified as AIRPORTS.SCHEDULE. To access this table in PROC PRINT and
still use the libref (CARGO) in the SAS/ACCESS LIBNAME statement, you specify the
schema in the SCHEMA= option. Then you put the libref.table in the procedure’s DATA
statement. In this way, you are able, in effect, to specify a three-level ORACLE name in
SAS:

16 UPDATE_ISOLATION_LEVEL= 4 Chapter 1

libname cargo oracle schema=airports user=marie password=amore
path="myorapath";

proc print data=cargo.schedule;
run;

UPDATE_ISOLATION_LEVEL=

Specifies which isolation level to use when reading ORACLE tables for update.

Default value: Defaults to the value of the LIBNAME option.

Syntax
UPDATE_ISOLATION_LEVEL= READCOMMITTED | SERIALIZABLE

READCOMMITTED
instructs SAS to use the read committed isolation level when reading ORACLE
tables for update.

SERIALIZABLE
instructs SAS to use the serializable isolation level when reading ORACLE tables for
update.

Details The ORACLE_73= option must be set to ORACLE_73=YES to use the
SERIALIZABLE method.

If UPDATE_LOCK_TYPE=NOLOCK, SAS automatically sets
UPDATE_ISOLATION_LEVEL= SERIALIZABLE for ORACLE versions 7.3 or later and
READ_ONLY for prior versions. In all other cases, the default value is
READCOMMITTED.

Note: This option should be rarely needed, since the SAS/ACCESS Interface to
ORACLE chooses the appropriate isolation level based on other locking options. 4

UPDATE_LOCK_TYPE=

Specifies how a table is locked during update operations.

Default value: Defaults to the value of the LIBNAME option.

Details If you specify UPDATE_LOCK_TYPE=NOLOCK, table locking is not used
during the reading of tables and views for update. If you specify
UPDATE_LOCK_TYPE=ROW, the ORACLE “ROW SHARE” table lock is used when
the data set is read for update. If you specify UPDATE_LOCK_TYPE=TABLE, the
ORACLE “EXCLUSIVE” table lock is used when the table is read for update.

If UPDATE_LOCK_TYPE=NOLOCK and ORACLE_73_OR_ABOVE=YES, updates
are performed using serializable transactions. If UPDATE_LOCK_TYPE=NOLOCK and
ORACLE_73_OR_ABOVE=NO, updates are performed using an extra WHERE clause

ORACLE Chapter, First Edition 4 Data Set Options for Bulk Loading 17

to ensure that the row was not updated since it was first read. Updates might fail when
UPDATE_LOCK_TYPE=NOLOCK because other users might modify a row after the
row was read for update.

If the ORACLE_73_OR_ABOVE= option is incorrectly set to YES (meaning that the
Oracle server version is below 7.3), the Oracle engine detects this, and the update is
performed as if ORACLE_73_OR_ABOVE= were correctly set.

For a full description of this option, refer to Chapter 4, "SAS/ACCESS Data Set
Options".

UPDATEBUFF=

Specifies the number of rows in a single ORACLE update/delete.

Default value: Defaults to the value of the LIBNAME option.

Syntax

UPDATEBUFF=positive-integer

positive-integer
specifies a number of rows.

Details SAS allows the maximum that is allowed by ORACLE.

Data Set Options for Bulk Loading

With each version of SAS/ACCESS software, efforts have been made to increase the
performance when loading rows of data into ORACLE tables. In Version 6, the DBLOAD
procedure loaded data into an ORACLE table by transactional processing, inserting one
or more rows at a time. In Version 7, data was loaded into ORACLE tables using the
dynamic SAS/ACCESS LIBNAME engine. Whereas this method still used transactional
processing, specifying the INSERTBUFF= data set option significantly improved the
load’s performance. This option enables you to insert multiple rows at a time.

In Version 8, the SAS/ACCESS engine for ORACLE can call the ORACLE
SQL*Loader with its DIRECT=TRUE option in order to improve the loading
performance even more. In future releases, SAS/ACCESS software will continue to
make use of powerful ORACLE tools to improve its loading performance.

Note: The BULKLOAD=YES option must be specified in order for the other BL_
data set options to work. All of these data set-only options begin with BL_ (for
BULKLOAD).

When you specify BULKLOAD=YES, the following SAS/ACCESS options are ignored:
DBCOMMIT=, DBFORCE=, ERRLIMIT=, INSERTBUFF=, NULLCHAR=, and
NULLCHARVAL=. 4

Bulk loading is not available on the OS/390 or CMS operating environments.

18 BULKLOAD= 4 Chapter 1

BULKLOAD=

Loads rows of data as one unit.

Default value: NO
Alias: SQLLDR

Syntax
BULKLOAD=YES | NO

YES
Calls the ORACLE SQL*LOADER in order to insert or append rows to an ORACLE
table.

NO
Uses the dynamic SAS/ACCESS LIBNAME engine to insert or append the data
to an ORACLE table.

