
Chapter 4
The NETFLOW Procedure

Chapter Table of Contents

OVERVIEW . 185
Introduction . 185
Network Models . 185
Side Constraints . 187
Advantages of Network Models over LP Models 192
Mathematical Description of NPSC . 193
Flow Conservation Constraints . 194
Nonarc Variables . 194
Warm Starts . 195

GETTING STARTED . 196
Introductory Example 197

SYNTAX . 203
Interactivity . 205
Functional Summary . 207
PROC NETFLOW Statement. 212
CAPACITY Statement . 228
COEF Statement . 228
COLUMN Statement . 228
CONOPT Statement 229
COST Statement . 229
DEMAND Statement . 229
HEADNODE Statement .. 230
ID Statement . 230
LO Statement . 230
NAME Statement . 231
NODE Statement. 231
PIVOT Statement . 231
PRINT Statement . 232
QUIT Statement . 239
RESET Statement. 239
RHS Statement . 256
ROW Statement . 257
RUN Statement . 257

184 � Chapter 4. The NETFLOW Procedure

SAVE Statement . 258
SHOW Statement . 259
SUPDEM Statement . 264
SUPPLY Statement . 264
TAILNODE Statement . .. 264
TYPE Statement . 265
VAR Statement . 266

DETAILS . 267
Input Data Sets. 267
Output Data Sets . 276
Case Sensitivity . 279
Loop Arcs . 279
Multiple Arcs . 280
Pricing Strategies . 280
Dual Variables, Reduced Costs, and Status 284
The Working Basis Matrix . 285
Flow and Value Bounds . .. 286
Tightening Bounds and Side Constraints. 286
Reasons for Infeasibility .. 287
Missing S Supply and Missing D Demand Values. 288
Warm Starts . 292
How to Make the Data Read of PROC NETFLOW More Efficient 296
Macro Variable–ORNETFL . 301

THE INTERIOR POINT ALGORITHM 303
Introduction . 303
Network Models: Interior Point Algorithm 304
Linear Programming Models: Interior Point Algorithm 315

EXAMPLES . 334
Example 4.1 Shortest Path Problem . 334
Example 4.2 Minimum Cost Flow Problem 336
Example 4.3 Using a Warm Start . 339
Example 4.4 Production, Inventory, Distribution Problem. 340
Example 4.5 Using an Unconstrained Solution Warm Start 347
Example 4.6 Adding Side Constraints, Using a Warm Start 351
Example 4.7 Using a Constrained Solution Warm Start 357
Example 4.8 Nonarc Variables in the Side Constraints 361

REFERENCES . 368

SAS OnlineDoc: Version 8

Chapter 4
The NETFLOW Procedure

Overview

Introduction

Constrained network models can be used to describe a wide variety of real-world ap-
plications ranging from production, inventory, and distribution problems to financial
applications. These problems can be solved with the NETFLOW procedure.

These models are conceptionally easy since they are based on network diagrams that
represent the problem pictorially. PROC NETFLOW accepts the network specifi-
cation in a format that is particularly suited to networks. This not only simplifies
problem description but also aids in the interpretation of the solution.

Certain algebraic features of networks are exploited by a specialized version of the
Simplex method so that solution times are reduced. Another class of optimization
algorithm, the Interior-Point algorithm, has been implemented in PROC NETFLOW
and can be used as an alternative to the Simplex algorithm to solve network problems.

Should PROC NETFLOW detect there are no arcs and nodes in the model’s data,
(that is, there is no network component), it assumes it is dealing with a linear pro-
gramming (LP) problem. The Interior Point algorithm is automatically elected to
perform the optimization. PROC NETFLOW’s ability to solve LP problems is an
important ability new for the Version 7 release of the SAS System.

Network Models

A network consists of a collection of nodes joined by a collection of arcs. The arcs
connect nodes and convey flow of one or more commodities that are supplied at
supply nodes and demanded at demand nodes in the network. Each arc has a cost
per unit of flow, a flow capacity, and a lower flow bound associated with it. An
important concept in network modeling isconservation of flow. Conservation of flow
means that the total flow in arcs directed toward a node, plus the supply at the node,
minus the demand at the node, equals the total flow in arcs directed away from the
node.

A network and its associated data can be described in SAS data sets. PROC NET-
FLOW uses this description and finds the flow through each arc in the network that
minimizes the total cost of flow, meets the demand at demand nodes using the supply
at supply nodes so that the flow through each arc is on or between the arc’s lower
flow bound and its capacity, and satisfies the conservation of flow.

One class of network model is the production-inventory-distribution problem. The
diagram in Figure 4.1 illustrates this problem. The subscript on the PROD, INVN-

186 � Chapter 4. The NETFLOW Procedure

TRY, and SALES nodes indicates the time period. Notice that if you by replicate
sections of the model, the notion of time can be included.

at end

Production

Sales

Inventorystock

on hand

Production

Inventory

Sales

Production

Inventory

Sales

i-1

i-1

i-1

i

i

i

i+1

i+1

i+1

stock

Figure 4.1. Production-Inventory-Distribution Problem

In this type of model, the nodes can represent a wide variety of facilities. Several ex-
amples are are suppliers, spot markets, importers, farmers, manufacturers, factories,
parts of plant, production lines, waste disposal facilities, workstations, warehouses,
coolstores, depots, wholesalers, export markets, ports, rail junctions, airports, road
intersections, cities, regions, shops, customers, and consumers. The diversity of this
selection demonstrates the richness of potential applications of this model.

Depending upon the interpretation of the nodes, the objectives of the modeling exer-
cise can vary widely. Some common types of objectives are:

� to reduce collection or purchase costs of raw materials

� to reduce inventory holding or backorder costs. Warehouses and other storage
facilities sometimes have capacities, and there can be limits on the amount of
goods that can be placed on backorder

� to decide where facilities should be located and what the capacity of these
should be. Network models have been used to help decide where factories,
hospitals, ambulance and fire stations, oil and water wells, and schools should
be sited

� to determine the assignment of resources (machines, production capability,
workforce) to tasks, schedules, classes, or files

� to determine the optimal distribution of goods or services. This usually means
minimizing transportation costs, and reducing time in transit or distances cov-
ered

SAS OnlineDoc: Version 8

Side Constraints � 187

� to find the shortest path from one location to another

� to ensure that demands (for example, production requirements, market de-
mands, contractural obligations) are meet

� to maximize profits from the sale of products or the charge for services

� to maximize production by identifying bottlenecks

Some specific applications are

� car distribution models. These help determine which models and numbers of
cars should be manufactured in which factories and where to distribute cars
from these factories to zones in the United States in order to meet customer
demand at least cost.

� models in the timber industry. These help determine when to plant and mill
forests, schedule production of pulp, paper and wood products, and distribute
products for sale or export.

� military applications. The nodes can be theatres, bases, ammunition dumps,
logistical suppliers, or radar installations. Some models are used to find the
best ways to mobilize personnel and supplies and to evacuate the wounded in
the least amount of time.

� communications applications. The nodes can be telephone exchanges, trans-
mission lines, satelite links, and consumers. In a model of an electrical grid,
the nodes can be transformers, powerstations, watersheds, reservoirs, dams,
and consumers. Of concern might be the effect of high loads or outages.

Side Constraints

Often all the details of a problem cannot be specified in a network model alone. In
many of these cases, these details can be represented by the addition of side con-
straints to the model. Side constraints are a linear function of arc variables (variables
containing flow through an arc) and nonarc variables (variables that are not part of
the network). This enhancement to the basic network model allows for very general
problems. In fact, any linear program can be represented with network models having
these types of side constraints. The examples that follow help to clarify the notion
of side constraints.

PROC NETFLOW enables you to specify side constraints. The data for a side con-
straint consist of coefficients of arcs and coefficients of nonarc variables, a constraint
type (that is,�, =, or�) and a right-hand-side value (rhs). A nonarc variable has a
name, an objective function coefficient analogous to an arc cost, an upper bound anal-
ogous to an arc capacity, and a lower bound analogous to an arc lower flow bound.
PROC NETFLOW finds the flow through the network and the values of any nonarc
variables that minimize the total cost of the solution. Flow conservation is met, flow
through each arc is on or between the arc’s lower flow bound and capacity, the value
of each nonarc variable is on or between the nonarc’s lower and upper bounds, and the
side constraints are satisfied. Note that, since many linear programs have large em-
bedded networks, PROC NETFLOW is an attractive alternative to the LP procedure
in many cases.

SAS OnlineDoc: Version 8

188 � Chapter 4. The NETFLOW Procedure

In order for arcs to be specified in side constraints, they must be named. By default,
PROC NETFLOW names arcs using the names of the nodes at the head and tail of
the arc. An arc is named with its tail node name followed by an "–" followed by the
name of its head node name. For example, an arc from nodefrom to nodeto is called
from–to.

Proportional Constraints
Side constraints in network models fall into several categories that have special struc-
ture. They are frequently used when the flow through an arc must be proportional to
the flow through another arc. Such constraints are calledproportional constraintsand
are useful in models where production is subject to refining or modification into dif-
ferent materials. The amount of each output, or any waste, evaporation, or reduction
can be specified as a proportion of input.

Typically the arcs near the supply nodes carry raw materials and the arcs near the
demand nodes carry refined products. For example, in a model of the milling industry,
the flow through some arcs may represent quantities of wheat. After the wheat is
processed, the flow through other arcs might be flour. For others it might be bran. The
side constraints model the relationship between the amount of flour or bran produced
as a proportion of the amount of wheat milled. Some of the wheat can end up as
neither flour, bran, nor any useful product, so this waste is drained away via arcs to a
waste node.

Wheat
1.0

Mill Bran

Wheat

Other
0.5

0.3

0.2

Figure 4.2. Proportional Constraints

Consider the network fragment in Figure 4.2. The arcWheat–Mill conveys the wheat
milled. The cost of flow on this arc is the milling cost. The capacity of this arc is the
capacity of the mill. The lower flow bound on this arc is the minimum quantity that
must be milled for the mill to operate economically. The constraints

0.3Wheat–Mill - Mill–Flour = 0.0
0.2Wheat–Mill - Mill–Bran = 0.0

SAS OnlineDoc: Version 8

Side Constraints � 189

force every unit of wheat that is milled to produce 0.3 units of flour and 0.2 units of
bran. Note that it is not necessary to specify the constraint

0.5Wheat–Mill - Mill–Other = 0.0

since flow conservation implies that any flow that does not traverse through
Mill–Flour or Mill–Bran must be conveyed throughMill–Other. And, computation-
ally, it is better if this constraint is not specified, since there is one less side constraint
and fewer problems with numerical precision. Notice that the sum of the proportions
must equal 1.0 exactly; otherwise, flow conservation is violated.

Blending Constraints
Blending or quality constraints can also influence the recipes or proportions of in-
gredients that are mixed. For example, different raw materials can have different
properties. In an application of the oil industry, the amount of products that are ob-
tained could be different for each type of crude oil. Furthermore, fuel might have a
minimum octane requirement or limited sulphur or lead content, so that a blending of
crudes is needed to produce the product.

The network fragment in Figure 4.3 shows an example of this.

Port
litre

Diesel

USA

Gasolene

MidEast

Refinery

Other

litre

4.75 units/

5 units/

4 units/
litre

Figure 4.3. Blending Constraints

The arcsMidEast–Port and USA–Port convey crude oil from the two sources.
The arcPort–Refinery represents refining while the arcsRefinery–Gasolene and
Refinery–Diesel carry the gas and diesel produced. The proportional constraints

0.4Port–Refinery - Refinery–Gasolene = 0.0
0.2Port–Refinery - Refinery–Diesel = 0.0

capture the restrictions for producing gasolene and diesel from crude. Suppose that,
if only crude from the Middle East is used, the resulting diesel would contain 5 units
of sulphur per litre. If only crude from the USA is used, the resulting diesel would
contain 4 units of sulphur per litre. Diesel can have at most 4.75 units of sulphur per

SAS OnlineDoc: Version 8

190 � Chapter 4. The NETFLOW Procedure

litre. Some crude from the USA must be used if Middle East crude is used in order to
meet the 4.75 sulphur per litre limit. The side constraint to model this requirement is

5 MidEast–Port + 4 USA–Port - 4.75Port–Refinery � 0.0

SincePort–Refinery = MidEast–Port + USA–Port, flow conservation allows this
constraint to be simplified to

1 MidEast–Port - 3 USA–Port � 0.0

If, for example, 120 units of crude from the Middle East is used, then at least 40 units
of crude from the USA must be used. The preceding constraint is simplified because
you assume that the sulphur concentration of diesel is proportional to the sulphur
concentration of the crude mix. If this is not the case, the relation

0.2Port–Refinery = Refinery–Diesel

is used to obtain

5 MidEast–Port + 4 USA–Port - 4.75 (1.0/0.2Refinery–Diesel) � 0.0

which equals

5 MidEast–Port + 4 USA–Port - 23.75Refinery–Diesel � 0.0

An example similar to this Oil Industry problem is solved in the “Introductory
Example” section on page 197.

Multicommodity Problems
Side constraints are also used in models in which there are capacities on transporta-
tion or some other shared resource, or there are limits on overall production or de-
mand in multicommodity, multidivisional or multiperiod problems. Each commod-
ity, division or period can have a separate network coupled to one main system by the
side constraints. Side constraints are used to combine the outputs of subdivisions of
a problem (either commodities, outputs in distinct time periods, or different process
streams) to meet overall demands or to limit overall production or expenditures. This
method is more desirable than doing separatelocal optimizations for individual com-
modity, process, or time networks and then trying to establish relationships between
each when determining an overall policy if theglobal constraint is not satisfied. Of
course, to make models more realistic, side constraints may be necessary in the local
problems.

SAS OnlineDoc: Version 8

Side Constraints � 191

City2com2

Factorycom1

City1com1

City2com1

Factorycom2

Commodity 1

Commodity 2

City1com2

Figure 4.4. Multicommodity Problem

Figure 4.4 shows two network fragments. They represent identical production and
distribution sites but of two different commodities. Suffixcom1represents commod-
ity 1 and suffixcom2represents commodity 2. The nodes Factorycom1 and Fac-
torycom2 model the same factory, and nodes City1com1 and City1com2 model the
same location, city1. Similarly, City2com1 and City2com2 are the same location,
city2. Suppose that commodity 1 occupies 2 cubic meters, commodity 2 occupies 3
cubic meters, the truck dispatched to city1 has a capacity of 200 cubic meters, and
the truck dispatched to city2 has a capacity of 250 cubic meters. How much of each
commodity can be loaded onto each truck? The side constraints for this case are

2 Factorycom1–City1com1 + 3 Factorycom2–City1com2 � 200
2 Factorycom1–City2com1 + 3 Factorycom2–City2com2 � 250

Large Modeling Strategy
In many cases, the flow through an arc might actually represent the flow or movement
of a commodity from place to place or from time period to time period. However,
sometimes an arc is included in the network as a method of capturing some aspect of
the problem that you would not normally think of as part of a network model. For
example, in a multiprocess multiproduct model (Figure 4.5), there might be subnet-
works for each process and each product. The subnetworks can be joined together by
a set of arcs that have flows that represent the amount of productj produced by pro-
cessi. To model an upper limit constraint on the total amount of productj that can be
produced, direct all arcs carrying productj to a single node and from there through
a single arc. The capacity of this arc is the upper limit of productj production. It is
preferable to model this structure in the network rather than to include it in the side
constraints because the efficiency of the optimizer is affected less by a reasonable
increase in the size of the network.

SAS OnlineDoc: Version 8

192 � Chapter 4. The NETFLOW Procedure

Product 2 subnetwork

Capacity of

Process 1

Capacity is upper limit of

Product 1 production

Capacity of Capacity is upper limit of

Process 2 Product 2 production

Process 1 subnetwork

Process 2 subnetwork

Product 1 subnetwork

Figure 4.5. Multiprocess, Multiproduct Example

It is often a good strategy when starting a project to use a small network formulation
and then to use that model as a framework upon which to add detail. For example,
in the multiprocess multiproduct model, you might start with the network depicted in
Figure 4.5. Then, for example, the process subnetwork can be enhanced to include
the distribution of products. Other phases of the operation could be included by
adding more subnetworks. Initially, these subnetworks can be single nodes, but in
subsequent studies they can be expanded to include greater detail.

The NETFLOW procedure accepts the side constraints in the same dense and sparse
formats that the LP procedure provides. Although PROC LP can solve network prob-
lems, the NETFLOW procedure generally solves network flow problems more effi-
ciently than PROC LP.

Advantages of Network Models over LP Models

Many linear programming problems have large embedded network structures. Such
problems often result when modeling manufacturing processes, transportation or dis-
tribution networks, or resource allocation, or when deciding where to locate facilities.
Often, some commodity is to be moved from place to place, so the more natural for-
mulation in many applications is that of a constrained network rather than a linear
program.

Using a network diagram to visualize a problem makes it possible to capture the
important relationships in an easily understood picture form. The network diagram
aids the communication between model builder and model user, making it easier to
comprehend how the model is structured, how it can be changed, and how results can
be interpreted.

SAS OnlineDoc: Version 8

Mathematical Description of NPSC � 193

If a network structure is embedded in a linear program, the problem is a network
programming problem with side constraints (NPSC). When the network part of the
problem is large compared to the nonnetwork part, especially if the number of side
constraints is small, it is worthwhile to exploit this structure in the solution process.
This is what PROC NETFLOW does. It uses a variant of the Revised Primal Simplex
algorithm that exploits the network structure to reduce solution time.

Mathematical Description of NPSC

If a network programming problem with side constraints hasn nodes,a arcs,g nonarc
variables, andk side constraints, then the formal statement of the problem solved by
PROC NETFLOW is

minfcTx+ dT zg

subject to Fx = b

Hx+Qz �;=;� r

l � x � u

m � z � v

where

c is thea x 1 objective function coefficient of arc variables vector (the cost vector)

x is thea x 1 arc variable value vector (the flow vector)

d is theg x 1 objective function coefficient of nonarc variables vector

z is theg x 1 nonarc variable value vector

F is then x a node-arc incidence matrix of the network, where

Fi;j = �1 if arc j is directed toward nodei

Fi;j = 1 if arc j is directed from nodei

Fi;j = 0 otherwise

b is then x 1 node supply/demand vector, where

bi = s if nodei has supply capability ofs units of flow

bi = �d if nodei has demandd of units of flow

bi = 0 if nodei is a transshipment node

H is thek x a side constraint coefficient matrix for arc variables, whereHi;j is the
coefficient of arcj in theith side constraint

Q is thek x g side constraint coefficient matrix for nonarc variables, whereQi;j is
the coefficient of nonarcj in theith side constraint

r is thek x 1 side constraint right-hand-side vector

SAS OnlineDoc: Version 8

194 � Chapter 4. The NETFLOW Procedure

l is thea x 1 arc lower flow bound vector

u is thea x 1 arc capacity vector

m is theg x 1 nonarc variable value lower bound vector

v is theg x 1 nonarc variable value upper bound vector

Flow Conservation Constraints

The constraintsFx = b are referred to as the nodal flow conservation constraints.
These constraints algebraically state that the sum of the flow through arcs directed
toward a node plus that node’s supply, if any, equals the sum of the flow through arcs
directed away from that node plus that node’s demand, if any. The flow conservation
constraints are implicit in the network model and should not be specified explic-
itly in side constraint data when using PROC NETFLOW. The constrained problems
most amenable to being solved by the NETFLOW procedure are those that, after the
removal of the flow conservation constraints, have very few constraints. PROC NET-
FLOW is superior to linear programming optimizers when the network part of the
problem is significantly larger than the nonnetwork part.

The NETFLOW procedure can also be used to solve an unconstrained network prob-
lem, that is, one in whichH, Q, d, r, andz do not exist.

Nonarc Variables

If the constrained problem to be solved has no nonarc variables, thenQ, d, andz do
not exist. However, nonarc variables can be used to simplify side constraints. For
example, if a sum of flows appears in many constraints, it may be worthwhile to
equate this expression with a nonarc variable and use this in the other constraints. By
assigning a nonarc variable a nonzero objective function, it is then possible to incur
a cost for using resources above some lowest feasible limit. Similarly, a profit (a
negative objective function coefficient value) can be made if all available resources
are not used.

In some models, nonarc variables are used in constraints to absorb excess resources or
supply needed resources. Then, either the excess resource can be used or the needed
resource can be supplied to another component of the model.

For example, consider a multicommodity problem of making television sets that have
either 19- or 25-inch screens. In their manufacture, 3 and 4 chips, respectively, are
used. Production occurs at 2 factories during March and April. The supplier of chips
can supply only 2600 chips to factory1 and 3750 chips to factory2 each month. The
names of arcs are in the formProdn–s–m , wheren is the factory number,s is the
screen size, andm is the month. For example,Prod1–25–Apr is the arc that conveys
the number of 25-inch TVs produced in factory 1 during April. You might have to
determine similar systematic naming schemes for your application.

SAS OnlineDoc: Version 8

Warm Starts � 195

As described, the constraints are

3 Prod1–19–Mar + 4 Prod1–25–Mar � 2600
3 Prod2–19–Mar + 4 Prod2–25–Mar � 3750
3 Prod1–19–Apr + 4 Prod1–25–Apr � 2600
3 Prod2–19–Apr + 4 Prod2–25–Apr � 3750

If there are chips that could be obtained for use in March but not used for production
in March, why not keep these unused chips until April? Furthermore, if the March
excess chips at factory 1 could be used either at factory 1 or factory 2 in April, the
model becomes

3 Prod1–19–Mar + 4 Prod1–25–Mar + F1–Unused–Mar = 2600
3 Prod2–19–Mar + 4 Prod2–25–Mar + F2–Unused–Mar = 3750

3 Prod1–19–Apr + 4 Prod1–25–Apr - F1–Kept–Since–Mar = 2600
3 Prod2–19–Apr + 4 Prod2–25–Apr - F2–Kept–Since–Mar = 3750

F1–Unused–Mar + F2–Unused–Mar (continued)
- F1–Kept–Since–Mar - F2–Kept–Since–Mar � 0.0

whereF1–Kept–Since–Mar is the number of chips used during April at factory1
that were obtained in March at either factory1 or factory2 andF2–Kept–Since–Mar
is the number of chips used during April at factory2 that were obtained in March.
The last constraint ensures that the number of chips used during April that were ob-
tained in March does not exceed the number of chips not used in March. There
may be a cost to hold chips in inventory. This can be modeled having a positive
objective function coefficient for the nonarc variablesF1–Kept–Since–Mar and
F2–Kept–Since–Mar. Moreover, nonarc variable upper bounds represent an upper
limit on the number of chips that can be held in inventory between March and April.

See Example 4.4 through Example 4.8 for a series of examples that use this TV
problem. The use of nonarc variables as descriped previously is illustrated.

Warm Starts

If you have a problem that has already been partially solved and is to be solved further
to obtain a better, optimal solution, information describing the solution now available
may be used as an initial solution. This is calledwarm startingthe optimization, and
the supplied solution data are called thewarm start.

Some data can be changed between the time when a warm start is created and when
it is used as a warm start for a subsequent PROC NETFLOW run. Elements in the
arc variable cost vector, the nonarc variable objective function coefficient vector, and
sometimes capacities, upper value bounds, and side constraint data can be changed
between PROC NETFLOW calls. See the “Warm Starts” section on page 292. Also,
see Example 4.4 through Example 4.8 (the TV problem) for a series of examples that
show the use of warm starts.

