
Chapter 3
The LP Procedure

Chapter Table of Contents

OVERVIEW . 55

GETTING STARTED . 57
An Introductory Example .. 58
An Integer Programming Example . 62
An MPS Format Conversion Example . 64

SYNTAX . 65
Functional Summary . 66
PROC LP Statement . 70
COEF Statement . 80
COL Statement . 81
ID Statement . 81
IPIVOT Statement . 82
PIVOT Statement . 82
PRINT Statement . 82
QUIT Statement . 84
RANGE Statement. 84
RESET Statement. 85
RHS Statement . 86
RHSSEN Statement. 86
ROW Statement . 87
RUN Statement . 87
SHOW Statement . 87
TYPE Statement . 88
VAR Statement . 90

DETAILS . 91
Missing Values . 91
Sparse Data Input Format .. 91
Converting MPS Format .. 93
The Reduced Costs, Dual Activities, and Current Tableau 96
Macro Variable–ORLP– . 96
Pricing . 97
Scaling . 98
Preprocessing .. 99

54 � Chapter 3. The LP Procedure

Integer Programming . 99
Sensitivity Analysis . 107
Range Analysis . 110
Parametric Programming .. 110
Interactive Facilities. 112
Memory Management . 113
Output Data Sets . 114
Input Data Sets. 116
Displayed Output . 117
ODS Table and Variable Names . 121

EXAMPLES . 123
Example 3.1 An Oil Blending Problem . 123
Example 3.2 A Sparse View of the Oil Blending Problem 128
Example 3.3 Analyzing the Sensitivity of the Solution to Changes in the

Objective Coefficients . 131
Example 3.4 Additional Analysis of the Sensitivity of the Solution to

Changes in the Objective Coefficients 133
Example 3.5 Price Parametric Programming for the Oil Blending Problem . . 134
Example 3.6 Special Ordered Sets and the Oil Blending Problem 136
Example 3.7 Goal-Programming a Product Mix Problem. 140
Example 3.8 A Simple Integer Program . 148
Example 3.9 An Infeasible Problem. 151
Example 3.10 Restarting an Integer Program 154
Example 3.11 Alternative Search of the Branch and Bound Tree 159
Example 3.12 An Assignment Problem . 163
Example 3.13 A Scheduling Problem . 170
Example 3.14 A Multicommodity Transshipment Problem with Fixed Charges177

REFERENCES . 180

SAS OnlineDoc: Version 8

Chapter 3
The LP Procedure

Overview

The LP procedure solves linear programs, integer programs, and mixed-integer pro-
grams. It also performs parametric programming, range analysis, and reports on
solution sensitivity to changes in the right-hand-side constants and price coefficients.

The LP procedure provides various control options and solution strategies. It also
provides the functionality to produce various kinds of intermediate and final solution
information. The procedure’s interactive features enable you to take control of the
problem solving process. During linear or integer iterations, for example, you can
stop the procedure at intermediate stages and examine current results. If necessary,
you can change options or strategies and resume the execution of the procedure.

The LP procedure is used to optimize a linear function subject to linear and integer
constraints. Specifically, the LP procedure solves the general mixed-integer program
of the form

min cTx

subject to

Ax �;=;� b
` � x � u

xi2S is integer

where

A is anm x n matrix of technological coefficients.

b is anm x 1 matrix of right-hand-side (RHS) constants.

c is ann x 1 matrix of objective function coefficients.

x is ann x 1 matrix of structural variables.

l is ann x 1 matrix of lower bounds onx.

u is ann x 1 matrix of upper bounds onx.

S is a subset of the set of indices {1, . . . ,n}.

56 � Chapter 3. The LP Procedure

Linear programs (whenS is empty) are denoted by (lp). For these problems, the
procedure employs the two-phase revised simplex method, which uses the Bartels-
Golub update of the LU decomposed basis matrix to pivot between feasible solutions
(Bartels 1971). In phase 1, PROC LP finds a basic feasible solution to (lp), while in
phase 2, PROC LP finds an optimal solution,xopt. The procedure implicitly handles
unrestricted variables, lower-bounded variables, upper-bounded variables, and ranges
on constraints. When no explicit lower bounds are specified, PROC LP assumes that
all variables are bounded below by zero.

When a variable is specified as an integer variable,S has at least one element. Then,
the procedure uses the branch and bound technique for optimization.

The relaxed problem (the problem with no integer constraints) is solved initially us-
ing the primal algorithm described previously. Constraints are added in defining the
subsequent descendent problems in the branch and bound tree. These problems are
then solved using the dual simplex algorithm. Dual pivots are referred to as phase 3
pivots.

The preprocessing option enables the procedure to identify redundant and infeasible
constraints, fix variables, and reduce the feasible region before solving a problem.
For linear programs, the option often can reduce the number of constraints and vari-
ables, leading to a quicker elapsed solution time and improved reliability. For integer
programs, it often reduces the gap between an integer program and its relaxed linear
program, which will likely lead to a reduced branch and bound tree and a quicker
CPU time. In general, it provides users an alternative to solving large, complicated
operations research problems.

The LP procedure can also analyze the sensitivity of the solutionxopt to changes in
both the objective function and the right-hand-side constants. There are three tech-
niques available for this analysis: sensitivity analysis, parametric programming, and
range analysis. Sensitivity analysis enables you to examine the size of a perturbation
to the right-hand-side or objective vector by an arbitrary change vector for which the
basis of the current optimal solution remains optimal.

Parametric programming, on the other hand, enables you to specify the size of the
perturbation beforehand and examine how the optimal solution changes as the de-
sired perturbation is realized. With this technique, the procedure pivots to maintain
optimality as the right-hand-side or objective vector is perturbed beyond the range for
which the current solution is optimal. Range analysis is used to examine the range of
each right-hand-side value or objective coefficient for which the basis of the current
optimal solution remains optimal.

The LP procedure can also save both primal and dual solutions, the current tableau,
and the branch and bound tree in SAS data sets. This enables you to generate solution
reports and perform additional analyses with the SAS System. Although PROC LP
reports solutions, this feature is particularly useful for reporting solutions in formats
tailored to your specific needs. Saving computational results in a data set also enables
you to continue executing a problem not solved because of insufficient time or other
computational problems.

SAS OnlineDoc: Version 8

Getting Started � 57

The LP procedure uses the Output Delivery System (ODS), a SAS subsystem that
provides capabilities for displaying and controlling the output from SAS procedures.
ODS enables you to modify the headers, column names, data formats, and layouts of
the output tables in PROC LP.

There are no restrictions on the problem size in the LP procedure. The number of
constraints and variables in a problem that PROC LP can solve depends on the host
platform, the available memory, and the available disk space for utility data sets.

Getting Started

PROC LP expects the definition of one or more linear, integer, or mixed-integer pro-
grams in an input data set. There are two formats, a dense format and a sparse format,
for this data set.

In the dense format, a model is expressed in a similar way as it is formulated. Each
SAS variable corresponds to a model’s column, and each SAS observation corre-
sponds to a model’s row. A SAS variable in the input data set is one of the following:

� a type variable

� an id variable

� a structural variable

� a right-hand-side variable

� a right-hand-side sensitivity analysis variable or

� a range variable

The type variable tells PROC LP how to interpret the observation as a part of the
mathematical programming problem. It identifies and classifies objectives, con-
straints, and the rows that contain information of variables like types, bounds, and so
on. PROC LP recognizes the following keywords as values for the type variable:MIN,
MAX, EQ, LE, GE, SOSEQ, SOSLE, UNRSTRCT, LOWERBD, UPPERBD, FIXED,
INTEGER, BINARY, BASIC, PRICESEN andFREE. The values of the id variable are
the names of the rows in the model. The other variables identify and classify the
columns with numerical values.

The sparse format to PROC LP is designed to enable you to specify only the nonzero
coefficients in the description of linear programs, integer programs, and mixed-
integer programs. The SAS data set that describes the sparse model must contain
at least four SAS variables:

� a type variable

� a column variable

� a row variable and

� a coefficient variable

Each observation in the data set associates a type with a row or a column, or defines
a coefficient or a numerical value in the model, or both. In addition to the keywords

SAS OnlineDoc: Version 8

58 � Chapter 3. The LP Procedure

in the dense format, PROC LP also recognizes the keywordsRHS, RHSSEN and
RANGE as values of the type variable. The values of the row and column variables
are the names of the rows and columns in the model. The values of the coefficient
variables give the coefficients or other numerical data. The SAS data set can contain
multiple pairs of row and coefficient variables. In this way, more information about
the model can be specified in each observation in the data set. See the “Sparse Data
Input Format” section on page 91 for further discussion.

With both the dense and sparse formats for model specification, the observation order
is not important. This feature is particularly useful when using the sparse model
input.

An Introductory Example

A simple blending problem illustrates the dense and sparse input formats and the
use of PROC LP. A step in refining crude oil into finished oil products involves a
distillation process that splits crude into various streams. Suppose there are three
types of crude available: Arabian light, Arabian heavy, and Brega. These types of
crude are distilled into light naphtha, intermediate naphtha, and heating oil. These in
turn are blended into jet fuel using one of two recipes. What amounts of the three
crudes maximize the profit from producing jet fuel? A formulation to answer this
question is as follows:

max� 175a–light� 165a–heavy � 205brega + 300jet–1 + 300jet–2

s:t: :035a–light + :03a–heavy + :045brega = naphthal

:1a–light+ :075a–heavy + :135brega = naphthai

:39a–light + :3a–heavy + :43brega = heatingo

:3naphthai+ :7heatingo = jet–1

:2naphthal + :8heatingo = jet–2

a–light � 110

a–heavy � 165

brega � 80

a–light; a–heavy; brega; naphthai;

naphthal; heatingos; jet–1; jet–2 � 0

The following data set gives the representation of this formulation. Notice that the
variable names are the structural variables, the rows are the constraints, and the coef-
ficients are given as the values for the structural variables.

data;
input _id_ $14.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

SAS OnlineDoc: Version 8

An Introductory Example � 59

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

The same model can be specified in the sparse format, as follows. This format enables
you to omit the zero coefficients.

data;
input _type_ $ @10 _col_ $13. @24 _row_ $16. _coef_;
datalines;

max . profit .
eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd . available .
. a_light profit -175
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_light available 110
. a_heavy profit -165
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. a_heavy available 165
. brega profit -205
. brega napha_l_conv .045
. brega napha_i_conv .135
. brega heating_oil_conv .430
. brega available 80
. naphthal napha_l_conv -1
. naphthal recipe_2 .2
. naphthai napha_i_conv -1
. naphthai recipe_1 .3
. heatingo heating_oil_conv -1
. heatingo recipe_1 .7
. heatingo recipe_2 .8
. jet_1 profit 300
. jet_1 recipe_1 -1
. jet_2 profit 300
. jet_2 recipe_2 -1
. _rhs_ recipe_1 0
;

SAS OnlineDoc: Version 8

60 � Chapter 3. The LP Procedure

Because the input order of the model into PROC LP is unimportant, this model can
be specified in sparse input in arbitrary row order. Example 3.2 in the “Examples”
section demonstrates this.

The dense and sparse forms of model input give you flexibility to generate models
using the SAS language. The dense form of the model is solved with the statements

proc lp;
run;

The sparse form is solved with the statements:

proc lp sparsedata;
run;

Example 3.1 and Example 3.2 in the “Examples” section continue with this problem.

Problem Input
In the default, PROC LP uses the most recently created SAS data set as the problem
input data set. However, if you want to input the problem from a specific SAS data
set, then use the DATA= option. For example, if the previous dense form data set has
a name,DENSE, the PROC LP statements can be written as

proc lp data=dense;
run;

Problem Definition Statements
In the previous dense form data set, the–ID– , –TYPE–, and–RHS– variables
are special variables in PROC LP. They stand for id variable, type variable, and right-
hand-side variable. If you replace those variable names with names likeROWNAME,
TYPE, andRHS, you need the problem definition statements (ID, TYPE and RHS)
in PROC LP:

proc lp;
id rowname;
type type;
rhs rhs;

run;

Other special variables for the dense format are–RHSSEN– and–RANGE–, which
identify the vectors for the right-hand-side sensitivity and range analyses. The corre-
sponding statements are the RHSSEN and RANGE statements. (Notice that a vari-
able name can be identical to a statement name.)

In the same way, if you replace the variables–COL– , –ROW– , –TYPE– , and

–COEF– in the previous sparse form data set byCOLUMN, ROW, TYPE and
COEF, you need the problem definition statements (COL, ROW, TYPE, and COEF)
in PROC LP.

SAS OnlineDoc: Version 8

An Introductory Example � 61

proc lp sparsedata;
col column;
row row;
type type;
coef coef;

run;

In the sparse form data set, the value–RHS– under the variable–COL– is a special
column name, which represents the model’s right-hand-side column. If you replace
it by a nameR, the PROC LP statements would be

proc lp sparsedata;
rhs r;

run;

Other special column names for the sparse format are–RHSSEN– and–RANGE– .
The corresponding statements are the RHSSEN and RANGE statements.

PROC LP is case insensitive to variable names and all character values, including
the row and column names in the sparse format. The order of the problem definition
statements is not important.

For the dense format, a model’s row names appear as character values in a SAS data
set. For the sparse format, both the row and the column names of the model appear as
character values in the data set. Thus, you can put spaces or other special characters
in the names. When referring to these names in the problem definition statement or
other LP statements, you must use single or double quotes around them. For example,
if you replace–RHS– by R H S in the previous sparse form data set, the PROC LP
statements would become

proc lp sparsedata;
rhs "r h s";

run;

LP Options
The specifications SPARSEDATA and DATA= in the previous examples are PROC
LP options. PROC LP options include

� data set options

� display control options

� interactive control options

� preprocessing options

� branch and bound control options

� sensitivity/parametric/ranging control options

� simplex options

SAS OnlineDoc: Version 8

62 � Chapter 3. The LP Procedure

Interactive Processing
Interactive control options include READPAUSE, ENDPAUSE, and so forth. You
can run PROC LP interactively using those options. For example, for the blending
problem example in the dense form, you can first pause the procedure before itera-
tions start with the READPAUSE option. The PROC LP statements are

proc lp readpause;
run;

When the procedure pauses, you run the PRINT statement to display the initial tech-
nological matrix and see if the input is correct. Then you run the PIVOT statement to
do one simplex pivot and pause. After that you use the SHOW statement to check the
current solution status. Then you apply the RESET statement to tell the procedure
to stop as soon as it finds a solution. Now you use the RUN statement to continue
the execution. When the procedure stops, you run the PRINT statement again to do a
price range analysis and QUIT the procedure. Use SAS %PUT statement to display
the contents of PROC LP’s macro variable,–ORLP–, which contains iterations and
solution information. What follows are the complete statements in batch mode:

proc lp readpause;
run;
print matrix(,); /* display all rows and columns. */
pivot;
show status;
reset endpause;
run;
print rangeprice;
quit;
%put &_orlp_;

Note: you can force PROC LP to pause during iterations by using the CTRL-BREAK
key.

An Integer Programming Example

The following is a simple mixed integer programming problem. Details can be found
in Example 3.8 in the “Examples” section.

data;
input _row_ $10. choco gumdr ichoco igumdr _type_ $ _rhs_;
datalines;

object .25 .75 -100 -75 max .
cooking 15 40 0 0 le 27000
color 0 56.25 0 0 le 27000
package 18.75 0 0 0 le 27000
condiments 12 50 0 0 le 27000
chocolate 1 0 -10000 0 le 0
gum 0 1 0 -10000 le 0
only_one 0 0 1 1 eq 1
binary . . 1 2 binary .
;

SAS OnlineDoc: Version 8

An Integer Programming Example � 63

The row withBINARY type indicates that this problem is a mixed integer program
and all the integer variables are binary. The integer values of the row set an ordering
for PROC LP to pick the branching variable when VARSELECT=PRIOR is chosen.
Smaller values will have higher priorities. The–ROW– variable here is an alias of
the–ID– variable.

This problem can be solved with the following statements:

proc lp canselect=lifo backtrack=obj varselect=far endpause;
run;
quit;
%put &_orlp_;

The options CANSELECT=, BACKTRACK=, and VARSELECT= specify the rules
for picking the next active problem and the rule to choose the branching variable. In
this example, the valuesLIFO, OBJ andFAR serve as the default values, so the three
options can be omitted from the PROC LP statement. The following is the output
from the %PUT statement:

STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=285 P_FEAS=YES D_FEAS=YES INT_ITER=3
INT_FEAS=2 ACTIVE=0 INT_BEST=285 PHASE1_ITER=1 PHASE2_ITER=5
PHASE3_ITER=5

Figure 3.1. The Output of –ORLP–

Preprocessing
Using the PREPROCESS= option, you can apply the preprocessing techniques to
pre-solve and then solve the preceding mixed integer program:

proc lp preprocess=1 endpause;
run;
quit;
%put &_orlp_;

The preprocessing statistics are written to the SAS log file as follows:

NOTE: Preprocessing 1 ...
NOTE: 2 upper bounds decreased.
NOTE: 2 coefficients reduced.
NOTE: Preprocessing 2 ...
NOTE: 2 constraints eliminated.
NOTE: Preprocessing done.

The new output–ORLP– is as follows.

STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=285 P_FEAS=YES D_FEAS=YES INT_ITER=0
INT_FEAS=1 ACTIVE=0 INT_BEST=285 PHASE1_ITER=1 PHASE2_ITER=4
PHASE3_ITER=0

Figure 3.2. The Output of –ORLP– with Preprocessing Option On

SAS OnlineDoc: Version 8

64 � Chapter 3. The LP Procedure

In this example, the number of integer iterations (INT–ITER=) is zero, which means
that the preprocessing has reduced the gap between the relaxed linear problem and
the mixed integer program to zero.

An MPS Format Conversion Example

If your model input is in MPS input format, you can convert it to the sparse input
format of PROC LP using the SAS macro function SASMPSXS. For example, if
your have an MPS file calledMODEL.MPS and it is stored in the directoryC:\OR
on a PC, the following program can help you to convert the file and solve the problem.

%sasmpsxs(mpsfile="c:\or\model.mps",lpdata=lp);

data;
set lp;
retain i=1;
if _type_="FREE" and i=1 then

do;
type="MIN";
i=0;

end;
run;

proc lp sparsedata;
run;

In the MPS input format, all objective functions, price change rows, and free rows
have the typeN. The SASMPSXS macro marks them asFREE rows. After the con-
version, you must run a DATA step to identify the objective rows and price change
rows. In this example, assume that the problem is one of minimization and the first
FREE row is an objective row.

SAS OnlineDoc: Version 8

Functional Summary � 65

Syntax

The following statements are used in PROC LP:

PROC LP options ;
COEF variables ;
COL variable ;
ID variable(s) ;
IPIVOT;
PIVOT;
PRINT options ;
QUIT options ;
RANGE variable ;
RESET options ;
RHS variables ;
RHSSEN variables ;
ROW variable(s) ;
RUN;
SHOW options ;
TYPE variable ;
VAR variables ;

The TYPE, ID (or ROW), VAR, RHS, RHSSEN, and RANGE statements are used
for identifying variables in the problem data set when the model is in the dense input
format. In the dense input format, a model’s columns appear as variables in the
problem data set. The TYPE, ID (or ROW), and RHS statements can be omitted if
the input data set contains variables–TYPE–, –ID– (or –ROW–), and–RHS– ;
otherwise, they must be used. The VAR statement is optional. When it is omitted,
PROC LP treats all numeric variables, which are not explicitly or implicitly included
in RHS, RHSSEN, and RANGE statements, as structural variables. The RHSSEN
and RANGE statements are optional statements for sensitivity and range analyses.
They can be omitted if the input data set contains the–RHSSEN– and–RANGE–
variables.

The TYPE, COL, ROW (or ID), COEF, RHS, RHSSEN, and RANGE statements are
used for identifying variables in the problem data set when the model is in the sparse
input format. In the sparse input format, a model’s rows and columns appear as obser-
vations in the problem data set. The TYPE, COL, ROW (or ID), and COEF statements
can be omitted if the input data set contains the–TYPE– and–COL– variables, as
well as variables beginning with the prefixes–ROW (or –ID) and –COEF. Oth-
erwise, they must be used. The RHS, RHSSEN, and RANGE statements identify
the corresponding columns in the model. These statements can be omitted if there
are observations that contain theRHS, RHSSEN, andRANGE types or the–RHS– ,

–RHSSEN– , and–RANGE– names.

The SHOW, RESET, PRINT, QUIT, PIVOT, IPIVOT, and RUN statements are espe-
cially useful when executing PROC LP interactively. However, they can also be used
in batch mode.

SAS OnlineDoc: Version 8

66 � Chapter 3. The LP Procedure

Functional Summary

The options available with PROC LP and it’s statements are summarized by purpose
in Table 3.1.

Table 3.1. Functional Summary

Description Statement Option

Interactive Statements:
perform one integer pivot and pause IPIVOT IPIVOT;
perform one simplex pivot and pause PIVOT PIVOT;
display solution and related information at cur-
rent iteration

PRINT PRINToptions;

terminate processing immediately QUIT QUIToptions;
reset options specified RESET RESEToptions;
start or resume optimization RUN RUN;
show settings of options SHOW SHOWoptions;

Variable Lists:
for the sparse input format, the numeric vari-
ables containing the coefficients

COEF COEFvariables;

for the sparse input format, a character vari-
able containing the names of a model’s
columns

COL COLvariable;

an alias for ROWvariable(s). ID ID variable(s);
for the dense input format, the variable con-
taining the range constant. For the sparse in-
put format, the model’s column containing the
range constant

RANGE RANGEvariable;

for the dense input format, the variables con-
taining the RHS constants. For the sparse in-
put format, the model’s columns containing
the RHS constants

RHS RHSvariables;

for the dense input format, the variables defin-
ing RHS change vectors. For the sparse input
format, the model’s columns representing the
change vectors

RHSSEN RHSSENvariables;

for the dense input format, a character variable
containing the names of constraints and objec-
tive functions. For the sparse input format, the
character variables containing the names of a
model’s rows

ROW ROWvariable(s);

a character variable containing the type of each
observation

TYPE TYPEvariables;

for the dense input format, the numeric vari-
ables to be treated as structural variables

VAR VAR variables;

SAS OnlineDoc: Version 8

Functional Summary � 67

Description Statement Option

Data Set Options:
active nodes input data set name LP ACTIVEIN=
active nodes output data set name LP ACTIVEOUT=
input data set name LP DATA=
dual output data set name LP DUALOUT=
primal input data set name LP PRIMALIN=
primal output data set name LP PRIMALOUT=
sparse format data input flag LP SPARSEDATA
tableau output data set name LP TABLEAUOUT=

Display Control Options:
display iteration log LP FLOW
nonzero tolerance displaying LP FUZZ=
inverse of FLOW option LP NOFLOW
inverse of PARAPRINT option LP NOPARAPRINT
omit some displaying LP NOPRINT
inverse of TABLEAUPRINT LP NOTABLEAUPRINT
parametric programming displaying LP PARAPRINT
inverse of NOPRINT LP PRINT
display frequency of iteration or integer
iteration

LP PRINTFREQ=

level of display desired LP PRINTLEVEL=
display the final tableau LP TABLEAUPRINT

Interactive Control Options:
pause before displaying the solution LP ENDPAUSE
pause after first feasible solution LP FEASIBLEPAUSE
pause frequency of integer solutions LP IFEASIBLEPAUSE=
pause frequency of integer iterations LP IPAUSE=
inverse of ENDPAUSE LP NOENDPAUSE
inverse of FEASIBLEPAUSE LP NOFEASIBLEPAUSE
pause frequency of iterations LP PAUSE=
pause if within specified proximity LP PROXIMITYPAUSE=
pause after data is read LP READPAUSE

Preprocessing Options:
do not perform preprocessing LP NOPREPROCESS
perform preprocessing techniques LP PREPROCESS
preprocessing error tolerance LP PEPSILON=
limit on preprocessing iterations LP PMAXIT=

Branch and Bound (BB) Control Options:
perform automatic node selection technique LP AUTO, AUTO(m,n)
backtrack strategy to be used LP BACKTRACK=
branch on binary variables first LP BINFST

SAS OnlineDoc: Version 8

68 � Chapter 3. The LP Procedure

Description Statement Option

active node selection strategy LP CANSELECT=
a comprehensive node selection control
parameter

LP CONTROL=

a backtrack related technique LP DELTAIT=
a measure for pruning BB tree LP DOBJECTIVE=
integer tolerance LP IEPSILON=
limit on integer iterations LP IMAXIT=
a measure for pruning BB tree LP IOBJECTIVE=
order of two branched nodes in adding to BB
tree

LP LIFOTYPE=

inverse of AUTO LP NOAUTO
inverse of BINFST LP NOBINFST
inverse of POSTPROCESS LP NOPOSTPROCESS
limits number of branching variables LP PENALTYDEPTH=
a measure for pruning BB tree LP POBJECTIVE=
perform variables fixing technique LP POSTPROCESS
a percentage used in updating WOBJECTIVE LP PWOBJECTIVE=
compression algorithm to be used to store ac-
tive nodes

LP TREETYPE=

branching variable selection strategy LP VARSELECT=
delays examination of some active nodes LP WOBJECTIVE=

Sensitivity/Parametric/Ranging Control Options:
inverse of RANGEPRICE LP NORANGEPRICE
inverse of RANGERHS LP NORANGERHS
limit on perturbing the price vector LP PRICEPHI=
range analysis on the price coefficients LP RANGEPRICE
range analysis on the RHS vector LP RANGERHS
limit on perturbing the RHS vector LP RHSPHI=

Simplex Algorithm Control Options:
use devex method LP DEVEX
general error tolerance LP EPSILON=
perform goal programming LP GOALPROGRAM
largest number used in computation LP INFINITY=
reinversion frequency LP INVFREQ=
reinversion tolerance LP INVTOL=
simultaneously set MAXIT1, MAXIT2,
MAXIT3 and IMAXIT values

LP MAXIT=

limit on phase 1 iterations LP MAXIT1=
limit on phase 2 iterations LP MAXIT2=
limit on phase 3 iterations LP MAXIT3=
inverse of devex LP NODEVEX
restore basis after parametric programming LP PARARESTORE

SAS OnlineDoc: Version 8

Functional Summary � 69

Description Statement Option

weight of the phase 2 objective function in
phase 1

LP PHASEMIX=

multiple pricing strategy LP PRICETYPE=
number of columns to subset in multiple
pricing

LP PRICE=

limit on the number of iterations randomly se-
lecting each entering variable during phase 1

LP RANDOMPRICEMULT=

zero tolerance in ratio test LP REPSILON=
scaling type to be performed LP SCALE=
zero tolerance in LU decomposition LP SMALL=
time pause limit LP TIME=
controls the choice of pivot during LU
decomposition

LP U=

RESET Statement Options:
The RESET statement supports the same op-
tions as the PROC LP statement except for
the DATA=, PRIMALIN=, and ACTIVEIN=
options, and supports the following additional
options.

new lower bound on listed variables during
phase 3

RESET LOWER (colnames)=

new upper bound on listed variables during
phase 3

RESET UPPER (colnames)=

PRINT statement Options:
display the best integer solution PRINT BEST
display variable summary for the specified
columns

PRINT COLUMN(colnames)

display variable summary and price sensitivity PRINT COLUMN(colnames)
analysis for the specified columns /SENSITIVITY
display variable summary for the integer
variables

PRINT INTEGER

display variable summary for the nonzero in-
teger variables

PRINT INTEGER–NONZEROS

display variable summary for the integer vari-
ables with zero activity

PRINT INTEGER–ZEROS

display submatrix for the specified rows and PRINT MATRIX(rownames,
columns colnames)
display formatted submatrix for the specified PRINT MATRIX(rownames,
rows and columns colnames)/PICTURE
display variable summary for the continuous
variables

PRINT NONINTEGER

SAS OnlineDoc: Version 8

70 � Chapter 3. The LP Procedure

Description Statement Option

display variable summary for the nonzero con-
tinuous variables

PRINT NONINTEGER–NONZEROS

display variable summary for the variables
with nonzero activity

PRINT NONZEROS

display price sensitivity analysis or price para-
metric programming

PRINT PRICESEN

display price range analysis PRINT RANGEPRICE
display RHS range analysis PRINT RANGERHS
display RHS sensitivity analysis or RHS para-
metric programming

PRINT RHSSEN

display constraint summary for the specified
rows

PRINT ROW(rownames)

display constraint summary and RHS
sensitivity

PRINT ROW(rownames)

analysis for the specified rows /SENSITIVITY
display solution, variable, and constraint
summaries

PRINT SOLUTION

display current tableau PRINT TABLEAU
display variables with zero activity PRINT ZEROS

SHOW Statement Options:
display options applied SHOW OPTIONS
display status of the current solution SHOW STATUS

QUIT Statement Option:
terminate PROC LP QUIT QUIT
save the defined output data sets QUIT QUIT/SAVE
and then terminate PROC LP

PROC LP Statement

PROC LP options ;

This statement invokes the procedure. The following options can appear in the PROC
LP statement.