Details
Using BULKLOAD=YES is the fastest way to insert rows into a ORACLE table. If

you specify NO and choose the transactional inserting of rows, you can improve
performance by inserting multiple rows at a time. This performance enhancement is
comparable to using the ORACLE SQL*LOADER Conventional Path Load. For more
information about inserting multiple rows, see the SAS/ACCESS data set option,
“INSERTBUFF=” on page 12.

Example

Example 1: Creating a Table and Loading Data Using the BULKLOAD= and BL_OPTIONS=
Options This example shows how to create a SAS data set and use it to create and
load to a large ORACLE table, FLIGHTS98. This load uses the SQL*Loader direct path
method because you specified BULKLOAD=YES. BL_OPTIONS= passes the specified
SQL*Loader options to SQL*Loader when it is invoked. In this example, the ERROR=
option enables you to have 899 errors in the load before the load terminates, and the
LOAD= option loads the first 5,000 rows of the input data set, SASFLT.FLT98.

options yearcutoff=1925; /* included for Year-2000 compliance */

libname sasflt ’SAS-Data-Library’;
libname ora_air oracle user=louis password=fromage

path=’ora8_flt’ schema=statsdiv;

data sasflt.flt98;
input flight $3. +5 dates date7. +3 depart time5. +2 orig $3.

+3 dest $3. +7 miles +6 boarded +6 capacity;
format dates date9. depart time5.;
informat dates date7. depart time5.;
datalines;

ORACLE Chapter, First Edition 4 BL_CONTROL= 19

114 01JAN98 7:10 LGA LAX 2475 172 210
202 01JAN98 10:43 LGA ORD 740 151 210
219 01JAN98 9:31 LGA LON 3442 198 250

<... 10,000 more observations>

proc sql;
create table ora_air.flights98
(BULKLOAD=YES BL_OPTIONS=’ERROR=899,LOAD=5000’) as

select * from sasflt.flt98;
quit;

During a load, certain SQL*Loader files are created, such as the data, log, and
control files. Unless otherwise specified, they are given a default name and written to
the current directory. For this example, the default names would be
bl_flights98.dat, bl_flights98.log, and bl_flights98.ctl.

BL_BADFILE=

Determines the name and location of a file containing rejected rows.

Default value: creates a data file in the current directory

Syntax

BL_BADFILE= path-and-filename

path-and-filename
An SQL*Loader file to which rejected rows of data are written. You can specify the
full path and filename in this argument, or use the default file name and location.
The default action is to create a bl_<tablename>.bad file in the current directory.

Details

The ORACLE SQL*Loader creates this file of rejected rows. Rows are rejected
because they have caused errors during an insert, or because they are incorrectly
formatted.

To specify BL_BADFILE=, you must first specify YES for the option “BULKLOAD=”
on page 18.

BL_CONTROL=

Determines the name and location of a file containing SQLLDR control statements.

Default value: creates a control file in the current directory.

20 BL_DATAFILE= 4 Chapter 1

Syntax
BL_CONTROL=path-and-control-filename

path-and-control-filename
An SQL*Loader file to which SQLLDR control statements are written. You can
specify the full path and filename in this argument, or use the default file name and
location. The default action is to create a bl_<tablename>.ctl file in the current
directory.

Details
The SAS/ACCESS engine for ORACLE creates the control file using information from

the input data and SAS/ACCESS options. The file contains Data Definition Language
(DDL) definitions. It is used to specify exactly how the loader should interpret the data
that you are loading from the data file (.dat file).

To specify BL_CONTROL, you must first specify YES for the option “BULKLOAD=”
on page 18.

BL_DATAFILE=

Determines the name and location of the data file.

Default value: creates a data file in the current directory.

Syntax
BL_DATAFILE=path-and-data-filename

path-and-data-filename
An SQL*Loader file that contains the rows of data to be loaded. You can specify the
full path and filename in this argument, or use the default file name and location.
The default action is to create a bl_<tablename>.dat file in the current directory.

Details
The SAS/ACCESS engine for ORACLE creates this data file from the input SAS data

set. It contains SAS data that is ready to load into ORACLE.
To specify BL_DATAFILE=, you must first specify YES for the option “BULKLOAD=”

on page 18.

BL_DELETE_DATAFILE=

Deletes the data file created for SQL*Loader.

ORACLE Chapter, First Edition 4 BL_DIRECT_PATH= 21

Default value: YES

Syntax

BL_DELETE_DATAFILE=YES | NO

YES
Deletes the data file (.dat file) that the SAS/ACCESS engine created for
SQL*Loader.

NO
Saves the data file from deletion.

Details

Setting the BL_DELETE_DATAFILE= option to YES deletes the temporary data file
that is created after the load is completed. Only the data file is deleted; other files, such
as the control, log, discard, and bad files, are not deleted.

To specify BL_DELETE_DATAFILE=, you must first specify YES for the option
“BULKLOAD=” on page 18.

BL_DIRECT_PATH=

Sets the ORACLE SQL*Loader DIRECT option.

Default value: YES

Syntax

BL_DIRECT_PATH= YES | NO

YES
Sets the ORACLE SQL*Loader option DIRECT to TRUE, enabling the SQL*Loader
to use Direct Path Load to insert rows into a table.