SAS OnlineDoc: Version 8

196 � Chapter 4. The NETFLOW Procedure

Getting Started

To solve network programming problems with side constraints using PROC NET-
FLOW, you save a representation of the network and the side constraints in three
SAS data sets. These data sets are then passed to PROC NETFLOW for solution.
There are various forms that a problem’s data can take. You can use any one or a
combination of several of these forms.

The NODEDATA=data set contains the names of the supply and demand nodes and
the supply or demand associated with each. These are the elements in the column
vectorb in problem (NPSC).

The ARCDATA= data set contains information about the variables of the problem.
Usually these are arcs, but there can be data related to nonarc variables in the ARC-
DATA= data set as well.

An arc is identified by the names of its tail node (where it originates) and head node
(where it is directed). Each observation can be used to identify an arc in the network
and, optionally, the cost per flow unit across the arc, the arc’s capacity, lower flow
bound, and name. These data are associated with the matrixF and the vectorsc, l,
andu in problem (NPSC).

Note: althoughF is a node-arc incidence matrix, it is specified in the ARCDATA=
data set by arc definitions.

In addition, the ARCDATA= data set can be used to specify information about nonarc
variables, including objective function coefficients, lower and upper value bounds,
and names. These data are the elements of the vectorsd,m, andv in problem (NPSC).
Data for an arc or nonarc variable can be given in more than one observation.

Supply and demand data also can be specified in the ARCDATA= data set. In such a
case, the NODEDATA= data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand-sides.
These data are elements of the matricesH andQ and the vectorr. Constraint types
are also specified in the CONDATA= data set. You can include in this data set up-
per bound values or capacities, lower flow or value bounds, and costs or objective
function coefficients. It is possible to give all information about some or all nonarc
variables in the CONDATA= data set.

An arc is identified in this data set by its name. If you specify an arc’s name in the
ARCDATA= data set, then this name is used to associate data in the CONDATA=
data set with that arc. Each arc also has a default name that is the name of the tail and
head node of the arc concatenated together and separated by an underscore character;
tail–head, for example.

If you use the dense side constraint input format (described in the “CONDATA= Data
Set” section on page 267) and want to use these default arc names, these arc names
are names of SAS variables in the VAR list of the CONDATA= data set.

SAS OnlineDoc: Version 8

Introductory Example � 197

If you use the sparse side constraint input format (see the “CONDATA= Data Set”
section on page 267) and want to use these default arc names, these arc names are
values of the COLUMN list SAS variable of the CONDATA= data set.

The execution of PROC NETFLOW has three stages. In the preliminary (zeroth)
stage, the data are read from the NODEDATA= data set, the ARCDATA= data set, and
the CONDATA= data set. Error checking is performed, and an initial basic feasible
solution is found. If an unconstrained solution warm start is being used, then an
initial basic feasible solution is obtained by reading additional data containing that
information in the NODEDATA= data set and the ARCDATA= data set. In this case,
only constraint data and nonarc variable data are read from the CONDATA= data set.

In the first stage, an optimal solution to the network flow problem neglecting any side
constraints is found. The primal and dual solutions for this relaxed problem can be
saved in the ARCOUT= data set and the NODEOUT= data set, respectively. These
data sets are named in the PROC NETFLOW, RESET, and SAVE statements.

In the second stage, an optimal solution to the network flow problem with side con-
straints is found. The primal and dual solutions for this side constrained problem are
saved in the CONOUT= data set and the DUALOUT= data set, respectively. These
data sets are also named in the PROC NETFLOW, RESET, and SAVE statements.

If a constrained solution warm start is being used, PROC NETFLOW does not per-
form the zeroth and first stages. This warm start can be obtained by reading basis
data containing additional information in the NODEDATA= data set (also called the
DUALIN= data set) and the ARCDATA= data set.

If warm starts are to be used in future optimizations, the FUTURE1 and FUTURE2
options must be used in addition to specifying names for the data sets that contain
the primal and dual solutions in stages one and two. Then, most of the information
necessary for restarting problems is available in the output data sets containing the
primal and dual solutions of both the relaxed and side constrained network programs.

Introductory Example

Consider the following transshipment problem for an oil company. Crude oil is
shipped to refineries where it is processed into gasoline and diesel fuel. The gaso-
line and diesel fuel are then distributed to service stations. At each stage, there are
shipping, processing, and distribution costs. Also, there are lower flow bounds and
capacities.

In addition, there are two sets of side constraints. The first set is that two times the
crude from the Middle East cannot exceed the throughput of a refinery plus 15 units.
(The words “plus 15 units” that finishes the last sentence is used to enable some side
constraints in this example to have a nonzero rhs.) The second set of constraints are
necessary to model the situation that one unit of crude mix processed at a refinery
yields three-fourths of a unit of gasoline and one-fourth of a unit of diesel fuel.

SAS OnlineDoc: Version 8

198 � Chapter 4. The NETFLOW Procedure

Because there are two products that are not independent in the way in which they
flow through the network, a network programming problem with side constraints is
an appropriate model for this example (see Figure 4.6). The side constraints are used
to model the limitations on the amount of Middle Eastern crude that can be processed
by each refinery and the conversion proportions of crude to gasoline and diesel fuel.

diesel

u.s.a.

refinery1 r1

r2

ref1 gas

ref2 gas

servstn1

gas

servstn1

servstn2

gas

servstn2

middle

east

refinery2

diesel

diesel

refl

diesel

ref2

Figure 4.6. Oil Industry Example

To solve this problem with PROC NETFLOW, save a representation of the model in
three SAS data sets. In the NODEDATA= data set, you name the supply and demand
nodes and give the associated supplies and demands. To distinguish demand nodes
from supply nodes, specify demands as negative quantities. For the oil example, the
NODEDATA= data set can be saved as follows:

title ’Oil Industry Example’;
title3 ’Setting Up Nodedata = Noded For Proc Netflow’;
data noded;

input _node_&$15. _sd_;
datalines;

middle east 100
u.s.a. 80
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;

SAS OnlineDoc: Version 8

Introductory Example � 199

The ARCDATA= data set contains the rest of the information about the network.
Each observation in the data set identifies an arc in the network and gives the cost per
flow unit across the arc, the capacities of the arc, the lower bound on flow across the
arc, and the name of the arc.

title3 ’Setting Up Arcdata = Arcd1 For Proc Netflow’;
data arcd1;

input _from_&$11. _to_&$15. _cost_ _capac_ _lo_ _name_ $;
datalines;

middle east refinery 1 63 95 20 m_e_ref1
middle east refinery 2 81 80 10 m_e_ref2
u.s.a. refinery 1 55 . . .
u.s.a. refinery 2 49 . . .
refinery 1 r1 200 175 50 thruput1
refinery 2 r2 220 100 35 thruput2
r1 ref1 gas . 140 . r1_gas
r1 ref1 diesel . 75 . .
r2 ref2 gas . 100 . r2_gas
r2 ref2 diesel . 75 . .
ref1 gas servstn1 gas 15 70 . .
ref1 gas servstn2 gas 22 60 . .
ref1 diesel servstn1 diesel 18 . . .
ref1 diesel servstn2 diesel 17 . . .
ref2 gas servstn1 gas 17 35 5 .
ref2 gas servstn2 gas 31 . . .
ref2 diesel servstn1 diesel 36 . . .
ref2 diesel servstn2 diesel 23 . . .
;

Finally, the CONDATA= data set contains the side constraints for the model.

title3 ’Setting Up Condata = Cond1 For Proc Netflow’;
data cond1;

input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
-2 . 1 . . . >= -15

. -2 . . 1 . GE -15

. . -3 4 . . EQ 0

. . . . -3 4 = 0
;

Note that the SAS variable names in the CONDATA= data set are the names of arcs
given in the ARCDATA= data set. These are the arcs that have nonzero constraint
coefficients in side constraints. For example, the proportionality constraint that spec-
ifies that one unit of crude at each refinery yields three-fourths of a unit of gasoline
and one-fourth of a unit of diesel fuel is given forREFINERY 1 in the third obser-
vation and forREFINERY 2 in the last observation. The third observation requires
that each unit of flow on arcTHRUPUT1 equals three-fourths of a unit of flow on arc
R1–GAS. Because all crude processed atREFINERY 1 flows throughTHRUPUT1
and all gasoline produced atREFINERY 1 flows throughR1–GAS, the constraint
models the situation. It proceeds similarly forREFINERY 2 in the last observation.

SAS OnlineDoc: Version 8

200 � Chapter 4. The NETFLOW Procedure

To find the minimum cost flow through the network that satisfies the supplies, de-
mands, and side constraints, invoke PROC NETFLOW as follows:

proc netflow
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */

run;

The following messages, that appear on the SAS log, summarize the model as read
by PROC NETFLOW and note the progress toward a solution:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 180 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of iterations performed (neglecting any

constraints)= 8 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 50600 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of arc and nonarc variable side constraint

coefficients= 8 .
NOTE: Number of iterations, optimizing with constraints= 4 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= 50875 .
NOTE: The data set WORK.SOLUTION has 18 observations and 14

variables.

Unlike PROC LP, which displays the solution and other information as output, PROC
NETFLOW saves the optimum in output SAS data sets that you specify. For this
example, the solution is saved in the SOLUTION data set. It can be displayed with
the PRINT procedure as

proc print data=solution;
var _from_ _to_ _cost_ _capac_ _lo_ _name_

supply _demand_ _flow_ _fcost_ _rcost_;
sum _fcost_;
title3 ’Constrained Optimum’; run;

SAS OnlineDoc: Version 8

Introductory Example � 201

Constrained Optimum

Obs _from_ _to_ _cost_ _capac_ _lo_ _name_

1 refinery 1 r1 200 175 50 thruput1
2 refinery 2 r2 220 100 35 thruput2
3 r1 ref1 diesel 0 75 0
4 r1 ref1 gas 0 140 0 r1_gas
5 r2 ref2 diesel 0 75 0
6 r2 ref2 gas 0 100 0 r2_gas
7 middle east refinery 1 63 95 20 m_e_ref1
8 u.s.a. refinery 1 55 99999999 0
9 middle east refinery 2 81 80 10 m_e_ref2

10 u.s.a. refinery 2 49 99999999 0
11 ref1 diesel servstn1 diesel 18 99999999 0
12 ref2 diesel servstn1 diesel 36 99999999 0
13 ref1 gas servstn1 gas 15 70 0
14 ref2 gas servstn1 gas 17 35 5
15 ref1 diesel servstn2 diesel 17 99999999 0
16 ref2 diesel servstn2 diesel 23 99999999 0
17 ref1 gas servstn2 gas 22 60 0
18 ref2 gas servstn2 gas 31 99999999 0

Obs _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_ _RCOST_

1 . . 145.00 29000.00 .
2 . . 35.00 7700.00 29
3 . . 36.25 0.00 .
4 . . 108.75 0.00 .
5 . . 8.75 0.00 .
6 . . 26.25 0.00 .
7 100 . 80.00 5040.00 .
8 80 . 65.00 3575.00 .
9 100 . 20.00 1620.00 .

10 80 . 15.00 735.00 .
11 . 30 30.00 540.00 .
12 . 30 0.00 0.00 12
13 . 95 68.75 1031.25 .
14 . 95 26.25 446.25 .
15 . 15 6.25 106.25 .
16 . 15 8.75 201.25 .
17 . 40 40.00 880.00 .
18 . 40 0.00 0.00 7

========
50875.00

Figure 4.7. CONOUT=SOLUTION

Notice that, in CONOUT=SOLUTION (Figure 4.7), the optimal flow through each
arc in the network is given in the variable named–FLOW– , and the cost of flow
through each arc is given in the variable–FCOST–.

SAS OnlineDoc: Version 8

202 � Chapter 4. The NETFLOW Procedure

u.s.a.

refinery1 r1

r2

ref1 gas

ref2 gas

26.25

servstn1

gas

servstn1

servstn2

gas

servstn2

middle

east

refinery2

diesel

diesel

refl

diesel

ref2

diesel

65

20

145
40

30

6.25

8.75

-15

-95

-30

-40

80

15

80

100

35

108.75

36.25

26.25

8.75

68.75

Figure 4.8. Oil Industry solution

SAS OnlineDoc: Version 8

Syntax � 203

Syntax

The following statements are used by PROC NETFLOW.

PROC NETFLOW options ;
CAPACITY variable ;
COEF variables ;
COLUMN variable ;
CONOPT;
COST variable ;
DEMAND variable ;
HEADNODE variable ;
ID variables ;
LO variable ;
NAME variable ;
NODE variable ;
PIVOT;
PRINT options ;
QUIT;
RESET options ;
ROW variables ;
RHS variables ;
RUN;
SAVE options ;
SHOW options ;
SUPDEM variable ;
SUPPLY variable ;
TAILNODE variable ;
TYPE variable ;
VAR variables ;

SAS OnlineDoc: Version 8

204 � Chapter 4. The NETFLOW Procedure

PROC NETFLOW options ; required statement

TAILNODE variable ;

HEADNODE variable ;

COST variable ;

CAPACITY variable ;

LO variable ;

SUPPLY variable;

DEMAND variable;

NAME variable ;

ID variables ;

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

optional ARCDATA lists

NODE variable;

SUPDEM variable;

�
optional NODEDATA lists

COLUMN variable ;

ROW variables ;

COEF variables ;

TYPE variable ;

VAR variables ;

RHS variable;

9>>>>>>=
>>>>>>;

optional CONDATA lists

RESET options ;

SAVE options ;

SHOW options ;

PRINT options ;

CONOPT;

RUN;

PIVOT;

QUIT;

9>>>>>>>>>>=
>>>>>>>>>>;

optional interactive statements

SAS OnlineDoc: Version 8

Interactivity � 205

Interactivity

PROC NETFLOW can be used interactively. You begin by giving the PROC NET-
FLOW statement, and you must specify the ARCDATA= data set. The CONDATA=
data set must also be specified if the problem has side constraints. If necessary, spec-
ify the NODEDATA= data set.

The variable lists should be given next. If you have variables in the input data sets
that have special names (for example, a variable in the ARCDATA= data set named

–TAIL– that has tail nodes of arcs as values), it may not be necessary to have many
or any variable lists.

The CONOPT, PIVOT, PRINT, QUIT, SAVE, SHOW, RESET, and RUN statements
follow and can be listed in any order. The CONOPT and QUIT statements can be
used only once. The others can be used as many times as needed.

Use the RESET or SAVE statement to change the names of the output data sets.
With RESET, you can also indicate the reasons why optimization should stop, (for
example, you can indicate the maximum number of stage 1 or stage 2 iterations that
can be performed). PROC NETFLOW then has a chance to either execute the next
statement, or, if the next statement is one that PROC NETFLOW does not recognize
(the next PROC or DATA step in the SAS session), do any allowed optimization and
finish. If no new statement has been submitted, you are prompted for one. Some
options of the RESET statement enable you to control aspects of the Primal Simplex
algorithm. Specifying certain values for these options can reduce the time it takes to
solve a problem. Note that any of the RESET options can be specified in the PROC
NETFLOW statement.

The RUN statement starts or resumes optimization. The PIVOT statement makes
PROC NETFLOW perform one Simplex iteration. The QUIT statement immedi-
ately stops PROC NETFLOW. The CONOPT statement forces PROC NETFLOW to
consider constraints when it next performs optimization. The SAVE statement has
options that enable you to name output data sets; information about the current solu-
tion is put in these output data sets. Use the SHOW statement if you want to examine
the values of options of other statements. Information about the amount of optimiza-
tion that has been done and the STATUS of the current solution can also be displayed
using the SHOW statement.

The PRINT statement instructs PROC NETFLOW to display parts of the problem.
PRINT ARCS produces information on all arcs. PRINT SOME–ARCS limits this
output to a subset of arcs. There are similar PRINT statements for nonarc variables
and constraints:

print nonarcs;
print some_nonarcs;
print constraints;
print some_cons;

SAS OnlineDoc: Version 8

206 � Chapter 4. The NETFLOW Procedure

PRINT CON–ARCS enables you to limit constraint information that is obtained to
members of a set of arcs that have nonzero constraint coefficients in a set of con-
straints. PRINT CON–NONARCS is the corresponding statement for nonarc vari-
ables.

For example, an interactive PROC NETFLOW run might look something like this:

proc netflow
arcdata=data set
other options;

variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */

run; /* do some optimization */
/* suppose that optimization stopped for */
/* some reason or you manually stopped it */
print options; /* look at the current solution */
save options; /* keep current solution */
show options; /* look at settings */
reset options; /* change some settings, those that */

/* caused optimization to stop */
run; /* do more optimization */
print options; /* look at the optimal solution */
save options; /* keep optimal solution */

If you are interested only in finding the optimal solution, have used SAS variables
that have special names in the input data sets, and want to use default setting for
everything, then the following statement is all you need:

PROC NETFLOW ARCDATA= data set options ;

SAS OnlineDoc: Version 8

Functional Summary � 207

Functional Summary

The following tables outline the options available for the NETFLOW procedure clas-
sified by function.

Table 4.1. Input Data Set Options

Description Statement Option
arcs input data set NETFLOW ARCDATA=
nodes input data set NETFLOW NODEDATA=
constraint input data setNETFLOW CONDATA=

Table 4.2. Options for Networks

Description Statement Option
default arc cost NETFLOW DEFCOST=
default arc capacity NETFLOW DEFCAPACITY=
default arc lower flow bound NETFLOW DEFMINFLOW=
network’s only supply node NETFLOW SOURCE=
SOURCE’s supply capability NETFLOW SUPPLY=
network’s only demand node NETFLOW SINK=
SINK’s demand NETFLOW DEMAND=
excess supply or demand is conveyed through networkNETFLOW THRUNET
find maximal flow between SOURCE and SINK NETFLOW MAXFLOW
cost of bypass arc when solving MAXFLOW problemNETFLOW BYPASSDIV=
find shortest path from SOURCE to SINK NETFLOW SHORTPATH

Table 4.3. Miscellaneous Options

Description Statement Option
infinity value NETFLOW INFINITY=
do constraint row and/or nonarc variable column coefficientNETFLOW SCALE=
scaling, or neither
maximization instead of minimization NETFLOW MAXIMIZE
use warm start solution NETFLOW WARM
all-artificial starting solution NETFLOW ALLART

SAS OnlineDoc: Version 8

208 � Chapter 4. The NETFLOW Procedure

Table 4.4. Data Set Read Options

Description Statement Option
CONDATA has sparse data format NETFLOW SPARSECONDATA
default constraint type NETFLOW DEFCONTYPE=
special COLUMN variable value NETFLOW TYPEOBS=
special COLUMN variable value NETFLOW RHSOBS=
is used to interpret arc and nonarc variable namesNETFLOW NAMECTRL=
in the CONDATA
no new nonarc variables NETFLOW SAME–NONARC–DATA
no nonarc data in the ARCDATA NETFLOW ARCS–ONLY–ARCDATA
data for an arc found in only one obs of ARCDATANETFLOW ARC–SINGLE–OBS
data for an constraint found in only NETFLOW CON–SINGLE–OBS
one obs of CONDATA
data for a coefficient found once in CONDATA NETFLOW NON–REPLIC=
data is grouped, exploited during data read NETFLOW GROUPED=

Table 4.5. Problem Size (approx.) Options

Description Statement Option
number of nodes NETFLOW NNODES=
number of arcs NETFLOW NARCS=
number of nonarc variablesNETFLOW NNAS=
number of coefficients NETFLOW NCOEFS=
number of constraints NETFLOW NCONS=

Table 4.6. Memory Control Options

Description Statement Option
issue memory usage messages to SASLOGNETFLOW MEMREP
number of bytes to use for main memory NETFLOW BYTES=
proportion of memory used by frequently NETFLOW COREFACTOR=
accessed arrays
memory allocated for LU factors NETFLOW DWIA=
linked list for updated column NETFLOW SPARSEP2
use 2-dimensional array instead of LU factorsNETFLOW INVD–2D
for basis matrix
maximum bytes for a single array NETFLOW MAXARRAYBYTES=

Table 4.7. Output Data Set Options: RESET

Description Statement Option
unconstrained solution data setRESET ARCOUT=
unconstrained solution data setRESET NODEOUT=
constrained solution data set RESET CONOUT=
constrained solution data set RESET DUALOUT=

SAS OnlineDoc: Version 8

Functional Summary � 209

Table 4.8. Stop Optimization Options

Description Statement Option
pause after stage 1. Don’t start stage 2 RESET ENDPAUSE1
pause when feasible - stage 1 RESET FEASIBLEPAUSE1
pause when feasible - stage 2 RESET FEASIBLEPAUSE2
maximum number of iterations - stage 1RESET MAXIT1=
maximum number of iterations - stage 2RESET MAXIT2=
negates ENDPAUSE1 RESET NOENDPAUSE1
negates FEASIBLEPAUSE1 RESET NOFEASIBLEPAUSE1
negates FEASIBLEPAUSE2 RESET NOFEASIBLEPAUSE2
pause every PAUSE1 iterations - stage 1RESET PAUSE1=
pause every PAUSE2 iterations - stage 2RESET PAUSE2=

Table 4.9. Simplex Options

Description Statement Option
Use Big M instead of twophase - stage 1 RESET BIGM1
Use Big M instead of twophase - stage 2 RESET BIGM2
anti-cycling option RESET CYCLEMULT1
interchange first eligible nonkey with leaving RESET INTFIRST
key variable
invert working basis matrix (2-dim) every RESET INVFREQ=
INVFREQ= iterations
maximum number of L row operations allowed beforeRESET MAXL=
refactorization done instead of factor column update
maximum number fo LU factor column updates, RESET MAXLUUPDATES=
otherwise refactorize
anticycling option RESET MINBLOCK1
first eligible leaving variable used, RESET LRATIO1
otherwise best is used
first eligible leaving variable used, RESET LRATIO2
otherwise best is used
negates INTFIRST RESET NOINTFIRST
negates LRATIO1 RESET NOLRATIO1
negates LRATIO2 RESET NOLRATIO2
negates PERTURB1 RESET NOPERTURB1
anti-cycling option RESET PERTURB1
re-factorize working basis matrix every RESET REFACTFREQ=
REFACTFREQ= iterations
use twophase instead of Big M - stage 1 RESET TWOPHASE1
use twophase instead of Big M - stage 2 RESET TWOPHASE2
pivot element selection parameter RESET U=
zero tolerance - stage 1 RESET ZERO1=
zero tolerance - stage 2 RESET ZERO2=
zero tolerance - real number comparisons RESET ZEROTOL=

SAS OnlineDoc: Version 8

210 � Chapter 4. The NETFLOW Procedure

Table 4.10. Pricing Options

Description Statement Option
calculate dual values every DUALFREQ= iterations RESET DUALFREQ=
after major iterations
pricing strategy - stage 1 RESET PRICETYPE1=
pricing strategy - stage 2 RESET PRICETYPE2=
used when P1SCAN=PARTIAL RESET P1NPARTIAL=
how nonbasis variables (PRICETYPE1=NOQ) RESET P1SCAN=
or queue candidates (PRICETYPE1=Q) are scanned
used when P2SCAN=PARTIAL RESET P2NPARTIAL=
how nonbasis variables (PRICETYPE2=NOQ) RESET P2SCAN=
or queue candidates (PRICETYPE2=Q) are scanned
initial queue size - stage 1 RESET QSIZE1=
initial queue size - stage 2 RESET QSIZE2=
used when Q1FILLSCAN=PARTIAL RESET Q1FILLNPARTIAL=
how candidates are scanned when filling RESET Q1FILLSCAN=
queue - stage 1
used when Q2FILLSCAN=PARTIAL RESET Q2FILLNPARTIAL=
how candidates are scanned when filling queue - stage 2RESET Q2FILLSCAN=
queue size reduction factor RESET REDUCEQSIZE1=
queue size reduction factor RESET REDUCEQSIZE2=
when the queue are refreshed - stage 1 RESET REFRESHQ1=
when the queue are refreshed - stage 2 RESET REFRESHQ2=