Data Set Options
ACTIVEIN=SAS-data-set

names the SAS data set containing the active nodes in a branch and bound tree that is
to be used to restart an integer program.

SAS OnlineDoc: Version 8

PROC LP Statement � 71

ACTIVEOUT=SAS-data-set
names the SAS data set in which to save the current branch and bound tree of active
nodes.

DATA=SAS-data-set
names the SAS data set containing the problem data. If the DATA= option is not
specified, PROC LP uses the most recently created SAS data set.

DUALOUT=SAS-data-set
names the SAS data set that contains the current dual solution (shadow prices) on ter-
mination of PROC LP. This data set contains the current dual solution only if PROC
LP terminates successfully.

PRIMALIN=SAS-data-set
names the SAS data set that contains a feasible solution to the problem defined by
the DATA= data set. The data set specified in the PRIMALIN= option should have
the same format as a data set saved using the PRIMALOUT= option. Specifying the
PRIMALIN= option is particularly useful for continuing iteration on a problem pre-
viously attempted. It is also useful for performing sensitivity analysis on a previously
solved problem.

PRIMALOUT=SAS-data-set
names the SAS data set that contains the current primal solution when PROC LP
terminates.

SPARSEDATA
tells PROC LP that the data are in the sparse input format. If this option is not
specified, PROC LP assumes that the data are in the dense input format. See the
“Sparse Data Input Format” section on page 91 for information about the sparse input
format.

TABLEAUOUT= SAS-data-set
names the SAS data set in which to save the final tableau.

Display Control Options
FLOW

requests that a journal (the Iteration Log) of pivot information be displayed at each
PRINTFREQ= iteration. This includes the names of the variables entering and leav-
ing the basis, the reduced cost of the entering variable, and the current objective
value.

FUZZ=e
displays all numbers withine of zero as zeros. The default value is1E� 10.

NOFLOW
is the inverse of the FLOW option.

NOPARAPRINT
is the inverse of the PARAPRINT option.

NOPRINT
suppresses the display of the Variable, Constraint, and Sensitivity Analysis sum-
maries. This option is equivalent to the PRINTLEVEL=0 option.

SAS OnlineDoc: Version 8

72 � Chapter 3. The LP Procedure

NOTABLEAUPRINT
is the inverse of the TABLEAUPRINT option.

PARAPRINT
indicates that the solution be displayed at each pivot when performing parametric
programming.

PRINT
is the inverse of the NOPRINT option.

PRINTFREQ=m
indicates that after everymth iteration, a line in the (Integer) Iteration Log be dis-
played. The default value is 1.

PRINTLEVEL= i
indicates the amount of displaying that the procedure should perform.

PRINTLEVEL=-2 only messages to the SAS log are displayed.

PRINTLEVEL=-1 is equivalent to NOPRINT unless the problem is infeasi-
ble. If it is infeasible, the infeasible rows are displayed in
the Constraint Summary along with the Infeasible Infor-
mation Summary.

PRINTLEVEL=0 is identical to NOPRINT.

PRINTLEVEL=1 all output is displayed.

The default value is 1.

TABLEAUPRINT
indicates that the final tableau be displayed.

Interactive Control Options
ENDPAUSE

requests that PROC LP pause before displaying the solution. When this pause occurs,
you can enter the RESET, SHOW, PRINT, RUN, and QUIT statements.

FEASIBLEPAUSE
requests that PROC LP pause after a feasible (not necessarily integer feasible) so-
lution has been found. At a pause, you can enter RESET, SHOW, PRINT, PIVOT,
RUN, and QUIT statements.

IFEASIBLEPAUSE= n
requests that PROC LP pause after every IFEASIBLEPAUSE= integer feasible solu-
tions. At a pause, you can enter RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and
QUIT statements. The default value is 99999999.

IPAUSE=n
requests that PROC LP pause after everyn integer iterations. At a pause, you can
enter the RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The
default value is 99999999.

NOENDPAUSE
is the inverse of the ENDPAUSE option.

SAS OnlineDoc: Version 8

PROC LP Statement � 73

NOFEASIBLEPAUSE
is the inverse of the FEASIBLEPAUSE option.

PAUSE=n
requests that PROC LP pause after everyn iterations. At a pause, you can enter the
RESET, SHOW, PRINT, IPIVOT, PIVOT, RUN, and QUIT statements. The default
value is 99999999.

PROXIMITYPAUSE=r
This option causes the procedure to pause if at least one integer feasible solution has
been found and the objective value of the current best integer solution can be de-
termined to be withinr units of the optimal integer solution. This distance, called
proximity, is also displayed on the Integer Iteration Log. Note that the proximity
is calculated using the minimum (maximum if the problem is maximization) objec-
tive value among the nodes that remain to be explored in the branch and bound tree
as a bound on the value of the optimal integer solution. Following the first PROX-
IMITYPAUSE= pause, in order to avoid a pause at every iteration thereafter, it is
recommended that you reduce this measure through the use of a RESET statement.
Otherwise, if any other option or statement that causes the procedure to pause is used
while the PROXIMITYPAUSE= option is in effect, pause interferences may occur.
When this pause occurs, you can enter RESET, SHOW, PRINT, IPIVOT, PIVOT,
RUN, and QUIT statements. The default value is 0.

READPAUSE
requests that PROC LP pause after the data have been read and the initial basis in-
verted. When this pause occurs, you can enter RESET, SHOW, PRINT, IPIVOT,
PIVOT, RUN, or QUIT statements.

Preprocessing Control Options
NOPREPROCESS

is the inverse of the PREPROCESS option.

PREPROCESS
perform preprocessing techniques. See the “Preprocessing” section on page 99 for
further discussion.

PEPSILON=e
specifies a positive number close to zero. This value is an error tolerance in the
preprocessing. If the value is too small, any marginal changes may cause the prepro-
cessing to repeat itself. However, if the value is too large, it may alter the optimal
solution or falsely claim that the problem is infeasible. The default value is1E� 8.

PMAXIT=n
performs at mostn preprocessings. Preprocessing repeats itself if it improves some
bounds or fixes some variables. However when a problem is large and dense, each
preprocessing may take a significant amount of CPU time. This option limits the
number of preprocessings PROC LP performs. It can also reduce the build-up of
round-off errors. The default value is 100.

SAS OnlineDoc: Version 8

74 � Chapter 3. The LP Procedure

Branch and Bound Algorithm Control Options
AUTO, AUTO(m,n)

This option automatically sets and adjusts the value of the CONTROL= option. Ini-
tially, it sets CONTROL=0.70 concentrating on finding an integer feasible solution or
an upper bound. When an upper bound is found, it sets CONTROL=0.5 concentrating
on efficiency and lower bound improvement. When the number of active problems
exceedsm, it starts to increase the value of CONTROL= gradually to keep the size of
active problems under control. When total active problems exceedn, CONTROL=1
will keep the active problems from further growing. You can alter the automatic
process by resetting the value of CONTROL= interactively.

The default values ofm andn are 20000 and 250000, respectively. You can change
the two values according to your computer’s space and memory capacities.

BACKTRACK= rule
specifies the rule used to choose the next active problem when backtracking is re-
quired. One of the following can be specified:

� BACKTRACK=LIFO

� BACKTRACK=FIFO

� BACKTRACK=OBJ

� BACKTRACK=PROJECT

� BACKTRACK=PSEUDOC

� BACKTRACK=ERROR

The default value isOBJ. See the “Integer Programming” section on page 99 for
further discussion.

BINFST
requests that PROC LP branch on binary variables first when integer and binary vari-
ables present. The reasoning behind this is that a subproblem will usually be fath-
omed or found integer feasible after less than 20% of its variables have been fixed.
Considering binary variables first attempts to reduce the size of the branch and bound
tree. It is a heuristic technique.

CANSELECT=rule
specifies the rule used to choose the next active problem when backtracking is not
required or used. One of the following can be specified:

� CANSELECT=LIFO

� CANSELECT=FIFO

� CANSELECT=OBJ

� CANSELECT=PROJECT

� CANSELECT=PSEUDOC

� CANSELECT=ERROR

SAS OnlineDoc: Version 8

PROC LP Statement � 75

The default value isLIFO. See the “Integer Programming” section on page 99 for
further discussion.

CONTROL=r
specifies a number between 0 and 1. This option combines CANSELECT= and other
rules to choose the next active problem. It takes into consideration of three factors,
efficiency, improving lower and upper bounds. Whenr is close to 0, PROC LP
concentrates on improving lower bound (upper bound for maximization). However,
the efficiency per integer iteration is usually the worst. Whenr is close to 1, PROC LP
concentrates on improving upper bound (lower bound for maximization). In addition,
the growth of active problems will be controlled and stopped atr = 1. When its
value is around 0.5, PROC LP will be in the most efficient state in terms of CPU time
and integer number of iterations. CONTROL= option will be automatically adjusted
when the AUTO option is applied.

DELTAIT= r
This option is used to modify the exploration of the branch and bound tree. If more
thanr integer iterations have occurred since the last integer solution was found, then
the procedure uses the backtrack strategy in choosing the next node to be explored.
The default value is 3 times the number of integer variables.

DOBJECTIVE=r
specifies that PROC LP should discard active nodes that cannot lead to an integer
solution with the objective at least as small (or as large for maximizations) as the
objective of the relaxed problem plus (minus)r. The default value is+1.

IEPSILON=e
requests that PROC LP consider an integer variable as having an integer value if its
value is withine units of an integer. The default value is1E� 7.

IMAXIT=n
performs at mostn integer iterations. The default value is 100.

IOBJECTIVE= r
specifies that PROC LP should discard active nodes unless the node could lead to an
integer solution with the objective smaller (or larger for maximizations) thanr. The
default value is+1 for minimization (�1 for maximization).

LIFOTYPE=i
specifies the order in which to add the two of the newly branched active nodes to the
LIFO list.

LIFOTYPE=0 add the node with minimum penalty first

LIFOTYPE=1 add the node with maximum penalty first

LIFOTYPE=2 add the node resulting from addingxi � dxopt(k)ie first

LIFOTYPE=3 add the node resulting from addingxi � bxopt(k)ic first

The default value is 0.

SAS OnlineDoc: Version 8

76 � Chapter 3. The LP Procedure

NOAUTO
turn off AUTO option.

NOBINFST
turn off BINFST option.

NOPOSTPROCESS
do not perform postprocesing.

PENALTYDEPTH=m
requests that PROC LP examinem variables as branching candidates when VARS-
ELECT=PENALTY. If the PENALTYDEPTH= option is not specified when VARS-
ELECT=PENALTY, then all of the variables are considered branching candidates.
The default value is the number of integer variables. See the “Integer Programming”
section on page 99 for further discussion.

POBJECTIVE= r
specifies that PROC LP should discard active nodes that cannot lead to an integer
solution with objective at least as small aso+ joj� POBJECTIVE= (at least as large
aso�joj� POBJECTIVE= for maximizations) whereo is the objective of the relaxed
noninteger constrained problem. The default value is+1.

POSTPROCESS
attempts to fix binary variables globally based on the relationships among the reduced
cost and objective value of the relaxed problem and the objective value of current best
integer feasible solution.

PWOBJECTIVE= r
This option gives a percentage for use in the automatic update of the WOBJECTIVE=
option. If the WOBJECTIVE= option is not specified in PROC LP, then when an
integer feasible solution is found, the value of the option is updated to beb + q � r
whereb is the best bound on the value of the optimal integer solution andq is the
current proximity. Note that for maximizations,b� q � r is used. The default value
is 0.95.

TREETYPE=i
specifies a data compression algorithm.

TREETYPE=0 no data compression

TREETYPE=1 Huffman coding compression routines

TREETYPE=2 adaptive Huffman coding compression routines

TREETYPE=3 adaptive arithmetic coding compression routines

For IP or MIP problems, the basis and bounds information of each active node is
saved to a utility file. When the number of active nodes increases, the size of the
utility file becomes larger and larger. If PROC LP runs into a disk problem, like “disk
full ...” or “writing failure ...”, you can use this option to compress the utility file.
For more information on the data compression routines, refer to Nelton (1992). The
default value is 0.

SAS OnlineDoc: Version 8

PROC LP Statement � 77

VARSELECT= rule
specifies the rule used to choose the branching variable on an integer iteration.

� VARSELECT=CLOSE

� VARSELECT=PRIOR

� VARSELECT=PSEUDOC

� VARSELECT=FAR

� VARSELECT=PRICE

� VARSELECT=PENALTY

The default value isFAR. See the “Integer Programming” section on page 99 for
further discussion.

WOBJECTIVE=r
specifies that PROC LP should delay examination of active nodes that cannot lead
to an integer solution with objective at least as small (as large for maximizations)
as r, until all other active nodes have been explored. The default value is+1 for
minimization (�1 for maximization).

Sensitivity/Parametric/Ranging Control Options
NORANGEPRICE

is the inverse of the RANGEPRICE option.

NORANGERHS
is the inverse of the RANGERHS option.

PRICEPHI=�
specifies the limit for parametric programming when perturbing the price vector. See
the “Parametric Programming” section on page 110 for further discussion. See
Example 3.5 for an illustration of this option.

RANGEPRICE
indicates that range analysis is to be performed on the price coefficients. See the
“Range Analysis” section on page 110 for further discussion.

RANGERHS
indicates that range analysis is to be performed on the right-hand-side vector. See the
“Range Analysis” section on page 110 for further discussion.

RHSPHI=�
specifies the limit for parametric programming when perturbing the right-hand-side
vector. See the “Parametric Programming” section on page 110 for further discus-
sion.

SAS OnlineDoc: Version 8

78 � Chapter 3. The LP Procedure

Simplex Algorithm Control Options
DEVEX

indicates that the devex method of weighting the reduced costs be used in pricing
(Harris 1975).

EPSILON=e
specifies a positive number close to zero. It is used in the following instances:

During phase 1, if the sum of the basic artificial variables is withine of zero, the
current solution is considered feasible. If this sum is not exactly zero, then there
are artificial variables withine of zero in the current solution. In this case, a note is
displayed on the SAS log.

During phase 1, if all reduced costs are� e for nonbasic variables at their lower
bounds and� e for nonbasic variables at their upper bounds and the sum of infeasi-
bilities is greater thane, then the problem is considered infeasible. If the maximum
reduced cost is withine of zero, a note is displayed on the SAS log.

During phase 2, if all reduced costs are� e for nonbasic variables at their lower
bounds and� e for nonbasic variables at their upper bounds, then the current solution
is considered optimal.

During phases 1, 2, and 3, the EPSILON= option is also used to test if the denomi-
nator is different from zero before performing the ratio test to determine which basic
variable should leave the basis.

The default value1E� 8.

GOALPROGRAM
specifies that multiple objectives in the input data set are to be treated as sequential
objectives in a goal-programming model. The value of the right-hand-side variable
in the objective row gives the priority of the objective. Lower numbers have higher
priority.

INFINITY=r
specifies the largest number PROC LP uses in computation. The INFINITY= option
is used to determine when a problem has an unbounded variable value. The default
value is the largest double precision number.�

INVFREQ=m
reinverts the current basis matrix afterm major and minor iterations. The default
value is 100.

INVTOL=r
reinverts the current basis matrix if the largest element in absolute value in the de-
composed basis matrix is greater thanr. If after reinversion this condition still holds,
then the value of the INVTOL= option is increased by a factor of 10 and a note indi-
cating this modification is displayed on the SAS log. Whenr is frequently exceeded,
this may be an indication of a numerically unstable problem. The default value is
1000.

�This value is system dependent.

SAS OnlineDoc: Version 8

PROC LP Statement � 79

MAXIT=n
simultaneously sets the values of the MAXIT1=, MAXIT2=, MAXIT3=, and
IMAXIT= options.

MAXIT1=n
performs at mostn � 0 phase 1 iterations. The default value is 100.

MAXIT2=n
performs at mostn � 0 phase 2 iterations. If MAXIT2=0, then only phase 1 is
entered so that on successful termination PROC LP will have found a feasible, but
not necessarily optimal, solution. The default value is 100.

MAXIT3=n
performs at mostn � 0 phase 3 iterations. All dual pivots are counted as phase 3
pivots. The default value is 99999999.

NODEVEX
is the inverse of the DEVEX option.

PARARESTORE
indicates that following a parametric programming analysis, PROC LP should restore
the basis.

PHASEMIX=r
specifies a number between 0 and 1. When the number is positive, PROC LP tries to
improve the objective function of phase 2 during phase 1. The PHASEMIX= option
is a weight factor of the phase 2 objective function in phase 1. The default value is 0.

PRICETYPE=pricetype
specifies the type of multiple pricing to be performed. If this option is specified and
the PRICE= option is not specified, then PRICE= is assumed to be 10.

� PRICETYPE=COMPLETE

� PRICETYPE=DYNAMIC

� PRICETYPE=NONE

� PRICETYPE=PARTIAL

The default value isPARTIAL. See the “Pricing” section on page 97 for a description
of this process.

PRICE=m
specifies the number of columns to subset when multiple pricing is used in selecting
the column to enter the basis (Greenberg 1978). The type of suboptimization used is
determined by the PRICETYPE= option. See the “Pricing” section on page 97 for a
description of this process.

RANDOMPRICEMULT= r
specifies a number between 0 and 1. This option sets a limit, in phase 1, on the number
of iterations when PROC LP will randomly pick the entering variables. The limit
equalsr times the number of nonbasic variables, or the number of basic variables,
which ever is smaller. The default value of the RANDOMPRICEMULT= option is
0.01.

SAS OnlineDoc: Version 8

80 � Chapter 3. The LP Procedure

REPSILON=e
specifies a positive number close to zero. The REPSILON= option is used in the
ratio test to determine which basic variable is to leave the basis. The default value is
1E� 10.

SCALE=scale
specifies the type of scaling to be used.

� SCALE=NONE

� SCALE=COLUMN

� SCALE=ROW

� SCALE=BOTH

The default value isNONE. See the “Scaling” section on page 98 for further discus-
sion.

SMALL= e
specifies a positive number close to zero. Any element in a matrix with a value less
thane is set to zero. The default value is machine dependent.

TIME=t
checks at each iteration to see ift seconds have elapsed since PROC LP began. If
more thant seconds have elapsed, the procedure pauses and displayed the current
solution. The default value is 120 seconds.

U=r
enables PROC LP to control the choice of pivots during LU decomposition and up-
dating the basis matrix. The variabler should take values between EPSILON and
1.0 because small values ofr bias the algorithm toward maintaining sparsity at the
expense of numerical stability and vice versa. The more sparse the decomposed basis
is, the less time each iteration takes. The default value is 0.1.

COEF Statement

COEF variables ;

For the sparse input format, the COEF statement specifies the numeric variables in
the problem data set that contain the coefficients in the model. The value of the
coefficient variable in a given observation is the value of the coefficient in the column
and row specified in the COLUMN and ROW variables in that observation. For
multiple ROW variables, the LP procedure maps the ROW variables to the COEF
variables on the basis of their order in the COEF and ROW statements. There must
be the same number of COEF variables as ROW variables. If the COEF statement
is omitted, the procedure looks for the default variable names that have the prefix

–COEF.

SAS OnlineDoc: Version 8

ID Statement � 81

COL Statement

COL variable ;

For the sparse input format, the COL statement specifies a character variable in the
problem data set that contains the names of the columns in the model. Columns in the
model are either structural variables, right-hand-side vectors, right-hand-side change
vectors, or a range vector. The COL variable must be a character variable. If the COL
statement is omitted, the LP procedure looks for the default variable name–COL– .

ID Statement

ID variable(s) ;

For the dense input format, the ID statement specifies a character variable in the
problem data set that contains a name for each constraint coefficients row, objective
coefficients row, and variable definition row. If the ID statement is omitted, the LP
procedure looks for the default variable name,–ID– . If this variable is not in the
problem data set, the procedure assigns the default name–OBSxx– to each row,
wherexx specifies the observation number in the problem data set.

For the sparse input format, the ID statement specifies the character variables in the
problem data set that contain the names of the rows in the model. Rows in the model
are one of the following types: constraints, objective functions, bounding rows, or
variable describing rows. The ID variables must be character variables. There must
be the same number of ID variables as variables specified in the COEF statement. If
the ID statement is omitted, the LP procedure looks for the default variable names
having the prefix–ID.

Note: The ID statement is an alias for the ROW statement.

SAS OnlineDoc: Version 8

82 � Chapter 3. The LP Procedure

IPIVOT Statement

IPIVOT;

The IPIVOT statement causes the LP procedure to execute one integer branch and
bound pivot and pause. If you use the IPIVOT statement while the PROXIMITY-
PAUSE option is in effect, pause interferences may occur. To avoid such interfer-
ences, you must either reset the PROXIMITYPAUSE value or submit IPIVOT; RUN;
instead of IPIVOT;.

PIVOT Statement

PIVOT;

The PIVOT statement causes the LP procedure to execute one simplex pivot and
pause.

PRINT Statement

PRINT options ;

The PRINT statement is useful for displaying part of a solution summary, examining
intermediate tableaus, performing sensitivity analysis, and using parametric program-
ming. In the options, thecolnames andrownames lists can be empty, in which case
the LP procedure displays tables with all columns or rows, or both. If a column or a
row name has spaces or other special characters in it, the name must be enclosed in
single or double quotes when it appears in the argument. The options that can be
used with this statement are as follows.

BEST
displays a Solution, Variable, and Constraint Summary for the best integer solution
found.

COLUMN (colnames)/SENSITIVITY
displays a Variable Summary containing the logical and structural variables listed in
thecolnames list. If the /SENSITIVITY option is included, then sensitivity analysis
is performed on the price coefficients for the listedcolnames structural variables.

INTEGER
displays a Variable Summary containing only the integer variables.

INTEGER–NONZEROS
displays a Variable Summary containing only the integer variables with nonzero ac-
tivity.

SAS OnlineDoc: Version 8

PRINT Statement � 83

INTEGER–ZEROS
displays a Variable Summary containing only the integer variables with zero activity.

MATRIX (rownames,colnames)/PICTURE
displays the submatrix of the matrix of constraint coefficients defined by therow-
names andcolnames lists. If the /PICTURE option is included, then the formatted
submatrix is displayed. The format used is summarized in Table 3.2.

Table 3.2. Format Summary

Condition on the Coefficient x Symbols Printed
abs(x) = 0 " "

0 < abs(x) < .000001 sgn(x) "Z"
.000001 � abs(x) < .00001 sgn(x) "Y"
.00001 � abs(x) < .0001 sgn(x) "X"
.0001 � abs(x) < .001 sgn(x) "W"
.001 � abs(x) < .01 sgn(x) "V"
.01 � abs(x) < .1 sgn(x) "U"
.1 � abs(x) < 1 sgn(x) "T"

abs(x) = 1 sgn(x) "1"
1 < abs(x) < 10 sgn(x) "A"

10 � abs(x) < 100 sgn(x) "B"
100 � abs(x) < 1000 sgn(x) "C"

1000 � abs(x) < 10000 sgn(x) "D"
10000 � abs(x) < 100000 sgn(x) "E"

100000 � abs(x) < 1.0E06 sgn(x) "F"

NONINTEGER
displays a variable summary containing only the continuous variables.

NONINTEGER–NONZEROS
displays a variable summary containing only the continuous variables with nonzero
activity.

NONZEROS
displays a variable summary containing only the variables with nonzero activity.

PRICESEN
displays the results of parametric programming for the current value of the PRICEPHI
option, the price coefficients, and all of the price change vectors.

RANGEPRICE
performs range analysis on the price coefficients.

RANGERHS
performs range analysis on the right-hand-side vector.

RHSSEN
displays the results of parametric programming for the current value of the RHSPHI
option, the right-hand-side coefficients, and all of the right-hand-side change vectors.

SAS OnlineDoc: Version 8

84 � Chapter 3. The LP Procedure

ROW (rownames)/SENSITIVITY
displays a constraint summary containing the rows listed in the rowname list. If
the /SENSITIVITY option is included, then sensitivity analysis is performed on the
right-hand-side coefficients for the listedrownames.

SOLUTION
displays the solution summary, including the variable summary and the constraint
summary.

TABLEAU
displays the current tableau.

ZEROS
displays a variable summary containing only the variables with zero activity. This
may be useful in the analysis of ON/OFF, ZERO/ONE, scheduling, and assignment
applications.

QUIT Statement

QUIT options ;

The QUIT statement causes the LP procedure to terminate processing immediately.
No further displaying is performed and no output data sets are created.

The QUIT/SAVE statement causes the LP procedure to save the output data sets,
defined in the PROC LP statement or in the RESET statement, and then terminate the
procedure.

RANGE Statement

RANGE variable ;

For the dense input format, the RANGE statement identifies the variable in the prob-
lem data set that contains the range coefficients. These coefficients enable you to
specify the feasible range of a row. For example, if theith row is

aTx � bi

and the range coefficient for this row isri > 0, then all values ofx that satisfy

bi � ri � aTx � bi

are feasible for this row. Table 3.3 shows the bounds on a row as a function of the
row type and the sign on a nonmissing range coefficientr.

SAS OnlineDoc: Version 8

RESET Statement � 85

Table 3.3. Interpretation of the Range Coefficient

Bounds
r –TYPE– Lower Upper

6= 0 LE b� j r j b
6= 0 GE b b+ j r j
> 0 EQ b b+ r
< 0 EQ b+ r b

If you include a range variable in the model and have a missing value or zero for it
in a constraint row, then that constraint is treated as if no range variable had been
included.

If the RANGE statement is omitted, the LP procedure assumes that the variable
named–RANGE– contains the range coefficients.

For the sparse input format, the RANGE statement gives the name of a column in
the problem data set that contains the range constants. If the RANGE statement
is omitted, then the LP procedure assumes that the column named–RANGE– or
the column with theRANGE keyword in the problem data set contains the range
constants.

RESET Statement

RESET options ;

The RESET statement is used to change options after the LP procedure has started
execution. All of the options that can be set in the PROC LP statement can also
be reset with the RESET statement, except for the DATA=, the PRIMALIN=, and
the ACTIVEIN= options. In addition to the options available with the PROC LP
statement, the following two options can be used.

LOWER(colnames)=n;
during phase 3, this sets the lower bound on all of the structural variables listed in
thecolnames list to an integer valuen. This may contaminate the branch and bound
tree. All nodes that descend from the current problem have lower bounds that may be
different from those input in the problem data set.

UPPER(colnames)=n;
during phase 3, this sets the upper bound on all of the structural variables listed in
thecolnames list to an integer valuen. This may contaminate the branch and bound
tree. All nodes that descend from the current problem have upper bounds that may
be different from those input in the problem data set.

SAS OnlineDoc: Version 8

86 � Chapter 3. The LP Procedure

RHS Statement

RHS variables ;

For the dense input format, the RHS statement identifies variables in the problem data
set that contain the right-hand-side constants of the linear program. Only numeric
variables can be specified. If more than one variable is included in the RHS statement,
the LP procedure assumes that problems for several linear programs are defined in
the problem data set. A new linear program is defined for each variable in the RHS
list. If the RHS statement is omitted, the procedure assumes that the variable named

–RHS– contains the right-hand-side constants.