NO
Sets the ORACLE SQL*Loader option DIRECT to FALSE, enabling the SQL*Loader
to use Conventional Path Load to insert rows into a table.

Details

For more information about the SQL*Loader Direct and Conventional Path loads, see
the Oracle utilities documentation for SQL*Loader.

To specify BL_DIRECT_PATH=, you must first specifyYES for the option
“BULKLOAD=” on page 18.

22 BL_DISCARDFILE= 4 Chapter 1

BL_DISCARDFILE=

Determines the name and location of a file containing discarded rows.

Default value: creates a file in the current directory.

Syntax
BL_DISCARDFILE= path-and-discard-filename

path-and-discard-filename
An SQL*Loader discard file containing rows that were neither rejected nor inserted
into the table; rather, these rows did not meet the specified criteria. You can specify
the full path and filename in this argument, or use the default file name and location.
The default action is to create a bl_<tablename>.dsc file in the current directory.

Details
SQL*Loader creates the file of discarded rows.
To specify BL_DISCARDFILE, you must first specify YES for the option

“BULKLOAD=” on page 18.

BL_LOAD_METHOD=

Specifies the method by which data are loaded into an ORACLE table.

Default value: INSERT when loading an empty table; APPEND when loading a table that
contains data

Syntax
BL_LOAD_METHOD= INSERT | APPEND | REPLACE | TRUNCATE

INSERT | APPEND | REPLACE | TRUNCATE
A method with which to load data into an ORACLE table.

Details
When you load data into a empty ORACLE table, the default method is INSERT.

When you load data into an ORACLE table that already contains data, the default
method is APPEND.

The REPLACE and TRUNCATE values apply only when you are loading data into a
table that already contains data. In this case, you can use REPLACE and TRUNCATE
to override the default value of APPEND. Refer to the Oracle utilities documentation
for information about using the TRUNCATE and REPLACE load methods.

ORACLE Chapter, First Edition 4 BL_OPTIONS= 23

To specify BL_LOAD_METHOD=, you must first specify YES for the option
“BULKLOAD=” on page 18.

BL_LOG=
Determines the name and location of a log file containing load statistics.

Default value: creates a log file in the current directory.

Syntax
BL_LOG=path-and-log-filename

path-and-log-filename
An SQL*Loader log file to which information about the loading process is written.
You can specify the full path and filename in this argument, or use the default file
name and location. The default action is to create a bl_<tablename>.log file in
the current directory.

Details
When the ORACLE SQL*Loader is invoked, it creates a log file. This file contains a

detailed summary of the load, including a description of any errors. The BL_ prefix
distinguishes this log file from the one created by the SAS log.

To specify BL_LOG=, you must first specify YES for the option “BULKLOAD=” on
page 18.

BL_OPTIONS=
Passes SQLLDR options to SQL*Loader.

Default value: ERRORS=1000000

Syntax
BL_OPTIONS=’SQLLDR option<,. . . SQLLDR option>’

’SQLLDR option<, . . . SQLLDR option>’
one or more SQL*Loader options that are appended to the SQL*Loader invocation
command. Separate multiple options with commas and enclose the entire string of
options in single quotation marks.

Details
BL_OPTIONS= enables you to pass SQL*Loader options to SQL*Loader when it is

invoked, thereby affecting how data is loaded and processed. In the following example,

24 BL_SQLLDR_PATH= 4 Chapter 1

BL_OPTIONS= specifies the number of errors permitted during a load of 2,000 rows of
data. Notice that the entire listing of options is quoted and not each individual option:

bl_options=’ERROR=999,LOAD=2000’

The default value for BL_OPTIONS= overrides the default value for the ORACLE
SQL*Loader ERROR= option, which is 50. See the Oracle utilities documentation for
SQL*Loader options that you can specify in BL_OPTIONS=.

To specify BL_OPTIONS=, you must first specify YES for the option “BULKLOAD=”
on page 18.

BL_SQLLDR_PATH=

Specifies the location of the SQLLDR executable file.

Default value: sqlldr

Syntax
BL_SQLLDR_PATH=pathname

pathname
The full pathname to the SQLLDR executable file so that the SAS/ACCESS engine
for ORACLE can invoke SQL*Loader.

Details
Normally there is no need to specify this option because the environment is set up to

find the ORACLE SQL*Loader automatically.
To specify BL_SQLLDR_PATH=, you must first specify YES for the option

“BULKLOAD=” on page 18.

ACCESS Procedure: ORACLE Specifics
Chapter 9, "ACCESS Procedure Reference" describes the options and procedure

statements that enable you to create access descriptors, view descriptors, and SAS data
files from DBMS data. The following section describes the DBMS-specific statements
that you use in the SAS/ACCESS Interface to ORACLE.

ACCESS Procedure Statements for ORACLE
To create an access descriptor, you use the DBMS=ORACLE option and the database

description statements PATH=, ORAPW=, USER=, and TABLE= in the PROC ACCESS
step. The database description statements supply DBMS-specific information to the
SAS System. These statements must immediately follow the CREATE statement that
specifies the access descriptor to be created.