Table 4.11. Miscellaneous Options: RESET

Description Statement Option
output complete basis information to ARCOUT= RESET FUTURE1
and NODEOUT= data sets
output complete basis information to CONOUT= RESET FUTURE2
and DUALOUT= data sets
turn off infeasibility or optimality flags RESET MOREOPT
as more optimization is to be done
negates FUTURE1 RESET NOFUTURE1
negates FUTURE2 RESET NOFUTURE2
negates SCRATCH RESET NOSCRATCH
negates ZTOL1 RESET NOZTOL1
negates ZTOL2 RESET NOZTOL2
do not do stage 1 optimization. Do stage 2 optimizationRESET SCRATCH
display this number of similar SAS log messages, RESET VERBOSE=
suppress the rest
use zero tolerance- stage 1 RESET ZTOL1
use zero tolerance- stage 2 RESET ZTOL2

SAS OnlineDoc: Version 8

Functional Summary � 211

Table 4.12. PRINT Statement Options

Description Statement Option
display everything PRINT PROBLEM
display arc information PRINT ARCS
display nonarc variable information PRINT NONARCS
display variables information PRINT VARIABLES
display constraint information PRINT CONSTRAINTS
display information for some arcs PRINT SOME–ARCS
display information for some nonarc variablesPRINT SOME–NONARCS
display information for some variables PRINT SOME–VARIABLES
display information for some constraints PRINT SOME–CONS
display information for some constraints PRINT CON–ARCS
associated with some arcs
display information for some constraints PRINT CON–NONARCS
associated with some nonarc variables
display information for some constraints PRINT CON–VARIABLES
associated with some variables

Table 4.13. PRINT Statement Qualifiers

Description Statement Option
produce a short report PRINT / SHORT
produce a long report PRINT / LONG
only arcs (nonarc variables) with zero flow (value) PRINT / ZERO
only arcs (nonarc variables) with nonzero flow (value)PRINT / NONZERO
only for basics PRINT / BASIC
only nonbasics PRINT / NONBASIC

Table 4.14. SHOW Statement Options

Description Statement Option
show problem, optimization status SHOW STATUS
show network model parameters SHOW NETSTMT
show data sets that have, will be createdSHOW DATA SETS
show options that pause optimization SHOW PAUSE
show Simplex algorithm options SHOW SIMPLEX
show pricing strategy options SHOW PRICING
show miscellaneous options SHOW MISC

Table 4.15. SHOW Statement Qualifiers

Description Statement Option
only if relevant SHOW RELEVANT
only stage 1 options when doing stage 1.SHOW STAGE
only stage 2 options when doing stage 2

SAS OnlineDoc: Version 8

212 � Chapter 4. The NETFLOW Procedure

Table 4.16. Output Data Set Options: SAVE

Description Statement Option
unconstrained solution data setSAVE ARCOUT=
unconstrained solution data setSAVE NODEOUT=
constrained solution data set SAVE CONOUT=
constrained solution data set SAVE DUALOUT=

Table 4.17. Interior Point algorithm Options

Description Statement Option
use Interior Point algorithm NETFLOW INTPOINT
allowed amount of dual infeasibility RESET TOLDINF=
allowed amount of primal infeasibility RESET TOLPINF=
cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
density threshold for Cholesky processing RESET DENSETHR=
maximum number of Interior Point algorithm iterationsRESET MAXITERB=
Primal-Dual (Duality) gap tolerance RESET PDGAPTOL=
step-length multiplier RESET PDSTEPMULT=
preprocessing type RESET PRSLTYPE=

PROC NETFLOW Statement

PROC NETFLOW options ;

This statement invokes the procedure. The following options and the options listed
with the RESET statement can appear in the PROC NETFLOW statement.

Overview of PROC NETFLOW Options
The options available with the PROC NETFLOW statement are summarized by pur-
pose in Table 4.18.

Table 4.18. Functional Summary, PROC NETFLOW statement

Description Statement Option

Input Data Set Options
arcs input data set NETFLOW ARCDATA=
nodes input data set NETFLOW NODEDATA=
constraint input data set NETFLOW CONDATA=

Output Data Set Options
unconstrained primal solution data set NETFLOW ARCOUT=
unconstrained dual solution data set NETFLOW NODEOUT=
constrained primal solution data set NETFLOW CONOUT=
constrained dual solution data set NETFLOW DUALOUT=

SAS OnlineDoc: Version 8

PROC NETFLOW Statement � 213

Description Statement Option

Options for Networks
default arc cost NETFLOW DEFCOST=
default arc capacity NETFLOW DEFCAPACITY=
default arc lower flow bound NETFLOW DEFMINFLOW=
network’s only supply node NETFLOW SOURCE=
SOURCE’s supply capability NETFLOW SUPPLY=
network’s only demand node NETFLOW SINK=
SINK’s demand NETFLOW DEMAND=
excess supply or demand is conveyed through

network
NETFLOW THRUNET

find maximal flow between SOURCE and
SINK

NETFLOW MAXFLOW

cost of bypass arc when solving MAXFLOW
problem

NETFLOW BYPASSDIV=

find shortest path from SOURCE to SINK NETFLOW SHORTPATH

Miscellaneous Options
infinity value NETFLOW INFINITY=
do constraint row and/or nonarc variable col-

umn coefficient scaling, or neither
NETFLOW SCALE=

maximization instead of minimization NETFLOW MAXIMIZE
use warm start solution NETFLOW WARM
all-artificial starting solution NETFLOW ALLART

Data Set Read Options
CONDATA has sparse data format NETFLOW SPARSECONDATA
default constraint type NETFLOW DEFCONTYPE=
special COLUMN variable value NETFLOW TYPEOBS=
special COLUMN variable value NETFLOW RHSOBS=
is used to interpret arc and nonarc variable

names in the CONDATA
NETFLOW NAMECTRL=

no new nonarc variables NETFLOW SAME–NONARC–DATA
no nonarc data in the ARCDATA NETFLOW ARCS–ONLY–ARCDATA
data for an arc found in only one obs of
ARCDATA

NETFLOW ARC–SINGLE–OBS

data for an constraint found in only one obs of
CONDATA

NETFLOW CON–SINGLE–OBS

data for a coefficient found once in CONDATA NETFLOW NON–REPLIC=
data is grouped, exploited during data read NETFLOW GROUPED=

Problem Size (approx.) Options
number of nodes NETFLOW NNODES=
number of arcs NETFLOW NARCS=
number of nonarc variables NETFLOW NNAS=
number of coefficients NETFLOW NCOEFS=

SAS OnlineDoc: Version 8

214 � Chapter 4. The NETFLOW Procedure

Description Statement Option

number of constraints NETFLOW NCONS=

Memory Control Options
issue memory usage messages to SASLOG NETFLOW MEMREP
number of bytes to use for main memory NETFLOW BYTES=
proportion of memory used by frequently ac-

cessed arrays
NETFLOW COREFACTOR=

memory allocated for LU factors NETFLOW DWIA=
linked list for updated column NETFLOW SPARSEP2
use 2-dimensional array instead of LU factor

for basis matrix
NETFLOW INVD–2D

maximum bytes for a single array NETFLOW MAXARRAYBYTES=

Interior Point algorithm Options
use Interior Point algorithm NETFLOW INTPOINT

The following options can be specified only in the PROC NETFLOW statement and
are relevant to the start of the procedure. Once specified, they cannot be changed.

Data Set Options
This section briefly describes all the input and output data sets used by PROC NET-
FLOW. The ARCDATA= data set, NODEDATA= data set, and CONDATA= data
set can contain SAS variables that have special names, for instance–CAPAC– ,

–COST– , and–HEAD– . PROC NETFLOW looks for such variables if you do
not give explicit variable list specifications. If a SAS variable with a special name is
found and that SAS variable is not in another variable list specification, PROC NET-
FLOW determines that values of the SAS variable are to be interpreted in a special
way. By using SAS variables that have special names, you may not need to have any
variable list specifications.

ARCDATA= SAS-data-set
names the data set that contains arc and, optionally, nonarc variable information and
nodal supply/demand data. The ARCDATA= data set must be specified in all PROC
NETFLOW statements.

ARCOUT=SAS-data-set
AOUT=SAS-data-set

names the output data set that receives all arc and nonarc variable data, including
flows or values, and other information concerning the unconstrained optimal solu-
tion. The supply and demand information can also be found in the ARCOUT= data
set. Once optimization that considers side constraints starts, you are not able to ob-
tain an ARCOUT= data set. Instead, use the CONOUT= data set to get the current
solution. See the “ARCOUT= and CONOUT= Data Sets” section on page 276 for
more information.

SAS OnlineDoc: Version 8

PROC NETFLOW Statement � 215

CONDATA=SAS-data-set
names the data set that contains the side constraint data. The data set can also contain
other data such as arc costs, capacities, lower flow bounds, nonarc variable upper and
lower bounds, and objective function coefficients. PROC NETFLOW needs a CON-
DATA= data set to solve a constrained problem or a Linear Programming problem.
See the “CONDATA= Data Set” section on page 267 for more information.

CONOUT=SAS-data-set
COUT=SAS-data-set

names the output data set that receives an optimal primal solution to the problem ob-
tained by performing optimization that considers the side constraints. See the “AR-
COUT= and CONOUT= Data Sets” section on page 276 for more information.

DUALOUT=SAS-data-set
DOUT=SAS-data-set

names the output data set that receives an optimal dual solution to the problem
obtained by performing optimization that considers the side constraints. See the
“NODEOUT= and DUALOUT= Data Sets” section on page 277 for more informa-
tion.

NODEDATA=SAS-data-set
DUALIN=SAS-data-set

names the data set that contains the node supply and demand specifications. You do
not need observations in the NODEDATA= data set for transshipment nodes. (Trans-
shipment nodes neither supply nor demand flow.) All nodes are assumed to be trans-
shipment nodes until supply or demand data indicate otherwise. It is acceptable for
some arcs to be directed toward supply nodes or away from demand nodes.

The use of the NODEDATA= data set is optional in the PROC NETFLOW state-
ment provided that, if the NODEDATA= data set is not used, supply and demand
details are specified by other means. Other means include using the MAXFLOW
or SHORTPATH option, SUPPLY or DEMAND list variables (or both) in the ARC-
DATA= data set, and the SOURCE=, SUPPLY=, SINK=, or DEMAND= option in
the PROC NETFLOW statement.

NODEOUT=SAS-data-set
names the output data set that receives all information about nodes (supply and de-
mand and nodal dual variable values) and other information concerning the optimal
solution found by the optimizer when neglecting side constraints. Once optimization
that considers side constraints starts, you are not able to obtain a NODEOUT= data
set. Instead, use the DUALOUT= data set to get the current solution dual informa-
tion. See the “NODEOUT= and DUALOUT= Data Sets” section on page 277 for a
more complete description.

General Options
The following is a list of options you can use with PROC NETFLOW. The options
are listed in alphabetical order.

ALLART
indicates that PROC NETFLOW uses an all artificial initial solution (Kennington
and Helgason 1980, p. 68) instead of the defaultgood pathmethod for determining

SAS OnlineDoc: Version 8

216 � Chapter 4. The NETFLOW Procedure

an initial solution (Kennington and Helgason 1980, p. 245). The ALLART initial
solution is generally not as good; more iterations are usually required before the
optimal solution is obtained. However, because less time is used when setting up an
ALLART start, it can offset the added expenditure of CPU time in later computations.

ARCS–ONLY–ARCDATA
indicates that data for only arcs are in the ARCDATA= data set. When PROC NET-
FLOW reads the data in ARCDATA= data set, memory would not be wasted to
receive data for nonarc variables. The read might then be performed faster. See
the “How to Make the Data Read of PROC NETFLOW More Efficient” section on
page 296.

ARC–SINGLE–OBS
indicates that for all arcs and nonarc variables, data for each arc or nonarc variable
is found in only one observation of the ARCDATA= data set. When reading the data
in ARCDATA= data set, PROC NETFLOW knows that the data in an observation is
for an arc or a nonarc variable that has not had data previously read that needs to be
checked for consistency. The read might then be performed faster.

If you specify ARC–SINGLE–OBS, PROC NETFLOW automatically works as if
netflowgrouped=ARCDATA is also specified.

See the “How to Make the Data Read of PROC NETFLOW More Efficient” section
on page 296.

BYPASSDIVIDE=b
BYPASSDIV=b
BPD=b

should be used only when the MAXFLOW option has been specified; that is, PROC
NETFLOW is solving a maximal flow problem. PROC NETFLOW prepares to solve
maximal flow problems by setting up a bypass arc. This arc is directed from the
SOURCE to the SINK and will eventually convey flow equal to INFINITY minus
the maximal flow through the network. The cost of the bypass arc must be expen-
sive enough to drive flow through the network, rather than through the bypass arc.
However, the cost of the bypass arc must be less than the cost of artificial variables
(otherwise these might have nonzero optimal value and a false infeasibility error will
result). Also, the cost of the bypass arc must be greater than the eventual total cost
of the maximal flow, which can be nonzero if some network arcs have nonzero costs.
The cost of the bypass is set to the value of the INFINITY= option. Valid values for
the BYPASSDIV= option must be greater than or equal to 1.1.

If there are no nonzero costs of arcs in the MAXFLOW problem, the cost of the
bypass arc is set to 1.0 (-1.0 if maximizing) if you do not specify the BYPASSDIV=
option. The reduced costs in the ARCOUT= data set and the CONOUT= data set will
correctly reflect the value that would be added to the maximal flow if the capacity of
the arc is increased by one unit. If there are nonzero costs, or if you specify the
BYPASSDIV= option, the reduced costs may be contaminated by the cost of the
bypass arc and no economic interpretation can be given to reduced cost values. The
default value for the BYPASSDIV= option (in the presence of nonzero arc costs) is
100.0.

SAS OnlineDoc: Version 8

PROC NETFLOW Statement � 217

BYTES=b
indicates the size of the main working memory (in bytes) that PROC NETFLOW will
allocate. The default value for the BYTES= option is near to the number of bytes of
the largest contiguous memory that can be allocated for this purpose. The working
memory is used to store all the arrays and buffers used by PROC NETFLOW. If this
memory has a size smaller than what is required to store all arrays and buffers, PROC
NETFLOW uses various schemes that page information between memory and disk.

PROC NETFLOW uses more memory than the main working memory. The addi-
tional memory requirements cannot be determined at the time when the main work-
ing memory is allocated. For example, every time an output data set is created, some
additional memory is required. Do not specify a value for the BYTES= option equal
to the size of available memory.

CON–SINGLE–OBS
improves how the CONDATA= data set is read. How it works depends on whether
the CONDATA has a dense or sparse format.

If CONDATA has the dense format, specifying CON–SINGLE–OBS indicates that,
for each constraint, data for each can be found in only one observation of CONDATA.

If CONDATA has a sparse format, and data for each arc and nonarc variablecan be
found in only one observation of CONDATA, then specify the CON–SINGLE–OBS
option. If there aren SAS variables in the ROW and COEF list, then each arc or
nonarc can have at mostn constraint coefficients in the model. See the “How to
Make the Data Read of PROC NETFLOW More Efficient” section on page 296.

COREFACTOR=c
CF=c

enables you to specify the maximum proportion of memory to be used by the arrays
frequently accessed by PROC NETFLOW. PROC NETFLOW strives to maintain all
information required during optimization in core. If the amount of available mem-
ory is not great enough to store the arrays completely in core, either initially or as
memory requirements grow, PROC NETFLOW can change the memory manage-
ment scheme it uses. Large problems can still be solved. When necessary, PROC
NETFLOW transfers data from random access memory (RAM) or core that can be
accessed quickly but is of limited size to slower access large capacity disk memory.
This is calledpaging.

Some of the arrays and buffers used during constrained optimization either vary in
size, are not required as frequently as other arrays, or are not required throughout
the Simplex iteration. Leta be the amount of memory in bytes required to store
frequently accessed arrays of nonvarying size. Specify the MEMREP option in the
PROC NETFLOW statement to get the value fora and a report of memory usage. If
the size of the main working memory BYTES=b multiplied by COREFACTOR=c is
greater thana, PROC NETFLOW keeps the frequently accessed arrays of nonvarying
size resident in core throughout the optimization. If the other arrays cannot fit into
core, they are paged in and out of the remaining part of the main working memory.

If bmultiplied byc is less thana, PROC NETFLOW uses a different memory scheme.
The working memory is used to store only the arrays needed in the part of the algo-

SAS OnlineDoc: Version 8

218 � Chapter 4. The NETFLOW Procedure

rithm being executed. If necessary, these arrays are read from disk into the main
working area. Paging, if required, is done for all these arrays, and sometimes infor-
mation is written back to disk at the end of that part of the algorithm. This memory
scheme is not as fast as the other memory schemes. However, problems can be solved
with memory that is too small to store every array.

PROC NETFLOW is capable of solving very large problems in a modest amount of
available memory. However, as more time is spent doing input/output operations,
the speed of PROC NETFLOW decreases. It is important to choose the value of
the COREFACTOR= option carefully. If COREFACTOR is too small, the memory
scheme that needs to be used might not be as efficient as another that could have been
used had a larger COREFACTOR been specified. If COREFACTOR is too large, too
much of the main working memory is occupied by the frequently accessed, nonvary-
ing sized arrays, leaving too little for the other arrays. The amount of input/output
operations for these other arrays can be so high that another memory scheme might
have been used more beneficially.

The valid values of COREFACTOR=c are between 0.0 and 0.95, inclusive. The de-
fault value forc is 0.75 when there are over 200 side constraints, and 0.9 when there
is only one side constraint. When the problem has between 2 and 200 constraints, the
value ofc lies between the two points (1, 0.9) and (201, 0.75).

DEFCAPACITY=c
DC=c

requests that the default arc capacity and the default nonarc variable value upper
bound bec. If this option is not specified, then DEFCAPACITY= INFINITY.

DEFCONTYPE=c
DEFTYPE=c
DCT=c

specifies the default constraint type. This default constraint type is eitherless than or
equal toor is the type indicated by DEFCONTYPE=c. Valid values for this option
are

LE, le,<= for less than or equal to

EQ, eq,= for equal to

GE, ge,>= for greater than or equal to

The values do not need to be enclosed in quotes.

DEFCOST=c
requests that the default arc cost and the default nonarc variable objective function
coefficient bec. If this option is not specified, then DEFCOST=0.0.

DEFMINFLOW=m
DMF=m

requests that the default lower flow bound through arcs and the default lower value
bound of nonarc variables bem. If a value is not specified, then DEFMINFLOW=0.0.

SAS OnlineDoc: Version 8

PROC NETFLOW Statement � 219

DEMAND=d
specifies the demand at the SINK node specified by the SINK= option. The DE-
MAND= option should be used only if the SINK= option is given in the PROC NET-
FLOW statement and neither the SHORTPATH option nor the MAXFLOW option is
specified. If you are solving a minimum cost network problem and the SINK= option
is used to identify the sink node, and the DEMAND= option is not specified, then the
demand at the sink node is made equal to the network’s total supply.

DWIA=i
controls the initial amount of memory to be allocated to store theLU factors of the
working basis matrix. DWIA stands forDW initial allocation and i is the number
of nonzeros and matrix row operations in theLU factors that can be stored in this
memory. Due to fill-in in theU factor and the growth in the number of row operations,
it is often necessary to move information about elements of a particular row or column
to another location in the memory allocated for theLU factors. This process leaves
some memory temporarily unoccupied. Therefore, DWIA=i must be greater than the
memory required to store only theLU factors.

Occasionally, it is necessary to compress theU factor so that it again occupies con-
tiguous memory. Specifying too large a value for DWIA means that more memory
is required by PROC NETFLOW. This might cause more expensive memory mecha-
nisms to be used than if a smaller but adequate value had been specified for DWIA=.
Specifying too small a value for the DWIA= option can make time-consuming com-
pressions more numerous. The default value for the DWIA= option is eight times the
number of side constraints.

GROUPED=c
PROC NETFLOW can take a much shorter time to read data if the data have been
grouped prior to the PROC NETFLOW call. This enables PROC NETFLOW to
conclude that, for instance, a new NAME list variable value seen in an ARCDATA=
data set grouped by the values of the NAME list variable before PROC NETFLOW
was called is new. PROC NETFLOW does not need to check that the NAME has
been read in a previous observation. See the “How to Make the Data Read of PROC
NETFLOW More Efficient” section on page 296.

� GROUPED=ARCDATA indicates that the ARCDATA= data set has been
grouped by values of the NAME list variable. If–NAME– is the name of
the NAME list variable, you could use PROC SORT DATA=ARCDATA;BY

–NAME–; prior to calling PROC NETFLOW. Technically, you do not have
to sort the data, only ensure that all similar values of the NAME list variable
are grouped together. If you specify the ARCS–ONLY–ARCDATA option,
PROC NETFLOW automatically works as if GROUPED=ARCDATA is also
specified.

� GROUPED=CONDATA indicates that the CONDATA= data set has been
grouped.

If the CONDATA= data set has a dense format, GROUPED=CONDATA indi-
cates that the CONDATA= data set has been grouped by values of the ROW
list variable. If–ROW– is the name of the ROW list variable, you could use

SAS OnlineDoc: Version 8

220 � Chapter 4. The NETFLOW Procedure

PROC SORT DATA=CONDATA;BY–ROW–; prior to calling PROC NET-
FLOW. Technically, you do not have to sort the data, only ensure that all sim-
ilar values of the ROW list variable are grouped together. If you specify the
CON–SINGLE–OBS option, or if there is no ROW list variable, PROC NET-
FLOW automatically works as if GROUPED=CONDATA has been specified.

If CONDATA has the sparse format, GROUPED=CONDATA indicates that
CONDATA has been grouped by values of the COLUMN list variable. If

–COL– is the name of the COLUMN list variable, you could use PROC SORT
DATA=CONDATA;BY –COL–; prior to calling PROC NETFLOW. Techni-
cally, you do not have to sort the data, only ensure that all similar values of the
COLUMN list variable are grouped together.

� GROUPED=BOTH indicates that both GROUPED=ARCDATA and
GROUPED=CONDATA are TRUE.

� GROUPED=NONE indicates that the data sets have not been grouped, that
is, neither GROUPED=ARCDATA nor GROUPED=CONDATA is TRUE.
This is the default, but it is much better if GROUPED=ARCDATA, or
GROUPED=CONDATA, or GROUPED=BOTH.

A data set like

... _XXXXX_
bbb
bbb
aaa
ccc
ccc

is a candidate for the GROUPED= option. Similar values are grouped together. When
PROC NETFLOW is reading theith observation, either the value of the–XXXXX–
variable is the same as the(i � 1)th (that is, the previous observation’s)–XXXXX–
value, or it is a new–XXXXX– value not seen in any previous observation. This also
means that if theith –XXXXX– value is different from the(i�1)th –XXXXX– value,
the value of the(i� 1)th –XXXXX– variable will not be seen in any observationsi,
i+ 1, ::: .