For the sparse input format, the RHS statement gives the names of one or more
columns in the problem data set that are to be considered as right-hand-side con-
stants. If the RHS statement is omitted, then the LP procedure assumes that the
column named–RHS– or columns with theRHS keyword in the problem data set
contain the right-hand-side constants. See the “Sparse Data Input Format” section on
page 91 for further discussion.

In the default, the LP procedure assumes that the RHS constant is a zero vector for
the dense and sparse input formats.

RHSSEN Statement

RHSSEN variables ;

For the dense input format, the RHSSEN statement identifies variables in the problem
data set that define change vectors for examining the sensitivity of the optimal solu-
tion to changes in the RHS constants. If the RHSSEN statement is omitted, then the
LP procedure assumes that the variable named–RHSSEN– contains a right-hand-
side change vector.

For the sparse input format, the RHSSEN statement gives the names of one or more
columns in the problem data set that are to be considered as change vectors. If the
RHSSEN statement is omitted, then the LP procedure assumes that the column named

–RHSSEN– or columns with theRHSSEN keyword in the problem data set contain
the right-hand-side change vectors. For further information, see the “Sparse Data
Input Format” section on page 91, the “Right-Hand-Side Sensitivity Analysis” sec-
tion on page 108, and the “Right-Hand-Side Parametric Programming” section on
page 111.

SAS OnlineDoc: Version 8

SHOW Statement � 87

ROW Statement

ROW variable(s) ;

For the dense input format, the ROW statement specifies a character variable in the
problem data set that contains a name for each row of constraint coefficients, each
row of objective coefficients and each variable describing row. If the ROW statement
is omitted, the LP procedure looks for the default variable name,–ROW– . If this is
not such a variable in the problem data set, the procedure assigns the default name

–OBSxx– to each row, wherexx specifies the observation number in the problem
data set.

For the sparse input format, the ROW statement specifies the character variables
in the problem data set that contain the names of the rows in the model. Rows in
the model are one of the following types: constraints, objective functions, bounding
rows, or variable describing rows. The ROW variables must be character variables.
There must be the same number of ROW variables as variables specified in the COEF
statement. If the ROW statement is omitted, the LP procedure looks for the default
variable names having the prefix–ROW.

RUN Statement

RUN;

The RUN statement causes optimization to be started or resumed. The TITLE or
OPTIONS statement should not appear between PROC LP and RUN statements.

SHOW Statement

SHOW options ;

The SHOW statement specifies that the LP procedure display either thecurrent op-
tionsor thecurrent solution statuson the SAS log.

OPTIONS
requests that the current options be displayed on the SAS log.

STATUS
requests that the status of the current solution be displayed on the SAS log.

SAS OnlineDoc: Version 8

88 � Chapter 3. The LP Procedure

TYPE Statement

TYPE variable ;

The TYPE statement specifies a character variable in the problem data set that con-
tains the type identifier for each observation. This variable has keyword values that
specify how the LP procedure should interpret the observation. If the TYPE state-
ment is omitted, the procedure assumes that the variable named–TYPE– contains
the type keywords.

For the dense input format, the type variable identifies the constraint and objective
rows and rows that contain information about the variables. The type variable should
have nonmissing values in all observations.

For the sparse input format, the type variable identifies a model’s rows and columns.
In an observation, a nonmissing type is associated with either a row or a column. If
there are many columns sharing the same type, you can define a row of that type.
Then, any nonmissing values in that row set the types of the corresponding columns.

The following are valid values for the TYPE variable in an observation:

MIN contains the price coefficients of an objective row, for example,c
in the problem(mip), to be minimized.

MAX contains the price coefficients of an objective row, for example,c,
to be maximized.

EQ (=) contains coefficients of an equality constrained row.

LE (�) contains coefficients of an inequality, less than or equal to, con-
strained row.

GE (�) contains coefficients of an inequality, greater than or equal to, con-
strained row.

SOSEQ identifies the row as specifying a special ordered set. The variables
flagged in this row are members of a setexactly oneof which must
be above its lower bound in the optimal solution. Note that vari-
ables in this type of special ordered set must beinteger.

SOSLE identifies the row as specifying a special ordered set. The variables
flagged in this row are members of a set in which only one can be
above its lower bound in the optimal solution.

UNRSTRCT identifies those structural variables to be considered as unre-
stricted variables. These are variables for which`i=-INFINITY and
ui=+INFINITY. Any variable that has a1 in this observation is con-
sidered an unrestricted variable.

SAS OnlineDoc: Version 8

TYPE Statement � 89

LOWERBD identifies lower bounds on the structural variables. If all structural
variables are to be nonnegative, that is,`i = 0, then you do not
need to include an observation with theLOWERBD keyword in
a variable specified in the TYPE statement. Missing values for
variables in a lower-bound row indicate that the variable has zero
lower bound.

Note: A variable with lower or upper bounds cannot be iden-
tified as unrestricted.

UPPERBD identifies upper boundsui on the structural variables. For each
structural variable that is to have an upper boundui=+INFINITY,
the observation must contain a missing value or the current value
of INFINITY. All other values are interpreted as upper bounds, in-
cluding 0.

FIXED identifies variables that have fixed values. A nonmissing value in
a row with FIXED type keyword gives the constant value of that
variable.

INTEGER identifies variables that are integer constrained. In a feasible so-
lution, these variables must have integer values. A missing value
in a row with INTEGER type keyword indicates that that variable
is not integer constrained. The value of variables in theINTEGER
row gives an ordering to the integer-constrained variables that is
used when the VARSELECT= option equalsPRIOR.

Note: Every integer-constrained variable must have an upper
bound defined in a row with typeUPPERBD. See the “Controlling
the Branch and Bound Search” section on page 102 for further
discussion.

BINARY identifies variables that are constrained to be either 0 or 1. This is
equivalent to specifying that the variable is an integer variable and
has a lower bound of 0 and an upper bound of 1. A missing value in
a row withBINARY type keyword indicates that that variable is not
constrained to be 0 or 1. The value of variables in theBINARY row
gives an ordering to the integer-constrained variables that is used
when the VARSELECT= option equalsPRIOR. See the “Control-
ling the Branch and Bound Search” section on page 102 for further
discussion.

BASIC identifies variables that form an initial basic feasible solution. A
missing value in a row withBASIC type indicates that that variable
is not basic.

PRICESEN identifies a vector that is used to evaluate the sensitivity of the op-
timal solution to changes in the objective function. See the “Price
Sensitivity Analysis” section on page 109 and the “Price Paramet-
ric Programming” section on page 111 for further discussion.

FREE identifies a nonbinding constraint. Any number ofFREE con-
straints can appear in a problem data set.

SAS OnlineDoc: Version 8

90 � Chapter 3. The LP Procedure

RHS identifies a right-hand-side column in the sparse input format. This
will replace the RHS statement. It is useful when converting the
MPS format into the sparse format of PROC LP. See the “Convert-
ing MPS Format” section on page 93 for more information.

RHSSEN identifies a right-hand-side sensitivity analysis vector in the sparse
input format. This replaces the RHSSEN statement. It is useful
when converting the MPS format into the sparse format of PROC
LP. See the “Converting MPS Format” section on page 93 for more
information.

RANGE identifies a range vector in the sparse input format. This replaces
the RANGE statement. It is useful when converting the MPS for-
mat into the sparse format of PROC LP. See the “Converting MPS
Format” section on page 93 for more information.

VAR Statement

VAR variables ;

For the dense input format, the VAR statement identifies variables in the problem data
set that are to be interpreted as structural variables in the linear program. Only nu-
meric variables can be specified. If no VAR statement is specified, the LP procedure
uses all numeric variables not included in an RHS or RHSSEN statement as structural
variables.

SAS OnlineDoc: Version 8

Sparse Data Input Format � 91

Details

Missing Values

The LP procedure treats missing values as missing in all rows except those that iden-
tify either upper or lower bounds on structural variables. If the row is an upper-bound
row, then the type identifier isUPPERBD and the LP procedure treats missing values
as+INFINITY. If the row is a lower-bound row, then the type identifier isLOWERBD
and the LP procedure treats the missing values as 0, except for the variables that are
identified asUNRSTRCT.

Sparse Data Input Format

The sparse format to PROC LP is designed to enable you to specify only the nonzero
coefficients in the description of linear programs, integer programs, and mixed-
integer programs. The SAS data set that describes the sparse model must contain
at least four SAS variables:

� a type variable

� a column variable

� a row variable

� a coefficient variable

Each observation in the data set associates a type with a row or a column, and defines
a coefficient or a numerical value in the model. In addition to the keywords in the
dense format, PROC LP also recognizes the keywordsRHS, RHSSEN, andRANGE
as values of the type variable. The values of the row and column variables are the
names of the rows and columns in the model. The values of the coefficient vari-
ables specify the coefficients or other numerical data. The SAS data set can contain
multiple pairs of row and coefficient variables. In this way, more information about
the model can be specified in each observation in the data set. See Example 3.2 for
details.

Table 3.4 shows the keywords that are recognized by PROC LP and in which vari-
ables can appear in the problem data set. The SAS data set that describes the sparse
model must contain at least four SAS variables: a type variable, a column variable,
a row variable, and a coefficient variable. Each observation in the data set defines
one or more rows or coefficients in the model. The value of the type variable is a
keyword that tells PROC LP how to interpret the observation. The values of the row
and column variables name the rows and columns in the model. The values of the co-
efficient variables define coefficients and lower and upper bounds and identify model
variables with typeBASIC, FIXED, BINARY, and INTEGER. All character values in
the sparse data input format are case insensitive.

SAS OnlineDoc: Version 8

92 � Chapter 3. The LP Procedure

Table 3.4. Variable Keywords Used in the Problem Data Set

TYPE (–TYPE–) COL (–COL–)
MIN
MAX
EQ
LE
GE
SOSEQ
SOSLE
UNRSTRCT
LOWERBD
UPPERBD
FIXED
INTEGER
BINARY
BASIC
PRICESEN
FREE
RHS –RHS–
RHSSEN –RHSSEN–
RANGE –RANGE–
�xxxxxxx

Follow these rules for sparse data input:

� The order of the observations is unimportant.

� Each unique column name appearing in the COL variable defines a unique
column in the model.

� Each unique row name appearing in the ROW variable defines a unique row in
the model.

� The type of the row is identified when an observation in which the row name
appears (in a ROW variable) has typeMIN, MAX, LE, GE, EQ, SOSLE,
SOSEQ, LOWERBD, UPPERBD,UNRSTRCT, FIXED, BINARY, INTEGER,
BASIC, FREE, or PRICESEN.

� The type of each row must be identified at least once. If a row is given a type
more than once, the multiple definitions must be identical.

� When there are multiple rows named in an observation (that is, when there are
multiple ROW variables), the TYPE variable applies to each row named in the
observation.

� The type of a column is identified when an observation in which the col-
umn name but no row name appears has the typeLOWERBD, UPPERBD,
UNRSTRCT, FIXED, BINARY, INTEGER, BASIC, RHS, RHSSEN, or RANGE.
A column type can also be identified in an observation in which both column
and row names appear and the row name has one of the preceding types.

SAS OnlineDoc: Version 8

Converting MPS Format � 93

� Each column is assumed to be a structural column in the model unless the col-
umn is identified as a right-hand-side vector, a right-hand-side change vector,
or a range vector. A column can be identified as one of these types using either
the keywordsRHS, RHSSEN, orRANGE in the TYPE variable; the special col-
umn names–RHS–, –RHSSEN– , or –RANGE– ; or the RHS, RHSSEN, or
RANGE statements following the PROC LP statement.

� A TYPE variable beginning with the character� causes the observation to be
interpreted as a comment.

When the column names appear in the Variable Summary in the PROC LP output,
they are listed in alphabetical order. The row names appear in the order in which they
appear in the problem data set.

Converting MPS Format

MPS input format was introduced by IBM. It has been a way of creating inputs for
linear and integer programs. SASMPSXS is a SAS marco function that converts the
standard MPS format to the sparse format of the LP procedure. The following is an
example of the MPS format:

NAME EXAMPLE
* THIS IS DATA FOR THE PRODUCT MIX PROBLEM.
ROWS

N PROFIT
L STAMP
L ASSEMB
L FINISH
N CHNROW
N PRICE

COLUMNS
DESK STAMP 3.00000 ASSEMB 10.00000
DESK FINISH 10.00000 PROFIT 95.00000
DESK PRICE 175.00000
CHAIR STAMP 1.50000 ASSEMB 6.00000
CHAIR FINISH 8.00000 PROFIT 41.00000
CHAIR PRICE 95.00000
CABINET STAMP 2.00000 ASSEMB 8.00000
CABINET FINISH 8.00000 PROFIT 84.00000
CABINET PRICE 145.00000
BOOKCSE STAMP 2.00000 ASSEMB 7.00000
BOOKCSE FINISH 7.00000 PROFIT 76.00000
BOOKCSE PRICE 130.00000 CHNROW 1.00000

RHS
TIME STAMP 800.00000 ASSEMB 1200.0000
TIME FINISH 800.00000

RANGES
T1 ASSEMB 900.00000

BOUNDS
UP CHAIR 75.00000
LO BOOKCSE 50.00000

ENDATA

SAS OnlineDoc: Version 8

94 � Chapter 3. The LP Procedure

In this example, the company tries to find an optimal product mix of four items:
a DESK, a CHAIR, a CABINET, and aBOOKCASE. Each item is processed in a
stamping department (STAMP), an assembly department (ASSEMB), and a finishing
department (FINISH). The time each item requires in each department is given in
the input data. Because of resource limitations, each department has an upper limit
on the time available for processing. Furthermore, because of labor constraints, the
assembly department must work at least 300 hours. Finally, marketing tells you not
to make more than 75 chairs, to make at least 50 bookcases, and to find the range over
which the selling price of a bookcase can vary without changing the optimal product
mix.

The SASMPSXS macro function uses MPSFILE=’FILENAME’ as an argument to
take an MPS input file. It then converts the file and saves the conversion to a default
SAS data set,PROB. TheFILENAME should include the path.

Running the following statements on the preceding example

%sasmpsxs(mpsfile=’filename’);

proc print data=prob;
run;

produces the sparse input form of the LP procedure:

OBS _TYPE_ _COL_ _ROW1_ _COEF1_ _ROW2_ _COEF2 _

1 *OW . .
2 FREE PROFIT . .
3 LE STAMP . .
4 LE ASSEMB . .
5 LE FINISH . .
6 FREE CHNROW . .
7 FREE PRICE . .
8 *OL MNS . .
9 DESK STAMP 3.0 ASSEMB 10

10 DESK FINISH 10.0 PROFIT 95
11 DESK PRICE 175.0 .
12 CHAIR STAMP 1.5 ASSEMB 6
13 CHAIR FINISH 8.0 PROFIT 41
14 CHAIR PRICE 95.0 .
15 CABINET STAMP 2.0 ASSEMB 8
16 CABINET FINISH 8.0 PROFIT 84
17 CABINET PRICE 145.0 .
18 BOOKCSE STAMP 2 ASSEMB 7
19 BOOKCSE FINISH 7 PROFIT 76
20 BOOKCSE PRICE 130 CHNROW 1
21 *HS . .
22 RHS TIME STAMP 800 ASSEMB 1200
23 RHS TIME FINISH 800 .
24 *AN ES . .
25 RANGE T1 ASSEMB 900 .
26 *OU DS . .

SAS OnlineDoc: Version 8

Converting MPS Format � 95

27 UPPERBDD CHAIR UP 75 .
28 LOWERBDD BOOKCSE LO 50 .

SASMPSXS recognizes four MPS row types:E, L, G andN. It converts them into
typesEQ, LE, GE andFREE. Since objective rows, price change rows and free rows
all share the same typeN in the MPS format, you need a DATA step to assign proper
types to the objective rows and price change rows.

data;
set prob;
if _type_=’free’ and _row1_=’profit’ then _type_=’max’;
if _type_=’free’ and _row1_=’chnrow’ then _type_=’pricesen’;

run;

proc lp sparsedata;
run;

In the MPS format, the variable types includeLO, UP, FX, FR, MI, and BV. The
SASMPSXS macro converts them into typesLOWERBD, UPPERBD, FIXED, UN-
RESTRICTED, -INFINITY, andBINARY, respectively. Occasionally, you may define
your own variable types, in which case, you need to add corresponding type handling
entries in SASMPSXS.SAS program and use the SAS %INCLUDE macro to include
the file at the beginning of your program. The SASMPSXS macro function can be
found in the SAS sample library. The information on the MPS format can be obtained
from Murtagh (1981).

SASMPSXS can take no arguments, or it can take one or two arguments. If no argu-
ments are present, SASMPSXS assumes that the MPS input file has been saved to a
SAS data set namedRAW. The macro then takes information from that data set and
converts it into the sparse form of the LP procedure. TheRAW data set should have
the following six variables:

data RAW;
infile ...;
input field1 $ 2-3 field2 $ 5-12

field3 $ 15-22 field4 25-36
field5 $ 40-47 field6 50-61;

...
run;

If the preceding MPS input data set has a name other thanRAW, you can use
MPSDATA=SAS-data-set as an argument in the SASMPSXS macro function. If
you want the converted sparse form data set to have a name other thanPROB, you
can use LPDATA=SAS-data-set as an argument. The order of the arguments in the
SASMPSXS macro function is not important.

SAS OnlineDoc: Version 8

96 � Chapter 3. The LP Procedure

The Reduced Costs, Dual Activities, and Current Tableau

The evaluation of reduced costs and the dual activities is independent of problem
structure. For a basic solution, letB be the matrix composed of the basic columns of
A and letN be the matrix composed of the nonbasic columns ofA. The reduced cost
associated with thei th variable is

(cT � cTBB
�1A)i

and the dual activity of thej th row is

(cTBB
�1)j

The Current Tableau is a section displayed when you specify either the
TABLEAUPRINT option in the PROC LP statement or you specify the TABLEAU
option in the PRINT statement. The output contains a row for each basic variable
and a column for each nonbasic variable. In addition, there is a row for the reduced
costs and a column for the product

B�1b

This column is labeledINV(B)*R. The body of the tableau contains the matrix

B�1N

Macro Variable –ORLP–
The LP procedure defines a macro variable named–ORLP–. This variable con-
tains a character string that indicates the status of the procedure. It is set when-
ever the user gets control, at break points, and at procedure termination. The form
of the –ORLP– character string is STATUS= PHASE= OBJECTIVE= P–FEAS=
D–FEAS= INT–ITER= INT–FEAS= ACTIVE= INT–BEST= PHASE1–ITER=
PHASE2–ITER= PHASE3–ITER=. The terms are interpreted as follows:

STATUS= the status of the current solution

PHASE= the phase the procedure is in (1, 2, or 3)

OBJECTIVE= the current objective value

P–FEAS= whether the current solution is primal feasible

D–FEAS= whether the current solution is dual feasible

INT–ITER= the number of integer iterations performed

INT–FEAS= the number of integer feasible solutions found

ACTIVE= the number of active nodes in the current branch and bound
tree

INT–BEST= the best integer objective value found

SAS OnlineDoc: Version 8

Pricing � 97

PHASE1–ITER= the number of iterations performed in phase 1

PHASE2–ITER= the number of iterations performed in phase 2

PHASE3–ITER= the number of iterations performed in phase 3

Table 3.5 shows the possible values for the nonnumeric terms in the string.

Table 3.5. Possible Values for Nonnumeric Terms

STATUS P–FEASIBLE D–FEASIBLE
SUCCESSFUL YES YES
UNBOUNDED NO NO
INFEASIBLE
MAX–TIME
MAX–ITER
PIVOT
BREAK
INT–FEASIBLE
INT–INFEASIBLE
INT–MAX–ITER
PAUSE
FEASIBLEPAUSE
IPAUSE
PROXIMITYPAUSE
ACTIVE
RELAXED
FATHOMED
IPIVOT
UNSTABLE
SINGULAR
MEMORY–ERROR
IO–ERROR
SYNTAX–ERROR
SEMANTIC–ERROR
BADDATA–ERROR
UNKNOWN–ERROR

This information can be used when PROC LP is one step in a larger program that
needs to identify how the LP procedure terminated. Because–ORLP– is a standard
SAS macro variable, it can be used in the ways that all macro variables can be used
(see theSAS Guide to Macro Processing).

Pricing

PROC LP performs multiple pricing when determining which variable will enter the
basis at each pivot (Greenberg 1978). This heuristic can shorten execution time in
many problems. The specifics of the multiple pricing algorithm depend on the value
of the PRICETYPE= option. However, in general, when some form of multiple pric-
ing is used, during the first iteration PROC LP places the PRICE= nonbasic columns

SAS OnlineDoc: Version 8

98 � Chapter 3. The LP Procedure

yielding the greatest marginal improvement to the objective function in a candidate
list. This list identifies a subproblem of the original. On subsequent iterations, only
the reduced costs for the nonbasic variables in the candidate list are calculated. This
accounts for the potential time savings. When either the candidate list is empty or the
subproblem is optimal, a new candidate list must be identified and the process repeats.
Because identification of the subproblem requires pricing the complete problem, an
iteration in which this occurs is called amajor iteration. A minor iteration is an
iteration in which only the subproblem is to be priced.

The value of the PRICETYPE= option determines the type of multiple pricing that
is to be used. The types of multiple pricing include partial suboptimization (PRICE-
TYPE=PARTIAL), complete suboptimization (PRICETYPE=COMPLETE), and com-
plete suboptimization with dynamically varying the value of PRICE= option (PRICE-
TYPE=DYNAMIC).

When partial suboptimization is used, in each minor iteration the nonbasic column
in the subproblem yielding the greatest marginal improvement to the objective is
brought into the basis and removed from the candidate list. The candidate list now
has one less entry. At each subsequent iteration, another column from the subproblem
is brought into the basis and removed from the candidate list. When there are either
no remaining candidates or the remaining candidates do not improve the objective,
the subproblem is abandoned and a major iteration is performed. If the objective
cannot be improved on a major iteration, the current solution is optimal and PROC
LP terminates.

Complete suboptimization is identical to partial suboptimization with one exception.
When a nonbasic column from the subproblem is brought into the basis, it is replaced
in the candidate list by the basic column that is leaving the basis. As a result, the
candidate list does not diminish at each iteration.

When PRICETYPE=DYNAMIC, complete suboptimization is performed, but the
value of the PRICE= option changes so that the ratio of minor to major iterations
is within two units of the PRICE= option.

These heuristics can shorten execution time for small values of the PRICE= option.
Care should be exercised in choosing a value from the PRICE= option because too
large a value can use more time than if pricing were not used.

Scaling

Based on the SCALE= option specified, the procedure scales the coefficients
of both the constraints and objective rows before iterating. This technique can
improve the numerical stability of an ill-conditioned problem. If you want
to modify the default matrix scaling used, which is SCALE=NONE, use the
SCALE=COLUMN, SCALE=ROW, or SCALE=BOTH option in the PROC LP state-
ment. If SCALE=BOTH is chosen, the matrix coefficients are scaled so that the largest
element in absolute value in each row or column equals 1. They are scaled by columns
first and then by rows. If SCALE=COLUMN (ROW), the matrix coefficients are scaled
so that the largest element in absolute value in each column (row) equals 1.

SAS OnlineDoc: Version 8

Integer Programming � 99

Preprocessing

With the preprocessing option, you can identify redundant and infeasible constraints,
improve lower and upper bounds of variables, fix variable values and improve coeffi-
cients and RHS values before solving a problem. Preprocessing can be applied to LP,
IP and MIP problems. For an LP problem, it may significantly reduce the problem
size. For an IP or MIP problem, it can often reduce the gap between the optimal so-
lution and the solution of the relaxed problem, which could lead to a smaller search
tree in the branch and bound algorithm. As a result, the CPU time may be reduced
on many problems. Although there is no guarantee that preprocessing will always
yield a faster solution, it does provide a highly effective approach to solving large
and difficult problems.

Preprocessing is especially useful when the original problem causes numerical dif-
ficulties to PROC LP. Since preprocessing could identify redundant constraints and
tighten lower and upper bounds of variables, the reformulated problem may eliminate
the numerical difficulties in practice.

When a constraint is identified as redundant, its type is marked asFREE in the Con-
straint Summary. If a variable is fixed, its type is marked asFIXED in the Variables
Summary. If a constraint is identified as infeasible, PROC LP stops immediately and
displays the constraint name in the SAS log file. This capability sometimes gives
valuable insight into the model or the formulation and helps establish if the model is
reasonable and the formulation is correct.

For a large and dense problem, preprocessing may take a longer time for each itera-
tion. To limit the number of preprocessings, use the PMAXIT= option. To stop any
further preprocessings during the preprocessing stage, press the CTRL-BREAK key.
PROC LP will enter phase 1 at the end of the current iteration.

Integer Programming

Formulations of mathematical programs often require that some of the decision vari-
ables take only integer values. Consider the formulation

min cTx

subject to

Ax �;=;� b
` � x � u

xi 2 S is integer

The set of indicesS identifies those variables that must take only integer values.
WhenS does not contain all of the integers between 1 andn, inclusive, problem(mip)
is called a mixed-integer program. Otherwise, it is known as an integer program. Let
xopt(mip) denote an optimal solution to(mip) . An integer variable with bounds
between 0 and 1 is also called a binary variable.

SAS OnlineDoc: Version 8

100 � Chapter 3. The LP Procedure

Specifying the Problem
An integer or mixed-integer problem can be solved with PROC LP. To solve this
problem, you must identify the integer variables. You can do this with a row in the
input data set that has the keywordINTEGER for the type variable. Any variable that
has a nonmissing and nonzero value for this row is interpreted as an integer variable.
It is important to note that integer variables must have upper bounds explicitly defined
using theUPPERBD keyword. The values in theINTEGER row not only identify
those variables that must be integral, but they also give an ordering to the integer
variables that can be used in the solution technique.

You can follow the same steps to identify binary variables. For the binary variables,
there is no need to supply any upper bounds.

Following the rules of sparse data input format, you can also identify individual inte-
ger or binary variables.

The Branch and Bound Technique
The branch and bound approach is used to solve integer and mixed-integer problems.
The following discussion outlines the approach and explains how to use several op-
tions to control the procedure.

The branch and bound technique solves an integer program by solving a sequence of
linear programs. The sequence can be represented by a tree, with each node in the
tree being identified with a linear program that is derived from the problems on the
path leading to the root of the tree. The root of the tree is identified with a linear
program that is identical to(mip) except thatS is empty. This relaxed version of
(mip), lp(0), can be written as:

xopt(0) = min cTx

subject to

Ax �;=;� b
` � x � u

The branch and bound approach generates linear programs along the nodes of the
tree using the following scheme. Considerxopt(0), the optimal solution tolp(0). If
xopt(0)i is integer for alli 2 S , thenxopt(0) is optimal in(mip). Suppose for some
i 2 S , xopt(0)i is nonintegral. In that case, define two new problems(lp(1)) and
(lp(2)) , descendents of the parent problem(lp(0)). The problem(lp(1)) is identical
to (lp(0)) except for the additional constraint

xi � bxopt(0)ic

and the problem(lp(2)) is identical to(lp(0)) except for the additional constraint

xi � dxopt(0)ie

SAS OnlineDoc: Version 8

Integer Programming � 101

The notationdye means the smallest integer greater than or equal toy, and the no-
tation byc means the largest integer less than or equal toy. Note that the two new
problems do not havexopt(0) as a feasible solution, but because the solution to(mip)
must satisfy one of the preceding constraints,xopt(mip)i must satisfy one of the new
constraints. The two problems thus defined are called active nodes in the branch and
bound tree, and the variablei is called the branching variable.

Next, the algorithm chooses one of the problems associated with an active node and
attempts to solve it using the dual simplex algorithm. The problem may be infeasible,
in which case the problem is dropped. If it can be solved, and it in turn does not have
an integer solution (that is a solution for whichxi is integer for alli 2 S), then it
defines two new problems. These new problems each contain all of the constraints of
the parent problems plus the appropriate additional one.