ORACLE Chapter, First Edition 4 ACCESS Procedure Statements for ORACLE 25

Database description statements are required only when you create access
descriptors. Because ORACLE information is stored in an access descriptor, you do not
need to repeat this information when you create view descriptors.

Note: The SAS/ACCESS Interface to ORACLE does not use the PASSWORD= and
DATABASE= procedure statements that are described in Chapter 9, "ACCESS
Procedure Reference" . 4

The SAS/ACCESS Interface to ORACLE uses the following procedure statements in
line or batch mode:

PROC ACCESS <DBMS=ORACLE | view-descriptor-options>;

CREATE libref.member-name.ACCESS | VIEW <password-option>;

UPDATE libref.member-name.ACCESS | VIEW <password-option>;

USER= < ’>ORACLE-user-name< ’>;

ORAPW= | ORACLEPW=< ’> ORACLE-password< ’>;

TABLE= < ’>ORACLE-table-name< ’>;

PATH= ’ORACLE-path-designation’;

ASSIGN <=> YES | NO | Y | N;

DROP < ’>column-identifier-1< ’> <…< ’>column-identifier-n< ’>>

FORMAT < ’>column-identifier-1< ’><=> SAS-format-name-1
<…< ’>column-identifier-n< ’><=> SAS-format-name-n>;

QUIT;

RENAME < ’>column-identifier-1 < ’><=> SAS-variable-name-1
<…< ’>column-identifier-n< ’><=>SAS-variable-name-n>;

RESET ALL | < ’>column-identifier-1< ’> <…< ’>column-identifier-n< ’>>;

SELECT ALL | < ’>column-identifier-1< ’> <…< ’>column-identifier-n< ’>>;

SUBSET selection-criteria;

UNIQUE <=> YES | NO | Y | N;

LIST <ALL | VIEW | < ’>column-identifier< ’>>;

RUN ;

USER= <’>ORACLE-user-name<’>;
specifies an optional ORACLE user name. If the user name contains blanks or
national characters, enclose the name in quotation marks. See Chapter 9,
"ACCESS Procedure Reference" for more information.

If you omit an ORACLE user name and password, the default ORACLE user ID
OPS$sysid is used, if it is enabled. USER= must be used with ORAPW=.

ORAPW= | ORACLEPW= <’>ORACLE-password<’>;
specifies an optional ORACLE password that is associated with the ORACLE user
name. If omitted, the password for the default ORACLE user ID OPS$sysid is
used, if it is enabled. ORAPW= must be used with USER=.

TABLE=<’>ORACLE-table<’>;
specifies the name of the ORACLE table or ORACLE view on which the access
descriptor is based. This statement is required.

The ORACLE-table-name argument can be up to 30 characters long and must
be a valid ORACLE table name. If the table name contains blanks or national
characters, enclose the name in quotation marks.

26 ACCESS Procedure Examples 4 Chapter 1

PATH=<’>ORACLE-database-specification<’>;
specifies the ORACLE driver, node, and database. Aliases are required if you are
using SQL*Net Version 2.0 or later. In some operating environments, you can
enter the information that is required by the PATH= statement before invoking
the SAS System.

SAS/ACCESS uses the same ORACLE path designation that you use to connect
to ORACLE directly. See your database administrator to determine the databases
that have been set up in your operating environment, and to determine the default
values if you do not specify a database. On UNIX systems, the TWO_TASK
environment variable is used, if set. If neither PATH= nor TWO_TASK have been
set, the default value is the local driver.

The values that you specify for the USER=, ORAPW=, TABLE=, and PATH=
statements are permanently associated with the access descriptor that you create, and
with all the view descriptors that are created from that access descriptor.

ACCESS Procedure Examples
The following example creates an access descriptor and a view descriptor based on

ORACLE data.

options linesize=80;

libname adlib ’SAS-data-library’;
libname vlib ’SAS-data-library’;

proc access dbms=oracle;

/* create access descriptor */

create adlib.customer.access;
user=scott;
orapw=tiger;
table=customers;
path=’myorapath’;
assign=yes;
rename customer=custnum;
format firstorder date9.;
list all;

/* create view descriptor */

create vlib.usacust.view;
select customer state zipcode name

firstorder;
subset where customer like ’1%’;

run;

The following example creates another view descriptor that is based on the
ADLIB.CUSTOMER access descriptor. The view is then printed.

/* create socust view */

proc access dbms=oracle accdesc=adlib.customer;
create vlib.socust.view;
select customer state name contact;

ORACLE Chapter, First Edition 4 DBLOAD Procedure Statements for ORACLE 27

subset where state in (’NC’, ’VA’, ’TX’);
run;

/* print socust view */

proc print data=vlib.socust;
title ’Customers in Southern States’;
run;

DBLOAD Procedure: ORACLE Specifics
Chapter 10, "DBLOAD Procedure Reference" describes the options and procedure

statements that enable you to create a DBMS table and to insert data in it. The
following section describes the DBMS-specific statements that you use in the
SAS/ACCESS interface to ORACLE.