INFINITY=i
INF=i

is the largest number used by PROC NETFLOW in computations. A number too
small can adversely affect the solution process. You should avoid specifying an enor-
mous value for the INFINITY= option because numerical roundoff errors can result.
If a value is not specified, then INFINITY=999999. The INFINITY= option cannot
be assigned a value less than 9999.

INVD–2D
controls the way in that the inverse of the working basis matrix is stored. How this
matrix is stored affects computations as well as how the working basis or its inverse
is updated. The working basis matrix is defined in the “Details” section on page 267.

SAS OnlineDoc: Version 8

PROC NETFLOW Statement � 221

If INVD –2D is specified, the working basis matrix inverse is stored as a matrix.
Typically, this memory scheme is best when there are few side constraints or when
the working basis is dense.

If INVD –2D is not specified, lower (L) and upper (U) factors of the working basis
matrix are used.U is an upper triangular matrix andL is a lower triangular ma-
trix corresponding to a sequence of elementary matrix row operations. The sparsity-
exploiting variant of the Bartels-Golub decomposition is used to update theLU fac-
tors. This scheme works well when the side constraint coefficient matrix is sparse or
when many side constraints are nonbinding.

MAXARRAYBYTES= m
specifies the maximum number of bytes an individual array can occupy. This option
is of most use when solving large problems and the amount of available memory is
insufficient to store all arrays at once. Specifying the MAXARRAYBYTES= option
ensures that arrays that need lots of memory do not consume too much memory at
the expense of other arrays.

There is one array that contains information about nodes and the network basis
spanning tree description. This tree description enables computations involving
the network part of the basis to be performed very quickly and is the reason why
PROC NETFLOW is more suited to solving constrained network problems than
PROC LP. It is beneficial that this array be stored in core when possible, other-
wise this array must be paged, slowing down the computations. Try not to specify a
MAXARRAYBYTES=m value smaller than the amount of memory needed to store
the main node array. You are told what this memory amount is on the SAS log if you
specify the MEMREP option in the PROC NETFLOW statement.

MAXFLOW
MF

specifies that PROC NETFLOW solve a maximum flow problem. In this case, the
PROC NETFLOW procedure finds the maximum flow from the node specified by the
SOURCE= option to the node specified by the SINK= option. PROC NETFLOW
automatically assigns an INFINITY= option supply to the SOURCE= option node
and the SINK= option is assigned the INFINITY= option demand. In this way, the
MAXFLOW option sets up a maximum flow problem as an equivalent minimum cost
problem.

You can use the MAXFLOW option when solving any flow problem (not necessar-
ily a maximum flow problem) when the network has one supply node (with infinite
supply) and one demand node (with infinite demand). The MAXFLOW option can
be used in conjunction with all other options (except SHORTPATH, SUPPLY=, and
DEMAND=) and capabilities of PROC NETFLOW.

MAXIMIZE
MAX

specifies that PROC NETFLOW find the maximum cost flow through the network.
If both the MAXIMIZE and the SHORTPATH options are specified, the solution
obtained is the longest path between the SOURCE= and SINK= nodes. Similarly,
MAXIMIZE and MAXFLOW together cause PROC NETFLOW to find the mini-

SAS OnlineDoc: Version 8

222 � Chapter 4. The NETFLOW Procedure

mum flow between these two nodes; this is zero if there are no nonzero lower flow
bounds.

MEMREP
indicates that information on the memory usage and paging schemes (if necessary) is
reported by PROC NETFLOW on the SAS log. As optimization proceeds, you are
informed of any changes in the memory requirements and schemes used by PROC
NETFLOW.

NAMECTRL= i
is used to interpret arc and nonarc variable names in the CONDATA= data set.

In the ARCDATA= data set, an arc is identified by its tail and head node. In the
CONDATA= data set, arcs are identified by names. You can give a name to an arc by
having a NAME list specification that indicates a SAS variable in the ARCDATA=
data set that has names of arcs as values.

PROC NETFLOW requires arcs that have information about them in the CONDATA=
data set to have names, but arcs that do not have information about them in the CON-
DATA= data set can also have names. Unlike a nonarc variable whose name uniquely
identifies it, an arc can have several different names. An arc has a default name in the
form tail–head, that is, the name of the arc’s tail node followed by an underscore and
the name of the arc’s head node.

In the CONDATA= data set, if the dense data format is used, (described in the “CON-
DATA= Data Set” section on page 267) a name of an arc or a nonarc variable is the
nameof a SAS variable listed in the VAR list specification. If the sparse data format
of the CONDATA= data set is used, a name of an arc or a nonarc variable is avalue
of the SAS variable listed in the COLUMN list specification.

The NAMECTRL= option is used when a name of an arc or nonarc variable in the
CONDATA= data set (either a VAR list SAS variable name or value of the COLUMN
list SAS variable) is in the formtail–headand there exists an arc with these end
nodes. Iftail–headhas not already been tagged as belonging to an arc or nonarc vari-
able in the ARCDATA= data set, PROC NETFLOW needs to know whethertail–head
is the name of the arc or the name of a nonarc variable.

If you specify NAMECTRL=1, a name that is not defined in the ARCDATA= data set
is assumed to be the name of a nonarc variable. NAMECTRL=2 treatstail–headas
the name of the arc with these endnodes, provided no other name is used to associate
data in the CONDATA= data set with this arc. If the arc does have other names that
appear in the CONDATA= data set,tail–headis assumed to be the name of a nonarc
variable. If you specify NAMECTRL=3,tail–headis assumed to be a name of the
arc with these end nodes, whether the arc has other names or not. The default value
of NAMECTRL is 3. Note that if you use the dense side constraint input format, the
default arc nametail–headis not recognized (regardless of the NAMECTRL value)
unless the head node and tail node names contain no lowercase letters.

If the dense format is used for the CONDATA= data set, the SAS System converts
SAS variable names in a SAS program to uppercase. The VAR list variable names are
uppercased. Because of this, PROC NETFLOW automatically uppercases names of

SAS OnlineDoc: Version 8

PROC NETFLOW Statement � 223

arcs and nonarc variables (the values of the NAME list variable) in the ARCDATA=
data set. The names of arcs and nonarc variables (the values of the NAME list vari-
able) appear uppercased in the ARCOUT= data set and the CONOUT= data set, and
in the PRINT statement output.

Also, if the dense format is used for the CONDATA= data set, be careful with default
arc names (names in the formtailnode–headnode). Node names (values in the
TAILNODE and HEADNODE list variables) in the ARCDATA= data set are not
uppercased by PROC NETFLOW. Consider the following code:

data arcdata;
input _from_ $ _to_ $ _name $;
datalines;

from to1 .
from to2 arc2
TAIL TO3 .
;
data densecon;

input from_to1 from_to2 arc2 tail_to3;
datalines;

2 3 5
;
proc netflow

arcdata=arcdata condata=densecon;
run;

The SAS System does not uppercase character string values. PROC NETFLOW
never uppercases node names, so the arcs in observations 1, 2, and 3 in the pre-
ceeding ARCDATA= data set have the default names “from–to1”, “from–to2”, and
“TAIL –TO3”, respectively. When the dense format of the CONDATA= data set is
used, PROC NETFLOW does uppercase values of the NAME list variable, so the
name of the arc in the second observation of the ARCDATA= data set is “ARC2”.
Thus, the second arc has two names; it’s default “from–to2” and the other that was
specified “ARC2”.

As the SAS System does uppercases program code, you must think of the input state-
ment

input from_to1 from_to2 arc2 tail_to3;

as really being

INPUT FROM_TO1 FROM_TO2 ARC2 TAIL_TO3;

The SAS variables named “FROM–TO1” and “FROM–TO2” arenotassociated with
any of the arcs in the preceeding ARCDATA= data set. The values “FROM–TO1”
and “FROM–TO2” are different from all of the arc names “from–to1”, “from–to2”,
“TAIL –TO3”, and “ARC2”. “FROM–TO1” and “FROM–TO2” could end up be-
ing the names of two nonarc variables. It is sometimes useful to specify PRINT
NONARCS; before commencing optimization to ensure that the model is correct
(has the right set of nonarc variables).

SAS OnlineDoc: Version 8

224 � Chapter 4. The NETFLOW Procedure

The SAS variable named “ARC2” is the name of the second arc in the ARCDATA=
data set, even though the name specified in the ARCDATA= data set looks like “arc2”.
The SAS variable named “TAIL–TO3” is the default name of the third arc in the
ARCDATA= data set.

RHSOBS=charstr
specifies the keyword that identifies a right-hand-side observation when using the
sparse format for data in the CONDATA= data set. The keyword is expected as a
value of the SAS variable in the CONDATA= data set named in the COLUMN list
specification. The default value of the RHSOBS= option is–RHS– or –rhs–. If
charstr is not a valid SAS variable name, enclose it in single quotes.

NARCS=n
specifies the approximate number of arcs. See the “How to Make the Data Read of
PROC NETFLOW More Efficient” section on page 296.

NCOEFS=n
specifies approximate number of constraint coefficients. See the “How to Make the
Data Read of PROC NETFLOW More Efficient” section on page 296.

NCONS=n
specifies approximate number of constraints. See the “How to Make the Data Read
of PROC NETFLOW More Efficient” section on page 296.

NNAS=n
specifies approximate number of nonarc variables. See the “How to Make the Data
Read of PROC NETFLOW More Efficient” section on page 296.

NNODES=n
specifies approximate number of nodes. See the “How to Make the Data Read of
PROC NETFLOW More Efficient” section on page 296.

NON–REPLIC=c
prevents PROC NETFLOW from doing unnecessary checks of data previously read.

� NON–REPLIC=COEFS indicates that each constraint coefficient is specified
oncein the CONDATA= data set.

� NON–REPLIC=NONE indicates that constraint coefficients can be specified
more than once in the CONDATA= data set. NON–REPLIC=NONE is the
default.

See the “How to Make the Data Read of PROC NETFLOW More Efficient” section
on page 296.

SAME–NONARC–DATA
SND

If all nonarc variable data are given in the ARCDATA= data set, or if the problem has
no nonarc variables, the unconstrained warm start can be read more quickly if the op-
tion SAME–NONARC–DATA is specified. SAME–NONARC–DATA indicates that
any nonconstraint nonarc variable data in the CONDATA= data set is to be ignored.
Only side constraint data in the CONDATA= data set are read.

SAS OnlineDoc: Version 8

PROC NETFLOW Statement � 225

If you use an unconstrained warm start and SAME–NONARC–DATA is not speci-
fied, any nonarc variable objective function coefficient, upper bound, or lower bound
can be changed. Any nonarc variable data in the CONDATA= data set overrides
(without warning messages) corresponding data in the ARCDATA= data set. You
can possibly introduce new nonarc variables to the problem, that is, nonarc variables
that were not in the problem when the warm start was generated.

SAME–NONARC–DATA should be specified if nonarc variable data in the CON-
DATA= data set are to be deliberately ignored. Consider

proc netflow options arcdata=arc0 nodedata=node0
condata=con0

/* this data set has nonarc variable */
/* objective function coefficient data */

future1 arcout=arc1 nodeout=node1;
run;
data arc2;

reset arc1; /* this data set has nonarc variable obs */
if _cost_<50.0 then _cost_=_cost_*1.25;

/* some objective coefficients of nonarc */
/* variable might be changed */

proc netflow options
warm arcdata=arc2 nodedata=node1
condata=con0 same_nonarc_data

/* This data set has old nonarc variable */
/* obj, fn. coefficients. same_nonarc_data */
/* indicates that the "new" coefs in the */
/* arcdata=arc2 are to be used. */

run;

SCALE=s
indicates that the side constraints are to be scaled. Scaling is useful when some coef-
ficients of a constraint or nonarc variable are either much larger or much smaller than
other coefficients. Scaling might make all coefficients have values that have a smaller
range, and this can make computations more stable numerically. Try the SCALE=
option if PROC NETFLOW is unable to solve a problem because of numerical insta-
bility. Specify

� SCALE=ROW, SCALE=CON, or SCALE=CONSTRAINT if the largest abso-
lute value of coefficients in each constraint is about 1.0

� SCALE=COL, SCALE=COLUMN, or SCALE=NONARC if nonarc variable
columns are scaled so that the absolute value of the largest constraint coefficient
of a nonarc variable is near to 1

� SCALE=BOTH if the largest absolute value of coefficients in each constraint,
and the absolute value of the largest constraint coefficient of a nonarc variable
is near to 1. This is the default

� SCALE=NONE if no scaling should be done

SAS OnlineDoc: Version 8

226 � Chapter 4. The NETFLOW Procedure

SHORTPATH
SP

specifies that PROC NETFLOW solve a shortest path problem. The NETFLOW pro-
cedure finds the shortest path between the nodes specified in the SOURCE= option
and the SINK= option. The costs of arcs are theirlengths. PROC NETFLOW auto-
matically assigns a supply of one flow unit to the SOURCE= node, and the SINK=
node is assigned to have a one flow unit demand. In this way, the SHORTPATH
option sets up a shortest path problem as an equivalent minimum cost problem.

If a network has one supply node (with supply of one unit) and one demand node
(with demand of one unit), you could specify the SHORTPATH option, with the
SOURCE= and SINK= nodes, even if the problem is not a shortest path problem.
You then should not provide any supply or demand data in the NODEDATA= data set
or the ARCDATA= data set.

SINK=sinkname
SINKNODE=sinkname

identifies the demand node. The SINK= option is useful when you specify the
MAXFLOW option or the SHORTPATH option and need to specify toward which
node the shortest path or maximum flow is directed. The SINK= option also can be
used when a minimum cost problem has only one demand node. Rather than having
this information in the ARCDATA= data set or the NODEDATA= data set, use the
SINK= option with an accompanying DEMAND= specification for this node. The
SINK= option must be the name of a head node of at least one arc; thus, it must have
a character value. If the the value of the SINK= option is not a valid SAS character
variable name, it must be enclosed in single quotes and can contain embedded blanks.

SOURCE=sourcename
SOURCENODE=sourcename

identifies a supply node. The SOURCE= option is useful when you specify the
MAXFLOW or the SHORTPATH option and need to specify from which node the
shortest path or maximum flow originates. The SOURCE= option also can be used
when a minimum cost problem has only one supply node. Rather than having this
information in the the ARCDATA= data set or the NODEDATA= data set, use the
SOURCE= option with an accompanying SUPPLY= amount of supply at this node.
The SOURCE= option must be the name of a tail node of at least one arc; thus, it must
have a character value. If the value of the SOURCE= option is not a valid SAS char-
acter variable name, it must be enclosed in single quotes and can contain embedded
blanks.

SPARSECONDATA
SCDATA

indicates that the CONDATA= data set has data in the sparse data format. Otherwise,
it is assumed that the data are in the dense format.

Note: If the SPARSECONDATA option is not specified, and you are running SAS
software Version 6 or you have specified options validvarname=v6;, all NAME list
variable values in the ARCDATA= data set are uppercased. See the “Case Sensitivity”
section on page 279.

SAS OnlineDoc: Version 8

PROC NETFLOW Statement � 227

SPARSEP2
SP2

indicates that the new column of the working basis matrix that replaces another
column be held in a linked list. If the SPARSEP2 option is not specified, a one-
dimensional array is used to store this column’s information, that can contain ele-
ments that are 0.0 and use more memory than the linked list. The linked list mech-
anism requires more work if the column has numerous nonzero elements in many
iterations. Otherwise, it is superior. Sometimes, specifying SPARSEP2 is beneficial
when the side constrained coefficient matrix is very sparse or when some paging is
necessary.

SUPPLY=s
specifies the supply at the source node specified by the SOURCE= option. The SUP-
PLY= option should be used only if the SOURCE= option is given in the PROC NET-
FLOW statement and neither the SHORTPATH option nor the MAXFLOW option is
specified. If you are solving a minimum cost network problem and the SOURCE=
option is used to identify the source node and the SUPPLY= option is not specified,
then by default the supply at the source node is made equal to the network’s total
demand.

THRUNET
tells PROC NETFLOW to force through the network any excess supply (the amount
by which total supply exceeds total demand) or any excess demand (the amount by
which total demand exceeds total supply) as is required. If a network problem has
unequal total supply and total demand and the THRUNET option is not specified,
PROC NETFLOW drains away the excess supply or excess demand in an optimal
manner.

TYPEOBS=charstr
specifies the keyword that identifies a type observation when using the sparse format
for data in the CONDATA= data set. The keyword is expected as a value of the SAS
variable in the CONDATA= data set named in the COLUMN list specification. The
default value of the TYPEOBS= option is–TYPE– or –type–. If charstr is not a
valid SAS variable name, enclose it in single quotes.

WARM
indicates that the NODEDATA= data set or the DUALIN= data set and the the AR-
CDATA= data set contain extra information of a warm start to be used by PROC
NETFLOW. See the “Warm Starts” section on page 292.

SAS OnlineDoc: Version 8

228 � Chapter 4. The NETFLOW Procedure

CAPACITY Statement

CAPACITY variable ;
CAPAC variable ;

UPPERBD variable ;

The CAPACITY statement identifies the SAS variable in the ARCDATA= data set
that contains the maximum feasible flow or capacity of the network arcs. If an ob-
servation contains nonarc variable information, the CAPACITY list variable is the
upper value bound for the nonarc variable named in the NAME list variable in that
observation. The CAPACITY list variable must have numeric values. It is not neces-
sary to have a CAPACITY statement if the name of the SAS variable is–CAPAC– ,

–UPPER– , –UPPERBD, or –HI– .

COEF Statement

COEF variables ;

The COEF list is used with the sparse input format of the CONDATA= data set. The
COEF list can contain more than one SAS variable, each of which must have numeric
values. If the COEF statement is not specified, the CONDATA= data set is searched
and SAS variables with names beginning with–COE are used. The number of SAS
variables in the COEF list must be no greater than the number of SAS variables in
the ROW list.

The values of the COEF list variables in an observation can be interpreted differently
than these variables values in other observations. The values can be coefficients in
the side constraints, costs and objective function coefficients, bound data, constraint
type data, or rhs data. If the COLUMN list variable has a value that is a name of
an arc or nonarc variable, theith COEF list variable is associated with the constraint
or special row name named in theith ROW list variable. Otherwise, the COEF list
variables indicate type values, rhs values, or missing values.

COLUMN Statement

COLUMN variable ;

The COLUMN list is used with the sparse input format of side constraints. This
list consists of one SAS variable in the CONDATA= data set that has as values the
names of arc variables, nonarc variables, or missing values. Some, if not all of these
values, also can be values of the NAME list variables of the ARCDATA= data set.
The COLUMN list variable can have other special values (Refer to the TYPEOBS=
and RHSOBS= options). If the COLUMN list is not specified after the PROC NET-

SAS OnlineDoc: Version 8

HEADNODE Statement � 229

FLOW statement, the CONDATA= data set is searched and a SAS variable named

–COLUMN– is used. The COLUMN list variable must have character values.

CONOPT Statement

CONOPT;

The CONOPT statement has no options. It is equivalent to specifying RESET
SCRATCH;. The CONOPT statement should be used before stage 2 optimization
commences. It indicates that the optimization performed next should consider the
side constraints.

Usually, the optimal unconstrained network solution is used as a starting solution for
constrained optimization. Finding the unconstrained optimum usually reduces the
amount of stage 2 optimization. Furthermore, the unconstrained optimum is almost
always “closer” to the constrained optimum than the initial basic solution determined
before any optimization is performed. However, as the optimum is approached during
stage 1 optimization, the flow change candidates become scarcer and a solution good
enough to start stage 2 optimization may already be at hand. You should then specify
the CONOPT statement.

COST Statement

COST variable ;
OBJFN variable ;

The COST statement identifies the SAS variable in the ARCDATA= data set that
contains the per unit flow cost through an arc. If an observation contains nonarc
variable information, the value of the COST list variable is the objective function
coefficient of the nonarc variable named in the NAME list variable in that observation.
The COST list variable must have numeric values. It is not necessary to specify a
COST statement if the name of the SAS variable is–COST– or –LENGTH–

DEMAND Statement

DEMAND variable ;

The DEMAND statement identifies the SAS variable in the ARCDATA= data set
that contains the demand at the node named in the corresponding HEADNODE list
variable. The DEMAND list variable must have numeric values. It is not necessary
to have a DEMAND statement if the name of this SAS variable is–DEMAND– .

SAS OnlineDoc: Version 8

230 � Chapter 4. The NETFLOW Procedure

HEADNODE Statement

HEADNODE variable ;
HEAD variable ;

TONODE variable ;

TO variable ;

The HEADNODE statement specifies the SAS variable that must be present in the
ARCDATA= data set that contains the names of nodes toward which arcs are directed.
It is not necessary to have a HEADNODE statement if the name of the SAS variable
is –HEAD– or –TO– . The HEADNODE variable must have character values.

ID Statement

ID variables ;

The ID statement specifies SAS variables containing values for pre- and post-optimal
processing and analysis. These variables are not processed by PROC NETFLOW but
are read by the procedure and written in the ARCOUT= and CONOUT= data sets
and the output of PRINT statements. For example, imagine a network used to model
a distribution system. The SAS variables listed on the ID statement can contain infor-
mation on type of vehicle, transportation mode, condition of road, time to complete
journey, name of driver, or other ancillary information useful for report writing or
describing facets of the operation that do not have bearing on the optimization. The
ID variables can be character, numeric, or both.

If no ID list is specified, the procedure forms an ID list of all SAS variables not
included in any other implicit or explicit list specification. If the ID list is specified,
any SAS variables in the ARCDATA= data set not in any list are dropped and do not
appear in the ARCOUT= or CONOUT= data sets, or in the PRINT statement output.

LO Statement

LO variable ;
LOWERBD variable ;

MINFLOW variable ;

The LO statement identifies the SAS variable in the ARCDATA= data set that con-
tains the minimum feasible flow or lower flow bound for arcs in the network. If an
observation contains nonarc variable information, the LO list variable has the value

SAS OnlineDoc: Version 8

PRINT Statement � 231

of the lower bound for the nonarc variable named in the NAME list variable. The LO
list variables must have numeric values. It is not necessary to have a LO statement if
the name of this SAS variable is–LOWER– , –LO– , –LOWERBD, or–MINFLOW

NAME Statement

NAME variable ;
ARCNAME variable ;

VARNAME variable ;

Each arc and nonarc variable that has data in the CONDATA= data set must have
a unique name. This name is a value of the NAME list variable. The NAME list
variable must have character values (see the NAMECTRL= option in the PROC
NETFLOW statement for more information). It is not necessary to have a NAME
statement if the name of this SAS variable is–NAME– .

NODE Statement

NODE variable ;

The NODE list variable, which must be present in the NODEDATA= data set, has
names of nodes as values. These values must also be values of the TAILNODE list
variable, the HEADNODE list variable, or both. If this list is not explicitly specified,
the NODEDATA= data set is searched for a SAS variable with the name–NODE– .
The NODE list variable must have character values.

PIVOT Statement

PIVOT;

The PIVOT statement has no options. It indicates that one Simplex iteration is to
be performed. The PIVOT statement forces a Simplex iteration to be performed in
spite of the continued presence of any reasons or solution conditions that caused
optimization to be halted. For example, if the number of iterations performed exceeds
the value of the MAXIT1= or MAXIT2= option and you issue a PIVOT statement,
the iteration is performed even though the MAXIT1= or MAXIT2= value has not yet
been changed using a RESET statement.