Branching continues in this manner until either there are no active nodes or an integer
solution is found. When an integer solution is found, its objective value provides a
bound for the objective of(mip). In particular, ifz is the objective value of the current
best integer solution, then any active problems whose parent problem has objective
value� z can be discarded (assuming that the problem is a minimization). This can
be done because all problems that descend from this parent will also have objective
value� z. This technique is known as fathoming. When there are no active nodes
remaining to be solved, the current integer solution is optimal in(mip). If no integer
solution has been found, then(mip) is (integer) infeasible.

It is important to realize that integer programs are NP-complete. Roughly speaking,
this means that the effort required to solve them grows exponentially with the size
of the problem. For example, a problem with 10 binary variables can, in the worst
case, generate210 = 1024 nodes in the branch and bound tree. A problem with 20
binary variables can, in the worst case, generate220 = 1048576 nodes in the branch
and bound tree. Although the algorithm is unlikely to have to generate every single
possible node, the need to explore even a small fraction of the potential number of
nodes for a large problem can be resource intensive.

The Integer Iteration Log
To help monitor the growth of the branch and bound tree, the LP procedure reports on
the status of each problem that is solved. The report, displayed in the Integer Iteration
Log, can be used to reconstruct the branch and bound tree. Each row in the report
describes the results of the attempted solution of the linear program at a node in the
tree. In the following discussion, a problem on a given line in the log is called the
current problem. The following columns are displayed in the report:

Iter identifies the number of the branch and bound iteration.

Problem identifies how the current problem fits in the branch and bound tree.

Condition reports the result of the attempted solution of the current problem.
Values for Condition are

ACTIVE The current problem was solved suc-
cessfully.

INFEASIBLE The current problem is infeasible.

SAS OnlineDoc: Version 8

102 � Chapter 3. The LP Procedure

FATHOMED The current problem cannot lead to an
improved integer solution and therefore
it is dropped.

SINGULAR A singular basis was encountered in at-
tempting to solve the current problem.
Solution of this relaxed problem is sus-
pended and will be attempted later if
necessary.

SUBOPTIMAL The current problem has an integer fea-
sible solution.

Objective reports the objective value of the current problem.

Branched names the variable that is branched in subtrees defined by the de-
scendents of this problem.

Value gives the current value of the variable named in the column labeled
Branched.

Sinfeas gives the sum of the integer infeasibilities in the optimal solution
to the current problem.

Active reports the total number of nodes currently active in the branch and
bound tree.

Proximity reports the gap between the best integer solution and the current
lower (upper for maximizations) bound of all active nodes.

To reconstruct the branch and bound tree from this report, consider the interpretation
of iteration j. If Iter=j and Problem=k, then the problem solved on iterationj is
identical to the problem solved on iterationj k j with an additional constraint. If
k > 0, then the constraint is an upper bound on the variable named in the Branched
column on iterationj k j. On the other hand, ifk < 0 then the constraint is a lower
bound on that variable. The value of the bound can be obtained from the value of
Value in iterationj k j as described in the previous section.

Example 3.8 in the section “Examples” on page 123 shows an Integer Iteration Log
in its output.

Controlling the Branch and Bound Search
There are several options you can use to control branching. This is accomplished
by controlling the program’s choice of the branching variable and of the next active
node. In the discussion that follows, let

fi(k) = xopt(k)i � bxopt(k)ic

wherexopt(k) is the optimal solution to the problem solved on iterationk.

The CANSELECT= option directs the choice of the next active node. Valid keywords
for this option includeLIFO, FIFO, OBJ, PROJECT, PSEUDOC, andERROR. The
following list describes the action that each of these causes when the procedure must
choose for solution a problem from the list of active nodes.

SAS OnlineDoc: Version 8

Integer Programming � 103

LIFO chooses the last problem added to the tree of active nodes. This
search has the effect of a depth first search of the branch and bound
tree.

FIFO chooses the first node added to the tree of active nodes. This search
has the effect of a breadth first search of the branch and bound tree.

OBJ chooses the problem whose parent has the least (largest if the prob-
lem is a maximization) objective value.

PROJECT chooses the problem with the largest (least if the problem is a max-
imization) projected objective value. The projected objective value
is evaluated using the sum of integer infeasibilities,s(k), associ-
ated with an active node(lp(k)), defined by:

s(k) = �i2Sminffi(k); (1 � fi(k))g.

An empirical measure of the rate of increase (decrease) in the ob-
jective value is defined as

� = (z� � z(0))=s(0)

where

z(k) is the optimal objective value for(lp(k)).

z� is the objective value of the current best integer solution.

The projected objective value for problems(lp(k+1)) and(lp(k+
2)) is defined as

z(k) + �s(k)

PSEUDOC chooses the problem with the largest (least if the problem is a max-
imization) projected pseudocost. The projected pseudocost is eval-
uated using the weighted sum of infeasibilitiessw(k) associated
with an active problem(lp(k)), defined by

sw(k) = �i2Sminfdi(k)fi(k); ui(k)(1� fi(k))g

The weightsui anddi are initially equal to the absolute value of the
ith objective coefficient and are updated at each integer iteration.
They are modified by examining the empirical marginal change in
the objective as additional constraints are placed on the variables in
S along the path from(lp(0)) to a node associated with an integer
feasible solution. In particular, if the definition of problems(lp(k+
1)) and (lp(k + 2)) from parent(lp(k)) involve the addition of
constraintsxi � bxopt(k)ic andxi � dxopt(k)ie, respectively, and
one of them is on a path to an integer feasible solution, then only
one of the following is true:

di(k) = (z(k + 1)� z(k))=fi(k)

ui(k) = (z(k + 2)� z(k))=(1 � fi(k))

SAS OnlineDoc: Version 8

104 � Chapter 3. The LP Procedure

Note the similarity betweensw(k) ands(k). The weighted quantity
sw(k) accounts to some extent for the influence of the objective
function. The projected pseudocost for problems(lp(k + 1)) and
(lp(k + 2)) is defined as

zw(k) � z(k) + sw(k)

ERROR chooses the problem with the largest error. The error associated
with problems(lp(k + 1)) and(lp(k + 2)) is defined as

(z� � zw(k))=(z
� � z(k))

The BACKTRACK= option controls the search for the next problem. This option
can take the same values as the CANSELECT= option. In addition to the case out-
lined under the DELTAIT= option, backtracking is required as follows based on the
CANSELECT= option in effect:

� If CANSELECT=LIFO and there is no active node in the portion of the active
tree currently under exploration with a bound better than the value of WOB-
JECTIVE=, then the procedure must backtrack.

� If CANSELECT=FIFO, PROJECT, PSEUDOC, andERROR and the bound
corresponding to the node under consideration is not better than the value of
WOBJECTIVE=, then the procedure must backtrack.

The default value isOBJ.

The VARSELECT= option directs the choice of branching variable. Valid keywords
for this option includeCLOSE, FAR, PRIOR, PSEUDOC, PRICE, andPENALTY.
The following list describes the action that each of these causes whenxopt(k), an
optimal solution of problem(lp(k)), is used to define active problems(lp(k + 1))
and(lp(k + 2)).

CLOSE chooses as branching variable the variablexi such thati minimizes

fminffi(k); (1 � fi(k))g j i 2 S and IEPSILON� fi(k) � 1�
IEPSILONg

FAR chooses as branching variable the variablexi such thati maximizes

fminffi(k); (1 � fi(k))g j i 2 S and IEPSILON� fi(k) � 1�
IEPSILONg

PRIOR chooses as branching variablexi such thati 2 S, xopt(k)i is non-
integral, and variablexi has the minimum value in theINTEGER
row in the input data set. This choice for the VARSELECT= option
is recommended when you have enough insight into the model to
identify those integer variables that have the most significant effect
on the objective value.

SAS OnlineDoc: Version 8

Integer Programming � 105

PENALTY chooses as branching variablexi such thati 2 S and a bound on the
increase in the objective of(lp(k)) (penalty) resulting from adding
the constraint

xi � bxopt(k)ic or
xi � dxopt(k)ie

is maximized. The bound is calculated without pivoting using tech-
niques of sensitivity analysis (Garfinkel and Nemhauser 1972). Be-
cause the cost of calculating the maximum penalty can be large if
S is large, you may want to limit the number of variables inS
for which the penalty is calculated. The penalty is calculated for
PENALTYDEPTH= variables inS .

PRICE chooses as branching variablexi such thati 2 S, xopt(k)i is non-
integral, and variablexi has the minimum price coefficient (maxi-
mum for maximization).

PSEUDOC chooses as branching variable the variablexi such thati maximizes

fminfdifi(k); ui(1� fi(k))g j i 2 S and IEPSILON
� fi(k) � 1� IEPSILONg

The weightsui anddi are initially equal to the absolute value of
the ith objective coefficient and are updated whenever an integer
feasible solution is encountered. See the discussion on the CANS-
ELECT= option for details on the method of updating the weights.

Customizing Search Heuristics
Often a good heuristic for searching the branch and bound tree of a problem can
be found. You are tempted to continue using this heuristic when the problem data
changes but the problem structure remains constant. The ability to reset procedure
options interactively enables you to experiment with search techniques in an attempt
to identify approaches that perform well. Then you can easily reapply these tech-
niques to subsequent problems.

For example, the PIP branch and bound strategy (Crowder, Johnson, and Padberg
1983) describes one such heuristic. The following program uses a similar strategy.
Here, theOBJ rule (choose the active node with least parent objective function in the
case of a minimization problem) is used for selecting the next active node to be solved
until an integer feasible solution is found. Once such a solution is found, the search
procedure is changed to theLIFO rule: choose the problem most recently placed in
the list of active nodes.

proc lp canselect=obj ifeasiblepause=1;
run;

reset canselect=lifo ifeasiblepause=9999999;
run;

SAS OnlineDoc: Version 8

106 � Chapter 3. The LP Procedure

Further Discussions on AUTO and CONTROL= options
Consider a minimization problem. At each integer iteration, PROC LP will select
a node to solve from a pool of active nodes. The best bound strategy (CANSE-
LECT=OBJ) will pick the node with the smallest projected objective value. This
strategy improves the lower bound of the integer program and usually takes fewer
integer iterations. One disadvantage is that PROC LP must recalculate the inverse
of the basis matrix at almost every integer iteration; such recalculation is relatively
expensive. Another disadvantage is that this strategy does not pay attention to im-
proving the upper bound of the integer program. Thus the number of active nodes
tends to grow rapidly if PROC LP cannot quickly find an optimal integer solution.

On the other hand, the LIFO strategy is very efficient and does not need to calculate
the inverse of the basis matrix unless the previous node is fathomed. It is a depth first
strategy so it tends to find an integer feasible solution quickly. However, this strategy
will pick nodes locally and usually will take longer integer iterations than the best
bound strategy.

There is another strategy that is often overlooked. Here it is called thebest upper
bound strategy. With this strategy, each time you select an active node each time,
instead of picking the node with the smallest projected objective value, you select the
one with the largest projected objective value. This strategy is as efficient as the LIFO
strategy. Moreover, it selects active nodes globally. This strategy tries to improve the
upper bound of the integer program by searching for new integer feasible solutions.
It also fathoms active nodes quickly and keeps the total number of active nodes below
current level. A disadvantage is that this strategy may evaluate more nodes that do
not have any potential in finding an optimal integer solution.

The best bound strategy has the advantage of improving the lower bound. The LIFO
strategy has the advantages of efficiency and finding a local integer feasible solution.
The best upper bound strategy has the advantages of keeping the size of active nodes
under control and at the same time trying to identify any potential integer feasible
solution globally.

Although the best bound strategy is generally preferred, in some instances other
strategies may be more effective. For example, if you have found an integer opti-
mal solution but you do not know it, you still have to enumerate all possible active
nodes. Then the three strategies will basically take the same number of integer itera-
tions after an optimal solution is found but not yet identified. Since the LIFO and best
upper bound strategies are very efficient per integer iteration, both will outperform
the best bound strategy.

Since no one strategy suits all situations, a hybrid strategy has been developed to
increase applicability. The CONTROL= option combines the above three strategies
naturally and provides a simple control parameter in[0; 1] dealing with different in-
teger programming problems and different solution situations. The AUTO option
automatically sets and adjusts the CONTROL= parameter so that you do not need to
know any problem structure or decide a node selection strategy in advance.

Since the LIFO strategy is less costly, you should use it as much as possible in the
combinations. The following process is called adiving process. Starting from an

SAS OnlineDoc: Version 8

Sensitivity Analysis � 107

active node, apply the LIFO strategy as much as you can until the current node be-
comes feasible or is fathomed, or exceeds a preset limit. During this process, there
is no inverse matrix calculation involved except for the first node. When the diving
process is over, apply one of the three strategies to select the next starting node. One
set of combinations is called a cycle.

The control parameterr controls the frequency of the three strategies being applied
and the depth of the diving process in a cycle. It starts with a pure best bound strategy
atr = 0, and then gradually increases the frequency of the diving processes and their
depths asr increases. Atr = 0:5, one cycle contains a best bound strategy plus a
full diving process. Afterr = 0:5, the number of the diving processes will gradually
increase in a cycle. In addition, the best upper bound strategy will join the cycle. As
r continues to increase, the frequency of the best upper bound strategy will increase.
At r = 1, it becomes a pure best upper bound strategy.

The AUTO option will automatically adjust the value of the CONTROL= option. At
the start, it sets CONTROL=0.7, which emphasizes the finding of an upper bound.
After an integer feasible solution is found, it sets CONTROL=0.5, which emphasizes
efficiency and lower bound improvement. When the number of active nodes grows
over the default or user defined limitm, the number indicates that a better upper
bound is needed. The AUTO option will start to increase the value of CONTROL=
from 0.5. If the size of the active nodes continues to grow, so will the value of
CONTROL= option. When the size of active nodes reaches to the default or user
defined limitn, CONTROL= will be set to 1. At this moment, the growth of active
nodes is stopped. When the size of active nodes reduces, AUTO will decrease the
value of CONTROL= option.

You can use other strategies to improve the lower bound by setting CANSELECT=
to other options.

Saving and Restoring the List of Active Nodes
The list of active nodes can be saved in a SAS data set for use at a subsequent invo-
cation of PROC LP. The ACTIVEOUT= option in the PROC LP statement names the
data set into which the current list of active nodes is saved when the procedure ter-
minates due to an error termination condition. Examples of such conditions are time
limit exceeded, integer iterations exceeded, and phase 3 iterations exceeded. The AC-
TIVEIN= option in the PROC LP statement names a data set that can be used to ini-
tialize the list of active nodes. To achieve the greatest benefit when restarting PROC
LP, use the PRIMALOUT= and PRIMALIN= options in conjunction with the AC-
TIVEOUT= and ACTIVEIN= options. See Example 3.10 in the section “Examples”
on page 123 for an illustration.

Sensitivity Analysis

Sensitivity analysis is a technique for examining the effects of changes in model
parameters on the optimal solution. The analysis enables you to examine the size of
a perturbation to the right-hand-side or objective vector by an arbitrary change vector
for which the basis of the current optimal solution remains optimal.

SAS OnlineDoc: Version 8

108 � Chapter 3. The LP Procedure

Note: When sensitivity analysis is performed on integer constrained problems, the
integer variables are fixed at the value they obtained in the integer optimal solution.
Therefore, care must be used when interpreting the results of such analyses. Care
must also be taken when preprocessing is enabled, because preprocessing usually
alters the original formulation.

Right-Hand-Side Sensitivity Analysis
Consider the problem(lpr(�))

xopt(�) = min cTx

subject to

Ax �;=;� b+ �r
` � x � u

wherer is a right-hand-side change vector.

Let xopt(�) denote an optimal basic feasible solution to(lpr(�)). PROC LP can
be used to examine the effects of changes in� on the solutionxopt(0) of problem
(lpr(0)) . For the basic solutionxopt(0), let B be the matrix composed of the basic
columns ofA and letN be the matrix composed of the nonbasic columns ofA. For
the basis matrixB, the basic components ofxopt(0), written asxopt(0)B , can be
expressed as

xopt(0)B = B�1(b�Nxopt(0)N)

Furthermore, becausexopt(0) is feasible

`B � B�1(b�Nxopt(0)N) � uB

where`B is a column vector of the lower bounds on the structural basic variables,
anduB is a column vector of the upper bounds on the structural basic variables. For
each right-hand-side change vectorr identified in the RHSSEN statement, PROC LP
finds an interval[�min; �max] such that

`B � B�1(b+ �r �Nxopt(0)N) � uB

for � 2 [�min; �max] . Furthermore, because changes in the right-hand side do not
affect the reduced costs, for� 2 [�min; �max]

xopt(�)T = ((B�1(b+ �r �Nxopt(0)N))T ; xopt(0)TN)

is optimal in(lpr(�)).

SAS OnlineDoc: Version 8

Sensitivity Analysis � 109

For� = �min and� = �max, PROC LP reports the following:

� the names of the leaving variables

� the value of the optimal objective in the modified problems

� the the RHS values in the modified problems

� the solution status, reduced costs and activities in the modified problems

The leaving variable identifies the basic variablei that first reaches either the lower
bound`i or the upper boundui as� reaches�min or �max. This is the basic variable
that would leave the basis to maintain primal feasibility. Multiple RHSSEN variables
can appear in a problem data set.

Price Sensitivity Analysis
Consider the problem(lpp(�))

xopt(�) = min (c+ �r)Tx

subject to

Ax �;=;� b
` � x � u

wherer is a price change vector.

Let xopt(�) denote an optimal basic feasible solution to(lpp(�)). PROC LP can be
used to examine the effects of changes in� on the solutionxopt(0) of problem (lpp (0
)). For the basic solutionxopt(0), letB be the matrix composed of the basic columns
of A and letN be the matrix composed of the nonbasic columns ofA. For basis
matrixB, the reduced cost associated with thei th variable can be written as

rci(�) = ((c+ �r)TN � (c+ �r)TBB
�1N)i

where(c + �r)N and(c + �r)B is a partition of the vector of price coefficients into
nonbasic and basic components. Becausexopt(0) is optimal in (lpp (0)), the reduced
costs satisfy

rci(�) � 0

if the nonbasic variable in columni is at its lower bound and

rci(�) � 0

if the nonbasic variable in columni is at its upper bound.

SAS OnlineDoc: Version 8

110 � Chapter 3. The LP Procedure

For each price coefficient change vectorr identified with the keyword PRICESEN
in the TYPE variable, PROC LP finds an interval[�min; �max] such that for� 2
[�min; �max]

rci(�) � 0

if the nonbasic variable in columni is at its lower bound and

rci(�) � 0

if the nonbasic variable in columni is at its upper bound. Because changes in the
price coefficients do not affect feasibility, for� 2 [�min; �max], xopt(�) is optimal in
(lpp(�)). For� = �min and� = �max, PROC LP reports the following:

� the names of entering variables

� the value of the optimal objective in the modified problems

� the price coefficients in the modified problems

� the solution status, reduced costs, and activities in the modified problems

The entering variable identifies the variable whose reduced cost first goes to zero as
� reaches�min or �max. This is the nonbasic variable that would enter the basis to
maintain optimality (dual feasibility). Multiple PRICESEN variables may appear in
a problem data set.

Range Analysis

Range analysis is sensitivity analysis for specific change vectors. As with the sen-
sitivity analysis case, care must be used in interpreting the results of range analysis
when the problem has integers or the preprocessing option is enabled.

Right-Hand-Side Range Analysis
The effects on the optimal solution of changes in each right-hand-side value can be
studied using the RANGERHS option in the PROC LP or RESET statement. This op-
tion results in sensitivity analysis for them right-hand-side change vectors specified
by the columns of them�m identity matrix.

Price Range Analysis
The effects on the optimal solution of changes in each price coefficient can be studied
using the RANGEPRICE option in the PROC LP or RESET statement. This option
results in sensitivity analysis for then price change vectors specified by the rows of
then� n identity matrix.

Parametric Programming

Sensitivity analysis and range analysis examine how the optimal solution behaves
with respect to perturbations of model parameter values. These approaches assume
that the basis at optimality is not allowed to change. When greater flexibility is de-
sired and a change of basis is acceptable, parametric programming can be used.

SAS OnlineDoc: Version 8

Parametric Programming � 111

As with the sensitivity analysis case, care must be used in interpreting the results
of parametric programming when problem has integers or preprocessing option is
enabled.

Right-Hand-Side Parametric Programming
As discussed in the “Right-Hand-Side Sensitivity Analysis” section, for each right-
hand-side change vectorr, PROC LP finds an interval[�min; �max] such that for
� 2 [�min; �max]

xopt(�)T = ((B�1(b+ �r �Nxopt(0)N))T ; xopt(0)TN)

is optimal in (lpr(�)) for the fixed basisB. Leaving variables that inhibit further
changes in� without a change in the basisB are associated with the quantities�min

and�max. By specifying RHSPHI=� in either the PROC LP statement or in the
RESET statement, you can examine the solutionxopt(�) as� increases or decreases
from 0 to�.

When RHSPHI=� is specified, the procedure first finds the interval[�min; �max] as
described previously. Then, if� 2 [�min; �max], no further investigation is needed.
However, if� > �max or � < �min, then the procedure attempts to solve the new
problem(lpr(�)). To accomplish this, it pivots the leaving variable out of the basis
while maintaining dual feasibility. If this new solution is primal feasible in(lpr(�)),
no further investigation is needed; otherwise, the procedure identifies the new leaving
variable and pivots it out of the basis, again maintaining dual feasibility. Dual piv-
oting continues in this manner until a solution that is primal feasible in(lpr(�)) is
identified. Because dual feasibility is maintained at each pivot, the(lpr(�)) primal
feasible solution is optimal.

At each pivot, the procedure reports on the variables that enter and leave the basis, the
current range of� , and the objective value. Whenxopt(�) is found, it is displayed.
If you want the solutionxopt(�) at each pivot, then specify the PARAPRINT option
in either the PROC LP or the RESET statement.

Price Parametric Programming
As discussed in the “Price Sensitivity Analysis” section, for each price change vector
r, PROC LP finds an interval[�min; �max] such that for each� 2 [�min; �max]

rci(�) = ((c+ �r)TN � (c+ �r)TBB
�1N)i

satisfies the conditions for optimality in(lpp(�)) for the fixed basisB. Entering vari-
ables that inhibit further changes in� without a change in the basisB are associated
with the quantities�min and�max . By specifying PRICEPHI=� in either the PROC
LP statement or the RESET statement, you can examine the solutionxopt(�) as�
increases or decreases from 0 to�.

When PRICEPHI=� is specified, the procedure first finds the interval[�min; �max],
as described previously. Then, if� 2 [�min; �max], no further investigation is
needed. However, if� > �max or � < �min , the procedure attempts to solve
the new problem(lpp(�)). To accomplish this, it pivots the entering variable into
the basis while maintaining primal feasibility. If this new solution is dual feasible in
(lpp(�)), no further investigation is needed; otherwise, the procedure identifies the

SAS OnlineDoc: Version 8

112 � Chapter 3. The LP Procedure

new entering variable and pivots it into the basis, again maintaining primal feasibility.
Pivoting continues in this manner until a solution that is dual feasible in(lpp(�)) is
identified. Because primal feasibility is maintained at each pivot, the(lpp(�)) dual
feasible solution is optimal.

At each pivot, the procedure reports on the variables that enter and leave the basis, the
current range of� , and the objective value. Whenxopt(�) is found, it is displayed.
If you want the solutionxopt(�) at each pivot, then specify the PARAPRINT option
in either the PROC LP or the RESET statement.

Interactive Facilities

The interactive features of the LP procedure enable you to examine intermediate re-
sults, perform sensitivity analysis, parametric programming, and range analysis, and
control the solution process.

Controlling Interactive Features
You can gain control of the LP procedure for interactive processing by setting a break
point or pressing the CTRL-BREAK key combination, or when certain error condi-
tions are encountered:

� when a feasible solution is found

� at each pivot of the simplex algorithm

� when an integer feasible solution is found

� at each integer pivot of the branch and bound algorithm

� after the data are read but before iteration begins

� after at least one integer feasible solution has been found which is within de-
sirable proximity of optimality

� after the problem has been solved but before results are displayed

When the LP procedure pauses, you can enter any of the interactive statements RE-
SET, PIVOT, IPIVOT, PRINT, SHOW, QUIT, and RUN.

Break points are set using the FEASIBLEPAUSE, PAUSE, IFEASIBLEPAUSE=,
IPAUSE=, PROXIMITYPAUSE=, READPAUSE, and ENDPAUSE options. The LP
procedure displays a message on the SAS log when it gives you control because of
encountering one of these break points.

During phase 1, 2, or 3, the CTRL-BREAK key pauses the LP procedure and releases
the control at the beginning of next iteration.

The error conditions, which usually cause the LP procedure to pause, include time
limit exceeded, phase 1 iterations exceeded, phase 2 iterations exceeded, phase 3 it-
erations exceeded, and integer iterations exceeded. You can use the RESET statement
to reset the option that caused the error condition.

The PIVOT and IPIVOT statements result in control being returned to you after a sin-
gle simplex algorithm pivot and an integer pivot. The PRINT and SHOW statements

SAS OnlineDoc: Version 8

Memory Management � 113

display current solution information and return control to you. On the other hand, the
QUIT statement requests that you leave the LP procedure immediately. If you want
to quit but save output data sets, then type QUIT/SAVE. The RUN statement requests
the LP procedure to continue its execution immediately.

Displaying Intermediate Results
Once you have control of the procedure, you can examine the current values of the
options and the status of the problem being solved using the SHOW statement. All
displaying done by the SHOW statement goes to the SAS log.

Details about the current status of the solution are obtained using the PRINT state-
ment. The various display options enable you to examine parts of the variable and
constraint summaries, display the current tableau, perform sensitivity analysis on the
current solution, and perform range analysis.

Interactive Facilities in Batch Mode
All of the interactive statements can be used when processing in batch mode. This is
particularly convenient when the interactive facilities are used to combine different
search strategies in solving integer problems.

Sensitivity Analysis
Two features that enhance the ability to perform sensitivity analysis need further
explanation. When you specify /SENSITIVITY in a PRINT COLUMN(colnames)
statement, the LP procedure defines a new change row to use in sensitivity analysis
and parametric programming. This new change row has a +1 entry for each variable
listed in the PRINT statement. This enables you to define new change rows interac-
tively.

When you specify /SENSITIVITY in a PRINT ROW (rownames) statement, the LP
procedure defines a new change column to use in sensitivity analysis and parametric
programming. This new change column has a +1 entry for each right-hand-side coef-
ficient listed in the PRINT statement. This enables you to define new change columns
interactively.

In addition, you can interactively change the RHSPHI= and PRICEPHI= options us-
ing the RESET statement. This enables you to perform parametric programming
interactively.

Memory Management

There are no restrictions on the problem size in the LP procedure. The number of
constraints and variables in a problem that PROC LP can solve depends on the host
platform, the available memory, and the available disk space for utility data sets.

Memory usage is affected by a great many factors including the density of the tech-
nological coefficient matrix, the model structure, and the density of the decomposed
basis matrix. The algorithm requires that the decomposed basis fit completely in
memory. Any additional memory is used for nonbasic columns. The partition be-
tween the decomposed basis and the nonbasic columns is dynamic so that as the
inverse grows, which typically happens as iterations proceed, more memory is avail-
able to it and less is available for the nonbasic columns.

SAS OnlineDoc: Version 8

114 � Chapter 3. The LP Procedure

The LP procedure determines the initial size of the decomposed basis matrix. If the
area used is too small, PROC LP must spend time compressing this matrix, which de-
grades performance. If PROC LP must compress the decomposed basis matrix on the
average more than 15 times per iteration, then the size of the memory devoted to the
basis is increased. If the work area cannot be made large enough to invert the basis,
an error return occurs. On the other hand, if PROC LP compresses the decomposed
basis matrix on the average once every other iteration, then memory devoted to the
decomposed basis is decreased, freeing memory for the nonbasic columns.

For many models, memory constraints are not a problem because both the decom-
posed basis and all the nonbasic columns will have no problem fitting. However,
when the models become large relative to the available memory, the algorithm tries
to adjust memory distribution in order to solve the problem. In the worst cases, only
one nonbasic column fits in memory with the decomposed basis matrix.