DBLOAD Procedure Statements for ORACLE
To create and load an ORACLE table, the SAS/ACCESS Interface to ORACLE uses

the following statements in interactive-line or batch mode.

Note: The SAS/ACCESS Interface to ORACLE does not use the DATABASE=
procedure statement that is described in Chapter 10, "DBLOAD Procedure Reference"
. 4

PROC DBLOAD DBMS=ORACLE <DATA= < libref.>SAS-data-set> <APPEND>;
TABLE= < ’>ORACLE-table-name< ’>;
USER= < ’>ORACLE-user-name< ’>;
ORAPW= PW= | PASSWORD= < ’> ORACLE-password< ’>;
PATH=< ’> ORACLE-database-specification< ’>;
TABLESPACE= < ’>ORACLE-tablespace-name< ’>;
ACCDESC= <libref.>access-descriptor;
COMMIT= commit-frequency;
DELETE variable-identifier-1 <…variable-identifier-n>;
ERRLIMIT= error-limit;
LABEL;
LIMIT= load-limit;
NULLS variable-identifier-1 = Y | N <…variable-identifier-n = Y | N>;
QUIT;
RENAME variable-identifier-1 = < ’>column-name-1< ’>

<… variable-identifier-n = < ’>column-name-n< ’>>;
RESET ALL | variable-identifier-1 <…variable-identifier-n>;
SQL ORACLE-SQL-statement;
TYPE variable-identifier-1 = ’column-type-1’

<…variable-identifier-n = ’column-type-n’>;
WHERE SAS-where-expression;
LIST <ALL | COLUMN | variable-identifier>;

28 DBLOAD Procedure Examples 4 Chapter 1

LOAD;

RUN;

PROC DBLOAD Statements

TABLE=<’>ORACLE-table-name<’>;
identifies the ORACLE table that you want to create. The TABLE= statement is
required.

The ORACLE-table-name argument can be up to 30 characters long and must
be a valid ORACLE table name. If the table name contains blanks or national
characters, enclose the name in quotation marks.

USER= <’>ORACLE-user-name<’>;
specifies an optional ORACLE userid. If the user name contains blanks or
national characters, enclose the name in quotation marks. If you omit an
ORACLE user name and password, the default ORACLE user ID OPS$sysid is
used, if it is enabled. USER= must be used with ORAPW=.

ORAPW= | PW= | PASSWORD= <’>ORACLE-password<’>;
specifies an optional ORACLE password that is associated with the ORACLE user
ID that is specified in the USER= statement. If omitted, the password for the
default ORACLE user ID OPS$sysid is used, if it is enabled. ORAPW= must be
used with USER=.

TABLESPACE= <’>ORACLE-tablespace-name<’>;
specifies the name of the ORACLE tablespace where you want to store the new
table.

The ORACLE-tablespace-name argument can be up to 18 characters long and
must be a valid ORACLE tablespace name. If the name contains blanks or
national characters, enclose the entire name in quotation marks.

If omitted, the table is created in the user’s default tablespace that is defined by
the ORACLE database administrator at your site.

PATH= <’>ORACLE-database-specification<’>;
specifies the ORACLE driver, node, and database. Aliases are required if you are
using SQL*Net Version 2.0 or later. In some operating environments, you can
enter the information that is required by the PATH= statement before invoking
the SAS System.

SAS/ACCESS uses the same ORACLE path designation that you use to connect
to ORACLE directly. See your database administrator to determine the path
designations that have been set up in your operating environment, and to
determine the default value if you do not specify a path designation. On UNIX
systems, the TWO_TASK environment variable is used, if set. If neither PATH=
nor TWO_TASK have been set, the default value is the local driver.

DBLOAD Procedure Examples
The following example creates a new ORACLE table, EXCHANGE, from the

DLIB.RATEOFEX data file. An access descriptor, ADLIB.EXCHANGE, based on the
new table, is also created. The PATH= statement uses an alias to connect to a remote
ORACLE 7 Server database.

The SQL statement in the second DBLOAD procedure sends an SQL GRANT
statement to ORACLE. You must be granted ORACLE privileges to create new
ORACLE tables or to grant privileges to other users. The SQL statement is in a

ORACLE Chapter, First Edition 4 SQL Procedure Pass-Through Facility: ORACLE Specifics 29

separate procedure because you cannot create a DBMS table and reference it within the
same DBLOAD step. The new table is not created until the RUN statement is
processed at the end of the first DBLOAD step.

Note: The DLIB.RATEOFEX data set is included in the sample data shipped with
your software. 4

libname adlib ’SAS-data-library’;
libname dlib ’SAS-data-library’;

proc dbload dbms=oracle data=dlib.rateofex;
user=scott; orapw=tiger;
path=’myorapath’;
table=exchange;
accdesc=adlib.exchange;
rename fgnindol=fgnindolar 4=dolrsinfgn;
nulls updated=n fgnindol=n 4=n country=n;
load;

run;

proc dbload dbms=oracle;
user=scott; orapw=tiger;
path=’myorapath’;
sql grant select on scott.exchange to pham;

run;

The next example uses the APPEND option to append rows from the INVDATA data
set to an existing ORACLE table named INVOICE.

proc dbload dbms=oracle data=invdata append;
user=scott; orapw=tiger;
path=’myorapath’;
table=invoice;
load;

run;

Note: The next example uses a previously created data set, INVDATA. 4

SQL Procedure Pass-Through Facility: ORACLE Specifics
Chapter 6, "SQL Procedure’s Interaction with SAS/ACCESS Software" describes the

PROC SQL statements that you use to connect to and disconnect from a DBMS, to send
DBMS-specific statements to the DBMS, and to retrieve DBMS data for your SAS
programs.