SAS OnlineDoc: Version 8

232 � Chapter 4. The NETFLOW Procedure

PRINT Statement

PRINT options / qualifiers ;

The options available with the PRINT statement of PROC NETFLOW are summa-
rized by purpose in Table 4.19.

Table 4.19. Functional Summary, PRINT statement: PROC NETFLOW

Description Statement Option

PRINT statement options
display everything PRINT PROBLEM
display arc information PRINT ARCS
display nonarc variable information PRINT NONARCS
display variables information PRINT VARIABLES
display constraint information PRINT CONSTRAINTS
display information for some arcs PRINT SOME–ARCS
display information for some nonarc variables PRINT SOME–NONARCS
display information for some variables PRINT SOME–VARIABLES
display information for some constraints PRINT SOME–CONS
display information for some constraints asso-

ciated with some arcs
PRINT CON–ARCS

display information for some constraints asso-
ciated with some nonarc variables

PRINT CON–NONARCS

display information for some constraints asso-
ciated with some variables

PRINT CON–VARIABLES

PRINT statement qualifiers
produce a short report PRINT / SHORT
produce a long report PRINT / LONG
only arcs (nonarc variables) with zero flow

(value)
PRINT / ZERO

only arcs (nonarc variables) with nonzero flow
(value)

PRINT / NONZERO

only for basics PRINT / BASIC
only nonbasics PRINT / NONBASIC

The PRINT statement enables you to examine parts or all of the problem. You can
limit the amount of information displayed when a PRINT statement is processed
by specifying PRINT statement options. The name of the PRINT option indicates
what part of the problem is to be examined. If no options are specified, or PRINT
PROBLEM is specified, information about the entire problem is produced.

SAS OnlineDoc: Version 8

PRINT Statement � 233

The amount of displayed information can be limited further by following any PRINT
statement options with a slash character (/) and one or more of the qualifiers SHORT
or LONG, ZERO or NONZERO, BASIC or NONBASIC.

Some of the PRINT statement options require you to specify a list of some type of
entity, thereby enabling you to indicate what entities are of interest. The entities of
interest are the ones you want to display. These entities might be tail node names,
head node names, nonarc variable names, or constraint names. The entity list is made
up of one or more of the following constructs. Each construct can add none, one, or
more entities to the set of entities to be displayed.

� –ALL –
display all entities in the required list.

� entity
display the named entity that is interesting.

� entity1 - entity2, (one hyphen)
entity1 – entity2, (two hyphens)
entity1 - CHARACTER - entity2, or
entity1 - CHAR - entity2
both entity1 and entity2 have names made up of the same character string prefix
followed by a numeric suffix. The suffixes of both entity1 and entity2 have
the same number of numerals but can have different values. A specification
of entity1 - entity2 indicates that all entities with the same prefix and suffixes
with values on or between the suffixes of entity1 and entity2 are to be put in the
set of entities to be displayed. The numeric suffix of both entity1 and entity2
can be followed by a character string. For example,–OBS07– - –OBS13– is a
valid construct of the forms entity1 - entity2.

� part–of–entity–name:
display all entities in the required list that have names beginning with the char-
acter string preceding the colon.

The following options can appear in the PRINT statement.

� ARCS
indicates that you want to have displayed information about all arcs.

� SOME–ARCS (taillist, headlist)
is similar to the statement PRINT ARCS except that, instead of displaying

information about all arcs, only arcs directed from nodes in a specified set of
tail nodes to nodes in a specified set of head nodes are included. The nodes or
node constructs belonging to thetaillist list are separated by blanks. The nodes
or node constructs belonging to theheadlistlist are also separated by blanks.
The lists are separated by a comma.

� NONARCS
indicates that information is to be displayed about all nonarc variables.

SAS OnlineDoc: Version 8

234 � Chapter 4. The NETFLOW Procedure

� SOME–NONARCS (nonarclist)
is similar to the PRINT NONARCS statement except that, instead of display-
ing information about all nonarc variables, only those belonging to a speci-
fied set of nonarc variables have information displayed. The nonarc variables
or nonarc variable constructs belonging to thenonarclist list are separated by
blanks.

� CONSTRAINTS
indicates that you want to have displayed information about all constraint co-
efficients.

� PRINT SOME–CONS (conlist)
Information for coefficients in a specified set of constraints are displayed. The
constraints or constraint constructs belonging to theconlist list are separated
by blanks.

� CON–ARCS (conlist , taillist , headlist)
is similar to the PRINT SOME–CONS (conlist) statement except that, instead
of displaying information about all coefficients in specified constraints, infor-
mation about only those coefficients that are associated with arcs directed from
a set of specified tail nodes toward a set of specified head nodes is displayed.
The constraints or constraint constructs belonging to theconlist list are sepa-
rated by blanks; so too are the nodes or node constructs belonging to thetaillist
list and the nodes and node constructs belonging to theheadlistlist. The lists
are separated by a comma.

� CON–NONARCS (conlist , nonarclist)
is similar to the PRINT SOME–CONS (conlist) statement except that, instead
of displaying information about all coefficients in specified constraints, infor-
mation about only those coefficients that are associated with nonarc variables
in a specified set is displayed. The constraints or constraint constructs belong-
ing to theconlist list are separated by blanks. The nonarc variables or nonarc
variable constructs belonging to thenonarclistlist are separated by blanks. The
lists are separated by a comma.

� PROBLEM
is equivalent to the statement PRINT ARCS NONARCS CONSTRAINTS;

Following a slash (/), the qualifiers SHORT or LONG, ZERO or NONZERO, BASIC
or NONBASIC can appear in any PRINT statement. These qualifiers are described
below.

� BASIC
only rows that are associated with arcs or nonarc variables that are basic are dis-
played. The–STATUS– column values are KEY–ARC BASIC or NONKEY
ARC BASIC for arcs, and NONKEY–BASIC for nonarc variables.

� LONG
all table columns are displayed (the default when no qualifier is used).

SAS OnlineDoc: Version 8

PRINT Statement � 235

� NONBASIC
only rows that are associated with arcs or nonarc variables that are nonbasic
are displayed. The–STATUS– column values are LOWERBD NONBASIC
or UPPERBD NONBASIC.

� NONZERO
only rows that have nonzero–FLOW– column values (nonzero arc flows,
nonzero nonarc variable values) are displayed.

� SHORT
the table columns are–N– , –FROM– , –TO– , –COST– , –CAPAC– , –LO– ,

–NAME– , and–FLOW– , or the names of the SAS variables specified in the
corresponding variable lists (TAILNODE HEADNODE COST CAPACITY
LO NAME lists). –COEF– or the name of the SAS variable in the COEF list
specification will head a column when the SHORT qualifier is used in PRINT
CONSTRAINTS, SOME–CONS, CON–ARCS, or CON–NONARCS.

� ZERO
Only rows that have zero–FLOW– column values (zero arc flows, zero nonarc
variable values) are displayed.

The default qualifiers are BASIC, NONBASIC, ZERO, NONZERO, and LONG.

Displaying Information On All Constraints
In the oil refinery problem, if you had entered

print constraints;

after the RUN statement, the output in Figure 4.9 would have been produced.

SAS OnlineDoc: Version 8

236 � Chapter 4. The NETFLOW Procedure

Oil Industry Example

Setting Up Condata = Cond1 For Proc Netflow

NETFLOW PROCEDURE

N _CON_ _type_ _rhs_ _name_ _from_ _to_

1 _OBS1_ GE -15 m_e_ref1 middle east refinery 1
2 _OBS1_ GE -15 thruput1 refinery 1 r1
3 _OBS2_ GE -15 m_e_ref2 middle east refinery 2
4 _OBS2_ GE -15 thruput2 refinery 2 r2
5 _OBS3_ EQ 0 thruput1 refinery 1 r1
6 _OBS3_ EQ 0 r1_gas r1 ref1 gas
7 _OBS4_ EQ 0 thruput2 refinery 2 r2
8 _OBS4_ EQ 0 r2_gas r2 ref2 gas

N _cost_ _capac_ _lo_ _SUPPLY_ _DEMAND_ _FLOW_ _COEF_

1 63 95 20 100 . 80 -2
2 200 175 50 . . 145 1
3 81 80 10 100 . 20 -2
4 220 100 35 . . 35 1
5 200 175 50 . . 145 -3
6 0 140 0 . . 108.75 4
7 220 100 35 . . 35 -3
8 0 100 0 . . 26.25 4

N _FCOST_ _RCOST_ _STATUS_

1 5040 . KEY_ARC BASIC
2 29000 . KEY_ARC BASIC
3 1620 . NONKEY ARC BASIC
4 7700 29 LOWERBD NONBASIC
5 29000 . KEY_ARC BASIC
6 0 . KEY_ARC BASIC
7 7700 29 LOWERBD NONBASIC
8 0 . KEY_ARC BASIC

Figure 4.9. print constraints

Displaying Information About Selected Arcs
In the oil refinery problem, if you had entered

print some_arcs(refin:,_all_)/short;

after the RUN statement, the output in Figure 4.10 would have been produced.

SAS OnlineDoc: Version 8

PRINT Statement � 237

NETFLOW PROCEDURE

N _from_ _to_ _cost_ _capac_ _lo_ _name_

1 refinery 1 r1 200 175 50 thruput1
2 refinery 2 r2 220 100 35 thruput2

N _FLOW_

1 145
2 35

Figure 4.10. print some–arcs

Displaying Information About Selected Constraints
In the oil refinery problem, if you had entered

print some_cons(_obs3_-_obs4_)/nonzero short;

after the RUN statement, the output in Figure 4.11 would have been produced.

NETFLOW PROCEDURE

N _CON_ _type_ _rhs_ _name_ _from_ _to_

1 _OBS3_ EQ 0 thruput1 refinery 1 r1
2 _OBS3_ EQ 0 r1_gas r1 ref1 gas
3 _OBS4_ EQ 0 thruput2 refinery 2 r2
4 _OBS4_ EQ 0 r2_gas r2 ref2 gas

N _cost_ _capac_ _lo_ _FLOW_ _COEF_

1 200 175 50 145 -3
2 0 140 0 108.75 4
3 220 100 35 35 -3
4 0 100 0 26.25 4

Figure 4.11. print some–cons

If you had entered

print con_arcs(_all_,r1 r2,_all_)/short;

after the RUN statement, the output in Figure 4.12 would have been produced. Con-
straint information about arcs directed from selected tail nodes are displayed.

SAS OnlineDoc: Version 8

238 � Chapter 4. The NETFLOW Procedure

NETFLOW PROCEDURE

N _CON_ _type_ _rhs_ _name_ _from_ _to_

1 _OBS3_ EQ 0 r1_gas r1 ref1 gas
2 _OBS4_ EQ 0 r2_gas r2 ref2 gas

N _cost_ _capac_ _lo_ _FLOW_ _COEF_

1 0 140 0 108.75 4
2 0 100 0 26.25 4

Figure 4.12. print con–arcs

Cautions
This subsection has two parts; the first part is applicable if you are running Version
7 or later of the SAS System, and the second part is applicable if you are running
Version 6. You can get Version 7 to “act” like Version 6 by specifying

options validvarname=v6;

For Version 7, PROC NETFLOW strictly respects case sensitivity. The PRINT state-
ments of PROC NETFLOW that require lists of entities will work properlyonly if the
entities have the same case as in the input data sets. Entities that contain blanks must
be enclosed in single or double quotes. For example

print some_arcs (_all_,"Ref1 Gas");

In this example, a head node of an arc in the model is "Ref1 Gas" (without the quotes).
If you omit the quotes, PROC NETFLOW issues a message on the SAS log:

WARNING: The node Ref1 in the list of head nodes in the PRINT
SOME_ARCS or PRINT CON_ARCS is not a node in the
problem. This statement will be ignored.

If you had specified

print some_arcs (_all_,"ref1 Gas");

(note the small r), you would have been warned

WARNING: The node ref1 Gas in the list of head nodes in the PRINT
SOME_ARCS or PRINT CON_ARCS is not a node in the
problem. This statement will be ignored.

If you are running Version 6 or Version 7 and you have specified

options validvarname=v6;

when information is parsed to procedures, the SAS System converts the text that
makes up statements into uppercase. The PRINT statements of PROC NETFLOW

SAS OnlineDoc: Version 8

RESET Statement � 239

that require lists of entities will work properlyonly if the entities are uppercase in the
input data sets. If you do not want this uppercasing to occur, you must enclose the
entity in single or double quotes.

print some_arcs(’lowercase tail’,’lowercase head’);
print some_cons(’factory07’-’factory12’);
print some_cons(’_factory07_’-’_factory12_’);
print some_nonarcs("CO2 content":);

Entities that contain blanks must be enclosed in single or double quotes.

QUIT Statement

QUIT;

The QUIT statement indicates that PROC NETFLOW is to be terminated immedi-
ately. The solution is not saved in the current output data sets. The QUIT statement
has no options.

RESET Statement

RESET options ;
SET options ;

The RESET statement is used to change options after PROC NETFLOW has started
execution. Any of the following options can appear in the PROC NETFLOW state-
ment.

Another name for the RESET statement is SET. You can use SET when you are
resetting options and RESET when you are setting options for the first time.

The following options fall roughly into five categories:

� output data set specifications

� options that indicate conditions under which optimization is to be halted tem-
porarily, giving you an opportunity to use PROC NETFLOW interactively

� options that control aspects of the operation of the Network Primal Simplex
optimization

� options that control the pricing strategies of the Network Simplex optimizer

� miscellaneous options

If you want to examine the setting of any options, use the SHOW statement. If you
are interested in looking at only those options that fall into a particular category, the
SHOW statement has options that enable you to do this.

SAS OnlineDoc: Version 8

240 � Chapter 4. The NETFLOW Procedure

The execution of PROC NETFLOW has three stages. In stage zero the problem data
are read from the NODEDATA= ARCDATA= and CONDATA= data sets. If a warm
start is not available, an initial basic feasible solution is found. Some options of the
PROC NETFLOW statement control what occurs in stage zero. By the time the first
RESET statement is processed, stage zero has already been completed.

In the first stage, an optimal solution to the network flow problem neglecting any side
constraints is found. The primal and dual solutions for this relaxed problem can be
saved in the ARCOUT= data set and the NODEOUT= data set, respectively.

In the second stage, the side constraints are examined and some initializations occur.
Some preliminary work is also needed to commence optimization that considers the
constraints. An optimal solution to the network flow problem with side constraints is
found. The primal and dual solutions for this side-constrained problem are saved in
the CONOUT= data set and the DUALOUT= data set, respectively.

Many options in the RESET statement have the same name except that they have as
a suffix the numeral 1 or 2. Such options have much the same purpose, but option1
controls what occurs during the first stage when optimizing the network neglecting
any side constraints and option2 controls what occurs in the second stage when PROC
NETFLOW is performing constrained optimization.

Some options can be turned off by the option prefixed by the wordNO . For exam-
ple, FEASIBLEPAUSE1 may have been specified in a RESET statement and in a
later RESET statement, you can specify NOFEASIBLEPAUSE1. In a later RESET
statement, you can respecify FEASIBLEPAUSE1 and, in this way, toggle this option.

The options available with the PROC NETFLOW statement are summarized by pur-
pose in Table 4.20.

SAS OnlineDoc: Version 8

RESET Statement � 241

Table 4.20. Functional Summary, RESET statement: PROC NETFLOW

Description Statement Option

Output Data Set Options
unconstrained solution data set RESET ARCOUT=
unconstrained solution data set RESET NODEOUT=
constrained solution data set RESET CONOUT=
constrained solution data set RESET DUALOUT=

Stop Optimization Options
pause after stage 1. Don’t start stage 2 RESET ENDPAUSE1
pause when feasible - stage 1 RESET FEASIBLEPAUSE1
pause when feasible - stage 2 RESET FEASIBLEPAUSE2
maximum number of iterations - stage 1 RESET MAXIT1=
maximum number of iterations - stage 2 RESET MAXIT2=
negates ENDPAUSE1 RESET NOENDPAUSE1
negates FEASIBLEPAUSE1 RESET NOFEASIBLEPAUSE1
negates FEASIBLEPAUSE2 RESET NOFEASIBLEPAUSE2
pause every PAUSE1 iterations - stage 1 RESET PAUSE1=
pause every PAUSE2 iterations - stage 2 RESET PAUSE2=

Simplex Options
Use Big M instead of twophase - stage 1 RESET BIGM1
Use Big M instead of twophase - stage 2 RESET BIGM2
anti-cycling option RESET CYCLEMULT1
interchange first eligible nonkey with leaving

key variable
RESET INTFIRST

invert working basis matrix (2-dim) every IN-
VFREQ= iterations

RESET INVFREQ=

maximum number of L row operations allowed
before refactorization done instead of factor
column update

RESET MAXL=

maximum number fo LU factor column up-
dates, otherwise refactorize

RESET MAXLUUPDATES=

anticycling option RESET MINBLOCK1
first eligible leaving variable used, otherwise

best is used
RESET LRATIO1

first eligible leaving variable used, otherwise
best is used

RESET LRATIO2

otherwise best is used
negates INTFIRST RESET NOINTFIRST
negates LRATIO1 RESET NOLRATIO1
negates LRATIO2 RESET NOLRATIO2
negates PERTURB1 RESET NOPERTURB1
anti-cycling option RESET PERTURB1

SAS OnlineDoc: Version 8

242 � Chapter 4. The NETFLOW Procedure

Description Statement Option

re-factorize working basis matrix every
REFACTFREQ= iterations

RESET REFACTFREQ=

use twophase instead of Big M - stage 1 RESET TWOPHASE1
use twophase instead of Big M - stage 2 RESET TWOPHASE2
pivot element selection parameter RESET U=
zero tolerance - stage 1 RESET ZERO1=
zero tolerance - stage 2 RESET ZERO2=
zero tolerance - real number comparisons RESET ZEROTOL=

Pricing Options
calculate dual values every DUALFREQ= iter-

ations after major iterations
RESET DUALFREQ=

pricing strategy - stage 1 RESET PRICETYPE1=
pricing strategy - stage 2 RESET PRICETYPE2=
used when P1SCAN=PARTIAL RESET P1NPARTIAL=
how nonbasis variables (PRICETYPE1=NOQ)

or queue candidates (PRICETYPE1=Q) are
scanned

RESET P1SCAN=

used when P2SCAN=PARTIAL RESET P2NPARTIAL=
how nonbasis variables (PRICETYPE2=NOQ)

or queue candidates (PRICETYPE2=Q) are
scanned

RESET P2SCAN=

initial queue size - stage 1 RESET QSIZE1=
initial queue size - stage 2 RESET QSIZE2=
used when Q1FILLSCAN=PARTIAL RESET Q1FILLNPARTIAL=
how candidates are scanned when filling queue

- stage 1
RESET Q1FILLSCAN=

used when Q2FILLSCAN=PARTIAL RESET Q2FILLNPARTIAL=
how candidates are scanned when filling queue

- stage 2
RESET Q2FILLSCAN=

queue size reduction factor RESET REDUCEQSIZE1=
queue size reduction factor RESET REDUCEQSIZE2=
when the queue are refreshed - stage 1 RESET REFRESHQ1=
when the queue are refreshed - stage 2 RESET REFRESHQ2=

Miscellaneous Options
output complete basis information to ARCOUT

and NODEOUT data sets
RESET FUTURE1

output complete basis information to
CONOUT and DUALOUT data sets

RESET FUTURE2

turn off infeasibility or optimality flags as more
optimization is to be done

RESET MOREOPT

negates FUTURE1 RESET NOFUTURE1
negates FUTURE2 RESET NOFUTURE2
negates SCRATCH RESET NOSCRATCH

SAS OnlineDoc: Version 8

RESET Statement � 243

Description Statement Option

negates ZTOL1 RESET NOZTOL1
negates ZTOL2 RESET NOZTOL2
do not do stage 1 optimization. Do stage 2 op-

timization
RESET SCRATCH

display this number of similar SAS log mes-
sages, suppress the rest

RESET VERBOSE=

use zero tolerance- stage 1 RESET ZTOL1
use zero tolerance- stage 2 RESET ZTOL2

Interior Point algorithm Options
allowed amount of dual infeasibility RESET TOLDINF=
allowed amount of primal infeasibility RESET TOLPINF=
cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
density threshold for Cholesky processing RESET DENSETHR=
maximum number of Interior Point algorithm
iterations

RESET MAXITERB=

Primal-Dual (Duality) gap tolerance RESET PDGAPTOL=
step-length multiplier RESET PDSTEPMULT=
preprocessing type RESET PRSLTYPE=

Output Data Set Specifications
In a RESET statement, you can specify an ARCOUT= data set, a NODEOUT= data
set, a CONOUT= data set, or a DUALOUT= data set. You are advised to specify
these output data sets early because if you make a syntax error when using PROC
NETFLOW interactively or, for some other reason, PROC NETFLOW encounters
or does something unexpected, these data sets will contain information about the
solution that was reached. If you had specified the FUTURE1 or FUTURE2 option
in a RESET statement, PROC NETFLOW may be able to resume optimization in a
subsequent run.

You can turn off these current output data set specifications by specifying AR-
COUT=NULL, NODEOUT=NULL, CONOUT=NULL, or DUALOUT=NULL.

If PROC NETFLOW is outputting observations to an output data set and you want
this to stop, press the keys used to stop SAS procedures. PROC NETFLOW waiys, if
necessary, and then executes the next statement.

ARCOUT=SAS-data-set
AOUT=SAS-data-set

names the output data set that receives all information concerning arc and nonarc
variables, including flows and and other information concerning the current solution
and the supply and demand information. The current solution is the latest solution
found by the optimizer when the optimization neglecting side constraints is halted or
the unconstrained optimum is reached.

SAS OnlineDoc: Version 8

244 � Chapter 4. The NETFLOW Procedure

You can specify an ARCOUT= data set in any RESET statement before the uncon-
strained optimum is found (even at commencement). Once the unconstrained opti-
mum has been reached, use the SAVE statement to produce observations in an AR-
COUT= data set. Once optimization that considers constraints starts, you are will
not unable to obtain an ARCOUT= data set. Instead, use a CONOUT= data set to
get the current solution. See the “ARCOUT= and CONOUT= Data Sets” section on
page 276 for more information.

CONOUT=SAS-data-set
COUT=SAS-data-set

names the output data set that contains the primal solution obtained after optimiza-
tion considering side constraints reaches the optimal solution. You can specify a
CONOUT= data set in any RESET statement before the constrained optimum is
found (even at commencement or while optimizing neglecting constraints). Once the
constrained optimum has been reached, or during stage 2 optimization, use the SAVE
statement to produce observations in a CONOUT= data set. See the “ARCOUT= and
CONOUT= Data Sets” section on page 276 for more information.

DUALOUT=SAS-data-set
DOUT=SAS-data-set

names the output data set that contains the dual solution obtained after doing op-
timization that considering side constraints reaches the optimal solution. You can
specify a DUALOUT= data set in any RESET statement before the constrained op-
timum is found (even at commencement or while optimizing neglecting constraints).
Once the constrained optimum has been reached, or during stage 2 optimization, use
the SAVE statement to produce observations in a DUALOUT= data set. See the
“NODEOUT= and DUALOUT= Data Sets” section on page 277 for more informa-
tion.

NODEOUT=SAS-data-set
NOUT=SAS-data-set

names the output data set that receives all information about nodes (supply/demand
and nodal dual variable values) and other information concerning the unconstrained
optimal solution.