Problems involving memory use can occur when solving mixed-integer problems.
Data associated with each node in the branch and bound tree must be kept in memory.
As the tree grows, competition for memory by the decomposed basis, the nonbasic
columns, and the branch and bound tree may become critical. If the situation becomes
critical, the procedure automatically switches to branching strategies that use less
memory. However, it is possible to reach a point where no further processing is
possible. In this case, PROC LP terminates on a memory error.

Output Data Sets

The LP procedure can optionally produce four output data sets. These are the AC-
TIVEOUT, PRIMALOUT, DUALOUT, and TABLEAUOUT data sets. Each con-
tains two variables that identify the particular problem in the input data set. These
variables are

–OBJ–ID– identifies the objective function ID.

–RHS–ID– identifies the right-hand-side variable.

Additionally, each data set contains other variables, which are discussed below.

ACTIVEOUT= Data Set
The ACTIVEOUT= data set contains a representation of the current active branch
and bound tree. You can use this data set to initialize the branch and bound tree to
continue iterations on an incompletely solved problem. Each active node in the tree
generates two observations in this data set. The first is aLOWERBD observation that
is used to reconstruct the lower-bound constraints on the currently described active
node. The second is anUPPERBD observation that is used to reconstruct the upper-
bound constraints on the currently described active node. In addition to these, an
observation that describes the current best integer solution is included. The data set
contains the following variables:

–STATUS– contains the keywordsLOWERBD, UPPERBD, andINTBEST for
identifying the type of observation.

–PROB– contains the problem number for the current observation.

SAS OnlineDoc: Version 8

Output Data Sets � 115

–OBJECT– contains the objective value of the parent problem that generated
the current observation’s problem.

–SINFEA– contains the sum of the integer infeasibilities of the current obser-
vation’s problem.

–PROJEC– contains the data needed for CANSELECT=PROJECT when the
branch and bound tree is read using the ACTIVEIN= option.

–PSEUDO– contains the data needed for CANSELECT=PSEUDOC when the
branch and bound tree is read using the ACTIVEIN= option.

INTEGER VARIABLES integer constrained structural variables are also included
in the ACTIVEOUT= data set. For each observation, these vari-
ables contain values for defining the active node in the branch and
bound tree.

PRIMALOUT= Data Set
The PRIMALOUT= data set contains the current primal solution. If the problem
has integer-constrained variables, the PRIMALOUT= data set contains the current
best integer feasible solution. If none have been found, the PRIMALOUT= data set
contains the relaxed solution. In addition to–OBJ–ID– and–RHS–ID– , the data
set contains the following variables:

–VAR– identifies the variable name.

–TYPE– identifies the type of the variable as specified in the input data set.
Artificial variables are labeled as typeARTIFCL.

–STATUS– identifies whether the variable is basic, nonbasic, or at an upper
bound in the current solution.

–LBOUND– contains the input lower bound on the variable unless the variable
is integer-constrained and an integer solution is given. In this case,

–LBOUND– contains the lower bound on the variable needed to
realize the integer solution on subsequent calls to PROC LP when
using the PRIMALIN= option.

–VALUE– identifies the value of the variable in the current solution or the
current best integer feasible solution.

–UBOUND– contains the input upper bound on the variable unless the variable
is integer-constrained and an integer solution is given. In this case,

–UBOUND– contains the upper bound on the variable needed to
realize the integer solution on subsequent calls to PROC LP when
using the PRIMALIN= option.

–PRICE– contains the input price coefficient of the variable.

–R–COST– identifies the value of the reduced cost in the current solution.
Example 3.3 in the “Examples” section shows a typical PRI-
MALOUT= data set. Note that it is necessary to include the in-
formation on objective function and right-hand side in order to dis-
tinguish problems in multiple problem data sets.

SAS OnlineDoc: Version 8

116 � Chapter 3. The LP Procedure

DUALOUT= Data Set
The DUALOUT= data set contains the dual solution for the current solution. If the
problem has integer-constrained variables, the DUALOUT= data set contains the dual
for the current best integer solution, if any. Otherwise it contains the dual for the re-
laxed solution. In addition to–OBJ–ID– and–RHS–ID– , it contains the following
variables:

–ROW–ID– identifies the row or constraint name.

–TYPE– identifies the type of the row as specified in the input data set.

–RHS– gives the value of the right-hand-side on input.

–L–RHS– gives the lower bound for the row evaluated from the input right-
hand-side value, the TYPE of the row, and the value of the RANGE
variable for the row.

–VALUE– gives the value of the row, at optimality, excluding logical vari-
ables.

–U–RHS– gives the upper bound for the row evaluated from the input right-
hand-side value, the TYPE of the row, and the value of the RANGE
variable for the row.

–DUAL– gives the value of the dual variable associated with the row.

TABLEAUOUT= Data Set
The TABLEAUOUT= data set contains the current tableau. Each observation, except
for the first, corresponds to a basic variable in the solution. The observation labeled
R–COSTS contains the reduced costscTN � cTBB

�1N . In addition to–OBJ–ID–
and–RHS–ID– , it contains the following variables:

–BASIC– gives the names of the basic variables in the solution.

INVB–R gives the values ofB�1r , wherer is the right-hand-side
vector.

STRUCTURAL VARIABLES the values in the tableau, namelyB�1A .

Input Data Sets

In addition to the DATA= input data set, PROC LP recognizes the ACTIVEIN= and
the PRIMALIN= data sets.

ACTIVEIN= Data Set
The ACTIVEIN= data set contains a representation of the current active tree. The
format is identical to that of the ACTIVEOUT= data set.

PRIMALIN= Data Set
The format of the PRIMALIN= data set is identical to the PRIMALOUT= data set.
PROC LP uses the PRIMALIN= data set to identify variables at their upper bounds
in the current solution and variables that are basic in the current solution.

You can add observations to the end of the problem data set if they define cost (right-
hand-side) sensitivity change vectors and have TYPE=PRICESEN (RHSSEN). This

SAS OnlineDoc: Version 8

Displayed Output � 117

enables you to solve a problem, save the solution in a SAS data set, and perform sen-
sitivity analysis later. You can also use the PRIMALIN= data set to restart problems
that have not been completely solved or to which new variables have been added.

Displayed Output

The output from the LP procedure is discussed in the following six sections:

� Problem Summary

� Solution Summary including a Variable Summary and a Constraint Summary

� Infeasible Information Summary

� RHS Sensitivity Analysis Summary (the RHS Range Analysis Summary is not
discussed)

� Price Sensitivity Analysis Summary (the Price Range Analysis Summary is not
discussed)

� Iteration Log.

For integer-constrained problems, the procedure also displays an Integer Iteration
Log. The description of this Log can be found in the “Integer Programming” section
on page 99. When you request that the tableau be displayed, the procedure displays
the Current Tableau. The description of this can be found in the “The Reduced Costs,
Dual Activities, and Current Tableau” section on page 96.

A problem data set can contain a set of constraints with several right-hand sides and
several objective functions. PROC LP considers each combination of right-hand side
and objective function as defining a new linear programming problem and solves
each, performing all specified sensitivity analysis on each problem. For each problem
defined, PROC LP displays a new sequence of output sections. Example 3.1 in the
“Examples” section on page 123 discusses each of these elements.

The LP procedure produces the following displayed output by default.

The Problem Summary
The problem summary includes the

� type of optimization and the name of the objective row (as identified by the ID
or ROW variable)

� name of the SAS variable that contains the right-hand-side constants

� name of the SAS variable that contains the type keywords

� density of the coefficient matrix (the ratio of the number of nonzero elements
to the number of total elements) after the slack and surplus variables have been
appended

� number of each type of variable in the mathematical program

� number of each type of constraint in the mathematical program

SAS OnlineDoc: Version 8

118 � Chapter 3. The LP Procedure

The Solution Summary
The solution summary includes the

� termination status of the procedure

� objective value of the current solution

� number of phase 1 iterations that were completed

� number of phase 2 iterations that were completed

� number of phase 3 iterations that were completed

� number of integer iterations that were completed

� number of integer feasible solutions that were found

� number of initial basic feasible variables identified

� time used in solving the problem excluding reading the data and displaying the
solution

� number of inversions of the basis matrix

� current value of several of the options

The Variable Summary
The variable summary includes the

� column number associated with each structural or logical variable in the prob-
lem

� name of each structural or logical variable in the problem. (PROC LP gives the
logical variables the name of the constraint ID. If no ID variable is specified,
the procedure names the logical variable–OBSn–, wheren is the observation
that describes the constraint.)

� variable’s status in the current solution. The status can be BASIC, DEGEN,
ALTER, blank, LOWBD, or UPPBD, depending upon whether the variable is
a basic variable, a degenerate variable, a variable that can be brought into the
basis to define an alternate optimal solution, a nonbasic variable at its default
lower bound 0, a nonbasic variable at its lower bound, or a nonbasic variable at
its upper bound

� kind of variable (whether it is logical or structural, and, if structural, its bound
type, or other value restriction)

� value of the objective coefficient associated with each variable

� activity of the variable in the current solution

� variable’s reduced cost in the current solution

The Constraint Summary
The constraint summary includes the

� constraint row number and its ID

� the kind of constraint (whether it is an OBJECTIVE, LE, EQ, GE, RANGELE,
RANGEEQ, RANGEGE, or FREE row)

SAS OnlineDoc: Version 8

Displayed Output � 119

� number of the slack or surplus variables associated with the constraint row

� value of the right-hand-side constant associated with the constraint row

� current activity of the row (excluding logical variables)

� current activity of the dual variable (shadow price) associated with the con-
straint row

The Infeasible Information Summary
The infeasible information summary includes the

� name of the infeasible row or variable

� current activity for the row or the variable

� type of the row or the variable

� value of right-hand-side constant

� name of each nonzero and nonmissing variable in the row

� activity and upper and lower bounds for the variable

The RHS Sensitivity Analysis Summary
The RHS sensitivity analysis summary includes the

� value of�min

� leaving variable when� = �min

� objective value when� = �min

� value of�max

� leaving variable when� = �max

� objective value when� = �max

� column number and name of each logical and structural variable

� variable’s status when� 2 [�min; �max]

� variable’s reduced cost when� 2 [�min; �max]

� value of right-hand-side constant when� = �min

� activity of the variable when� = �min

� value of right-hand-side constant when� = �max

� activity of the variable when� = �max

The Price Sensitivity Analysis Summary
The price sensitivity analysis summary includes the

� value of�min

� entering variable when� = �min

� objective value when� = �min

� value of�max

� entering variable when� = �max

SAS OnlineDoc: Version 8

120 � Chapter 3. The LP Procedure

� objective value when� = �max

� column number and name of each logical and structural variable

� variable’s status when� 2 [�min; �max]

� activity of the variable when� 2 [�min; �max]

� price of the variable when� = �min

� variable’s reduced cost when� = �min

� price of the variable when� = �max

� variable’s reduced cost when� = �max

The Iteration Log
The iteration log includes the

� phase number

� iteration number in each phase

� name of the leaving variable

� name of the entering variable

� variable’s reduced cost

� objective value

SAS OnlineDoc: Version 8

ODS Table and Variable Names � 121

ODS Table and Variable Names

PROC LP assigns a name to each table it creates. You can use these names to select
output tables when using the Output Delivery System (ODS).

Table 3.6. ODS Tables Produced in PROC LP

Table Name Description Statement/Option
ProblemSummary Problem summary default
SolutionSummary Solution summary default
VariableSummary Variable summary default
ConstraintSummary Constraint summary default
IterationLog Iteration log FLOW
IntegerIterationLog Integer iteration log default
PriceSensitivitySummary Price sensitivity analysis

summary
default or PRINT (PRICESEN or COL-
UMN /SENSITIVITY)

PriceActivities Price activities at min phi and
max phi

default or PRINT (PRICESEN or COL-
UMN /SENSITIVITY)

PriceActivity Price activity at min phi or
max phi

PRICEPHI= and PARAPRINT

PriceParametricLog Price parametric program-
ming log

PRICEPHI=

PriceRangeSummary Price range analysis RANGEPRICE or PRINT RANGEPRICE
RhsSensitivitySummary RHS sensitivity analysis

summary
default or PRINT (RHSSEN or ROW
/SENSITIVITY)

RhsActivities RHS activities at min phi and
max phi

default or PRINT (RHSSEN or ROW
/SENSITIVITY)

RhsActivity RHS activity at min phi or
max phi

RHSPHI= and PARAPRINT

RhsParametricLog RHS parametric program-
ming log

RHSPHI=

RhsRangeSummary RHS range analysis RANGERHS or PRINT RANGERHS
InfeasibilitySummary Infeasible row or variable

summary
default

InfeasibilityActivity Variables activity in an infea-
sible row

default

CurrentTableau Current tableau TABLEAUPRINT or PRINT TABLEAU
Matrix Technological matrix PRINT MATRIX
MatrixPicture Technological matrix picture PRINT MATRIX /PICTURE
MatrixPictureLegend Technological matrix picture

legend
PRINT MATRIX /PICTURE

SAS OnlineDoc: Version 8

122 � Chapter 3. The LP Procedure

The following table lists the variable names of the preceding tables used in the ODS
template of the LP procedure.

Table 3.7. Variables names for the ODS Tables Produced in PROC LP

Table Name Variables
VariableSummary VarName, Status, Type, Price, Activity, ReducedCost
ConstraintSummary Row, RowName, Type, SSCol, Rhs, Activity, Dual
IterationLog Phase, Iteration, EnterVar, EnterCol, LeaveVar, LeaveCol, ReducedCost,

ObjValue
IntegerIterationLog Iteration, Problem, Condition, Objective, Branch, Value, SumOfInfeas, Active,

Proximity
PriceActivities Col, VarName, Status, Activity, MinPrice, MinReducedCost, MaxPrice,

MaxReducedCost
PriceActivity Col, VarName, Status, Activity, Price, ReducedCost
PriceParametricLog LeaveVar, LeaveCol, EnterVar, EnterCol, ObjValue, CurrentPhi
PriceRangeSummary Col, VarName, MinPrice, MinEnterVar, MinObj, MaxPrice, MaxEnterVar,

MaxObj
RhsActivities Col, VarName, Status, ReducedCost, MinRhs, MinActivity, MaxRhs,

MaxActivity
RhsActivity Col, VarName, Status, ReducedCost, Rhs, Activity,
RhsParametricLog LeaveVar, LeaveCol, EnterVar, EnterCol, ObjValue, CurrentPhi
RhsRangeSummary RowName, MinRhs, MinLeaveVar, MinObj, MaxRhs, MaxLeaveVar, MaxObj
InfeasibilityActivity VarName, Coefficient, Activity, Lower, Upper

SAS OnlineDoc: Version 8

Example 3.1. An Oil Blending Problem � 123

Examples

The following fourteen examples illustrate some of the capabilities of PROC LP.
These examples, together with the other SAS/OR examples, can be found in the SAS
sample library. A description of the features of PROC LP as shown in the examples
are

Example 3.1 dense input format

Example 3.2 sparse input format

Example 3.3 the RANGEPRICE option to show you the range over which each
objective coefficient can vary without changing the variables in the
basis

Example 3.4 more sensitivity analysis and restarting a problem

Example 3.5 parametric programming

Example 3.6 special ordered sets

Example 3.7 goal programming

Example 3.8 integer programming

Example 3.9 an infeasible problem

Example 3.10 restarting integer programs

Example 3.11 controlling the search of the branch and bound tree

Example 3.12 matrix generation and report writing for an assignment problem

Example 3.13 matrix generation and report writing for a scheduling problem

Example 3.14 a multicommodity transshipment problem

Example 3.1. An Oil Blending Problem

The blending problem presented in the introduction is a good example for demon-
strating some of the features of the LP procedure. Recall that a step in refining crude
oil into finished oil products involves a distillation process that splits crude into var-
ious streams. Suppose that there are three types of crude available: Arabian light,
Arabian heavy, and Brega. These are distilled into light naphtha, intermediate naph-
tha, and heating oil. Using one of two recipes, these in turn are blended into jet
fuel.

Assume that you can sell as much fuel as is produced. What production strategy
maximizes the profit from jet fuel sales? The following SAS code demonstrates a
way of answering this question using linear programming. The SAS data set is a
representation of the formulation for this model given in the introductory section.

SAS OnlineDoc: Version 8

124 � Chapter 3. The LP Procedure

data;
input _row_ $14.

a_light a_heavy brega naphthal naphthai heatingo jet_1
jet_2 _type_ $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

proc lp;
run;

The –ROW– variable contains the names of the rows in the model; the variables
A–LIGHT to JET–2 are the names of the structural variables in the model; the

–TYPE– variable contains the keywords that tell the LP procedure how to interpret
each row in the model; and the–RHS– variable gives the value of the right-hand-side
constants.

The structural variables are interpreted as the quantity of each type of constituent or
finished product. For example, the value ofA–HEAVY in the solution is the amount
of Arabian heavy crude to buy while the value ofJET–1 in the solution is the amount
of recipe 1 jet fuel that is produced. As discussed previously, the values given in the
model data set are the technological coefficients whose interpretation depends on
the model. In this example, the coefficient -175 in thePROFIT row for the vari-
ableA–LIGHT gives a cost coefficient (because the row with–ROW–=PROFIT has

–TYPE–=MAX) for the structural variableA–LIGHT. This means that for each unit
of Arabian heavy crude purchased, a cost of 175 units is incurred.

The coefficients 0.035, 0.100, and 0.390 for theA–LIGHT variable give the per-
centages of each unit of Arabian light crude that is distilled into the light naph-
tha, intermediate naphtha, and heating oil components. The 110 value in the row

–ROW–=AVAILABLE gives the quantity of Arabian light that is available.

PROC LP produces the following Problem Summary output. Included in the sum-
mary is an identification of the objective, defined by the first observation of the
problem data set; the right-hand-side variable, defined by the variable–RHS– ;
and the type identifier, defined by the variable–TYPE– . See Output 3.1.1.

SAS OnlineDoc: Version 8

Example 3.1. An Oil Blending Problem � 125

Output 3.1.1. Problem Summary for the Oil Blending Problem

The LP Procedure

Problem Summary

Objective Function Max profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.00

Variables Number

Non-negative 5
Upper Bounded 3

Total 8

Constraints Number

EQ 5
Objective 1

Total 6

The next section of output (Output 3.1.2) contains the Solution Summary, which in-
dicates whether or not an optimal solution was found. In this example, the procedure
terminates successfully (with an optimal solution), with 1544 as the value of the ob-
jective function. Also included in this section of output is the number of phase 1 and
phase 2 iterations, the number of variables used in the initial basic feasible solution,
and the time used to solve the problem. For several options specified in the PROC LP
statement, the current option values are also displayed.

Output 3.1.2. Solution Summary for the Oil Blending Problem

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 1544

Phase 1 Iterations 0
Phase 2 Iterations 7
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 2
Time Used (seconds) 0
Number of Inversions 2

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

SAS OnlineDoc: Version 8

126 � Chapter 3. The LP Procedure

The next section of output (Output 3.1.3) contains the Variable Summary. A line
is displayed for each variable in the mathematical program with the variable name,
the status of the variable in the solution, the type of variable, the variable’s price
coefficient, the activity of the variable in the solution, and the reduced cost for the
variable. The status of a variable can be

BASIC if the variable is a basic variable in the solution

DEGEN if the variable is a basic variable whose activity is at its input lower
bound

ALTER if the variable is nonbasic and is basic in an alternate optimal solu-
tion

LOWBD if the variable is nonbasic and is at its lower bound

UPPBD if the variable is nonbasic and is at its upper bound

The TYPE column shows how PROC LP interprets the variable in the problem data
set. Types include the following:

NON-NEG if the variable is a nonnegative variable with lower bound 0 and
upper bound+INFINITY

LOWERBD if the variable has a lower bound specified in aLOWERBD obser-
vation and upper bound+INFINITY

UPPERBD if the variable has an upper bound that is less than+INFINITY and
lower bound 0 This upper bound is specified in anUPPERBD ob-
servation

UPLOWBD if the variable has a lower bound specified in aLOWERBD obser-
vation and an upper bound specified in anUPPERBD observation

INTEGER if the variable is constrained to take integer values. If this is the
case, then it must also be upper and lower bounded

BINARY if the variable is constrained to take value 0 or 1

UNRSTRCT if the variable is an unrestricted variable having bounds of-
INFINITY and+INFINITY

SLACK if the variable is a slack variable that PROC LP has appended to a
LE constraint. For variables of this type, the variable name is the
same as the name of the constraint (given in the ROW variable) for
which this variable is the slack. A nonzero slack variable indicates
that the constraint is not tight. The slack is the amount by which
the right-hand side of the constraint exceeds the left-hand side.

SURPLUS if the variable is a surplus variable that PROC LP has appended to
a GE constraint. For variables of this type, the variable name is
the same as the name of the constraint (given in the ROW variable)
for which this variable is the surplus. A nonzero surplus variable
indicates that the constraint is not tight. The surplus is the amount
by which the left-hand side of the constraint exceeds the right-hand
side.

SAS OnlineDoc: Version 8

Example 3.1. An Oil Blending Problem � 127

The Variable Summary gives the value of the structural variables at optimality. In
this example, it tells you how to produce the jet fuel to maximize your profit. You
should buy 110 units ofA–LIGHT and 80 units ofBREGA. These are used to make
7.45 units ofNAPHTHAL, 21.8 units ofNAPHTHAI, and 77.3 units ofHEATINGO.
These in turn are used to make 60.65 units ofJET–1 using recipe 1 and 63.33 units
of JET–2 using recipe 2.

Output 3.1.3. Variable Summary for the Oil Blending Problem

The LP Procedure

Variable Summary

Reduced
Col Variable Name Status Type Price Activity Cost

1 a_light UPPBD UPPERBD -175 110 11.6
2 a_heavy UPPERBD -165 0 -21.45
3 brega UPPBD UPPERBD -205 80 3.35
4 naphthal BASIC NON-NEG 0 7.45 0
5 naphthai BASIC NON-NEG 0 21.8 0
6 heatingo BASIC NON-NEG 0 77.3 0
7 jet_1 BASIC NON-NEG 300 60.65 0
8 jet_2 BASIC NON-NEG 300 63.33 0

The reduced cost associated with each nonbasic variable is the marginal value of
that variable if it is brought into the basis. In other words, the objective function
value would (assuming no constraints were violated) increase by the reduced cost of
a nonbasic variable if that variable’s value increased by one. Similarly, the objective
function value would (assuming no constraints were violated) decrease by the reduced
cost of a nonbasic variable if that variable’s value were decreased by one. Basic
variables always have a zero reduced cost. At optimality, for a maximization problem,
nonbasic variables that are not at an upper bound have nonpositive reduced costs (for
example,A–HEAVY has a reduced cost of -21.45). The objective would decrease
if they were to increase beyond their optimal values. Nonbasic variables at upper
bounds have nonnegative reduced costs, showing that increasing the upper bound (if
the reduced cost is not zero) does not decrease the objective. For a nonbasic variable
at its upper bound, the reduced cost is the marginal value of increasing its upper
bound, often called its shadow price.

For minimization problems, the definition of reduced costs remain the same but the
conditions for optimality change. For example, at optimality the reduced costs of
all non upper-bounded variables are nonnegative, and the reduced costs of upper-
bounded variables at their upper bound are nonpositive.

The next section of output (Output 3.1.4) contains the Constraint Summary. For
each constraint row, free row, and objective row, a line is displayed in the Constraint
Summary. Included on the line are the constraint name, the row type, the slack or
surplus variable associated with the row, the right-hand-side constant associated with
the row, the activity of the row (not including the activity of the slack and surplus
variables), and the dual activity (shadow prices).

SAS OnlineDoc: Version 8

128 � Chapter 3. The LP Procedure

A dual variable is associated with each constraint row. At optimality, the value of this
variable, the dual activity, tells you the marginal value of the right-hand-side constant.
For each unit increase in the right-hand-side constant, the objective changes by this
amount. This quantity is also known as the shadow price. For example, the marginal
value for the right-hand-side constant of constraintHEATING–O–CONV is -450.0.

Output 3.1.4. Constraint Summary for the Oil Blending Problem

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 profit OBJECTVE . 0 1544 .
2 naphtha_l_conv EQ . 0 0 -60
3 naphtha_i_conv EQ . 0 0 -90
4 heating_o_conv EQ . 0 0 -450
5 recipe_1 EQ . 0 0 -300
6 recipe_2 EQ . 0 0 -300

Example 3.2. A Sparse View of the Oil Blending Problem

Typically, mathematical programming models are very sparse. This means that only
a small percentage of the coefficients are nonzero. The sparse problem input is ideal
for these models. The oil blending problem in the “An Introductory Example” section
has a sparse form. This example shows the same problem in a sparse form with the
data given in a different order. In addition to representing the problem in a concise
form, the sparse format

� allows long column names

� enables easy matrix generation (See Example 3.12, Example 3.13, and Exam-
ple 3.14.)

� is compatible with MPS sparse format

The model in the sparse format is solved by invoking PROC LP with the SPARSE-
DATA option as shown below.

data oil;
input _type_ $8. _col_ $14. _row_ $17. _coef_ ;
datalines;

max . profit .
. arabian_light profit -175
. arabian_heavy profit -165
. brega profit -205
. jet_1 profit 300
. jet_2 profit 300
eq . napha_l_conv .
. arabian_light napha_l_conv .035

SAS OnlineDoc: Version 8

Example 3.2. A Sparse View of the Oil Blending Problem � 129

. arabian_heavy napha_l_conv .030

. brega napha_l_conv .045

. naphtha_light napha_l_conv -1
eq . napha_i_conv .
. arabian_light napha_i_conv .100
. arabian_heavy napha_i_conv .075
. brega napha_i_conv .135
. naphtha_inter napha_i_conv -1
eq . heating_oil_conv .
. arabian_light heating_oil_conv .390
. arabian_heavy heating_oil_conv .300
. brega heating_oil_conv .430
. heating_oil heating_oil_conv -1
eq . recipe_1 .
. naphtha_inter recipe_1 .3
. heating_oil recipe_1 .7
eq . recipe_2 .
. jet_1 recipe_1 -1
. naphtha_light recipe_2 .2
. heating_oil recipe_2 .8
. jet_2 recipe_2 -1
upperbd . available .
. arabian_light available 110
. arabian_heavy available 165
. brega available 80
;

proc lp SPARSEDATA;
run;

The output from PROC LP follows.

Output 3.2.1. Output for the Sparse Oil Blending Problem

The LP Procedure

Problem Summary

Objective Function Max profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.00

Variables Number

Non-negative 5
Upper Bounded 3

Total 8

Constraints Number

EQ 5
Objective 1

Total 6

SAS OnlineDoc: Version 8

130 � Chapter 3. The LP Procedure

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 1544

Phase 1 Iterations 0
Phase 2 Iterations 7
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 2
Time Used (seconds) 0
Number of Inversions 2

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Reduced
Col Variable Name Status Type Price Activity Cost

1 arabian_heavy UPPERBD -165 0 -21.45
2 arabian_light UPPBD UPPERBD -175 110 11.6
3 brega UPPBD UPPERBD -205 80 3.35
4 heating_oil BASIC NON-NEG 0 77.3 0
5 jet_1 BASIC NON-NEG 300 60.65 0
6 jet_2 BASIC NON-NEG 300 63.33 0
7 naphtha_inter BASIC NON-NEG 0 21.8 0
8 naphtha_light BASIC NON-NEG 0 7.45 0

SAS OnlineDoc: Version 8

Example 3.3. Analyzing the Sensitivity of the Solution to Changes in the
Objective Coefficients � 131

The LP Procedure

Constraint Summary

S/S Dual
Row Constraint Name Type Col Rhs Activity Activity

1 profit OBJECTVE . 0 1544 .
2 napha_l_conv EQ . 0 0 -60
3 napha_i_conv EQ . 0 0 -90
4 heating_oil_conv EQ . 0 0 -450
5 recipe_1 EQ . 0 0 -300
6 recipe_2 EQ . 0 0 -300

Example 3.3. Analyzing the Sensitivity of the Solution to
Changes in the Objective Coefficients

Simple solution of a linear program is often not enough. A manager needs to evaluate
how sensitive the solution is to changing assumptions. The LP procedure provides
several tools that are useful for "what if," or sensitivity, analysis. One tool studies the
effects of changes in the objective coefficients.