CONNECT statement, see The following section describes the ORACLE-specific
arguments that you use in the CONNECT statement“Arguments to Connect to
ORACLE” on page 30.

30 Arguments to Connect to ORACLE 4 Chapter 1

Arguments to Connect to ORACLE
The CONNECT statement is optional when connecting to ORACLE. If you omit the

CONNECT statement, an implicit connection is made with your OPS$sysid, if it is
enabled. When you omit a CONNECT statement, an implicit connection is performed
when the first EXECUTE statement or CONNECTION TO component is passed to
ORACLE. In this case you must use the default DBMS name ORACLE. The interface to
ORACLE can connect to multiple databases (both local and remote) and to multiple user
IDs. If you use multiple simultaneous connections, you must use an alias argument to
identify each connection. If you do not specify an alias, the default alias ORACLE is used.

CONNECT TO ORACLE <AS alias> (USER=ORACLE-user-name
PASSWORD=ORACLE-password PATH="ORACLE-path-designation"
BUFFSIZE=number-of-rows PRESERVE_COMMENTS);

USER=<’>ORACLE-user-name<’>
specifies an optional ORACLE user name. If you omit an ORACLE password and
user name, the default ORACLE user ID OPS$sysid is used if it is enabled. If you
specify USER=, you must also specify ORAPW=.

ORAPW= | PASSWORD= | PW= <’>ORACLE-password<’>
specifies an optional ORACLE password that is associated with the ORACLE user
name. If you omit an ORACLE password, the default ORACLE user ID OPS$sysid
is used, if it is enabled. If you specify ORAPW=, you must also specify USER=.

BUFFSIZE=number-of-rows
specifies the number of rows to retrieve from an ORACLE table or view with each
fetch. Using this argument can improve the performance of any query to ORACLE.

By setting the value of the BUFFSIZE= argument in your SAS programs, you
can find the optimal number of rows for a given query on a given table. The default
buffer size is 25 rows per fetch. The limit is 32,767 rows per fetch, although a
practical limit for most applications is less, depending on the available memory.

PRESERVE_COMMENTS
enables you to pass additional information (called “hints”) to ORACLE for
processing. These hints might direct the ORACLE query optimizer to choose the
best processing method based on your hint.

You specify PRESERVE_COMMENTS as an argument in the CONNECT
statement. Then you specify the hints in the CONNECTION TO component’s
ORACLE SQL query. The hints are entered as comments in the SQL query and
are passed to and processed by ORACLE.

PATH=<’>ORACLE-database-specification<’>
specifies the ORACLE driver, node, and database. Aliases are required if you are
using SQL*Net Version 2.0 or later. In some operating environments, you can
enter the information that is required by the PATH= statement before invoking
the SAS System.

SAS/ACCESS uses the same ORACLE path designation that you use to connect
to ORACLE directly. See your database administrator to determine the path
designations that have been set up in your operating environment, and to
determine the default value if you do not specify a path designation. On UNIX
systems, the TWO_TASK environment variable is used, if set. If neither PATH=
nor TWO_TASK have been set, the default value is the local driver.

ORACLE Chapter, First Edition 4 Pass-Through Examples 31

Pass-Through Examples

The following example uses the alias DBCON for the DBMS connection (the
connection alias is optional):

proc sql;
connect to oracle as dbcon

(user=scott password=tiger buffsize=100
path=’myorapath’);

quit;

The following example connects to ORACLE and sends it two EXECUTE statements
to process.

proc sql;
connect to oracle (user=scott

password=tiger);

execute (create view whotookorders as
select ordernum, takenby,

firstname, lastname, phone
from orders, employees
where orders.takenby=employees.empid)

by oracle;
execute (grant select on whotookorders

to testuser) by oracle;

disconnect from oracle;
quit;

The following example performs a query, shown in underlined text, on the ORACLE
table CUSTOMERS:

proc sql;
connect to oracle (user=scott

password=tiger);
select *

from connection to oracle
(select * from customers
where customer like ’1%’);

disconnect from oracle;
quit;

In this example, the PRESERVE_COMMENTS argument is specified after the
USER= and PASSWORD= arguments. The ORACLE SQL query is enclosed in required
parentheses. The SQL INDX command identifies the index for the ORACLE query
optimizer to use in processing the query. Note that multiple hints are separated with
blanks.

proc sql;
connect to oracle as mycon(user=scott

password=tiger preserve_comments);
select *

from connection to mycon
(select /* +indx(empid) all_rows */

count(*) from employees);
quit;

32 ORACLE Naming Conventions 4 Chapter 1

ORACLE Naming Conventions
ORACLE objects that may be named include tables, views, columns, and indexes.