You can specify a NODEOUT= data set in any RESET statement before the uncon-
strained optimum is found (even at commencement). Once the unconstrained opti-
mum has been reached, or during stage 1 optimization, use the SAVE statement to
produce observations in a NODEOUT= data set. Once optimization that considers
constraints starts, you will not be able to obtain a NODEOUT= data set. Instead
use a DUALOUT= data set to get the current solution. See the “NODEOUT= and
DUALOUT= Data Sets” section on page 277 for more information.

Options to Halt Optimization
The following options indicate conditions when optimization is to be halted. You then
have a chance to use PROC NETFLOW interactively. If the NETFLOW procedure is
optimizing and you want optimization to halt immediately, press the CTRL-BREAK
key combination used to stop SAS procedures. Doing this is equivalent to PROC
NETFLOW finding that some prespecified condition of the current solution under
which optimization should stop has occurred.

SAS OnlineDoc: Version 8

RESET Statement � 245

If optimization does halt, you may need to change the conditions for when optimiza-
tion should stop again. For example, if the number of iterations exceeded MAXIT2,
use the RESET statement to specify a larger value for the MAXIT2= option before the
next RUN statement. Otherwise, PROC NETFLOW will immediately find that the
number of iterations still exceeds MAXIT2= and halt without doing any additional
optimization.

ENDPAUSE1
indicates that PROC NETFLOW will pause after the unconstrained optimal solution
has been obtained and information about this solution has been output to the current
ARCOUT= data set, NODEOUT= data set, or both. The procedure then executes the
next statement, or waits if no subsequent statement has been specified.

FEASIBLEPAUSE1
FP1

indicates that unconstrained optimization should stop once a feasible solution is
reached. PROC NETFLOW checks for feasibility every 10 iterations. A solution
is feasible if there are no artificial arcs having nonzero flow assigned to be conveyed
through them. The presence of artificial arcs with nonzero flows means that the cur-
rent solution does not satisfy all the nodal flow conservation constraints implicit in
network problems.

MAXIT1=m
specifies the maximum number of Primal Simplex iterations PROC NETFLOW is to
perform in stage 1. The default value for the MAXIT1= option is 1000. If MAXIT1=
iterations are performed and you want to continue unconstrained optimization, reset
MAXIT1= to a number larger than the number of iterations already performed and
issue another RUN statement.

NOENDPAUSE1
NOEP1

negates the ENDPAUSE1 option.

NOFEASIBLEPAUSE1
NOFP1

negates the FEASIBLEPAUSE1 option.

PAUSE1=p
indicates that PROC NETFLOW will halt unconstrained optimization and pause
when the remainder of the number of stage 1 iterations divided by he value of the
PAUSE1= option is zero. If present, the next statement is executed; if not, the proce-
dure waits for the next statement to be specified. The default value for PAUSE1= is
999999.

SAS OnlineDoc: Version 8

246 � Chapter 4. The NETFLOW Procedure

FEASIBLEPAUSE2
FP2
NOFEASIBLEPAUSE2
NOFP2
PAUSE2=p
MAXIT2=m

are the stage 2 constrained optimization counterparts of the options described previ-
ously and having as a suffix the numeral 1.

Options Controlling the Network Simplex Optimization
BIGM1
NOTWOPHASE1
TWOPHASE1
NOBIGM1

BIGM1 indicates that the “big-M” approach to optimization is used. Artificial vari-
ables are treated like real arcs, slacks, surpluses and nonarc variables. Artificials have
very expensive costs. BIGM1 is the default.

TWOPHASE1 indicates that the two-phase approach is used instead of the big-M
approach. At first, artificial variables are the only variables to have nonzero objective
function coefficients. An artificial’s objective function coefficient is temporarily set
to 1 and PROC NETFLOW minimizes. When all artificial variables have zero value,
PROC NETFLOW has found a feasible solution, and phase 2 commences. Arcs and
nonarc variables have their real costs and objective function coefficients.

Before all artificial variables are driven to have zero value, you can toggle between
the big-M and the two-phase approaches by specifying BIGM1 or TWOPHASE1 in
a RESET statement. The option NOTWOPHASE1 is synonymous with BIGM1, and
NOBIGM1 is synonymous with TWOPHASE1.

CYCLEMULT1=c
MINBLOCK1= m
NOPERTURB1
PERTURB1

In an effort to reduce the number of iterations performed when the problem is highly
degenerate, PROC NETFLOW has in stage 1 optimization adopted an algorithm out-
lined in Ryan and Osborne 1988.

If the number of consecutive degenerate pivots (those with no progress toward the
optimum) performed equals the value of the CYCLEMULT1= option times the num-
ber of nodes, the arcs that were “blocking” (can leave the basis) are added to a list.
In subsequent iterations, of the arcs that now can leave the basis, the one chosen to
leave is an arc on the list of arcs that could have left in the previous iteration. In
other words, perference is given to arcs that “block” many iterations. After several
iterations, the list is cleared.

If the number of blocking arcs is less than the value of the MINBLOCK1= option, a
list is not kept. Otherwise, if PERTURB1 is specified, the arc flows are perturbed by a
random quantity, so that arcs on the list that block subsequent iterations are chosen to
leave the basis randomly. Although perturbation often pays off, it is computationally

SAS OnlineDoc: Version 8

RESET Statement � 247

expensive. Periodically, PROC NETFLOW has to clear out the lists and un-perturb
the solution. You can specify NOPERTURB1 to prevent perturbation occuring.

Defaults are CYCLEMULT1=0.15, MINBLOCK1=2, and NOPERTURB1.

LRATIO1
specifies the type of ratio test to use in determining which arc leaves the basis in stage
1. In some iterations, more than one arc is eligible to leave the basis. Of those arcs
that can leave the basis, the leaving arc is the first encountered by the algorithm if
the LRATIO1 option is specified. Specifying the LRATIO1 option can decrease the
chance of cycling but can increase solution times. The alternative to the LRATIO1
option is the NOLRATIO1 option, which is the default.

LRATIO2
specifies the type of ratio test to use in determining what leaves the basis in stage 2.
In some iterations, more than one arc, constraint slack, surplus, or nonarc variable
is eligible to leave the basis. If the LRATIO2 option is specified, the leaving arc,
constraint slack, surplus, or nonarc variable is the one that is eligible to leave the basis
first encountered by the algorithm. Specifying the LRATIO2 option can decrease the
chance of cycling but can increase solution times. The alternative to the LRATIO2
option is the NOLRATIO2 option, which is the default.

NOLRATIO1
specifies the type of ratio test to use in determining which arc leaves the basis in
stage 1. If the NOLRATIO1 option is specified, of those arcs that can leave the
basis, the leaving arc has the minimum (maximum) cost if the leaving arc is to be
nonbasic with flow capacity equal to its capacity (lower flow bound). If more than one
possible leaving arc has the minimum (maximum) cost, the first such arc encountered
is chosen. Specifying the NOLRATIO1 option can decrease solution times, but can
increase the chance of cycling. The alternative to the NOLRATIO1 option is the
LRATIO1 option. The NOLRATIO1 option is the default.

NOLRATIO2
specifies the type of ratio test to use in determining which arc leaves the basis in
stage 2. If the NOLRATIO2 option is specified, the leaving arc, constraint slack,
surplus, or nonarc variable is the one eligible to leave the basis with the minimum
(maximum) cost or objective function coefficient if the leaving arc, constraint slack
or nonarc variable is to be nonbasic with flow or value equal to its capacity or upper
value bound (lower flow or value bound), respectively. If several possible leaving
arcs, constraint slacks, surpluses, or nonarc variables have the minimum (maximum)
cost or objective function coefficient, then the first encountered is chosen. Specifying
the NOLRATIO2 option can decrease solution times, but can increase the chance of
cycling. The alternative to the NOLRATIO2 option is the LRATIO2 option. The
NOLRATIO2 option is the default.

SAS OnlineDoc: Version 8

248 � Chapter 4. The NETFLOW Procedure

Options Applicable to Constrained Optimization
The INVFREQ= option is relevant only if INVD–2D is specified in the PROC NET-
FLOW statement; that is, the inverse of the working basis matrix is being stored
and processed as a two-dimensional array. The REFACTFREQ=, U= , MAXLUUP-
DATES=, and MAXL= options are relevant if the INVD–2D option is not specified in
the PROC NETFLOW statement; that is, if the working basis matrix isLU factored.

BIGM2
NOTWOPHASE2
TWOPHASE2
NOBIGM2

are the stage 2 constrained optimization counterparts of the options BIGM1,
NOTWOPHASE1, TWOPHASE1, and NOBIGM1.

The TWOPHASE2 option is often better than the BIGM2 option when the problem
has many side constraints.

INVFREQ=r
recalculates the working basis matrix inverse whenevern iterations have been per-
formed wheren is the value of the INVFREQ= option. Although a relatively expen-
sive task, it is prudent to do as roundoff errors accumulate, especially affecting the
elements of this matrix inverse. The default is INVFREQ=50. The INVFREQ= op-
tion should be used only if the INVD–2D option is specified in the PROC NETFLOW
statement.

INTFIRST
In some iterations, it is found that what must leave the basis is an arc that is part
of the spanning tree representation of the network part of the basis, (called aa key
arc). It is necessary to interchange another basic arc not part of the tree (called a
nonkey arc) with the tree arc that leaves to permit the basis update to be performed
efficiently. Specifying the INTFIRST option indicates that of the nonkey arcs eligible
to be swapped with the leaving key arc, the one chosen to do so is the first encountered
by the algorithm. If the INTFIRST option is not specified, all such arcs are examined
and the one with the best cost is chosen.

The termskeyandnonkeyare used because the algorithm used by PROC NETFLOW
for network optimization considering side constraints, (GUB-based, Primal Partition-
ing, or Factorization) is a variant of an algorithm originally developed to solve lin-
ear programming problems with generalized upper bounding constraints. The terms
key and nonkeywere coined then. The STATUS SAS variable in the ARCOUT=
and CONOUT= data sets and the STATUS column in tables produced when PRINT
statements are processed indicate whether basic arcs are key or nonkey. Basic nonarc
variables are always nonkey.

MAXL=m
If the working basis matrix isLU factored,U is an upper triangular matrix andL
is a lower triangular matrix corresponding to a sequence of elementary matrix row
operations required to change the working basis matrix intoU . L andU enable sub-
stitution techniques to be used to solve the linear systems of the Simplex algorithm.
Among other things, theLU processing strives to keep the number ofL elementary

SAS OnlineDoc: Version 8

RESET Statement � 249

matrix row operation matrices small. A buildup in the number of these could indicate
that fill-in is becoming excessive and the computations involvingL andU will be
hampered. Refactorization should be performed to restoreU sparsity and reduceL
information. When the number ofL matrix row operations exceeds the value of the
MAXL= option, a refactorization is done rather than one or more updates. The default
value for MAXL= is 10 times the number of side constraints. The MAXL= option
should not be used if INVD–2D is specified in the PROC NETFLOW statement.

MAXLUUPDATES= m
MLUU=m

In some iterations, PROC NETFLOW must either perform a series of single column
updates or a complete refactorization of the working basis matrix. More than one
column of the working basis matrix must change before the next Simplex iteration
can begin. The single column updates can often be done faster than a complete refac-
torization, especially if few updates are necessary, the working basis matrix is sparse,
or a refactorization has been performed recently. If the number of columns that must
change is less than the value specified in the MAXLUUPDATES= option, the up-
dates are attempted; otherwise, a refactorization is done. Refactorization also occurs
if the sum of the number of columns that must be changed and the number ofLU
updates done since the last refactorization exceeds the value of the REFACTFREQ=
option. The MAXLUUPDATES= option should not be used if the INVD–2D option
is specified in the PROC NETFLOW statement.

In some iterations, a series of single column updates are not able to complete the
changes required for a working basis matrix because, ideally, all columns should
change at once. If the update cannot be completed, PROC NETFLOW performs a
refactorization. The default value is 5.

NOINTFIRST
indicates that of the arcs eligible to be swapped with the leaving arc, the one chosen
to do so has the best cost. See the INTFIRST option.

REFACTFREQ=r
RFF=r

specifies the maximum number ofL andU updates between refactorization of the
working basis matrix to reinitializeLU factors. In most iterations, one or several
Bartels-Golub updates can be performed. An update is performed more quickly than
a complete refactorization. However, after a series of updates, the sparsity of the
U factor is degraded. A refactorization is necessary to regain sparsity and to make
subsequent computations and updates more efficient. The default value is 50. The
REFACTFREQ= option should not be used if INVD–2D is specified in the PROC
NETFLOW statement.

U=u
controls the choice of pivot duringLU decomposition or Bartels-Golub update. When
searching for a pivot, any element less than the value of the U= option times the
largest element in its matrix row is excluded, or matrix rows are interchanged to im-
prove numerical stability. The U= option should have values on or between ZERO2
and 1.0. Decreasing the value of the U= option biases the algorithm toward maintain-
ing sparsity at the expense of numerical stability and vice-versa. Reid 1975 suggests

SAS OnlineDoc: Version 8

250 � Chapter 4. The NETFLOW Procedure

that the value of 0.01 is acceptable and this is the default for the U= option. This op-
tion should not be used if INVD–2D is specified in the PROC NETFLOW statement.

Pricing Strategy Options
There are three main types of pricing strategies

� PRICETYPEx=NOQ

� PRICETYPEx=BLAND

� PRICETYPEx=Q

The one that usually performs better than the others is PRICETYPEx=Q, so this is
the default.

Because the pricing strategy takes a lot of computational time, you should experi-
ment with the following options to find the optimum specification. These options
influence how the pricing step of the Simplex iteration is performed. See the “Pricing
Strategies” section on page 280 for further information).

PRICETYPEx=BLAND or PTYPEx=BLAND

PRICETYPEx=NOQ or PTYPEx=NOQ

� PxSCAN=BEST

� PxSCAN=FIRST

� PxSCAN=PARTIAL and PxNPARTIAL=p

PRICETYPEx=Q or PTYPEx=Q
QSIZEx=q or Qx=q
REFRESHQx=r
REDUCEQSIZEx=r
REDUCEQx=r

� PxSCAN=BEST

� PxSCAN=FIRST

� PxSCAN=PARTIAL and PxNPARTIAL=p

� QxFILLSCAN=BEST

� QxFILLSCAN=FIRST

� QxFILLSCAN=PARTIAL and QxFILLNPARTIAL= q

For stage 2 optimization, you can specify P2SCAN=ANY. P2SCAN=ANY is used in
conjunction with the DUALFREQ= option.

Miscellaneous Options
FUTURE1

signals that PROC NETFLOW must output extra observations to the NODEOUT=
and ARCOUT= data sets. These observations contain information about the solution
found by doing optimization neglecting any side constraints. These two data sets
then can be used as the NODEDATA= and ARCDATA= data sets, respectively, in

SAS OnlineDoc: Version 8

RESET Statement � 251

subsequent PROC NETFLOW runs with the WARM option specified. See the “Warm
Starts” section on page 292.

FUTURE2
signals that PROC NETFLOW must output extra observations to the DUALOUT=
and CONOUT= data sets. These observations contain information about the solution
found by optimization that considers side constraints. These two data sets then can
be used as the NODEDATA= data set (also called the DUALIN= data set) and the
ARCDATA= data sets, respectively, in subsequent PROC NETFLOW runs with the
WARM option specified. See the “Warm Starts” section on page 292.

MOREOPT
The MOREOPT option turns off all optimality and infeasibility flags that may have
been raised. Unless this is done, PROC NETFLOW will not do any optimization
when a RUN statement is specified.

If PROC NETFLOW determines that the problem is infeasible, it will not do any
more optimization unless you specify MOREOPT in a RESET statement. At the
same time, you can try resetting options (particularly zero tolerances) in the hope
that the infeasibility was raised incorrectly.

Consider the following example:

proc netflow
nodedata=noded /* supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* output the solution */

run;
/* Netflow states that the problem is infeasible. */
/* You suspect that the zero tolerance is too large */
reset zero2=1.0e-10 moreopt;
run;
/* Netflow will attempt more optimization. */
/* After this, if it reports that the problem is */
/* infeasible, the problem really might be infeasible */

If PROC NETFLOW finds an optimal solution, you might want to do additional opti-
mization to confirm that an optimum has really been reached. Specify the MOREOPT
option in a RESET statement. Reset options, but, in this case, tighten zero tolerances.

NOFUTURE1
negates the FUTURE1 option.

NOFUTURE2
negates the FUTURE2 option.

NOSCRATCH
negates the SCRATCH option.

NOZTOL1
indicates that the majority of tests for roundoff error should not be done. Specify-
ing the NOZTOL1 option and obtaining the same optimal solution as when the the
NOZTOL1 option is not specified in the PROC NETFLOW statement (or the ZTOL1

SAS OnlineDoc: Version 8

252 � Chapter 4. The NETFLOW Procedure

option is specified), verifies that the zero tolerances were not too high. Roundoff
error checks that are critical to the successful functioning of PROC NETFLOW and
any related readjustments are always done.

NOZTOL2
indicates that the majority of tests for roundoff error are not to be done during an
optimization that considers side constraints. The reasons for specifying the NOZ-
TOL2 option are the same as those for specifying the NOZTOL1 option for stage 1
optimization (see the NOZTOL1 option).

SCRATCH
specifies that you do not want PROC NETFLOW to enter or continue stage 1 of
the algorithm. Rather than specify RESET SCRATCH, you can use the CONOPT
statement.

VERBOSE=v
limits the number of similar messages that are displayed on the SAS log.

For example, when reading the ARCDATA= data set, PROC NETFLOW might have
cause to issue the following message many times:

ERROR: The HEAD list variable value in obs i in the ARCDATA is
missing, - the TAIL list variable value of this obs
is nonmissing. This is an incomplete arc specification.

If there are lots of observations that have this fault, messages that are similar are
issued for only the first VERBOSE= such observations. After the ARCDATA= data
set has been read, PROC NETFLOW will issue the message:

NOTE: More messages similar to the ones immediately above
could have been issued but were suppressed as
VERBOSE= v.

If observations in the ARCDATA= data set have this error, PROC NETFLOW stops
and you have to fix the data. Imagine that this error is only a warning and PROC
NETFLOW proceeded to other operations such as reading the CONDATA= data set.
If PROC NETFLOW finds there are numerous errors when reading that data set, the
number of messages issued to the SAS log are also limited by the VERBOSE= option.

If you have a problem with a large number of side constraints and for some reason you
stop stage 2 optimization early, PROC NETFLOW indicates that constraints are dis-
obeyed by the current solution. Specifying VERBOSE=v allows at mostv disobeyed
constraints to be written to the log. If there are more, these are not displayed.

When PROC NETFLOW finishes and messages have been suppressed, the message

NOTE: To see all messages, specify VERBOSE=v.

is issued. The value ofv is the smallest value that should be specified for the VER-
BOSE= option so thatall messages are displayed if PROC NETFLOW is run again

SAS OnlineDoc: Version 8

RESET Statement � 253

with the same data and everything else except that the VERBOSE= option is un-
changed. No messages are suppressed.

The default value for the VERBOSE= option is 12.

ZERO1=z
Z1=z

specifies the zero tolerance level in stage 1. If the NOZTOL1 option is not specified,
values withinz of zero are set to 0.0, wherez is the value of the ZERO1= option.
Flows close to the lower flow bound or capacity of arcs are reassigned those exact
values. Two values are deemed to be close if one is withinz of the other. The default
value for the ZERO1= option is 0.000001. Any value specified for the ZERO1=
option that is< 0:0 or> 0:0001 is invalid.

ZERO2=z
Z2=z

specifies the zero tolerance level in stage 2. If the NOZTOL2 option is not specified,
values withinz of zero are set to 0.0, wherez is the value of the ZERO2= option.
Flows close to the lower flow bound or capacity of arcs are reassigned those exact
values. If there are nonarc variables, values close to the lower or upper value bound
of nonarc variables are reassigned those exact values. Two values are deemed to be
close if one is withinz of the other. The default value for the ZERO2= option is
0.000001. Any value specified for the ZERO2= option that is< 0:0 or > 0:0001 is
invalid.

ZEROTOL=z
specifies the zero tolerance used when PROC NETFLOW must compare any real
number with another real number, or zero. For example, ifx andy are real numbers,
then forx to be considered greater thany, x must be at leasty + ZEROTOL The
ZEROTOL= option is used throughout any PROC NETFLOW run.

ZEROTOL=z controls the way PROC NETFLOW performs all double precision
comparisons; that is whether a double precision number is equal to, not equal to,
greater than (or equal to), or less than (or equal to) zero or some other double preci-
sion number. A double precision number is deemed to be the same as another such
value if the absolute differences between them is less than or equal to the value of the
ZEROTOL= option.

The default value for the ZEROTOL= option is 1.0E-14. You can specify the ZERO-
TOL= option in the NETFLOW or RESET statement. Valid values for the ZERO-
TOL= option must be> 0:0 and< 0:0001. Do not specify a value too close to zero
as this defeats the purpose of the ZEROTOL= option. Neither should the value be too
large, as comparisons might be incorrectly performed.

The ZEROTOL= option is different from the ZERO1= and ZERO2= options in that
ZERO1= and ZERO2= options work when determining whether optimality has been
reached whether an entry in the updated column in the ratio test of the simplex method
is zero, whether a flow is the same as the arc’s capacity or lower bound or whether
the value of a nonarc variable is at a bound. The ZEROTOL= option is used in all
other general double precision number comparisons.

SAS OnlineDoc: Version 8

254 � Chapter 4. The NETFLOW Procedure

ZTOL1
indicates that all tests for roundoff error are performed during stage 1 optimization.
Any alterations are carried out. The opposite of the ZTOL1 option is the NOZTOL1
option.

ZTOL2
indicates that all tests for roundoff error are performed during stage 2 optimization.
Any alterations are carried out. The opposite of the ZTOL2 option is the NOZTOL2
option.

Interior Point Algorithm Options
INTPOINT

indicates that the Interior Point algorithm is to be used. The INTPOINT option must
be specified if you want the Interior Point algorithm to be used for solving network
problems, otherwise the Simplex algorithm is used instead. For Linear Programming
problems (problems with no network component), PROC NETFLOW must use the
Interior Point algorithm, so you need not specify the INTPOINT option.

TOLDINF=t
RTOLDINF=t

specifies the allowed amount of dual infeasibility. In the “Interior Point Algorith-
mic Details” section on page 316, the vectorinfeasc is defined. If all elements of
this vector are� t, the solution is deemed feasible.infeasc is replaced by a zero
vector, which makes computations faster. This option is the dual equivalent to the
TOLPINF= option. Valid values fort are between1:0E � 12 and1:0E � 1. The
default is1:0E � 7.

TOLPINF=t
RTOLPINF=t

specifies the allowed amount of primal infeasibility. This option is the dual equivalent
to the TOLDINF= option. In the “Interior Point Algorithmic Details” section on
page 316, the vectorinfeasb is defined. If all elements of this vector are� t, the
solution is deemed feasible.infeasb is replaced by a zero vector, which makes
computations faster. Increasing the value of the TOLPINF= option too much can
lead to instability, but a modest increase can give the algorithm added flexibility and
decrease the iteration count. Valid values fort are between1:0E � 12 and1:0E � 1.
The default is1:0E � 7.