For example, in the oil blending problem, the cost of crude and the selling price
of jet fuel can be highly variable. If you want to know the range over which each
objective coefficient can vary without changing the variables in the basis, you can
use the RANGEPRICE option in the PROC LP statement.

proc lp sparsedata RANGEPRICE PRIMALOUT=SOLUTION;
run;

In addition to the Problem and Solution summaries, the LP procedure produces a
Price Range Summary, shown in Output 3.3.1.

For each structural variable, the upper and lower ranges of the price (objective func-
tion coefficient) and the objective value are shown. The blocking variables, those
variables that would enter the basis if the objective coefficient were perturbed further,
are also given. For example, the output shows that if the cost ofARABIAN–LIGHT
crude were to increase from 175 to 186.6 per unit (remember that you are maximiz-
ing profit so theARABIAN–LIGHT objective coefficient would decrease from -175
to -186.6), then it would become optimal to use less of this crude for any fractional
increase in its cost. Increasing the unit cost to 186.6 would drive its reduced cost
to zero. Any additional increase would drive its reduced cost negative and would
destroy the optimality conditions; thus, you would want to use less of it in your pro-
cessing. The output shows that, at the point where the reduced cost is zero, you would
only be realizing a profit of268 = 1544� (110 � 11:6) and thatARABIAN–LIGHT
enters the basis, that is, leaves its upper bound. On the other hand, if the cost of
ARABIAN–HEAVY were to decrease to 143.55, you would want to stop using the
formulation of 110 units ofARABIAN–LIGHT and 80 units ofBREGA and switch
to a production scheme that includedARABIAN–HEAVY, in which case the profit
would increase from the 1544 level.

SAS OnlineDoc: Version 8

132 � Chapter 3. The LP Procedure

Output 3.3.1. Price Range Summary for the Oil Blending Problem

The LP Procedure

Price Range Analysis

-------------Minimum Phi------------
Col Variable Name Price Entering Objective

1 arabian_heavy -INFINITY . 1544
2 arabian_light -186.6 arabian_light 268
3 brega -208.35 brega 1276
4 heating_oil -7.790698 brega 941.77907
5 jet_1 290.19034 brega 949.04392
6 jet_2 290.50992 brega 942.99292
7 naphtha_inter -24.81481 brega 1003.037
8 naphtha_light -74.44444 brega 989.38889

Price Range Analysis

-------------Maximum Phi------------
Price Entering Objective

-143.55 arabian_heavy 1544
INFINITY . INFINITY
INFINITY . INFINITY

71.5 arabian_heavy 7070.95
392.25806 arabian_heavy 7139.4516
387.19512 arabian_heavy 7066.0671

286 arabian_heavy 7778.8
715 arabian_heavy 6870.75

Note that in the PROC LP statement, the PRIMALOUT=SOLUTION option was
given. This caused the procedure to save the optimal solution in a SAS data set
namedSOLUTION. This data set can be used to perform further analysis on the
problem without having to restart the solution process. Example 3.4 shows how this
is done. A display of the data follows in Output 3.3.2.

Output 3.3.2. The PRIMALOUT= Data Set for the Oil Blending Problem

_ _ _ _ _ _
O R S L _ U _ R
B H _ T B V B P _
J S _ T A O A O R C
_ _ V Y T U L U I O

O I I A P U N U N C S
b D D R E S D E D E T
s _ _ _ _ _ _ _ _ _ _

1 profit _rhs_ arabian_heavy UPPERBD 0 0.00 165 -165 -21.45
2 profit _rhs_ arabian_light UPPERBD _UPPER_ 0 110.00 110 -175 11.60
3 profit _rhs_ brega UPPERBD _UPPER_ 0 80.00 80 -205 3.35
4 profit _rhs_ heating_oil NON-NEG _BASIC_ 0 77.30 1.7977E308 0 0.00
5 profit _rhs_ jet_1 NON-NEG _BASIC_ 0 60.65 1.7977E308 300 0.00
6 profit _rhs_ jet_2 NON-NEG _BASIC_ 0 63.33 1.7977E308 300 0.00
7 profit _rhs_ naphtha_inter NON-NEG _BASIC_ 0 21.80 1.7977E308 0 0.00
8 profit _rhs_ naphtha_light NON-NEG _BASIC_ 0 7.45 1.7977E308 0 0.00
9 profit _rhs_ PHASE_1_OBJECTIV OBJECT _DEGEN_ 0 0.00 0 0 0.00

10 profit _rhs_ profit OBJECT _BASIC_ 0 1544.00 1.7977E308 0 0.00

SAS OnlineDoc: Version 8

Example 3.4. Additional Analysis of the Sensitivity of the Solution to Changes in
the Objective Coefficients � 133

Example 3.4. Additional Analysis of the Sensitivity of the
Solution to Changes in the Objective
Coefficients

The objective coefficient ranging analysis, discussed in the last example, is useful for
accessing the effects of changing costs and returns on the optimal solution if each
objective function coefficient is modified in isolation. However, this is often not the
case.

Suppose you anticipate that the cost of crude will be increasing and you want to
examine how that will affect your optimal production plans. Furthermore, you es-
timate that if the price ofARABIAN–LIGHT goes up by 1 unit, then the price of
ARABIAN–HEAVY will rise by 1.2 units and the price ofBREGA will increase by
1.5 units. However, you plan on passing some of your increased overhead on to your
jet fuel customers, and you decide to increase the price of jet fuel 1 unit for each unit
of increased cost ofARABIAN–LIGHT.

An examination of the solution sensitivity to changes in the cost of crude is a two-
step process. First, add the information on the proportional rates of change in the
crude costs and the jet fuel price to the problem data set. Then, invoke the LP pro-
cedure. The following program accomplishes this. First, it adds a new row, named
CHANGE, to the model. It gives this row a type ofPRICESEN. That tells PROC
LP to perform objective function coefficient sensitivity analysis using the given rates
of change. The program then invokes PROC LP to perform the analysis. Notice that
the PRIMALIN=SOLUTION option is used in the PROC LP statement. This tells
the LP procedure to use the saved solution. Although it is not necessary to do this, it
will eliminate the need for PROC LP to resolve the problem and can save computing
time.

data sen;
input _type_ $ @10 _col_ $13. @24 _row_ $ _coef_;
datalines;

pricesen . change .
. arabian_light change 1
. arabian_heavy change 1.2
. brega change 1.5
. jet_1 change -1
. jet_2 change -1
;
data;

set oil sen;
proc lp sparsedata primalin=solution;
run;

Output 3.4.1 shows the range over which the current basic solution remains optimal so
that the current production plan need not change. The objective coefficients are mod-
ified by adding� times the change vector given in theSEN data set, where� ranges
from a minimum of -4.15891 to a maximum of 29.72973. At the minimum value of
�, the profit decreases to 1103.073. This value of� corresponds to an increase in the
cost ofARABIAN–HEAVY to 169.99 (namely,�175+��1:2), ARABIAN–LIGHT

SAS OnlineDoc: Version 8

134 � Chapter 3. The LP Procedure

to 179.158 (= �175+� � 1), andBREGA to 211.23 (= �205+� � 1:5), and corre-
sponds to an increase in the price ofJET–1 andJET–2 to 304.15 (= 300+� ��1).
These values can be found in thePrice column under the section labeledMinimum
Phi.

Output 3.4.1. The Price Sensitivity Analysis Summary for the Oil Blending Problem

The LP Procedure

Price Sensitivity Analysis Summary
Sensitivity Vector change

Minimum Phi -4.158907511
Entering Variable brega
Optimal Objective 1103.0726257

Maximum Phi 29.72972973
Entering Variable arabian_heavy
Optimal Objective 4695.9459459

----Minimum Phi---- ----Maximum Phi----
Reduced Reduced

Col Variable Name Status Activity Price Cost Price Cost

1 arabian_heavy 0 -169.9907 -24.45065 -129.3243 0
2 arabian_light UPPBD 110 -179.1589 10.027933 -145.2703 22.837838
3 brega UPPBD 80 -211.2384 0 -160.4054 27.297297
4 heating_oil BASIC 77.3 0 0 0 0
5 jet_1 BASIC 60.65 304.15891 0 270.27027 0
6 jet_2 BASIC 63.33 304.15891 0 270.27027 0
7 naphtha_inter BASIC 21.8 0 0 0 0
8 naphtha_light BASIC 7.45 0 0 0 0

The Price Sensitivity Analysis Summary also shows the effects of lowering the cost of
crude and lowering the price of jet fuel. In particular, at the maximum� of 29.72973,
the current optimal production plan yields a profit of 4695.946. Any increase or
decrease in� beyond the limits given results in a change in the production plan.
More precisely, the columns that constitute the basis change.

Example 3.5. Price Parametric Programming for the Oil
Blending Problem

This example continues to examine the effects of a change in the cost of crude and
the selling price of jet fuel. Suppose that you know the cost ofARABIAN–LIGHT
crude is likely to increase 30 units, with the effects on oil and fuel prices as described
in Example 3.4. The analysis in the last example only accounted for an increase of
a little over 4 units (because the minimum� was -4.15891). Because an increase
in the cost ofARABIAN–LIGHT beyond 4.15891 units requires a change in the
optimal basis, it may require a change in the optimal production strategy as well.
This type of analysis, where you want to find how the solution changes with changes
in the objective function coefficients or right-hand-side vector, is called parametric
programming.

SAS OnlineDoc: Version 8

Example 3.5. Price Parametric Programming for the Oil Blending Problem �

135

You can answer this question by using the PRICEPHI= option in the PROC LP state-
ment. The following program instructs PROC LP to continually increase the cost of
the crudes and the return from jet fuel using the ratios given previously, until the cost
of ARABIAN–LIGHT increases at least 30 units.

proc lp sparsedata primalin=solution PRICEPHI=-30;
run;

The PRICEPHI= option in the PROC LP statement tells PROC LP to perform para-
metric programming on any price change vectors specified in the problem data set.
The value of the PRICEPHI= option tells PROC LP how far to change the value of
� and in what direction. A specification of PRICEPHI=-30 tells PROC LP to con-
tinue pivoting until the problem has objective function equal to the original objective
function value�30 � change vector.

Output 3.5.1 shows the result of this analysis. The first page is the Price Sensitivity
Analysis Summary, as discussed in Example 3.4. The next page is an accounting
for the change in basis as a result of decreasing� beyond -4.1589. It shows that
BREGA left the basis at an upper bound and entered the basis at a lower bound. The
interpretation of these basis changes can be difficult (Hadley 1962; Dantzig 1963).

The last page of output shows the optimal solution at the displayed value of�, namely
-30.6878. At an increase of 30.6878 units in the cost ofARABIAN–LIGHT and
the related changes to the other crudes and the jet fuel, it is optimal to modify the
production of jet fuel as shown in the activity column. Although this plan is optimal,
it results in a profit of 0. This may suggest that the ratio of a unit increase in the price
of jet fuel for unit increase in the cost ofARABIAN–LIGHT is lower than desirable.

Output 3.5.1. Price Parametric Programming for the Oil Blending Problem

The LP Procedure

Price Sensitivity Analysis Summary
Sensitivity Vector change

Minimum Phi -4.158907511
Entering Variable brega
Optimal Objective 1103.0726257

Maximum Phi 29.72972973
Entering Variable arabian_heavy
Optimal Objective 4695.9459459

----Minimum Phi---- ----Maximum Phi----
Reduced Reduced

Col Variable Name Status Activity Price Cost Price Cost

1 arabian_heavy 0 -169.9907 -24.45065 -129.3243 0
2 arabian_light UPPBD 110 -179.1589 10.027933 -145.2703 22.837838
3 brega UPPBD 80 -211.2384 0 -160.4054 27.297297
4 heating_oil BASIC 77.3 0 0 0 0
5 jet_1 BASIC 60.65 304.15891 0 270.27027 0
6 jet_2 BASIC 63.33 304.15891 0 270.27027 0
7 naphtha_inter BASIC 21.8 0 0 0 0
8 naphtha_light BASIC 7.45 0 0 0 0

SAS OnlineDoc: Version 8

136 � Chapter 3. The LP Procedure

The LP Procedure

Price Parametric Programming Log
Sensitivity Vector change

Entering Current
Leaving Variable Variable Objective Phi

brega brega 1103.0726 -4.158908

The LP Procedure

Price Sensitivity Analysis Summary
Sensitivity Vector change

Minimum Phi -30.68783069
Entering Variable arabian_light
Optimal Objective 0

----Minimum Phi----
Reduced

Col Variable Name Status Activity Price Cost

1 arabian_heavy 0 -201.8254 -43.59127
2 arabian_light ALTER 110 -205.6878 0
3 brega 0 -251.0317 -21.36905
4 heating_oil BASIC 42.9 0 0
5 jet_1 BASIC 33.33 330.68783 0
6 jet_2 BASIC 35.09 330.68783 0
7 naphtha_inter BASIC 11 0 0
8 naphtha_light BASIC 3.85 0 0

What is the optimal return if� is exactly -30? Because the change in the objective is
linear as a function of�, you can calculate the objective for any value of� between
those given by linear interpolation. For example, for any� between -4.1589 and
-30.6878, the optimal objective value is

� � (1103:0726 � 0)=(�4:589 � 30:6878) + b

where

b = 30:6878 � (1103:0726 � 0)=(�4:589 � 30:6878)

For� = �30, this is28:5988.

Example 3.6. Special Ordered Sets and the Oil Blending
Problem

Often managers want to evaluate the cost of making a choice among alternatives.
In particular, they want to make the most profitable choice. Suppose that only one
oil crude can be used in the production process. This identifies a set of variables
of which only one can be above its lower bound. This additional restriction could

SAS OnlineDoc: Version 8

Example 3.6. Special Ordered Sets and the Oil Blending Problem � 137

be included in the model by adding a binary integer variable for each of the three
crudes. Constraints would be needed that would drive the appropriate binary variable
to 1 whenever the corresponding crude is used in the production process. Then a
constraint limiting the total of these variables to only one would be added. A similar
formulation for a fixed charge problem is shown in Example 3.8.

The SOSLE type implicitly does this. The following DATA step adds a row to the
model that identifies which variables are in the set. TheSOSLE type tells the LP
procedure that only one of the variables in this set can be above its lower bound. If
you use theSOSEQ type, it tells PROC LP that exactly one of the variables in the set
must be above its lower bound. Only integer variables can be in anSOSEQ set.

data special;
input _type_ $ @7 _col_ $13. @21 _row_ $ _coef_;
datalines;

SOSLE . special .
. arabian_light special 1
. arabian_heavy special 1
. brega special 1
;
data;

set oil special;
proc lp sparsedata;
run;

Output 3.6.1 includes an Integer Iteration Log. This log shows the progress that
PROC LP is making in solving the problem. This is discussed in some detail in
Example 3.8.

SAS OnlineDoc: Version 8

138 � Chapter 3. The LP Procedure

Output 3.6.1. The Oil Blending Problem with a Special Ordered Set

The LP Procedure

Problem Summary

Objective Function Max profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.00

Variables Number

Non-negative 5
Upper Bounded 3

Total 8

Constraints Number

EQ 5
Objective 1

Total 6

The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 1544 arabian_light 110 0 2 .
2 -1 SUBOPTIMAL 1276 . . . 1 268
3 1 FATHOMED 268 . . . 0 .

SAS OnlineDoc: Version 8

Example 3.6. Special Ordered Sets and the Oil Blending Problem � 139

The LP Procedure

Solution Summary

Integer Optimal Solution

Objective Value 1276

Phase 1 Iterations 0
Phase 2 Iterations 7
Phase 3 Iterations 0
Integer Iterations 3
Integer Solutions 1
Initial Basic Feasible Variables 2
Time Used (seconds) 0
Number of Inversions 4

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Reduced
Col Variable Name Status Type Price Activity Cost

1 arabian_heavy UPPERBD -165 0 -21.45
2 arabian_light UPPBD UPPERBD -175 110 11.6
3 brega UPPERBD -205 0 3.35
4 heating_oil BASIC NON-NEG 0 42.9 0
5 jet_1 BASIC NON-NEG 300 33.33 0
6 jet_2 BASIC NON-NEG 300 35.09 0
7 naphtha_inter BASIC NON-NEG 0 11 0
8 naphtha_light BASIC NON-NEG 0 3.85 0

SAS OnlineDoc: Version 8

140 � Chapter 3. The LP Procedure

The LP Procedure

Constraint Summary

S/S Dual
Row Constraint Name Type Col Rhs Activity Activity

1 profit OBJECTVE . 0 1276 .
2 napha_l_conv EQ . 0 0 -60
3 napha_i_conv EQ . 0 0 -90
4 heating_oil_conv EQ . 0 0 -450
5 recipe_1 EQ . 0 0 -300
6 recipe_2 EQ . 0 0 -300

The solution shows that only theARABIAN–LIGHT crude is purchased. The re-
quirement that only one crude be used in the production is met, and the profit is 1276.
This tells you that the value of purchasing crude from an additional source, namely
BREGA, is worth1544 � 1276 = 268.

Example 3.7. Goal-Programming a Product Mix Problem

This example shows how to use PROC LP to solve a linear goal-programming prob-
lem. PROC LP has the ability to solve a series of linear programs, each with a new
objective function. These objective functions are ordered by priority. The first step is
to solve a linear program with the highest priority objective function constrained only
by the formal constraints in the model. Then, the problem with the next highest pri-
ority objective function is solved, constrained by the formal constraints in the model
and by the value that the highest priority objective function realized. That is, the
second problem optimizes the second highest priority objective function among the
alternate optimal solutions to the first optimization problem. The process continues
until a linear program is solved for each of the objectives.

This technique is useful for differentiating among alternate optimal solutions to a
linear program. It also fits into the formal paradigm presented in goal programming.
In goal programming, the objective functions typically take on the role of driving a
linear function of the structural variables to meet a target level as closely as possible.
The details of this can be found in many books on the subject, including Ignizio
(1976).

Consider the following problem taken from Ignizio (1976). A small paint company
manufactures two types of paint, latex and enamel. In production, the company uses
10 hours of labor to produce 100 gallons of latex and 15 hours of labor to produce 100
gallons of enamel. Without hiring outside help or requiring overtime, the company
has 40 hours of labor available each week. Furthermore, each paint generates a profit
at the rate of $1.00 per gallon. The company has the following objectives listed in
decreasing priority.

SAS OnlineDoc: Version 8

Example 3.7. Goal-Programming a Product Mix Problem � 141

� avoid the use of overtime

� achieve a weekly profit of $1000

� produce at least 700 gallons of enamel paint each week

The program to solve this problem follows:

data object;
input _row_ $ latex enamel n1 n2 n3 p1 p2 p3 _type_ $ _rhs_;
datalines;

overtime 1 . . min 1
profit . . . 1 min 2
enamel 1 . . . min 3
overtime 10 15 1 . . -1 . . eq 40
profit 100 100 . 1 . . -1 . eq 1000
enamel . 1 . . 1 . . -1 eq 7
;
proc lp GOALPROGRAM;
run;

The data set calledOBJECT contains the model. Its first three observations are the
objective rows, and the next three observations are the constraints. The values in
the right-hand-side variable–RHS– in the objective rows give the priority of the
objectives. The objective in the first observation with–ROW–=OVERTIME has the
highest priority, the objective namedPROFIT has the next highest, and the objective
namedENAMEL has the lowest. Note that the value of the right-hand-side variable
determines the priority, not the order, in the data set.

Because this example is set in the formal goal-programming scheme, the model has
structural variables representing negative (N1, N2, andN3) and positive (P1, P2,
andP3) deviations from target levels. For example,N1+P1 is the deviation from
the objective of avoiding the use of overtime and underusing the normal work time,
namely using exactly 40 work hours. The other objectives are handled similarly.

Notice that the PROC LP statement includes the GOALPROGRAM option. Without
this option, the procedure would solve three separate problems: one for each of the
three objective functions. In that case, however, the procedure would not constrain
the second and third programs using the results of the preceding programs; also, the
values 1, 2, and 3 for–RHS– in the objective rows would have no effect.

Output 3.7.1 shows the solution of the goal program, apparently as three linear pro-
gram outputs. However, examination of the constraint summaries in the second and
third problems show that the constraints labeled by the objectivesOVERTIME and
PROFIT have typeFIXEDOBJ. This indicates that these objective rows have become
constraints in the subsequent problems.

SAS OnlineDoc: Version 8

142 � Chapter 3. The LP Procedure

Output 3.7.1. Goal Programming

The LP Procedure

Problem Summary

Objective Function Min overtime
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.83

Variables Number

Non-negative 8

Total 8

Constraints Number

EQ 3
Objective 3

Total 6

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 0

Phase 1 Iterations 2
Phase 2 Iterations 0
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 5
Time Used (seconds) 0
Number of Inversions 2

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

SAS OnlineDoc: Version 8

Example 3.7. Goal-Programming a Product Mix Problem � 143

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 latex ALTER NON-NEG 0 0 0
2 enamel ALTER NON-NEG 0 0 0
3 n1 BASIC NON-NEG 0 40 0
4 n2 BASIC NON-NEG 0 1000 0
5 n3 BASIC NON-NEG 0 7 0
6 p1 NON-NEG 1 0 1
7 p2 ALTER NON-NEG 0 0 0
8 p3 ALTER NON-NEG 0 0 0

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 overtime OBJECTVE . 0 0 .
2 profit FREE_OBJ . 0 1000 .
3 enamel FREE_OBJ . 0 7 .
4 overtime EQ . 40 40 0
5 profit EQ . 1000 1000 0
6 enamel EQ . 7 7 0

The LP Procedure

Problem Summary

Objective Function Min profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.83

Variables Number

Non-negative 8

Total 8

Constraints Number

EQ 3
Objective 3

Total 6

SAS OnlineDoc: Version 8

144 � Chapter 3. The LP Procedure

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 600

Phase 1 Iterations 0
Phase 2 Iterations 2
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 5
Time Used (seconds) 0
Number of Inversions 4

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 latex BASIC NON-NEG 0 4 0
2 enamel NON-NEG 0 0 50
3 n1 NON-NEG 0 0 10
4 n2 BASIC NON-NEG 1 600 0
5 n3 BASIC NON-NEG 0 7 0
6 p1 DEGEN NON-NEG 0 0 0
7 p2 NON-NEG 0 0 1
8 p3 ALTER NON-NEG 0 0 0

SAS OnlineDoc: Version 8

Example 3.7. Goal-Programming a Product Mix Problem � 145

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 overtime FIXEDOBJ . 0 0 .
2 profit OBJECTVE . 0 600 .
3 enamel FREE_OBJ . 0 7 .
4 overtime EQ . 40 40 -10
5 profit EQ . 1000 1000 1
6 enamel EQ . 7 7 0

The LP Procedure

Problem Summary

Objective Function Min enamel
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 45.83

Variables Number

Non-negative 8

Total 8

Constraints Number

EQ 3
Objective 3

Total 6

SAS OnlineDoc: Version 8

146 � Chapter 3. The LP Procedure

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 7

Phase 1 Iterations 0
Phase 2 Iterations 1
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 5
Time Used (seconds) 0
Number of Inversions 6

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 latex BASIC NON-NEG 0 4 0
2 enamel DEGEN NON-NEG 0 0 0
3 n1 NON-NEG 0 0 0.2
4 n2 BASIC NON-NEG 0 600 0
5 n3 BASIC NON-NEG 1 7 0
6 p1 DEGEN NON-NEG 0 0 0
7 p2 NON-NEG 0 0 0.02
8 p3 NON-NEG 0 0 1

SAS OnlineDoc: Version 8

Example 3.7. Goal-Programming a Product Mix Problem � 147

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 overtime FIXEDOBJ . 0 0 .
2 profit FIXEDOBJ . 0 600 .
3 enamel OBJECTVE . 0 7 .
4 overtime EQ . 40 40 -0.2
5 profit EQ . 1000 1000 0.02
6 enamel EQ . 7 7 1

The solution to the last linear program shows a value of 4 for the variableLATEX and
a value of 0 for the variableENAMEL. This tells you that the solution to the linear
goal program is to produce 400 gallons of latex and no enamel paint.

The values of the objective functions in the three linear programs tell you whether
you can achieve the three objectives. The activities of the constraints labeledOVER-
TIME, PROFIT, andENAMEL tell you values of the three linear program objectives.
Because the first linear programming objectiveOVERTIME is 0, the highest prior-
ity objective, which is to avoid using additional labor, is accomplished. However,
because the second and third objectives are nonzero, the second and third priority
objectives are not satisfied completely. ThePROFIT objective is 600. Because the
PROFIT objective is to minimize the negative deviation from the profit constraint,
this means that a profit of only400 = 1000�600 is realized. Similarly, theENAMEL
objective is 7, indicating that there is a negative deviation from theENAMEL target
of 7 units.

SAS OnlineDoc: Version 8

148 � Chapter 3. The LP Procedure

Example 3.8. A Simple Integer Program

Recall the linear programming problem presented in the “Introduction to Mathemati-
cal Programming” chapter. In that problem, a firm produces two products, chocolates
and gumdrops, that are processed by four processes: cooking, color/flavor, condi-
ments, and packaging. The objective is to determine the product mix that maximizes
the profit to the firm while not exceeding manufacturing capacities. The problem is
extended to demonstrate a use of integer-constrained variables.

Suppose that you must manufacture only one of the two products. In addition,
there is a setup cost of 100 if you make the chocolates and 75 if you make the
gumdrops. To identify which product will maximize profit, you define two zero-
one integer variables,ICHOCO and IGUMDR, and you also define two new con-
straints,CHOCOLATE and GUM. The constraint labeledCHOCOLATE forces
ICHOCO to equal one when chocolates are manufactured. Similarly, the constraint
labeled GUM forces IGUMDR to equal one when gumdrops are manufactured.
Also, you should include a constraint labeledONLY–ONE that requires the sum of
ICHOCO andIGUMDR to equal one. (Note that this could be accomplished more
simply by includingICHOCO and IGUMDR in a SOSEQ set.) SinceICHOCO
andIGUMDR are integer variables, this constraint eliminates the possibility of both
products being manufactured. Notice the coefficients -10000, which are used to force
ICHOCO or IGUMDR to 1 wheneverCHOCO and GUMDR are nonzero. This
technique, which is often used in integer programming, can cause severe numerical
problems. If this driving coefficient is too large, then arithmetic overflows and under-
flow may result. If the driving coefficient is too small, then the integer variable may
not be driven to one as desired by the modeler.

The objective coefficients of the integer variablesICHOCO and IGUMDR are the
negatives of the setup costs for the two products. The following is the data set that
describes this problem and the call to PROC LP to solve it:

data;
input _row_ $10. choco gumdr ichoco igumdr _type_ $ _rhs_;
datalines;

object .25 .75 -100 -75 max .
cooking 15 40 0 0 le 27000
color 0 56.25 0 0 le 27000
package 18.75 0 0 0 le 27000
condiments 12 50 0 0 le 27000
chocolate 1 0 -10000 0 le 0
gum 0 1 0 -10000 le 0
only_one 0 0 1 1 eq 1
binary . . 1 2 binary .
;

proc lp;
run;

The solution shows that gumdrops are produced. See Output 3.8.1.

SAS OnlineDoc: Version 8

Example 3.8. A Simple Integer Program � 149

Output 3.8.1. Summaries and an Integer Programming Iteration Log

The LP Procedure

Problem Summary

Objective Function Max object
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 25.71

Variables Number

Non-negative 2
Binary 2
Slack 6

Total 10

Constraints Number

LE 6
EQ 1
Objective 1

Total 8

The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 397.5 ichoco 0.1 0.2 2 .
2 -1 SUBOPTIMAL 260 . . . 1 70
3 1 SUBOPTIMAL 285 . . . 0 .