For the ORACLE7 Server, objects also include database triggers, procedures, and stored
functions. Use the following ORACLE naming conventions:

� A name must start with a letter. However, if the name appears within double
quotation marks, it may start with any character.

� A name must be from 1 to 30 characters long, except for database names, which
are limited to 8 characters, and link names, which are limited to 128 characters.

� A name may contain the letters A through Z, the digits 0 through 9, the
underscore (_), $, and #. If the name appears within double quotation marks, it
may contain any characters, except double quotation marks.

� A name is not case sensitive. For example, CUSTOMER is the same as customer.
If, however, the name of the object appears within double quotation marks when it
is used, then it is case sensitive.

� A name cannot be an ORACLE reserved word.
� A name cannot be the same name as another ORACLE object in the same schema.

ORACLE7 Server Data Types
Every column in a table has a name and a data type. The data type tells ORACLE

how much physical storage to set aside for the column and the form in which the data
is stored. ORACLE data types fall into three categories: types for character data, types
for numeric data, and types for abstract values such as dates. Each of these types is
described in the following sections.

Note: The SAS/ACCESS Interface to ORACLE does not support the following
ORACLE data types: MLSLABEL and ROWID. SAS/ACCESS provides an error
message when it attempts to read a table that has at least one column that uses an
unsupported data type. 4

Character Data
CHAR (n)

contains fixed-length character string data with a length of n, where n must be at
least 1 and cannot exceed 255 characters. (The limit is 2,000 characters with
ORACLE8 Server.) Note that the ORACLE7 Server CHAR data type is not
equivalent to the ORACLE Version 6 CHAR data type. The ORACLE7 Server
CHAR data type is new with ORACLE7 Server and uses blank-padded comparison
semantics.

LONG
contains varying-length character string data that is similar to type VARCHAR2.
Type LONG is character data of variable length with a maximum length of 2
gigabytes. You can define only one LONG column per table. Available memory
considerations might also limit the size of a LONG data type.

VARCHAR2(n)
contains character string data with a length of n, where n must be at least 1 and
cannot exceed 2000 characters. (The limit is 4,000 characters with ORACLE8
Server.) The VARCHAR2 data type is equivalent to the ORACLE Version 6 CHAR

ORACLE Chapter, First Edition 4 NULL and Default Values 33

data type except for the difference in maximum lengths. The VARCHAR2 data
type uses nonpadded comparison semantics.

Numeric Data
NUMBER(p,s)

specifies a fixed-point number with an implicit decimal point, where p is the total
number of digits (precision) and can range from 1 to 38, and s is the number of
digits to the right of the decimal point (scale) and can range from -84 to 127.

NUMBER(p)
specifies an integer of precision p that can range from 1 to 38 and a scale of 0.

NUMBER
specifies a floating-point number with a precision of 38. A floating-point value can
either specify a decimal point anywhere from the first to the last digit or omit the
decimal point. A scale value does not apply to floating-point numbers since there
is no restriction on the number of digits that can appear after the decimal point.

Other Data Types
DATE

contains date values. Valid dates are from January 1, 4712 BC to December 31,
4712 AD. The default format is DD-MON-YY, for example ’05-OCT-98’.

LONG RAW
contains raw binary data of variable length up to 2 gigabytes. Values entered into
columns of this type must be inserted as character strings in hexadecimal notation.

RAW(n)
contains raw binary data where n must be at least 1 and cannot exceed 255 bytes.
(In ORACLE Version 8, the limit is 2,000 bytes.) Values entered into columns of
this type must be inserted as character strings in hexadecimal notation. You must
specify n for this data type.

Note: For compatibility with other DBMSs, ORACLE supports the syntax for a wide
variety of numeric data types, including DECIMAL, INTEGER, REAL,
DOUBLE-PRECISION, and SMALLINT. All forms of numeric data types are actually
stored in the same internal ORACLE NUMBER format. The additional numeric data
types are variations of precision and scale. A null scale implies a floating-point number,
and a non-null scale implies a fixed-point number. 4

See “LIBNAME Statement Data Conversions” on page 34 and “ACCESS Procedure
Data Conversions” on page 35 for a description of how PROC ACCESS and the
LIBNAME statement treat each of these types during input operations.

NULL and Default Values
ORACLE has a special value called NULL. NULL means an absence of information

and is analogous to the SAS System’s missing value. By default, columns accept NULL
values. However, you can define columns so that they cannot contain NULL data. For
example, the CREATE TABLE statement for the CUSTOMERS table in Appendix 1
defines the first column, CUSTOMER, as CHAR(8) and NOT NULL. NOT NULL tells
ORACLE not to add a row to the table unless the row has a value for CUSTOMER.

34 LIBNAME Statement Data Conversions 4 Chapter 1

LIBNAME Statement Data Conversions
Table 1.1 on page 34 shows the default SAS System variable formats that the

LIBNAME statement assigns to ORACLE data types during input operations. You can
override these input and output data types by using the DBTYPE= data set option
during output processing.