CHOLTINYTOL=c
RCHOLTINYTOL=c

specifies the cut-off tolerance for Cholesky factorization of theA�A�1. If a diagonal
value drops belowc, the row is essentially treated as dependent and is ignored in the
factorization. Valid values forc are between1:0E � 30 and1:0E � 6. The defualt
value is1:0E � 8.

DENSETHR=d
RDENSETHR=d

specifies the density threshold for Cholesky processing. When the symbolic factor-
ization encounters a column of L that has DENSETHR= proportion of nonzeros and
the remaining part of L is at least 12 x 12, the remainder of L is treated as dense. In

SAS OnlineDoc: Version 8

RESET Statement � 255

practice, the lower right part of the Cholesky triangular factor L is quite dense and
it can be computationally more efficient to treat it as 100% dense. The default value
for d is 0.7. A specification ofd�0.0 causes all dense processing;d�1.0 causes all
sparse processing.

MAXITERB=m
IMAXITERB=m

specifies the maximum number of iterations of the IPBM algorithm that can be per-
formed. The default value form is 100. One of the most remarkable aspects of the
Interior Point algorithm is that for most problems, it usually needs to do less than 50
iterations,no matter the size of the problem.

PDGAPTOL=p
RPDGAPTOL=p

specifies the Primal-Dual gap or Duality gap tolerance. Duality gap is defined in
the “Interior Point Algorithmic Details” section on page 316. If the relative gap
(dualitygap=(cT x)) between the primal and dual objectives is smaller the the value
of the PDGAPTOL= option and both the primal and dual problems are feasible, then
PROC NETFLOW stops optimization with a solution that is deemed optimal. Valid
values forp are between1:0E � 12 and1:0E � 1. the default is1:0E � 7.

PDSTEPMULT=p
RPDSTEPMULT=p

specifies the step-length multiplier. The maximum feasible step-length chosen by
the Primal-Dual with Predictor-Corrector algorithm is multiplied by the value of the
PDSTEPMULT= option. This number must be less than 1 to avoid moving beyond
the barrier. An actual step-length greater than 1 indicates numerical difficulties. Valid
values forp are between 0.01 and 0.999999. The default value is 0.99995.

In the “Interior Point Algorithmic Details” section on page 316, the solution of the
next iteration is obtained by moving along a direction from the current iterations
solution.
(xk+1; yk+1; sk+1) = (xk; yk; sk) + �(�xk;�yk;�sk)

Let � = Minif� : xki + ��x = 0jski + ��s = 0g. If � � 1, then� =p�.
� is a value as large as possible but� 1:0 and not so large that axk+1

i or sk+1
i of

some variablei is not “too close” to zero.

PRSLTYPE=p
IPRSLTYPE=p

Preprocessing the Linear Programming problem often succeeds in allowing some
variables and constraints to be temporarily eliminated from the LP that must be
solved. This reduces the solution time and possibly also the chance that the opti-
mizer will run into numerical differculties. The task of preprocessing is inexpensive
to do.

You control how much preprocessing to do by specifying the PRSLTYPE=p, where
p can be -1, 0, 1, 2, or 3.

-1 do not perform preprocessing. For most problems, specifying
PRSLTYPE= -1 isnot recommended.

SAS OnlineDoc: Version 8

256 � Chapter 4. The NETFLOW Procedure

0 Given upper and lower bounds on each variable, the greatest and
least contribution to the row activity of each variable is computed.
If these are within the limits set by the upper and lower bounds on
the row activity, then the row is redundant and can be discarded.
Try to tighten the bounds on any of the variables it can. For ex-
ample, if all coefficients in a constraint are positive and all vari-
ables have zero lower bounds, then the row’s smallest contribution
is zero. If the rhs value of this constraint is zero, then if the con-
straint type is= or �, all the variables in that constraint can be
fixed to zero. These variables and the constraint can be removed.
If the constraint type is�, the constraint is redundant. If the rhs is
negative and the constraint is�, the problem is infeasible. If just
one variable in a row is not fixed, use the row to impose an implicit
upper or lower bound on the variable and then eliminate the row.
The preprocessor also tries to tighten the bounds on constraint right
hand sides. PRSLTYPE=0 is the default.

1 When there are exactly two unfixed variables with coefficients in
an equality constraint, solve for one in terms of the other. The
problem will have one less variable. The new matrix will have
at least two fewer coefficients and one less constraint. In other
constraints where both variables appear, two coefs are combined
into one. type=0 reductions are also done.

2 It may be possible to determine that an equality constraint is not
constraining a variable. That is, if all variables are nonnegative,
then x - SUM yi = 0 does not constrain x, since it must be non-
negative if all the yi’s are nonnegative. In this case, eliminate x
by subtracting this equation from all others containing x. This is
useful when the only other entry for x is in the objective function.
Perform this reduction if there is at most one other nonobjective
coefficient. type=0 reductions are also done.

3 All possible reductions are performed.

Preprocessing is iterative. As variables are fixed and eliminated, and constraints are
found to be redundant and they too are eliminated, and as variable bounds s and
constraint right hand sides are tightened, the LP to be optimized is modified to reflect
these changes. Another iteration of preprocessing of the modified LP may reveal
more variables and constraints that can be eliminated.

RHS Statement

RHS variable ;

The RHS variable list is used when the dense format of the CONDATA= data set is
used. The values of the SAS variable specified in the RHS list are constraint right-
hand-side values. If the RHS list is not specified, the CONDATA= data set is searched
and a SAS variable with the name–RHS– is used. If there is no RHS list and no

SAS OnlineDoc: Version 8

RUN Statement � 257

SAS variable named–RHS– , all constraints are assumed to have zero right-hand-
side values. The RHS list variable must have numeric values.

ROW Statement

ROW variables ;

The ROW list is used when either the sparse or dense format of side constraints is
being used. SAS variables in the ROW list have values that are constraint or special
row names. The SAS variables in the ROW list must have character values.

If the dense data format is used, there must be only one SAS variable in this list. In
this case, if a ROW list is not specified, the CONDATA= data set is searched and the
SAS variable with the name–ROW– or –CON– is used.

If the sparse data format is used and the ROW statement is not specified, the CON-
DATA= data set is searched and SAS variables with names beginning with–ROW or

–CON are used. The number of SAS variables in the ROW list must not be less than
the number of SAS variables in the COEF list. Theith ROW list variable is paired
with the ith COEF list variable. If the number of ROW list variables is greater than
the number of COEF list variables, the last ROW list variables have no COEF partner.
These ROW list variables that have no corresponding COEF list variable are used in
observations that have a TYPE list variable value. All ROW list variable values are
tagged as having the type indicated. If there is no TYPE list variable, all ROW list
variable values are constraint names.

RUN Statement

RUN;

The RUN statement causes optimization to be started or resumed. The RUN statement
has no options. If PROC NETFLOW is called and is not terminated because of an
error or a QUIT statement, and you have not used a RUN statement, a RUN statement
is assumed implicitly as the last statement of PROC NETFLOW. Therefore, PROC
NETFLOW always performs optimization and saves the obtained (optimal) solution
in the current output data sets.

SAS OnlineDoc: Version 8

258 � Chapter 4. The NETFLOW Procedure

SAVE Statement

SAVE options ;

The options available with the SAVE statement of PROC NETFLOW are summarized
by purpose in Table 4.21.

Table 4.21. Functional Summary, SAVE statement: PROC NETFLOW

Description Statement Option

Output Data Set Options: SAVE
unconstrained solution data set SAVE ARCOUT=
unconstrained solution data set SAVE NODEOUT=
constrained solution data set SAVE CONOUT=
constrained solution data set SAVE DUALOUT=

The SAVE statement can be used to specify output data sets and create observations
in these data sets. Use the SAVE statement if no optimization is to be performed
before these output data sets are created.

The SAVE statement must be used to save solutions in data sets if there is no more
optimization to do. If more optimization is to be performed, after which you want to
save the solution, then do one of the following:

� Submit a RUN statement followed by a SAVE statement.

� Use the PROC NETFLOW or RESET statement to specify current output data
sets. After optimization, output data sets are created and observations are au-
tomatically sent to the current output data sets.

Consider the following example:

proc netflow options; lists;
reset maxit1=10 maxit2=25

arcout=arcout0 nodeout=nodeout0
conout=conout0 dualout=dualout0;

RUN;
/* Stage 1 optimization stops after iteration 10. */
/* No output data sets are created yet. */
save arcout=arcout1 nodeout=nodeout1;
/* arcout1 and nodeout1 are created. */
reset arcout=arcout2 maxit1=999999;
run;
/* The stage 1 optimum is reached. */
/* Arcout2 and nodeout0 are created. */
/* Arcout0 is not created as arcout=arcout2 over- */
/* rides the arcout=arcout0 specified earlier. */

SAS OnlineDoc: Version 8

SHOW Statement � 259

/* Stage 2 optimization stops after 25 iterations */
/* as MAXIT2=25 was specified. */
save conout=conout1;
/* Conout1 is created. */
reset maxit2=999999 dualout=null;
run;
/* The stage 2 optimum is reached. */
/* Conout0 is created. */
/* No dualout is created as the last NETFLOW or */
/* reset statements dualout=data set specification*/
/* was dualout=null. */

The data sets specified in the PROC NETFLOW and RESET statements are created
when an optimal solution is found. The data sets specified in SAVE statements are
created immediately.

The data sets in the preceeding example are all distinct, but this need not be the case.
The only exception to this is that the ARCOUT= data set and the NODEOUT= data
set (or the CONOUT= data set and the DUALOUT= data set) that are being created
at the same time must be distinct. Use the SHOW DATA SETS; statement to examine
what data sets are current and that have already been created and when.

The following options can appear in the SAVE statement:

ARCOUT= SAS-data-set; , or
AOUT= SAS-data-set;
NODEOUT= SAS-data-set; , or
NOUT= SAS-data-set;
CONOUT= SAS-data-set; , or
COUT= SAS-data-set;
DUALOUT= SAS-data-set; , or
DOUT= SAS-data-set;

SHOW Statement

SHOW options / qualifiers ;

The options available with the SHOW statement of PROC NETFLOW are summa-
rized by purpose in Table 4.22.

Table 4.22. Functional Summary, SHOW statement: PROC NETFLOW

Description Statement Option

SHOW statement options
show problem, optimization status SHOW STATUS
show network model parameters SHOW NETSTMT
show data sets that have, will be created SHOW DATA SETS
show options that pause optimization SHOW PAUSE

SAS OnlineDoc: Version 8

260 � Chapter 4. The NETFLOW Procedure

Description Statement Option

show Simplex algorithm options SHOW SIMPLEX
show pricing strategy options SHOW PRICING
show miscellaneous options SHOW MISC

SHOW statement qualifiers
only if relevant SHOW RELEVANT
only stage 1 options when doing stage 1. only

stage 2 options when doing stage 2
SHOW STAGE

The SHOW statement enables you to examine the status of the problem and values of
the RESET statement options. All output of the SHOW statement appears on the SAS
log. The amount of information displayed when a SHOW statement is processed can
be limited if some of the options of the SHOW statement are specified. These options
indicate whether the problem status or a specific category of the RESET options is
of interest. If no options are specified, the problem status and information on all
RESET statement options in every category is displayed. The amount of displayed
information can be limited further by following any SHOW statement options with a
slash (/) and one or both qualifiers, RELEVANT and STAGE.

The following options can appear in the SHOW statement.

STATUS
produces one of the following optimization status reports, whichever is applicable.
The warning messages are issued only if the network or entire problem is infeasible.

NOTE: Optimization Status.
Optimization has not started yet.

NOTE: Optimization Status.
Optimizing network (ignoring any side constraints).
Number of iterations=17
Of these, 3 were degenerate

WARNING: This optimization has detected that the network is
infeasible.

NOTE: Optimization Status.
Found network optimum (ignoring side constraints)
Number of iterations=23
Of these, 8 were degenerate

NOTE: Optimization Status.
Optimizing side constrained network.
Number of iterations=27
Of these, 9 were degenerate

WARNING: This optimization has detected that the problem is
infeasible.

SAS OnlineDoc: Version 8

SHOW Statement � 261

NOTE: Optimization Status.
Found side constrained network optimum
Number of iterations=6
Of these, 0 were degenerate

DATA SETS
produces a report on output data sets.

NOTE: Current output SAS data sets
No output data sets have been specified

NOTE: Current output SAS data sets
ARCOUT=libname.memname
NODEOUT=libname.memname
CONOUT=libname.memname
DUALOUT=libname.memname

NOTE: Other SAS data sets specified in previous ARCOUT=, NODEOUT=,
CONOUT=, or DUALOUT=.
libname.memname

.

.

.

NOTE: Current output SAS data sets (SHOW DATA SETS)
libname.memname

.

.

.
NOTE: SAS data sets specified as ARCOUT= NODEOUT= CONOUT= or

DUALOUT= data sets in previous PROC NETFLOW, SET, RESET
and SAVE statements.
The number following the data set specification was the
iteration number when observations were placed into the
data set.
libname.memname iteration_number

. .

. .

. .

PAUSE
produces a report on the current settings of options used to make optimization pause.

NOTE: Options and parameters that stop optimization for reasons
other than infeasibility or optimality (SHOW PAUSE)
FEASIBLEPAUSE1=FALSE
ENDPAUSE1=FALSE
PAUSE1=999999
MAXIT1=1000
FEASIBLEPAUSE2=FALSE
PAUSE2=999999
MAXIT2=999999

SAS OnlineDoc: Version 8

262 � Chapter 4. The NETFLOW Procedure

SIMPLEX
produces the following:

NOTE: Options and parameters that control the Primal Simplex
Network algorithm (excluding those that affect the
pricing strategies) (SHOW SIMPLEX)
LRATIO1=FALSE
BIGM1=NOTWOPHASE1=TRUE, TWOPHASE1=NOBIGM1=FALSE
CYCLEMULT1=0.15
PERTURB1=FALSE
MINBLOCK1=2
INTFIRST=TRUE
LRATIO2=FALSE
BIGM2=NOTWOPHASE2=TRUE, TWOPHASE2=NOBIGM2=FALSE
REFACTFREQ=50
U=0.1
MAXLUUPDATES=6
MAXL=40

PRICING
produces the following:

NOTE: Options and parameters that control the Primal Simplex
Network algorithm pricing strategies (SHOW PRICING)
PRICETYPE1=Q
P1SCAN=FIRST
P1NPARTIAL=10
Q1FILLSCAN=FIRST
QSIZE1=24
REFRESHQ1=0.75
REDUCEQSIZE1=1
Q1FILLNPARTIAL=10
PRICETYPE2=Q
P2SCAN=FIRST
P2NPARTIAL=10
DUALFREQ=4
Q2FILLSCAN=FIRST
QSIZE2=24
REFRESHQ2=0.75
REDUCEQSIZE2=1
Q2FILLNPARTIAL=10

MISC
produces the following:

NOTE: Miscellaneous options and parameters (SHOW MISC)
VERBOSE=12
ZTOL1=TRUE
ZERO1=1E-6
FUTURE1=FALSE
ZTOL2=TRUE
ZERO2=1E-6
FUTURE2=FALSE

SAS OnlineDoc: Version 8

SHOW Statement � 263

Following a slash (/), the qualifiers below can appear in any SHOW statement.

RELEVANT
indicates that you want information only on relevant options of the RESET statement.
The following will not be displayed if / RELEVANT is specified:

� information on noncurrent data sets

� the options that control the reasons why stage 1 optimization should be halted
and the options that control the Simplex algorithm during stage 1 optimization,
if the unconstrained optimum has been reached or constrained optimization has
been performed

� if P1SCAN=BEST or P1SCAN=FIRST, the P1NPARTIAL option is irrelevant

� if PRICETYPE1=BLAND or PRICETYPE1=NOQ, the options QSIZE1=,
Q1FILLSCAN=, REFRESHQ1=, and REDUCEQSIZE1= are irrelevant

� if Q1FILLSCAN=BEST or Q1FILLSCAN=FIRST, the Q1FILLNPARTIAL=
option is irrelevant

� the options that control the reasons stage 2 optimization should be halted, the
options that control the Simplex algorithm during stage 2 optimization, if the
constrained optimum has been reached

� If P2SCAN=BEST or P2SCAN=FIRST, the P2NPARTIAL= option is irrele-
vant

� if PRICETYPE2=BLAND or PRICETYPE2=NOQ, the options QSIZE2=,
Q2FILLSCAN=, REFRESHQ2=, and REDUCEQSIZE2= are irrelevant.

� If Q2FILLSCAN=BEST or Q2FILLSCAN=FIRST, the Q2FILLNPARTIAL=
option is irrelevant.

STAGE
indicates that you want to examine only the options that affect the optimization that
is performed if a RUN statement is executed next. Before any optimization has been
done, only stage 2 options are displayed if the problem has side constraints and the
SCRATCH option is used, or if the CONOPT statement is specified. Otherwise, stage
1 options are displayed. If still optimizing neglecting constraints, only stage 1 options
will be displayed. If the unconstrained optimum has been reached and optimization
that considers constraints has not been performed, stage 1 options are displayed. If
the problem has constraints, stage 2 options are displayed. If any optimization that
considers constraints has been performed, only stage 2 options are displayed.

SAS OnlineDoc: Version 8

264 � Chapter 4. The NETFLOW Procedure

SUPDEM Statement

SUPDEM variable ;

The SAS variable in this list, that must be present in the NODEDATA= data set,
contains supply and demand information for the nodes in the NODE list. A positive
SUPDEM list variable values (s > 0) denotes that the node named in the NODE
list variable can supplys units of flow. A negative SUPDEM list variable value
�d (d > 0) means that this node demandsd units of flow. If a SAS variable is not
explicitly specified, a SAS variable with the name–SUPDEM– or –SD– in NODE-
DATA=data set is used as the SUPDEM variable. If a node is a transshipment node
(neither a supply nor a demand node), an observation associated with this node need
not be present in the NODEDATA= data set. If present, the SUPDEM list variable
value must be zero or a missing value.

SUPPLY Statement

SUPPLY variable ;

The SUPPLY statement identifies the SAS variable in the ARCDATA= data set that
contains the supply at the node named in that observation’s TAILNODE list variable.
If a tail node does not supply flow, use zero or a missing value for the observation’s
SUPPLY list variable value. If a tail node has supply capability, a missing value
indicates that the supply quantity is given in another observation. It is not necessary
to have a SUPPLY statement if the name of this SAS variable is–SUPPLY– .

TAILNODE Statement

TAILNODE variable ;
TAIL variable ;

FROMNODE variable ;

FROM variable ;

The TAILNODE statement specifies the SAS variable that must be present in the AR-
CDATA= data set that has as values the names of tail nodes of arcs. The TAILNODE
variable must have character values. It is not necessary to have a TAILNODE state-
ment if the name of the SAS variable is–TAIL– or –FROM– . If the TAILNODE
list variable value is missing, it is assumed that the observation of ARCDATA= data
set contains information concerning a nonarc variable.

SAS OnlineDoc: Version 8

TYPE Statement � 265

TYPE Statement

TYPE variable ;
CONTYPE variable ;

The TYPE list, which is optional, names the variable that has as values keywords
that indicate either the constraint type for each constraint or the type of special rows
in the CONDATA= data set. The values of the TYPE list variable also indicate, in
each observation of the CONDATA= data set, how values of the VAR or COEF list
variables are to be interpreted and how the type of each constraint or special row
name is determined. If the TYPE list is not specified, the CONDATA= data set is
searched and a SAS variable with the name–TYPE– is used. Valid keywords for the
TYPE variable are given below. If there is no TYPE statement and no other method
is used to furnish type information (see the DEFCONTYPE= option), all constraints
are assumed to be of the type “less than or equal to” and no special rows are used.
The TYPE list variable must have character values and can be used when the data
in the CONDATA= data set is in either the sparse or dense format. If the TYPE list
variable value has a * as its first character, the observation is ignored because it is a
comment observation.

TYPE List Variable Values
The following are valid TYPE list variable values. The letters in boldface denote the
characters that PROC NETFLOW uses to determine what type the value suggests.
You need to have at least these characters. Below, the minimal TYPE list variable
values have additional characters to aid you in remembering these values.

The valid TYPE list variable values are

< less than or equal to (�)

= equal to (=)

> greater than or equal to (�)

CAPAC capacity

COST cost

EQ equal to

FREE free row (used only for Linear Programs solved by Interior Point)

GE greater than or equal to

LE less than or equal to

LOW ERBD lower flow or value bound

LOW blank lower flow or value bound

MA XIMIZE maximize (opposite of cost)

MI NIMIZE minimize (same as cost)

OBJECTIVE objective function (same as cost)

RHS rhs of constraint

SAS OnlineDoc: Version 8

266 � Chapter 4. The NETFLOW Procedure

TYPE type of constraint

UPPCOST reserved for future use

UNREST unrestricted variable (used only for Linear Programs solved by In-
terior Point)

UPPER upper value bound or capacity; second letter must not be N

The valid TYPE list variable values in function order are

� LE less than or equal to (�)

� EQ Equal to (=)

� GE Greater than or equal to (�)

� COST
MI NIMIZE
MA XIMIZE
OBJECTIVE
cost or objective function coefficient

� CAPAC
UPPER capacity or upper value bound

� LOW ERBD
LOW blank Lower flow or value bound

� RHS rhs of constraint

� TYPE type of constraint

A TYPE list variable value that has the first character� causes the observation is
be treated as a comment. If the first character is a negative sign, then�, zero =, a
positive number�.

VAR Statement

VAR variables ;

The VAR variable list is used when the dense data format is used. The names of these
SAS variables are also names of the arc and nonarc variables that have data in the
CONDATA= data set. If no explicit VAR list is specified, all numeric variables not
on other lists are put onto the VAR list. The VAR list variables must have numeric
values. The values of the VAR list variables in some observations can be interpreted
differently than in other observations. The values can be coefficients in the side con-
straints, costs and objective function coefficients, or bound data. How these numeric
values are interpreted depends on the value of each observation’s TYPE or ROW list
variable value. If there are no TYPE list variables, the VAR list variable values are
all assumed to be side constraint coefficients.

SAS OnlineDoc: Version 8

Input Data Sets � 267

Details

Input Data Sets

PROC NETFLOW is designed so that there are as few rules as possible that you
must obey when inputting a problem’s data. Raw data are acceptable. This should
cut the amount of processing required to groom the data before it is input to PROC
NETFLOW. Data formats are so flexible that, due to space restrictions, all possible
forms for a problem’s data are not shown here. Try any reasonable form for your
problem’s data; it should be acceptable. PROC NETFLOW will outline its objections.

There are several ways to supply the same piece of data. You do not have to restrict
yourself to using any particular one. If you use several ways, PROC NETFLOW
checks that the data are consistent each time the data are encountered. After all input
data sets have been read, data are merged so that the problem is described completely.
The order of the observations is not important in any of the input data sets.

ARCDATA= Data Set
See the “Getting Started” section on page 196 and the “Introductory Example” sec-
tion on page 197 for a description of this input data set.

Note: information for an arc or nonarc variable can be specified in more than one
observation. For example, consider an arc directed from node A toward node B that
has a cost of 50, capacity of 100, and lower flow bound of 10 flow units. Some
possible observations in the ARCDATA= data set may be

TAIL _HEAD_ _COST_ _CAPAC_ _LO_
A B 50 . .
A B . 100 .
A B . . 10
A B 50 100 .
A B . 100 10
A B 50 . 10
A B 50 100 10

Similarly, for a nonarc variable with upperbd=100, lowerbd=10, and objective func-
tion coefficient=50, the–TAIL– and–HEAD– values are missing.