SAS OnlineDoc: Version 8

150 � Chapter 3. The LP Procedure

The LP Procedure

Solution Summary

Integer Optimal Solution

Objective Value 285

Phase 1 Iterations 1
Phase 2 Iterations 5
Phase 3 Iterations 5
Integer Iterations 3
Integer Solutions 2
Initial Basic Feasible Variables 8
Time Used (seconds) 0
Number of Inversions 5

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 choco DEGEN NON-NEG 0.25 0 0
2 gumdr BASIC NON-NEG 0.75 480 0
3 ichoco BINARY -100 0 2475
4 igumdr BASIC BINARY -75 1 0
5 cooking BASIC SLACK 0 7800 0
6 color SLACK 0 0 -0.013333
7 package BASIC SLACK 0 27000 0
8 condiments BASIC SLACK 0 3000 0
9 chocolate SLACK 0 0 -0.25

10 gum BASIC SLACK 0 9520 0

SAS OnlineDoc: Version 8

Example 3.9. An Infeasible Problem � 151

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 object OBJECTVE . 0 285 .
2 cooking LE 5 27000 19200 0
3 color LE 6 27000 27000 0.0133333
4 package LE 7 27000 0 0
5 condiments LE 8 27000 24000 0
6 chocolate LE 9 0 0 0.25
7 gum LE 10 0 -9520 0
8 only_one EQ . 1 1 -75

The branch and bound tree can be reconstructed from the information contained in
the integer iteration log. The column labeledIter numbers the integer iterations. The
column labeledProblem identifies theIter number of the parent problem from which
the current problem is defined. For example,Iter=2 hasProblem=-1. This means
that problem 2 is a direct descendent of problem 1. Furthermore, because problem
1 branched onICHOCO, you know that problem 2 is identical to problem 1 with
an additional constraint on variableICHOCO. The minus sign in theProblem=-1
in Iter=2 tells you that the new constraint on variableICHOCO is a lower bound.
Moreover, becauseValue=.1 in Iter=1, you know thatICHOCO=.1 in Iter=1 so that
the added constraint inIter=2 is ICHOCO� d:1e . In this way, the information in
the log can be used to reconstruct the branch and bound tree. In fact, when you
save an ACTIVEOUT= data set, it contains information in this format that is used to
reconstruct the tree when you restart a problem using the ACTIVEIN= data set. See
Example 3.10.

Note that if you defined aSOSEQ special ordered set containing the variables
CHOCO andGUMDR, the integer variableICHOCO andIGUMDR and the three
associated constraints would not have been needed.

Example 3.9. An Infeasible Problem

This is an example of the Infeasible Information Summary that is displayed when an
infeasible problem is encountered. Consider the following problem:

max x + y + z + w

subject to: x +3y +2z +4w <= 5
3x + y +2z + w <= 4
5x +3y +3z +3w = 9

x, y, z, w >=0

Examination of this problem reveals that it is unsolvable. Consequently, PROC LP
identifies it as infeasible. The following program attempts to solve it.

SAS OnlineDoc: Version 8

152 � Chapter 3. The LP Procedure

data infeas;
input _id_ $6. x1-x4 _type_ $ _rhs_;
datalines;

profit 1 1 1 1 max .
const1 1 3 2 4 le 5
const2 3 1 2 1 le 4
const3 5 3 3 3 eq 9
;
proc lp; run;

The results are shown in Output 3.9.1.

Output 3.9.1. The Solution of an Infeasible Problem

The LP Procedure

Problem Summary

Objective Function Max profit
Rhs Variable _rhs_
Type Variable _type_
Problem Density (%) 77.78

Variables Number

Non-negative 4
Slack 2

Total 6

Constraints Number

LE 2
EQ 1
Objective 1

Total 4

ERROR: Infeasible problem. Note the constraints in the constraint summary
that are identified as infeasible. If none of the constraints are
flagged then check the implicit bounds on the variables.

SAS OnlineDoc: Version 8

Example 3.9. An Infeasible Problem � 153

The LP Procedure

Solution Summary

Infeasible Problem

Objective Value 2.25

Phase 1 Iterations 2
Phase 2 Iterations 0
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 4
Time Used (seconds) 0
Number of Inversions 2

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 x1 BASIC NON-NEG 1 0.875 0
2 x2 BASIC NON-NEG 1 1.375 0
3 x3 ALTER NON-NEG 1 0 0
4 x4 NON-NEG 1 0 -0.25
5 const1 SLACK 0 0 -0.25
6 const2 SLACK 0 0 -0.25

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 profit OBJECTVE . 0 2.25 .
2 const1 LE 5 5 5 0.25
3 const2 LE 6 4 4 0.25

INF const3 EQ . 9 8.5 0

SAS OnlineDoc: Version 8

154 � Chapter 3. The LP Procedure

The LP Procedure

Infeasible Information Summary

Infeasible Row const3
Constraint Activity 8.5
Row Type EQ
Rhs Data 9

Lower Upper
Variable Coefficient Activity Bound Bound

x1 5 0.875 0 INFINITY
x2 3 1.375 0 INFINITY
x3 3 0 0 INFINITY
x4 3 0 0 INFINITY

Note the information given in the Infeasible Information Summary for the infeasible
row CONST3. It shows that the equality constrained rowCONST3 with right-
hand-side 9 was found to be infeasible with activity 8.5. The summary also shows
each variable that has a nonzero coefficient in that row and its activity level at the
infeasibility. Examination of these model parameters might give you a clue as to
the cause of infeasibility, such as an incorrectly entered coefficient or right-hand-side
value.

Example 3.10. Restarting an Integer Program

The following example is attributed to Haldi (Garfinkel and Nemhauser 1972) and is
used in the literature as a test problem. Notice that the ACTIVEOUT= and the PRI-
MALOUT= options are used when invoking PROC LP. These cause the LP procedure
to save the primal solution in the data set named P and the active tree in the data set
namedA. If the procedure fails to find an optimal integer solution on the initial call,
it can be called later using theA andP data sets as starting information.

data haldi10;
input x1-x12 _type_ $ _rhs_;
datalines;

0 0 0 0 0 0 1 1 1 1 1 1 MAX .
9 7 16 8 24 5 3 7 8 4 6 5 LE 110

12 6 6 2 20 8 4 6 3 1 5 8 LE 95
15 5 12 4 4 5 5 5 6 2 1 5 LE 80
18 4 4 18 28 1 6 4 2 9 7 1 LE 100

-12 0 0 0 0 0 1 0 0 0 0 0 LE 0
0 -15 0 0 0 0 0 1 0 0 0 0 LE 0
0 0 -12 0 0 0 0 0 1 0 0 0 LE 0
0 0 0 -10 0 0 0 0 0 1 0 0 LE 0
0 0 0 0 -11 0 0 0 0 0 1 0 LE 0
0 0 0 0 0 -11 0 0 0 0 0 1 LE 0
1 1 1 1 1 1 1000 1000 1000 1000 1000 1000 UPPERBD .
1 2 3 4 5 6 7 8 9 10 11 12 INTEGER .
;

SAS OnlineDoc: Version 8

Example 3.10. Restarting an Integer Program � 155

proc lp ACTIVEOUT=a PRIMALOUT=p;
run;

The ACTIVEOUT= data set contains a representation of the current active problems
in the branch and bound tree. The PRIMALOUT= data set contains a representation
of the solution to the current problem. These two can be used to restore the procedure
to an equivalent state to the one it was in when it stopped.

The results from the call to PROC LP is shown in Output 3.10.1. Notice that the pro-
cedure performed 100 iterations and then terminated on maximum integer iterations.
This is because, by default, IMAXIT=100. The procedure reports the current best
integer solution.

Output 3.10.1. Output from the HALDI10 Problem

The LP Procedure

Problem Summary

Objective Function Max _OBS1_
Rhs Variable _RHS_
Type Variable _TYPE_
Problem Density (%) 31.82

Variables Number

Integer 6
Binary 6
Slack 10

Total 22

Constraints Number

LE 10
Objective 1

Total 11

SAS OnlineDoc: Version 8

156 � Chapter 3. The LP Procedure

The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 18.709524 X9 1.543 1.11905 2 .
2 -1 ACTIVE 18.676973 X11 0.487 1.96707 3 .
3 -2 ACTIVE 18.642641 X9 2.482 1.49839 4 .
4 -3 ACTIVE 18.402785 X12 7.379 1.62351 5 .
5 4 ACTIVE 18.296842 X6 0.636 1.94504 6 .
6 -5 ACTIVE 18.056766 X4 0.687 0.99534 7 .
7 6 ACTIVE 15.796152 X12 1.532 2.27511 8 .
8 7 ACTIVE 15.69596 X1 0.434 2.48667 9 .
9 8 ACTIVE 13.547078 X8 8.547 1.22403 10 .

10 9 ACTIVE 13.499259 X11 1.499 1.35222 11 .
11 -10 ACTIVE 13.451299 X2 0.497 1.37987 12 .
12 11 ACTIVE 12.8 X3 0.25 0.65 12 .
13 -12 ACTIVE 11.454545 X9 8.455 0.63636 13 .
14 13 ACTIVE 11.444444 X11 2.444 0.66667 14 .
15 -14 ACTIVE 11.431818 X9 7.432 0.70455 15 .
16 15 ACTIVE 11.422222 X11 3.422 0.73333 16 .
17 -16 ACTIVE 11.409091 X9 6.409 0.77273 17 .
18 17 ACTIVE 11.4 X11 4.4 0.8 18 .
19 -18 ACTIVE 11.386364 X5 0.455 0.84091 18 .
20 -19 SUBOPTIMAL 10 . . . 17 8
21 18 ACTIVE 11 X5 0.5 0.5 18 8
22 -21 FATHOMED 9.5 . . . 17 8
23 21 FATHOMED 7 . . . 16 8
24 -17 FATHOMED 11.054545 . . . 15 8
25 16 ACTIVE 11 X5 0.417 0.41667 16 8
26 -25 FATHOMED 9.25 . . . 15 8
27 25 FATHOMED 8 . . . 14 8
28 -15 FATHOMED 11.090909 . . . 13 8
29 14 ACTIVE 11 X5 0.333 0.33333 14 8
30 -29 FATHOMED 9.8571429 . . . 13 8
31 29 FATHOMED 9 . . . 12 8
32 -13 FATHOMED 11.127273 . . . 11 8
33 -11 ACTIVE 12.948052 X3 0.25 0.48377 11 8
34 -33 ACTIVE 11.233766 X8 5.234 0.41558 11 8
35 34 ACTIVE 11.204545 X9 3.205 0.38636 12 8
36 35 ACTIVE 11.2 X11 2.2 0.4 13 8
37 -36 FATHOMED 11.064935 . . . 12 8
38 36 ACTIVE 11 X5 0.25 0.25 13 8
39 -38 FATHOMED 9.9015152 . . . 12 8
40 38 FATHOMED 9 . . . 11 8
41 -35 FATHOMED 11.090909 . . . 10 8
42 10 ACTIVE 13.437662 X2 0.533 1.28171 11 8
43 42 ACTIVE 11.805195 X9 9.805 0.46861 12 8
44 -43 ACTIVE 11.69697 X12 0.697 0.56061 13 8
45 -44 INFEASIBLE 11.59596 . . . 12 8
46 44 ACTIVE 11.373377 X9 10.37 0.59984 13 8
47 -46 INFEASIBLE 10.440404 . . . 12 8
48 46 ACTIVE 11 X5 0.236 0.40278 13 8
49 -48 FATHOMED 9.5714286 . . . 12 8
50 48 INFEASIBLE 10 . . . 11 8

SAS OnlineDoc: Version 8

Example 3.10. Restarting an Integer Program � 157

51 43 ACTIVE 11 X3 0.75 0.34091 11 8
52 -51 ACTIVE 11 X5 0.091 0.09091 11 8
53 -52 FATHOMED 9.3181818 . . . 10 8
54 -42 ACTIVE 13.087662 X3 0.257 0.43588 10 8
55 -54 ACTIVE 11.402597 X8 6.403 0.49351 11 8
56 55 ACTIVE 11.352273 X9 3.352 0.44318 12 8
57 5 ACTIVE 16.338433 X10 3.532 2.59511 13 8
58 57 ACTIVE 16.305108 X11 1.441 2.04051 14 8
59 -58 ACTIVE 16.262829 X2 0.376 2.29921 15 8
60 59 ACTIVE 15.823255 X11 2.504 2.47733 16 8
61 -60 ACTIVE 15.815163 X3 0.522 2.15025 17 8
62 61 INFEASIBLE 13.195402 . . . 16 8
63 -61 ACTIVE 14.859188 X1 0.354 1.71629 17 8
64 63 ACTIVE 12.881818 X4 0.3 0.69091 18 8
65 64 ACTIVE 11.681818 X9 8.682 0.59091 19 8
66 65 ACTIVE 11.666667 X5 0.333 0.66667 19 8
67 -66 FATHOMED 10.666667 . . . 18 8
68 -65 INFEASIBLE 11.321212 . . . 17 8
69 -64 ACTIVE 12.181818 X5 0.273 0.45455 17 8
70 -69 FATHOMED 9.7272727 . . . 16 8
71 -63 ACTIVE 13.121891 X5 0.423 1.24129 16 8
72 71 INFEASIBLE 11.755 . . . 15 8
73 60 ACTIVE 15.507892 X3 0.489 1.84958 16 8
74 73 INFEASIBLE 13.444444 . . . 15 8
75 -73 ACTIVE 14.549752 X9 6.453 1.28964 16 8
76 75 ACTIVE 14.531636 X7 3.532 1.24448 17 8
77 -76 ACTIVE 14.512121 X9 5.512 1.30303 18 8
78 77 ACTIVE 14.491636 X7 4.492 1.34776 19 8
79 -78 ACTIVE 14.354545 X9 4.548 1.52462 20 8
80 79 ACTIVE 14.111111 X1 0.472 1.68182 21 8
81 -80 ACTIVE 12.441212 X9 3.393 0.82788 22 8
82 81 ACTIVE 12.385675 X7 5.595 0.97521 23 8
83 -82 ACTIVE 11.94697 X5 0.182 0.32955 23 8
84 83 INFEASIBLE 11.083333 . . . 22 8
85 82 ACTIVE 12.121212 X4 0.212 0.51515 22 8
86 -85 FATHOMED 10.545455 . . . 21 8
87 -81 ACTIVE 11.530303 X10 0.53 0.70455 22 8
88 87 ACTIVE 11.254545 X7 5.255 0.43636 22 8
89 88 ACTIVE 11 X5 0.182 0.18182 22 8
90 -89 FATHOMED 9 . . . 21 8
91 -87 INFEASIBLE 11.173333 . . . 20 8
92 80 INFEASIBLE 12.380471 . . . 19 8
93 -79 FATHOMED 13.676136 . . . 18 8
94 78 ACTIVE 14 X1 0.538 0.94364 19 8
95 -94 ACTIVE 12.534545 X10 2.482 0.96455 20 8
96 95 ACTIVE 12.245455 X9 4.245 0.62727 21 8
97 -96 FATHOMED 11.113636 . . . 20 8
98 96 ACTIVE 12 X4 0.2 0.38182 21 8
99 -98 FATHOMED 10.989899 . . . 20 8

100 98 FATHOMED 10 . . . 19 8

WARNING: The maximum number of integer iterations has been exceeded. Increase
this limit with the ’IMAXIT=’ option on the RESET statement.

SAS OnlineDoc: Version 8

158 � Chapter 3. The LP Procedure

The LP Procedure

Solution Summary

Terminated on Maximum Integer Iterations
Integer Feasible Solution

Objective Value 10

Phase 1 Iterations 0
Phase 2 Iterations 16
Phase 3 Iterations 240
Integer Iterations 100
Integer Solutions 1
Initial Basic Feasible Variables 12
Time Used (seconds) 0
Number of Inversions 37

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 X1 BINARY 0 0 4.5
2 X2 DEGEN BINARY 0 0 0
3 X3 BINARY 0 1 -2.666667
4 X4 BINARY 0 0 2
5 X5 BINARY 0 1 -4
6 X6 BINARY 0 1 -0.833333
7 X7 DEGEN INTEGER 1 0 0
8 X8 INTEGER 1 0 -0.244444
9 X9 INTEGER 1 3 -0.333333

10 X10 DEGEN INTEGER 1 0 0
11 X11 BASIC INTEGER 1 6 0
12 X12 INTEGER 1 1 0.1666667
13 _OBS2_ SLACK 0 0 -0.166667
14 _OBS3_ BASIC SLACK 0 14 0
15 _OBS4_ BASIC SLACK 0 30 0
16 _OBS5_ BASIC SLACK 0 18 0
17 _OBS6_ SLACK 0 0 -0.5
18 _OBS7_ SLACK 0 0 -0.077778
19 _OBS8_ BASIC SLACK 0 9 0
20 _OBS9_ SLACK 0 0 -0.333333
21 _OBS10_ BASIC SLACK 0 5 0
22 _OBS11_ BASIC SLACK 0 10 0

SAS OnlineDoc: Version 8

Example 3.11. Alternative Search of the Branch and Bound Tree � 159

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 _OBS1_ OBJECTVE . 0 10 .
2 _OBS2_ LE 13 110 110 0.1666667
3 _OBS3_ LE 14 95 81 0
4 _OBS4_ LE 15 80 50 0
5 _OBS5_ LE 16 100 82 0
6 _OBS6_ LE 17 0 0 0.5
7 _OBS7_ LE 18 0 0 0.0777778
8 _OBS8_ LE 19 0 -9 0
9 _OBS9_ LE 20 0 0 0.3333333

10 _OBS10_ LE 21 0 -5 0
11 _OBS11_ LE 22 0 -10 0

To continue with the solution of this problem, invoke PROC LP with the ACTIVEIN=
and PRIMALIN= options and reset the IMAXIT= option. This restores the branch
and bound tree and simplifies calculating a basic feasible solution from which to start
processing.

proc lp data=haldi10 ACTIVEIN=a PRIMALIN=p IMAXIT=250;
run;

The procedure picks up iterating from a equivalent state to where it left off. The
problem will still not be solved when IMAXIT=250 occurs.

Example 3.11. Alternative Search of the Branch and Bound
Tree

In this example, theHALDI10 problem is solved. However, here the default strategy
for searching the branch and bound tree is modified. By default, the search strategy
has VARSELECT=FAR. This means that when searching for an integer variable on
which to branch, the procedure uses the one that has a value farthest from an integer
value. An alternative strategy has VARSELECT=PENALTY. This strategy causes
PROC LP to look at the cost, in terms of the objective function, of branching on an
integer variable. The procedure looks at PENALTYDEPTH= integer variables before
choosing the one with the largest cost. This is a much more expensive strategy (in
terms of execution time) than the VARSELECT=FAR strategy, but it can be beneficial
if fewer integer iterations must be done to find an optimal solution.

proc lp VARSELECT=PENALTY;
run;

Compare the number of integer iterations needed to solve the problem using this
heuristic with the default strategy used in Example 3.10. In this example, the dif-
ference is profound; in general, solution times can vary significantly with the search
technique. See Output 3.11.1.

SAS OnlineDoc: Version 8

160 � Chapter 3. The LP Procedure

Output 3.11.1. Summaries and an Integer Programming Iteration Log: Using
VARSELECT=PENALTY

The LP Procedure

Problem Summary

Objective Function Max _OBS1_
Rhs Variable _RHS_
Type Variable _TYPE_
Problem Density (%) 31.82

Variables Number

Integer 6
Binary 6
Slack 10

Total 22

Constraints Number

LE 10
Objective 1

Total 11

SAS OnlineDoc: Version 8

Example 3.11. Alternative Search of the Branch and Bound Tree � 161

The LP Procedure

Integer Iteration Log

Iter Problem Condition Objective Branched Value Sinfeas Active Proximity

1 0 ACTIVE 18.709524 X3 0.129 1.11905 2 .
2 -1 ACTIVE 17.063758 X4 0.694 0.89262 3 .
3 2 ACTIVE 15.225596 X5 0.459 2.34336 4 .
4 3 ACTIVE 12.7375 X2 0.812 0.875 5 .
5 -4 ACTIVE 12.55 X6 0.05 0.5 6 .
6 5 ACTIVE 12.54 X7 0.24 0.56 7 .
7 -6 ACTIVE 12.35 X1 0.083 0.43333 7 .
8 -7 ACTIVE 9.6 X8 8.6 0.4 8 .
9 8 ACTIVE 9.6 X7 1.6 0.4 9 .

10 -9 ACTIVE 9.6 X8 7.6 0.4 10 .
11 10 ACTIVE 9.6 X7 2.6 0.4 11 .
12 -11 ACTIVE 9.6 X8 6.6 0.4 12 .
13 12 ACTIVE 9.6 X7 3.6 0.4 13 .
14 -13 ACTIVE 9.6 X8 5.6 0.4 14 .
15 14 ACTIVE 9.6 X7 4.6 0.4 15 .
16 -15 ACTIVE 9.6 X8 4.6 0.4 16 .
17 16 ACTIVE 9.6 X7 5.6 0.4 17 .
18 -17 ACTIVE 9.6 X8 3.6 0.4 18 .
19 18 ACTIVE 9.6 X7 6.6 0.4 19 .
20 -19 ACTIVE 9.6 X8 2.6 0.4 20 .
21 20 ACTIVE 9.6 X7 7.6 0.4 21 .
22 -21 ACTIVE 9.6 X8 1.6 0.4 22 .
23 22 ACTIVE 9.6 X7 8.6 0.4 23 .
24 -23 ACTIVE 9.6 X8 0.6 0.4 24 .
25 24 ACTIVE 9.6 X7 9.6 0.4 25 .
26 -25 INFEASIBLE 8.5333333 . . . 24 .
27 25 ACTIVE 9.5 X9 0.5 0.5 25 .
28 -27 INFEASIBLE 7.8 . . . 24 .
29 27 SUBOPTIMAL 9 . . . 6 9
30 6 ACTIVE 12.428571 X8 12.43 0.42857 7 9
31 30 ACTIVE 12.375 X9 0.375 0.375 8 9
32 31 SUBOPTIMAL 12 . . . 3 6
33 -3 FATHOMED 13.063239 . . . 2 6
34 -2 ACTIVE 16.547134 X6 0.816 0.78733 3 6
35 34 ACTIVE 14.46789 X1 0.128 0.91743 4 6
36 35 ACTIVE 14.28125 X9 7.219 0.28125 5 6
37 36 ACTIVE 14.257979 X8 0.279 0.31915 6 6
38 -37 ACTIVE 14.197917 X2 0.067 0.73958 6 6
39 -38 ACTIVE 13.25 X10 6.5 0.75 7 6
40 39 ACTIVE 13.222222 X9 4.444 0.66667 8 6
41 40 ACTIVE 13.212766 X10 5.83 0.55319 9 6
42 41 ACTIVE 13.166667 X8 6.333 0.5 10 6
43 -42 ACTIVE 13.15625 X10 4.812 0.53125 11 6
44 43 SUBOPTIMAL 13 . . . 4 5
45 37 ACTIVE 14.111111 X10 7.111 0.11111 4 5
46 45 ACTIVE 14.104762 X5 0.01 0.11429 5 5
47 -46 FATHOMED 10.230769 . . . 4 5
48 46 SUBOPTIMAL 14 . . . 2 4
49 -34 ACTIVE 16.363499 X12 8.796 0.78733 3 4
50 49 ACTIVE 16.220741 X9 0.782 0.86074 4 4

SAS OnlineDoc: Version 8

162 � Chapter 3. The LP Procedure

51 -50 ACTIVE 16.179592 X12 7.776 0.72653 5 4
52 51 ACTIVE 15.997778 X9 1.633 1.07778 6 4
53 52 ACTIVE 15.927381 X2 0.054 0.77381 7 4
54 53 ACTIVE 15.660606 X1 0.053 0.45253 8 4
55 -54 FATHOMED 13.386667 . . . 7 4
56 54 ACTIVE 15.555556 X10 7.556 0.44444 8 4
57 56 ACTIVE 15.52381 X5 0.048 0.52381 9 4
58 -57 FATHOMED 12.853333 . . . 8 4
59 57 SUBOPTIMAL 15 . . . 3 3
60 50 FATHOMED 16.117029 . . . 2 3
61 -49 SUBOPTIMAL 16 . . . 1 2
62 1 ACTIVE 18.0223 X4 0.827 0.81338 2 2
63 62 FATHOMED 15.927292 . . . 1 1
64 -62 ACTIVE 17.67723 X10 7.93 0.43662 2 1
65 64 ACTIVE 17.488782 X6 0.737 0.91026 3 1
66 -65 ACTIVE 17.225962 X8 2.38 0.69231 4 1
67 66 ACTIVE 17.221818 X1 0.016 0.37111 5 1
68 -67 FATHOMED 14.5 . . . 4 1
69 67 FATHOMED 17.172375 . . . 3 1
70 -66 FATHOMED 17.138028 . . . 2 1
71 65 FATHOMED 15.784375 . . . 1 1
72 -64 ACTIVE 17.166667 X6 0.833 0.33333 1 1
73 -72 SUBOPTIMAL 17 . . . 0 .

The LP Procedure

Solution Summary

Integer Optimal Solution

Objective Value 17

Phase 1 Iterations 0
Phase 2 Iterations 16
Phase 3 Iterations 111
Integer Iterations 73
Integer Solutions 7
Initial Basic Feasible Variables 12
Time Used (seconds) 0
Number of Inversions 20

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

SAS OnlineDoc: Version 8

Example 3.12. An Assignment Problem � 163

The LP Procedure

Variable Summary

Variable Reduced
Col Name Status Type Price Activity Cost

1 X1 DEGEN BINARY 0 0 0
2 X2 DEGEN BINARY 0 0 0
3 X3 DEGEN BINARY 0 0 0
4 X4 BINARY 0 1 -18
5 X5 DEGEN BINARY 0 0 0
6 X6 BINARY 0 1 -1
7 X7 INTEGER 1 0 -6.5
8 X8 INTEGER 1 0 -3.266667
9 X9 INTEGER 1 0 -1.333333

10 X10 INTEGER 1 8 -8
11 X11 INTEGER 1 0 -8.545455
12 X12 BASIC INTEGER 1 9 0
13 _OBS2_ BASIC SLACK 0 20 0
14 _OBS3_ BASIC SLACK 0 5 0
15 _OBS4_ BASIC SLACK 0 10 0
16 _OBS5_ SLACK 0 0 -1
17 _OBS6_ SLACK 0 0 -1.5
18 _OBS7_ SLACK 0 0 -0.266667
19 _OBS8_ SLACK 0 0 -0.333333
20 _OBS9_ BASIC SLACK 0 2 0
21 _OBS10_ SLACK 0 0 -2.545455
22 _OBS11_ BASIC SLACK 0 2 0

The LP Procedure

Constraint Summary

Constraint S/S Dual
Row Name Type Col Rhs Activity Activity

1 _OBS1_ OBJECTVE . 0 17 .
2 _OBS2_ LE 13 110 90 0
3 _OBS3_ LE 14 95 90 0
4 _OBS4_ LE 15 80 70 0
5 _OBS5_ LE 16 100 100 1
6 _OBS6_ LE 17 0 0 1.5
7 _OBS7_ LE 18 0 0 0.2666667
8 _OBS8_ LE 19 0 0 0.3333333
9 _OBS9_ LE 20 0 -2 0

10 _OBS10_ LE 21 0 0 2.5454545
11 _OBS11_ LE 22 0 -2 0

Although the VARSELECT=PENALTY strategy works well in this example, there is
no guarantee that it will work well with your model. Experimentation with various
strategies is necessary to find the one that works well with your model and data,
particularly if a model is solved repeatedly with few changes to either the structure
or the data.

Example 3.12. An Assignment Problem

This example departs somewhat from the emphasis of previous ones. Typically, linear
programming models are large, have considerable structure, and are solved with some

SAS OnlineDoc: Version 8

164 � Chapter 3. The LP Procedure

regularity. Some form of automatic model building, or matrix generation as it is
commonly called, is a useful aid. The sparse input format provides a great deal of
flexibility in model specification so that, in many cases, the DATA step can be used
to generate the matrix.