Note: ORACLE data types that are omitted from this table are not supported by
SAS/ACCESS. 4

Table 1.1 LIBNAME Statement: Default SAS Formats for ORACLE Data Types

ORACLE Data Type Default SAS Format

CHAR(n) $n.

VARCHAR2(n) $n.

NUMBER none (BEST. on OS/390 and CMS)

NUMBER(p) w.(BEST. on OS/390 and CMS)

NUMBER(p, s) w.d

DATE DATETIME20.

LONG $200.

RAW(n) $HEXw.

LONG RAW $HEX200.

If ORACLE data falls outside valid SAS data ranges, the values are usually counted as
missing.

Note: SAS automatically converts ORACLE NUMBER types to SAS number
formats by using an algorithm that determines the correct scale and precision. When
the scale and precision cannot be determined, the SAS/ACCESS Interface to ORACLE
allows the procedure or application to determine the format. 4

Table 1.2 on page 34 shows the default ORACLE data types that the LIBNAME
statement assigns to SAS variable formats during output operations.

Table 1.2 LIBNAME Statement: Default ORACLE Data Types for SAS Formats

SAS Variable Format ORACLE Data Type

$w. VARCHAR2(n)

w. with SAS format name of NULL NUMBER(p)

w.d with SAS format name of NULL NUMBER(p,s)

all other numerics * NUMBER (NUMBER(38,10) on OS/390 and CMS)

datetimew.d DATE

datew. DATE

time. ** DATE

* Includes all SAS numeric formats, such as BINARY8 and E10.0.

ORACLE Chapter, First Edition 4 ACCESS Procedure Data Conversions 35

** Includes all SAS time formats, such as TODw.d and HHMMw.d .

ACCESS Procedure Data Conversions
Table 1.3 on page 35 shows the default SAS System variable formats that the

ACCESS procedure assigns to ORACLE data types.

Note: ORACLE data types that are omitted from this table are not supported by the
SAS/ACCESS Interface. 4

Table 1.3 PROC ACCESS: Default SAS Formats for ORACLE Data Types

ORACLE Data Type Default SAS Format

CHAR(n) $n. (n <= 200) $200. (n > 200)

VARCHAR2(n) $n. (n <= 200) $200. (n > 200)

FLOAT BEST22.

NUMBER BEST22.

NUMBER(p) w.

NUMBER(p, s) w.d

DATE DATETIME16.

LONG $200.

RAW(n) $n. (n < 200) $200. (n > 200)

LONG RAW $200.

See “ACCESS Procedure Data Conversions for the NUMBER Data Type” for more
information about NUMBER data type conversions. If ORACLE data fall outside valid
SAS data ranges, the values are usually counted as missing.

ACCESS Procedure Data Conversions for the NUMBER Data Type
The general form of an ORACLE number is NUMBER(p,s) where p is the precision

and s is the scale of the number. ORACLE defines precision as the total number of
digits, with a valid range of -84 to 127. However, a negative scale means that the
number is rounded to the specified number of places to the left of the decimal. For
example, if the number 1,234.56 is specified as data type NUMBER(8,-2), it is rounded
to the nearest hundred and stored as 1,200.

Table 1.4 on page 35 shows the correlation between the ORACLE NUMBER data
types and the default SAS formats that are created from that data type.

Table 1.4 Default SAS Formats for ORACLE NUMBER Data Types

ORACLE NUMBER Data Type Rules Default SAS Format

NUMBER(p) 0 < p <= 32 (p + 1).0

NUMBER(p,s) p > 0, s < 0, |s| < p (p + |s| + 1).0

NUMBER(p,s) p > 0, s < 0, |s| >= p (p + |s| + 1).0

36 DBLOAD Procedure Data Conversions 4 Chapter 1

ORACLE NUMBER Data Type Rules Default SAS Format

NUMBER(p,s) p > 0, s > 0, s < p (p + 2).s

NUMBER(p,s) p > 0, s > 0, s >= p (s + 3).s

NUMBER(p) p > 32 BEST22. SAS selects format

NUMBER p,s unspecified BEST22. SAS selects format

DBLOAD Procedure Data Conversions
Table 1.5 on page 36 shows the default ORACLE data types the DBLOAD procedure

assigns to SAS variable formats.

Table 1.5 PROC DBLOAD: Default ORACLE Data Types for SAS Formats

SAS Variable Format ORACLE Data Type

$w. CHAR(n)

w. NUMBER(p)

w.d NUMBER(p,s)

all other numerics * NUMBER

datetimew.d DATE

datew. DATE

time. ** NUMBER

* Includes all SAS numeric formats, such as BINARY8 and E10.0.

** Includes all SAS time formats, such as TODw.d and HHMMw.d .

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/ACCESS ® Software for Relational Databases: Reference, Version 8 (ORACLE ®

Chapter), Cary, NC: SAS Institute Inc., 1999.

SAS/ACCESS® Software for Relational Databases: Reference, Version 8
(ORACLE® Chapter)
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–542–6
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