The following assignment problem illustrates some techniques in matrix generation.
In this example, you have four machines that can produce any of six grades of cloth,
and you have five customers that demand various amounts of each grade of cloth. The
return from supplying a customer with a demanded grade depends on the machine on
which the cloth was made. In addition, the machine capacity depends both upon the
specific machine used and the grade of cloth made.

To formulate this problem, leti denote customer,j denote grade, andk denote ma-
chine. Then letxijk denote the amount of cloth gradej made on machinek for
customeri; let rijk denote the return from selling one unit of gradej cloth made on
machinek to customeri ; let dij denote the demand for gradej cloth by customeri;
let cjk denote the number of units of machinek required to produce one unit of grade
j cloth; and letak denote the number of units of machinek available. Then, you get

max�ijkrijkxijk

subject to: �kxijk = dij for all i andj
�ijcjkxijk � ak for all k
xijk � 0 for all i, j, andk

The data are saved in three data sets. TheOBJECT data set contains the returns for
satisfying demand, theDEMAND data set contains the amounts demanded, and the
RESOURCE data set contains the conversion factors for each grade and the total
amounts of machine resources available.

title ’An Assignment Problem’;

data object;
input machine customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 1 102 140 105 105 125 148
1 2 115 133 118 118 143 166
1 3 70 108 83 83 88 86
1 4 79 117 87 87 107 105
1 5 77 115 90 90 105 148
2 1 123 150 125 124 154 .
2 2 130 157 132 131 166 .
2 3 103 130 115 114 129 .
2 4 101 128 108 107 137 .
2 5 118 145 130 129 154 .
3 1 83 . . 97 122 147
3 2 119 . . 133 163 180
3 3 67 . . 91 101 101
3 4 85 . . 104 129 129
3 5 90 . . 114 134 179
4 1 108 121 79 . 112 132

SAS OnlineDoc: Version 8

Example 3.12. An Assignment Problem � 165

4 2 121 132 92 . 130 150
4 3 78 91 59 . 77 72
4 4 100 113 76 . 109 104
4 5 96 109 77 . 105 145
;

data demand;
input customer

grade1 grade2 grade3 grade4 grade5 grade6;
datalines;

1 100 100 150 150 175 250
2 300 125 300 275 310 325
3 400 0 400 500 340 0
4 250 0 750 750 0 0
5 0 600 300 0 210 360
;

data resource;
input machine

grade1 grade2 grade3 grade4 grade5 grade6 avail;
datalines;

1 .250 .275 .300 .350 .310 .295 744
2 .300 .300 .305 .315 .320 . 244
3 .350 . . .320 .315 .300 790
4 .280 .275 .260 . .250 .295 672
;

The linear program is built using the DATA step. The model is saved in a SAS data
set in the sparse input format for PROC LP. Each section of the following DATA step
generates a piece of the linear program. The first section generates the objective func-
tion; the next section generates the demand constraints; and the last section generates
the machine resource availability constraints.

/* build the linear programming model */

data model;
array grade{6} grade1-grade6;
length _type_ $ 8 _row_ $ 8 _col_ $ 8;
keep _type_ _row_ _col_ _coef_;

ncust=5;
nmach=4;
ngrade=6;

/* generate the objective function */

type=’MAX’;
row=’OBJ’;
do k=1 to nmach;

do i=1 to ncust;
link readobj; /* read the objective coefficient data */

SAS OnlineDoc: Version 8

166 � Chapter 3. The LP Procedure

do j=1 to ngrade;
if grade{j}^=. then do;

col=’X’||put(i,1.)||put(j,1.)||put(k,1.);
coef=grade{j};
output;

end;
end;

end;
end;

/* generate the demand constraints */

do i=1 to ncust;
link readdmd; /* read the demand data */
do j=1 to ngrade;

if grade{j}^=. then do;
type=’EQ’;
row=’DEMAND’||put(i,1.)||put(j,1.);
col=’_RHS_’;
coef=grade{j};
output;
type=’ ’;
do k=1 to nmach;

col=’X’||put(i,1.)||put(j,1.)||put(k,1.);
coef=1.0;
output;

end;
end;

end;
end;

/* generate the machine constraints */

do k=1 to nmach;
link readres; /* read the machine data */
type=’LE’;
row=’MACHINE’||put(k,1.);
col=’_RHS_’;
coef=avail;
output;
type=’ ’;
do i=1 to ncust;

do j=1 to ngrade;
if grade{j}^=. then do;

col=’X’||put(i,1.)||put(j,1.)||put(k,1.);
coef=grade{j};
output;
end;

end;
end;

end;

readobj: set object;
return;

SAS OnlineDoc: Version 8

Example 3.12. An Assignment Problem � 167

readdmd: set demand;
return;
readres: set resource;
return;
run;

With the model built and saved in a data set, it is ready for solution using PROC LP.
The following program solves the model and saves the solution in the data set called
PRIMAL:

/* solve the linear program */

proc lp data=model sparsedata noprint primalout=primal;
run;

The following output is produced by PROC LP.

Output 3.12.1. Label ?

An Assignment Problem

The LP Procedure

Problem Summary

Objective Function Max OBJ
Rhs Variable _RHS_
Type Variable _type_
Problem Density (%) 5.31

Variables Number

Non-negative 120
Slack 4

Total 124

Constraints Number

LE 4
EQ 30
Objective 1

Total 35

SAS OnlineDoc: Version 8

168 � Chapter 3. The LP Procedure

The LP Procedure

Solution Summary

Terminated Successfully

Objective Value 871426.03763

Phase 1 Iterations 8
Phase 2 Iterations 43
Phase 3 Iterations 0
Integer Iterations 0
Integer Solutions 0
Initial Basic Feasible Variables 26
Time Used (seconds) 0
Number of Inversions 3

Epsilon 1E-8
Infinity 1.797693E308
Maximum Phase 1 Iterations 100
Maximum Phase 2 Iterations 100
Maximum Phase 3 Iterations 99999999
Maximum Integer Iterations 100
Time Limit (seconds) 120

The solution is prepared for reporting using the DATA step, and a report is written
using PROC TABULATE.

/* report the solution */

data solution;
set primal;
keep customer grade machine amount;
if substr(_var_,1,1)=’X’ then do;

if _value_^=0 then do;
customer = substr(_var_,2,1);
grade = substr(_var_,3,1);
machine = substr(_var_,4,1);
amount = _value_;
output;

end;
end;

run;

proc tabulate data=solution;
class customer grade machine;
var amount;
table (machine*customer), (grade*amount);

run;

The report shown in Output 3.12.2 gives the assignment of customer, grade of cloth,
and machine that maximizes the return and does not violate the machine resource
availability.

SAS OnlineDoc: Version 8

Example 3.12. An Assignment Problem � 169

Output 3.12.2. An Assignment Problem

	grade			

	1	2	3	4
	------------+------------+------------+------------			
	amount	amount	amount	amount
	------------+------------+------------+------------			
	Sum	Sum	Sum	Sum
-------------------+------------+------------+------------+------------				
machine	customer			
---------+---------				
1	1	.	100.00	150.00
	---------+------------+------------+------------+------------			
	2	.	.	300.00
	---------+------------+------------+------------+------------			
	3	.	.	256.72
	---------+------------+------------+------------+------------			
	4	.	.	750.00
	---------+------------+------------+------------+------------			
	5	.	92.27	.
---------+---------+------------+------------+------------+------------				
2	3	.	.	143.28
	---------+------------+------------+------------+------------			
	5	.	.	300.00
---------+---------+------------+------------+------------+------------				
3	2	.	.	.
	---------+------------+------------+------------+------------			
	3	.	.	.
	---------+------------+------------+------------+------------			
	4	.	.	.
	---------+------------+------------+------------+------------			
	5	.	.	.
---------+---------+------------+------------+------------+------------				
4	1	100.00	.	.
	---------+------------+------------+------------+------------			
	2	300.00	125.00	.
	---------+------------+------------+------------+------------			
	3	400.00	.	.
	---------+------------+------------+------------+------------			
	4	250.00	.	.
	---------+------------+------------+------------+------------			
	5	.	507.73	.

(Continued)

SAS OnlineDoc: Version 8

170 � Chapter 3. The LP Procedure

	grade	

	5	6
	------------+------------	
	amount	amount
	------------+------------	
	Sum	Sum
-------------------+------------+------------		
machine	customer	
---------+---------		
1	1	175.00
	---------+------------+------------	
	2	.
	---------+------------+------------	
	3	.
	---------+------------+------------	
	4	.
	---------+------------+------------	
	5	.
---------+---------+------------+------------		
2	3	340.00
	---------+------------+------------	
	5	.
---------+---------+------------+------------		
3	2	310.00
	---------+------------+------------	
	3	.
	---------+------------+------------	
	4	.
	---------+------------+------------	
	5	210.00
---------+---------+------------+------------		
4	1	.
	---------+------------+------------	
	2	.
	---------+------------+------------	
	3	.
	---------+------------+------------	
	4	.
	---------+------------+------------	
	5	.

Example 3.13. A Scheduling Problem

Scheduling problems is an application area where techniques in model generation
can be valuable. Problems involving scheduling are often solved with integer pro-
gramming and are similar to assignment problems. In this example, you have eight
one-hour time slots in each of five days. You have to assign four people to these time
slots so that each slot is covered on every day. You allow the people to specify pref-
erence data for each slot on each day. In addition, there are constraints that must be
satisfied:

� Each person has some slots for which they are unavailable

� Each person must have either slot 4 or 5 off for lunch

� Each person can work only two time slots in a row

� Each person can work only a specified number of hours in the week.

To formulate this problem, leti denote person,j denote time slot, andk denote day.
Then, letxijk = 1 if personi is assigned to time slotj on dayk, and 0 otherwise;
let pijk denote the preference of personi for slot j on dayk; and lethi denote the
number of hours in a week that personi will work. Then, you get

SAS OnlineDoc: Version 8

Example 3.13. A Scheduling Problem � 171

max�ijkpijkxijk

subject to: �ixijk = 1 for all j andk
xi4k + xi5k � 1 for all i, andk
xi;`;k + xi;`+1;k + xi;`+2;k � 2 for all i, andk, and` = 1; :::; 6
�jkxijk � hi for all i
xijk = 0 or 1 for all i, andk such thatpijk > 0

otherwisexijk = 0

To solve this problem, create a data set that has the hours and preference data for each
individual, time slot, and day. A 10 represents the most desirable time slot, and a 1
represents the least desirable time slot. In addition, a 0 indicates that the time slot is
not available.

title ’A Scheduling Problem’;

data raw;
input name $ hour slot mon tue wed thu fri;
datalines;

marc 20 1 10 10 10 10 10
marc 20 2 9 9 9 9 9
marc 20 3 8 8 8 8 8
marc 20 4 1 1 1 1 1
marc 20 5 1 1 1 1 1
marc 20 6 1 1 1 1 1
marc 20 7 1 1 1 1 1
marc 20 8 1 1 1 1 1
mike 20 1 10 9 8 7 6
mike 20 2 10 9 8 7 6
mike 20 3 10 9 8 7 6
mike 20 4 10 3 3 3 3
mike 20 5 1 1 1 1 1
mike 20 6 1 2 3 4 5
mike 20 7 1 2 3 4 5
mike 20 8 1 2 3 4 5
bill 20 1 10 10 10 10 10
bill 20 2 9 9 9 9 9
bill 20 3 8 8 8 8 8
bill 20 4 0 0 0 0 0
bill 20 5 1 1 1 1 1
bill 20 6 1 1 1 1 1
bill 20 7 1 1 1 1 1
bill 20 8 1 1 1 1 1
bob 20 1 10 9 8 7 6
bob 20 2 10 9 8 7 6
bob 20 3 10 9 8 7 6
bob 20 4 10 3 3 3 3
bob 20 5 1 1 1 1 1
bob 20 6 1 2 3 4 5
bob 20 7 1 2 3 4 5
bob 20 8 1 2 3 4 5
;

SAS OnlineDoc: Version 8

172 � Chapter 3. The LP Procedure

These data are read by the following DATA step, and an integer program is built
to solve the problem. The model is saved in the data set namedMODEL. First,
the objective function is built using the data saved in theRAW data set. Then, the
constraints requiring a person to be working in each time slot are built. Next, the
constraints allowing each person time for lunch are added. Then, the constraints
restricting people to only two consecutive hours are added. Next, the constraints lim-
iting the time that any one person works in a week are added. Finally, the constraints
allowing a person to be assigned only to a time slot for which he is available are
added. The code to build each of these constraints follows the formulation closely.

data model;
array week{5} mon tue wed thu fri;
array hours{4} hours1 hours2 hours3 hours4;
retain hours1-hours4;

set raw end=eof;

length _row_ $ 8 _col_ $ 8 _type_ $ 8;
keep _type_ _col_ _row_ _coef_;

if name=’marc’ then i=1;
else if name=’mike’ then i=2;
else if name=’bill’ then i=3;
else if name=’bob’ then i=4;

hours{i}=hour;

/* build the objective function */

do k=1 to 5;
col=’x’||put(i,1.)||put(slot,1.)||put(k,1.);

row=’object’;
coef=week{k} * 1000;
output;
row=’upper’;
if week{k}=0 then _coef_=1;
output;
row=’integer’;
coef=1;
output;

end;

/* build the rest of the model */

if eof then do;
coef=.;
col=’ ’;
type=’upper’;
row=’upper’;
output;
type=’max’;

SAS OnlineDoc: Version 8

Example 3.13. A Scheduling Problem � 173

row=’object’;
output;
type=’int’;
row=’integer’;
output;

/* every hour 1 person working */

do j=1 to 8;
do k=1 to 5;

row=’work’||put(j,1.)||put(k,1.);
type=’eq’;
col=’_RHS_’;
coef=1;
output;
coef=1;
type=’ ’;
do i=1 to 4;

col=’x’||put(i,1.)||put(j,1.)||put(k,1.);
output;

end;
end;

end;

/* each person has a lunch */

do i=1 to 4;
do k=1 to 5;

row=’lunch’||put(i,1.)||put(k,1.);
type=’le’;
col=’_RHS_’;
coef=1;
output;
coef=1;
type=’ ’;
col=’x’||put(i,1.)||’4’||put(k,1.);
output;
col=’x’||put(i,1.)||’5’||put(k,1.);
output;

end;
end;

/* work at most 2 slots in a row */

do i=1 to 4;
do k=1 to 5;

do l=1 to 6;
row=’seq’||put(i,1.)||put(k,1.)||put(l,1.);
type=’le’;
col=’_RHS_’;
coef=2;

output;
coef=1;

SAS OnlineDoc: Version 8

174 � Chapter 3. The LP Procedure

type=’ ’;
do j=0 to 2;

col=’x’||put(i,1.)||put(l+j,1.)||put(k,1.);
output;

end;
end;

end;
end;

/* work at most n hours in a week */

do i=1 to 4;
row=’capacit’||put(i,1.);
type=’le’;
col=’_RHS_’;
coef=hours{i};
output;
coef=1;
type=’ ’;
do j=1 to 8;

do k=1 to 5;
col=’x’||put(i,1.)||put(j,1.)||put(k,1.);
output;

end;
end;

end;
end;

run;

The model saved in the data set namedMODEL is in the sparse format. The con-
straint that requires one person to work in time slot 1 on day 2 is namedWORK12;
it is �ixi12 = 1.

The following model is saved

TYPE _COL_ _ROW_ _COEF_

eq _RHS_ work12 1
x112 work12 1
x212 work12 1
x312 work12 1
x412 work12 1

in theMODEL data set (which has 1387 observations).

The model is solved using the LP procedure. The option PRIMALOUT=SOLUTION
causes PROC LP to save the primal solution in the data set namedSOLUTION.

/* solve the linear program */

proc lp sparsedata noprint PRIMALOUT=solution
time=1000 maxit1=1000 maxit2=1000;

run;

SAS OnlineDoc: Version 8

Example 3.13. A Scheduling Problem � 175

The following DATA step below takes the solution data setSOLUTION and gener-
ates a report data set namedREPORT. It translates the variable namesxijk so that
a more meaningful report can be written. Then, the PROC TABULATE procedure is
used to display a schedule showing how the eight time slots are covered for the week.

/* report the solution */
title ’Reported Solution’;

data report;
set solution;
keep name slot mon tue wed thu fri;
if substr(_var_,1,1)=’x’ then do;

if _value_>0 then do;
n=substr(_var_,2,1);
slot=substr(_var_,3,1);
d=substr(_var_,4,1);
if n=’1’ then name=’marc’;
else if n=’2’ then name=’mike’;
else if n=’3’ then name=’bill’;
else name=’bob’;
if d=’1’ then mon=1;
else if d=’2’ then tue=1;
else if d=’3’ then wed=1;
else if d=’4’ then thu=1;
else fri=1;
output;

end;
end;

run;

proc format;
value xfmt 1=’ xxx ’;

run;

proc tabulate data=report;
class name slot;
var mon--fri;
table (slot * name), (mon tue wed thu fri)*sum=’ ’*f=xfmt.

/misstext=’ ’;
run;

Output 3.13.1 from PROC TABULATE summarizes the schedule. Notice that the
constraint requiring that a person be assigned to each possible time slot on each day
is satisfied.

SAS OnlineDoc: Version 8

176 � Chapter 3. The LP Procedure

Output 3.13.1. A Scheduling Problem

A Scheduling Problem

--
| | mon | tue | wed | thu | fri |
|-------------------+--------+--------+--------+--------+--------|
slot	name					
---------+---------						
1	bill				xxx	xxx
	---------+--------+--------+--------+--------+--------					
	marc	xxx	xxx	xxx		
---------+---------+--------+--------+--------+--------+--------						
2	bob	xxx				
	---------+--------+--------+--------+--------+--------					
	marc		xxx	xxx	xxx	xxx
---------+---------+--------+--------+--------+--------+--------						
3	marc				xxx	xxx
	---------+--------+--------+--------+--------+--------					
	mike	xxx	xxx	xxx		
---------+---------+--------+--------+--------+--------+--------						
4	mike	xxx	xxx	xxx	xxx	xxx
---------+---------+--------+--------+--------+--------+--------						
5	marc	xxx	xxx	xxx	xxx	xxx
---------+---------+--------+--------+--------+--------+--------						
6	bob			xxx	xxx	
	---------+--------+--------+--------+--------+--------					
	mike	xxx	xxx			xxx
---------+---------+--------+--------+--------+--------+--------						
7	bob		xxx			
	---------+--------+--------+--------+--------+--------					
	marc	xxx				
	---------+--------+--------+--------+--------+--------					
	mike			xxx	xxx	xxx
---------+---------+--------+--------+--------+--------+--------						
8	bob					xxx
	---------+--------+--------+--------+--------+--------					
	marc	xxx				
	---------+--------+--------+--------+--------+--------					
	mike		xxx	xxx	xxx	
--

Recall that PROC LP puts a character string in the macro variable–ORLP– that
describes the characteristics of the solution on termination. This string can be parsed
using macro functions and the information obtained can be used in report writing.
The variable can be displayed on the log with

%put &_orlp_; .

That statement produces Output 3.13.2.

Output 3.13.2. –ORLP–

STATUS=SUCCESSFUL PHASE=3 OBJECTIVE=211000 P_FEAS=YES D_FEAS=YES
INT_ITER=0 INT_FEAS=1 ACTIVE=0 INT_BEST=211000 PHASE1_ITER=49
PHASE2_ITER=55 PHASE3_ITER=0

From this you learn, for example, that at termination the solution is integer optimal
and has an objective value of 211000.

SAS OnlineDoc: Version 8

Example 3.14. A Multicommodity Transshipment Problem with Fixed Charges �

177

Example 3.14. A Multicommodity Transshipment Problem
with Fixed Charges

The following example illustrates a DATA step program for generating a linear pro-
gram to solve a multicommodity network flow model that has fixed charges. Consider
a network consisting of the following nodes: farm-a, farm-b, farm-c, Chicago, St.
Louis, and New York. You can ship three commodities from each farm to Chicago
or St. Louis and from Chicago or St. Louis to New York. The following table shows
the unit shipping cost for each of the four commodities across each of the arcs. The
table also shows the supply (positive numbers) at each of the from nodes and the de-
mand (negative numbers) at each of the to nodes. The fixed charge is a fixed cost for
shipping any nonzero amount across an arc. For example, if any amount of any of the
four commodities is sent from farm-c to St. Louis, then a fixed charge of 75 units is
added to the shipping cost.

Table 3.8. Farms to cities network problem

Unit Shipping Supply and Demand Fixed
From To Cost Charge
Node Node 1 2 3 4 1 2 3 4

farm-a Chicago 20 15 17 22 100 100 40 . 100
farm-b Chicago 15 15 15 30 100 200 50 50 75
farm-c Chicago 30 30 10 10 40 100 75 100 100
farm-a StLouis 30 25 27 22 150
farm-c StLouis 10 9 11 10 75
Chicago NY 75 75 75 75 -150 -200 -50 -75 200
StLouis NY 80 80 80 80 200

The following program is designed to take the data in the form given in the preceding
table. It builds the node arc incidence matrix for a network given in this form and adds
integer variables to capture the fixed charge using the type of constraints discussed
in Example 3.8. The program solves the model using PROC LP, saves the solution
in the PRIMALOUT= data set namedSOLUTION, and displays the solution. The
DATA step can be easily modified to handle larger problems with similar structure.

title ’Multi-commodity Transshipment Problem with Fixed Charges’;

data network;
retain M 1.0e6;
length _col_ $ 22 _row_ $ 22;
keep _type_ _col_ _row_ _coef_;
array sd sd1-sd4;
array c c1-c4;

input arc $10. from $ to $ c1 c2 c3 c4 sd1 sd2 sd3 sd4 fx;

/* for the first observation define some of the rows */

if _n_=1 then do;

SAS OnlineDoc: Version 8

178 � Chapter 3. The LP Procedure

type=’upperbd’;
row=’upper’;
output;
type=’lowerbd’;
row=’lower’;
output;
type=’min’;
row=’obj’;
output;
type=’integer’;
row=’int’;
output;
end;

col=’_rhs_’;
type=’le’;

do over sd; /* loop for each commodity */
coef=sd;
if sd>0 then do; /* the node is a supply node */

row=from||’ commodity’||put(_i_,2.);
if from^=’ ’ then output;

end;
else if sd<0 then do; /* the node is a demand node */

row=to||’ commodity’||put(_i_,2.);
if to^=’ ’ then output;

end;
else if from^=’ ’ & to^=’ ’ then do; /* a transshipment node */

coef=0;
row=from||’ commodity’||put(_i_,2.);
output;
row=to ||’ commodity’||put(_i_,2.);
output;

end;
end;

do over c; /* loop for each commodity */
col=arc||’ commodity’||put(_i_,2.);
if from^=’ ’ & to^=’ ’ then do;

/* add node arc incidence matrix*/
type=’le’;
row=from||’ commodity’||put(_i_,2.);
coef=1;
output;
row=to ||’ commodity’||put(_i_,2.);
coef=-1;
output;
type=’ ’;
row=’obj’;
coef=c;
output;

/* add fixed charge variables */
type=’le’;
row=arc;

SAS OnlineDoc: Version 8

Example 3.14. A Multicommodity Transshipment Problem with Fixed Charges �

179

coef=1;output;
col=’_rhs_’;
type=’ ’;
coef=0;
output;
col=arc||’fx’;
coef=-M;
output;
row=’int’;
coef=1;
output;
row=’obj’;
coef=fx;
output;
row=’upper’;
coef=1;
output;

end;
end;

datalines;
a-Chicago farm-a Chicago 20 15 17 22 100 100 40 . 100
b-Chicago farm-b Chicago 15 15 15 30 100 200 50 50 75
c-Chicago farm-c Chicago 30 30 10 10 40 100 75 100 100
a-StLouis farm-a StLouis 30 25 27 22 150
c-StLouis farm-c StLouis 10 9 11 10 75
Chicago-NY Chicago NY 75 75 75 75 -150 -200 -50 -75 200
StLous-NY StLouis NY 80 80 80 80 200
;

/* solve the model */

proc lp sparsedata pout=solution noprint;
run;

/* print the solution */

data;
set solution;
rename _var_=arc _value_=amount;
if _value_^=0 & _type_=’NON-NEG’;

run;

proc print;
id arc;
var amount;

run;

The results from this example are shown in Output 3.14.1. The NOPRINT option in
the PROC LP statement suppresses the Variable and Constraint Summary sections.
This is useful when solving large models for which a report program is available.

SAS OnlineDoc: Version 8

180 � Chapter 3. The LP Procedure

Here, the solution is saved in data setSOLUTION and reported using PROC PRINT.
The solution shows the amount that is shipped over each arc.

Output 3.14.1. Multicommodity Transshipment Problem with Fixed Charges

Multi-commodity Transhipment Problem with Fixed-Charges

arc amount

a-Chicago commodity 1 10
a-Chicago commodity 2 100
b-Chicago commodity 1 100
c-Chicago commodity 3 50
c-Chicago commodity 4 75
c-StLouis commodity 1 40
c-StLouis commodity 2 100
Chicago-NY commodity 1 110
Chicago-NY commodity 2 100
Chicago-NY commodity 3 50
Chicago-NY commodity 4 75
StLous-NY commodity 1 40
StLous-NY commodity 2 100

References

Bartels, R. (1971), “A Stabilization of the Simplex Method,”Numerical Mathemat-
ics, 16, 414–434.

Bland, R.G. (1977), “New Finite Pivoting Rules for the Simplex Method,”Mathe-
matics of Operations Research, 2, 103–107.

Breau, R. and Burdet, C.A. (1974), “Branch and Bound Experiments in Zero-one
Programming,”Mathematical Programming Study, ed. M.L. Balinski, 2, 1–50.

Crowder, H., Johnson, E.L., and Padberg, M.W. (1983), “Solving Large-Scale Zero-
One Linear Programming Problems,”Operations Research, 31, 803–834.

Dantzig, G.B. (1963),Linear Programming and Extensions, Princeton: Princeton
University Press.

Garfinkel, R.S. and Nemhauser, G.L. (1972),Integer Programming, New York: John
Wiley & Sons.

Greenberg, H.J. ed. (1978), “Pivot Selection Tactics,” inDesign and Implementation
of Optimization Software, Netherlands: Sijthoff & Noordhoff.

Hadley, G. (1962),Linear Programming, Reading, Massachusetts: Addison-Wesley.

Harris, P. (1975), “Pivot Selection Methods of the Devex LP Code,” inMathematical
Programming Study 4, Amsterdam: North-Holland Publishing Co.

Ignizio, J.P. (1976),Goal Programming and Extensions, Lexington, MA: D.C. Heath
and Company.

Murtagh, B.A.(1981)Advanced Linear Programming, Computation and Practice,
McGraw-Hill Inc.

SAS OnlineDoc: Version 8

References � 181

Nelson, Mark. (1992),The Data Compression Book, M&T Books.

Reid, J.K. (1976), “A Sparsity-Exploiting Variant of the Bartels-Golub Decomposi-
tion for Linear Programming Bases,”Harwell Report CSS 20, A.E.R.E., Didcot,
Oxfordshire.

Reid, J.K. (1976), “Fortran Subroutines for Handling Sparse Linear Programming
Bases,”Harwell Report AERE-R 8269, A.E.R.E., Didcot, Oxfordshire.

Savelsbergh, M.W.P. (1996) “Preprocessing and Probing Techniques for Mixed Inte-
ger Programming Problems,”ORSA J. on Computing 6,445–454.

Taha, H.A. (1975),Integer Programming, New York: Academic Press.

SAS OnlineDoc: Version 8

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/OR® User’s Guide: Mathematical Programming, Version 8, Cary, NC: SAS Institute
Inc., 1999. 566 pp.

SAS/OR® User’s Guide: Mathematical Programming, Version 8
Copyright © 1999 SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–491–8
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, ACF/VTAM®, AIX®, APPN®, MVS/ESA®, OS/2®, OS/390®, VM/ESA®, and VTAM®

are registered trademarks or trademarks of International Business Machines Corporation.
® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