CONDATA= Data Set
Regardless of whether the data in the CONDATA= data set is in the sparse or dense
format, you will receive a warning if PROC NETFLOW finds a constraint row that
has no coefficients. You will also be warned if any nonarc variable has no constraint
coefficients.

Dense Input Format

If the dense format is used, most SAS variables in the CONDATA= data set belong
to the VAR list and have names of arc and nonarc variables. These names can be
values of the NAME list SAS variables in the ARCDATA= data set, or names of
nonarc variables, or names in the formtail–head, or any combination of these three
forms. Names in the formtail–headare default arc names, and if you use them, you

SAS OnlineDoc: Version 8

268 � Chapter 4. The NETFLOW Procedure

must specify node names in the ARCDATA= data set (values of the TAILNODE and
HEADNODE list SAS variables) using no lowercase letters.

There can be three other variables in the CONDATA= data set, belonging, respec-
tively, to the ROW, TYPE, and RHS lists. The CONDATA= data set of the oil
industry example in the “Introductory Example” section on page 197 uses the dense
data format.

Consider the SAS code that creates a dense format CONDATA= data set that has data
for three constraints. This data set was used in the “Introductory Example” section
on page 197.

data cond1;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

-2 . 1 . . . >= -15
. -2 . . 1 . GE -15
. . -3 4 . . EQ 0
. . . . -3 4 = 0

;

You can use nonconstraint type values to furnish data on costs, capacities, lower flow
bounds (and, if there are nonarc variables, objective function coefficients and upper
and lower bounds). You need not have such (or as much) data in the ARCDATA= data
set. The first three observations in the following data set are examples of observations
that provide cost, capacity and lower bound data.

data cond1b;
input m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas

type $ _rhs_;
datalines;

63 81 200 . 220 . cost .
95 80 175 140 100 100 capac .
20 10 50 . 35 . lo .
-2 . 1 . . . >= -15

. -2 . . 1 . GE -15

. . -3 4 . . EQ 0

. . . . -3 4 = 0
;

If a ROW list variable is used, the data for a constraint can be spread over more than 1
observation. To illustrate, the data for the first constraint, (which is called con1), and
the cost and capacity data (in special rows called costrow and caprow, respectively)
will be spread over more than one observation in the following data set.

data cond1b;
input _row_ $

m_e_ref1 m_e_ref2 thruput1 r1_gas thruput2 r2_gas
type $ _rhs_;

datalines;
costrow 63

SAS OnlineDoc: Version 8

Input Data Sets � 269

costrow . 81 20 0 . . . cost .
. 220 . cost .
caprow capac .
caprow 95 . 175 . 100 100 . .
caprow . 80 175 140
lorow 20 10 50 . 35 . lo .
con1 -2 . 1
con1 >= -15
con2 . -2 . . 1 . GE -15
con3 . . - 3 4 . . EQ 0
con4 -3 4 = 0
;

Using both ROW and TYPE lists, you can use special row names. Examples of
these are “costrow” and “caprow” in the last data set. It should be restated that in
any of the input data sets of PROC NETFLOW, the order of the observation does
not matter. However, the CONDATA= data set can be read more quickly if PROC
NETFLOW knows what type of constraint or special row a ROW list variable value
is. For example, when the first observation is read, PROC NETFLOW does not know
whether costrow is a constraint or special row and how to interpret the value 63 for the
arc with the name m–e–ref1. When PROC NETFLOW reads the second observation,
it learns that costrow has cost type and that the values 81 and 200 are costs. When the
entire CONDATA= data set has been read, PROC NETFLOW knows the type of all
special rows and constraints. Data that PROC NETFLOW had to set aside (such as the
first observation 63 value and the costrow ROW list variable value, which at the time
had unknown type, but is then known to be a cost special row) is reprocessed. During
this second pass, if a ROW list variable value has unassigned constraint or special row
type, it is treated as a constraint with DEFCONTYPE= (or DEFCONTYPE= default)
type. Associated VAR list valiable values as coefficients of that constraint.

Sparse Input Format

The side constraints usually become sparse as the problem size increases. When
the sparse data format of the CONDATA= data set is used, only nonzero constraint
coefficients must be specified. Remember to specify the SPARSECONDATA option
in the PROC NETFLOW statement. With the sparse method of specifying constraint
information, the names of arc and nonarc variables do not have to be valid SAS
variable names.

A sparse format CONDATA= data set for the oil industry example in the “Introduc-
tory Example” section on page 197 is displayed below.

title ’Setting Up Condata = Cond2 for PROC NETFLOW’;
data cond2;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 ;
datalines;

m_e_ref1 con1 -2 . .
m_e_ref2 con2 -2 . .
thruput1 con1 1 con3 -3
r1_gas . . con3 4
thruput2 con2 1 con4 -3
r2_gas . . con4 4

SAS OnlineDoc: Version 8

270 � Chapter 4. The NETFLOW Procedure

type con1 1 con2 1
type con3 0 con4 0
rhs con1 -15 con2 -15
;

Recall that the COLUMN list variable values “–type–” and “–rhs–” are the default
values of the TYPEOBS= and RHSOBS= options. Also, the default rhs value of
constraints (con3 and con4) is zero. The third to last observation has the value
“–type–” for the COLUMN list variable. The–ROW1 variable value is con1, and
the –COEF1– variable has the value 1. This indicates that the constraint con1 is
greater thanor equal to type (because the value 1 isgreater thanzero). Similarly,
the data in the second to last observation’s–ROW2 and–COEF2 variables indicate
that con2 is anequalityconstraint (0equalszero).

An alternative, using a TYPE list variable is

title ’Setting Up Condata = Cond3 for PROC NETFLOW’;
data cond3;

input _column_ $ _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

m_e_ref1 con1 -2 . . >=
m_e_ref2 con2 -2 . . .
thruput1 con1 1 con3 -3 .
r1_gas . . con3 4 .
thruput2 con2 1 con4 -3 .
r2_gas . . con4 4 .
. con3 . con4 . eq
. con1 -15 con2 -15 ge
;

If the COLUMN list variable is missing in a particular observation (the last 2 obser-
vations in the data setcond3, for instance), the constraints named in the ROW list
variables all have the constraint type indicated by the value in the TYPE list variable.
It is for this type of observation that you are allowed more ROW list variables than
COEF list variables. If corresponding COEF list variables are not missing (for ex-
ample, the last observation in the data setcond3), these values are the rhs values of
those constraints. Therefore, you can specify both constraint type and rhs in the same
observation.

As in the previous CONDATA= data set, if the COLUMN list variable is an arc or
nonarc variable, the COEF list variable values are coefficient values for that arc or
nonarc variable in the constraints indicated in the corresponding ROW list variables.
If in this same observation, the TYPE list variable contains a constraint type, all
constraints named in the ROW list variables in that observation have this constraint
type (for example, the first observation in the data setcond3). Therefore, you can
specify both constraint type and coefficient information in the same observation.

Also note that DEFCONTYPE=EQ could have been specified, saving you from hav-
ing to include in the data that CON3 and CON4 are of this type.

SAS OnlineDoc: Version 8

Input Data Sets � 271

In the oil industry example, arc costs, capacities, and lower flow bounds are presented
in the ARCDATA= data set. Alternatively, you could have used the following input
data sets:

title3 ’Setting Up Arcdata = Arcd2 for PROC NETFLOW’;
data arcd2;

input _from_&$11. _to_&$15. ;
datalines;

middle east refinery 1
middle east refinery 2
u.s.a. refinery 1
u.s.a. refinery 2
refinery 1 r1
refinery 2 r2
r1 ref1 gas
r1 ref1 diesel
r2 ref2 gas
r2 ref2 diesel
ref1 gas servstn1 gas
ref1 gas servstn2 gas
ref1 diesel servstn1 diesel
ref1 diesel servstn2 diesel
ref2 gas servstn1 gas
ref2 gas servstn2 gas
ref2 diesel servstn1 diesel
ref2 diesel servstn2 diesel
;

title ’Setting Up Condata = Cond4 for PROC NETFLOW’;
data cond4;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

. con1 -15 con2 -15 ge

. costrow . . . cost

. . . caprow . capac
middle east_refinery 1 con1 -2 . . .
middle east_refinery 2 con2 -2 . . .
refinery 1_r1 con1 1 con3 -3 .
r1_ref1 gas . . con3 4 =
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
middle east_refinery 1 costrow 63 caprow 95 .
middle east_refinery 2 costrow 81 caprow 80 .
u.s.a._refinery 1 costrow 55 . . .
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 costrow 200 caprow 175 .
refinery 2_r2 costrow 220 caprow 100 .
r1_ref1 gas . . caprow 140 .
r1_ref1 diesel . . caprow 75 .
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel . . caprow 75 .
ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas costrow 22 caprow 60 .
ref1 diesel_servstn1 diesel costrow 18 . . .

SAS OnlineDoc: Version 8

272 � Chapter 4. The NETFLOW Procedure

ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 caprow 35 .
ref2 gas_servstn2 gas costrow 31 . . .
ref2 diesel_servstn1 diesel costrow 36 . . .
ref2 diesel_servstn2 diesel costrow 23 . . .
middle east_refinery 1 . 20 . . lo
middle east_refinery 2 . 10 . . lo
refinery 1_r1 . 50 . . lo
refinery 2_r2 . 35 . . lo
ref2 gas_servstn1 gas . 5 . . lo
;

The first observation in thecond4 data set defines con1 and con2 asgreater than or
equal to(�) constraints that both (by coincidence) have rhs values of -15. The second
observation defines the special row costrow as a cost row. When costrow is a ROW
list variable value, the associated COEF list variable value is interpreted as a cost or
objective function coefficient. PROC NETFLOW has to do less work if constraint
names and special rows are defined in observations near the top of a data set, but
this is not a strict requirement. The fourth to ninth observations contain constraint
coefficient data. Observations 7 and 9 have TYPE list variable values that indicate
that constraints con3 and con4 are equality constraints. The last five observations
contain lower flow bound data. Observations that have an arc or nonarc variable
name in the COLUMN list variable, a nonconstraint type TYPE list variable value,
and a value in (one of) the COEF list variables are valid.

The following data set is equivalent to thecond4 data set.

title ’Setting Up Condata = Cond5 for PROC NETFLOW’;
data cond5;

input _column_&$27. _row1 $ _coef1 _row2 $ _coef2 _type_ $;
datalines;

middle east_refinery 1 con1 -2 costrow 63 .
middle east_refinery 2 con2 -2 lorow 10 .
refinery 1_r1 . . con3 -3 =
r1_ref1 gas caprow 140 con3 4 .
refinery 2_r2 con2 1 con4 -3 .
r2_ref2 gas . . con4 4 eq
. CON1 -15 CON2 -15 GE
ref2 diesel_servstn1 diesel . 36 costrow . cost
. . . caprow . capac
. lorow . . . lo
middle east_refinery 1 caprow 95 lorow 20 .
middle east_refinery 2 caprow 80 costrow 81 .
u.s.a._refinery 1 . . . 55 cost
u.s.a._refinery 2 costrow 49 . . .
refinery 1_r1 con1 1 caprow 175 .
refinery 1_r1 lorow 50 costrow 200 .
refinery 2_r2 costrow 220 caprow 100 .
refinery 2_r2 . 35 . . lo
r1_ref1 diesel caprow2 75 . . capac
r2_ref2 gas . . caprow 100 .
r2_ref2 diesel caprow2 75 . . .

SAS OnlineDoc: Version 8

Input Data Sets � 273

ref1 gas_servstn1 gas costrow 15 caprow 70 .
ref1 gas_servstn2 gas caprow2 60 costrow 22 .
ref1 diesel_servstn1 diesel . . costrow 18 .
ref1 diesel_servstn2 diesel costrow 17 . . .
ref2 gas_servstn1 gas costrow 17 lorow 5 .
ref2 gas_servstn1 gas . . caprow2 35 .
ref2 gas_servstn2 gas . 31 . . cost
ref2 diesel_servstn2 diesel . . costrow 23 .
;

If you have data for a linear programming program that has an embedded network, the
steps required to change that data into a form that is acceptable by PROC NETFLOW
are

1. Identify the nodal flow conservation constraints. The coefficient matrix of these
constraints (a submatrix of the LP’s constraint coefficient matrix) has only two
nonzero elements in each column, -1 and 1.

2. Assign a node to each nodal flow conservation constraint.

3. The rhs values of conservation constraints are the corresponding node’s sup-
plies and demands. Use this information to create a NODEDATA= data set.

4. Assign an arc to each column of the flow conservation constraint coefficient
matrix. The arc is directed from the node associated with the row that has
the 1 element in it and directed toward to the node associated with the row
that has the�1 element in it. Set up an ARCDATA= data set that has two
SAS variables. This data set could resemble ARCDATA=arcd2. These will
eventually be the TAILNODE and HEADNODE list variables when PROC
NETFLOW is used. Each observation consists of the tail and head node of
each arc.

5. Remove from the data of the linear program all data concerning the nodal flow
conservation constraints.

6. Put the remaining data into a CONDATA= data set. This data set will probably
resemble CONDATA=cond4 or CONDATA=COND5.

The Sparse Format Summary

The following list illustrates possible CONDATA= data set observation sparse for-
mats. a1, b1, b2, b3 and c1 have as a–COLUMN– variable value either the name of
an arc (possibly in the formtail–head) or the name of a nonarc variable.

SAS OnlineDoc: Version 8

274 � Chapter 4. The NETFLOW Procedure

� If there is no TYPE list variable in the CONDATA= data set, the problem must
be constrained and there is no nonconstraint data in the CONDATA= data set.

COLUMN _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be

in CONDATA)
a1 variable constraint lhs coef +------------+
a2 _TYPE_ or constraint -1 0 1 | |

TYPEOBS= | |
a3 _RHS_ or constraint rhs value | constraint |

RHSOBS= or | or |
missing | missing |

a4 _TYPE_ or constraint missing | |
TYPEOBS= | |

a5 _RHS_ or constraint missing | |
RHSOBS= or +------------+
missing

Observations of the form a4 and a5 serve no useful purpose but are still allowed
to make problem generation easier.

� If there are no ROW list variables in the data set, the problem has no constraints
and the information is nonconstraint data. There must be a TYPE list variable
and only one COEF list variable in this case. The COLUMN list variable has as
values the names of arcs or nonarc variables and must not have missing values
or special row names as values.

COLUMN _TYPE_ _COEFx_

b1 variable UPPERBD capacity
b2 variable LOWERBD lower flow
b3 variable COST cost

� Using a TYPE list variable for constraint data implies the following:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be

in CONDATA)
c1 variable missing +-----+ lhs coef +------------+
c2 _TYPE_ or missing | c | -1 0 1 | |

TYPEOBS= | o | | |
c3 _RHS_ or missing | n | rhs value | constraint |

missing | s | | or |
or RHSOBS= | t | | missing |

c4 variable con type | r | lhs coef | |
c5 _RHS_ or con type | a | rhs value | |

missing | i | | |
or RHSOBS= | n | | |

c6 missing TYPE | t | -1 0 1 | |
c7 missing RHS +-----+ rhs value +------------+

If the observation is in form c4 or c5, and the–COEFx– values are missing,
the constraint is assigned the type data specified in the–TYPE– variable.

SAS OnlineDoc: Version 8

Input Data Sets � 275

� Using a TYPE list variable for arc and nonarc variable data implies the follow-
ing:

COLUMN _TYPE_ _ROWx_ _COEFx_ _ROWy_
(no _COEFy_)
(may not be

in CONDATA)
+---------+ +---------+ +---------+

d1 variable | UPPERBD | | missing | capacity | missing |
d2 variable | LOWERBD | | or | lowerflow | or |
d3 variable | COST | | special | cost | special |

		row		row
		name		name
	+---------+			

d4 missing | | | special | | |
| | | row | | |
+---------+ | name | +---------+

d5 variable missing | | value that missing
| |is interpreted
| |according to
+---------+ _ROWx_

The observation with form d1 to d5 can have ROW list variable values. Obser-
vation d4 must have ROW list variable values. The ROW value is put into the
ROW name tree so that when dealing with observation d4 or d5, the COEF list
variable value is interpreted according to the type of ROW list variable value.
For example, the following three observations define the–ROWx– variable
values up–row, lo–row and co–row as being a upper value bound row, lower
value bound row, and cost row, respectively.

COLUMN _TYPE_ _ROWx_ _COEFx_

. UPPERBD up_row .
variable_a LOWERBD lo_row lower flow
variable_b COST co_row cost

PROC NETFLOW is now able to correctly interpret the following observation:

COLUMN _TYPE_ _ROW1_ _COEF1_ _ROW2_ _COEF2_ _ROW3_ _COEF3_

var_c . up_row upval lo_row loval co_row cost

If the TYPE list variable value is a constraint type and the value of the COL-
UMN list variable equals the value of the TYPEOBS= option or the default
value–TYPE–, the TYPE list variable value is ignored.

NODEDATA= Data Set
See the “Getting Started” section on page 196 and the “Introductory Example” sec-
tion on page 197 for a description of this input data set.

SAS OnlineDoc: Version 8

276 � Chapter 4. The NETFLOW Procedure

Output Data Sets

The procedure determines the flow that should pass through each arc as well as the
value assigned to each nonarc variable. The goal is that the minimum flow bounds,
capacities, lower and upper value bounds, and side constraints are not violated. This
goal is reached when total cost incurred by such a flow pattern and value assignment
is feasible and optimal. The solution found must also conserve flow at each node.

The ARCOUT= data set contains a solution obtained when performing optimization
that does not consider any constraints. The NODEOUT= data set contains nodal
dual variable information for this type of solution. You can choose to have PROC
NETFLOW create the ARCOUT= data set and the NODEOUT= data set and save
the optimum of the network or the nodal dual variable values before any optimization
that considers the side constraints is performed.

If there are side constraints, the CONOUT= data set can be produced and contains
a solution obtained after performing optimization that considers constraints. The
DUALOUT= data set contains dual variable information for nodes and side con-
straints from the solution obtained after optimization that considers the constraints.
The CONOUT= data set and DUALOUT= data set can be used to save the constrained
optimal solution.

ARCOUT= and CONOUT= Data Sets
The ARCOUT= and CONOUT= data sets contain the same variables. These variables
and their possible values in an observation are

–FROM– a tail node of an arc. This is a missing value if an observation has
information about a nonarc variable

–TO– a head node of an arc. This is a missing value if an observation has
information about a nonarc variable

–COST– the cost of an arc or the objective function coefficient of a nonarc
variable

–CAPAC– the capacity of an arc or upper value bound of a nonarc variable

–LO– the lower flow bound of an arc or lower value bound of a nonarc
variable

–NAME– a name of an arc or nonarc variable

–SUPPLY– the supply of the tail node of the arc in the observation. This is
a missing value if an observation has information about a nonarc
variable

–DEMAND– the demand of the head node of the arc in the observation. This is
a missing value if an observation has information about a nonarc
variable

–FLOW– the flow through the arc or value of the nonarc variable

–FCOST– flow cost, the product of–COST– and–FLOW–

–RCOST– the reduced cost of the arc or nonarc variable

–ANUMB– the number of the arc (positive) or nonarc variable (nonpositive).
Used for warm starting PROC NETFLOW

SAS OnlineDoc: Version 8

Output Data Sets � 277

–TNUMB– the number of the tail node in the network basis spanning tree.
Used for warm starting PROC NETFLOW

–STATUS– the status of the arc or nonarc variable

The variables present in the ARCDATA= data set are present in an ARCOUT= data
set or a CONOUT= data set. For example, if there is a variable calledtail in the
ARCDATA= data set and you specified the SAS variable list

from tail;

then tail is a variable in the ARCOUT= and CONOUT= data sets instead of

–FROM– . Any ID list variables also appear in the ARCOUT= and CONOUT=
data sets.

NODEOUT= and DUALOUT= Data Sets
There are two types of observations in the NODEOUT= and DUALOUT= data sets.
One type of observation contains information about a node. These are calledtype N
observations. There is one such observation of this type for each node. The–NODE–
variable has a name of a node, and the–CON– variable values in these observations
are missing values.

The other type of observation contains information about constraints. These are
called thetype Cobservations. There is one such observation for each constraint.
The–CON– variable has a name of a constraint, and the–NODE– variable values
in these observations are missing values.

Many of the variables in the NODEOUT= and DUALOUT= data sets contain in-
formation used to warm start PROC NETFLOW. The variables–NODE– , –SD– ,

–DUAL– , –VALUE–, –RHS– , –TYPE– , and–CON– contain information that
might be of interest to you.

The NODEOUT= and DUALOUT= data sets look similar, as the same variables are
in both. These variables and their values in an observation of each type are

–NODE– Type N: the node name.
Type C: a missing value.

–SD– Type N: the supply (positive) or demand (negative) of the node.
Type C: a missing value.

–DUAL– Type N: the dual variable value of the node in–NODE– .
Type C: the dual variable value of the constraint named in–CON– .

–NNUMB– Type N: the number of the node named in–NODE–.
Type C: the number of the constraint named in–CON– .

–PRED– Type N: the predecessor in the network basis spanning tree of the
node named in–NODE– .
Type C: the number of the node toward which the arc with number
in –ARCID– is directed, or the constraint number associated with
the slack, surplus, or artificial variable basic in this row.

SAS OnlineDoc: Version 8

278 � Chapter 4. The NETFLOW Procedure

–TRAV– Type N: the traversal thread label of the node named in–NODE– .
Type C: a missing value.

–SCESS– Type N: the number of successors (including itself) in the network
basis spanning tree of the node named in–NODE– .
Type C: a missing value.

–ARCID– Type N: if –ARCID– is nonnegative,–ARCID– is the number of
the network basis spanning tree arc directed from the node with
number–PRED– to the node named in–NODE– . If –ARCID–
is negative, minus–ARCID– is the number of the network basis
spanning tree arc directed from the node named in–NODE– to
the node with number–PRED– .
Type C: if –ARCID– is positive,–ARCID– is the number of the
arc basic in a constraint row. If nonpositive, minus–ARCID– is
the number of the nonarc variable basic in a constraint row.

–FLOW– Type N: the flow minus the lower flow bound of the arc–ARCID– .
Type C: the flow minus lower flow bound of the arc–ARCID– or
value lower bound of the nonarc variable value minus–ARCID– .

–FBQ– Type N: if –FBQ– is positive, then–FBQ– is the subscript in
arc length arrays of the first arc directed toward the node named
in –NODE– . PROC NETFLOW’s arc length arrays are sorted so
that data of arcs directed toward the same head node are together. If

–FBQ– is negative, no arcs are directed toward the node named in

–NODE– . Arcs directed toward nodei have subscripts in the arc
length arrays between observations FBQ(i) abd (FBQ(i + 1))�1,
inclusive.
Type C: missing value.

–VALUE– Type N: missing value.
Type C: the lhs value (the sum of the products of coefficient and
flows or values) of the constraint named in–CON– .

–RHS– Type N: missing value.
Type C: the rhs value of the constraint named in–CON– .

–TYPE– Type N: missing value.
Type C: the type of the constraint named in–CON– .

–CON– Type N: missing value.
Type C: the name of the constraint.

If specified in variable lists, the variables in the input data sets are used instead of
some of the previous variables. These variables are specified in the NODE, SUP-
DEM, RHS, TYPE, and ROW (if there is only one variable in the ROW list) lists and
are used instead of–NODE– , –SD– , –RHS–, –TYPE–, and–CON– , respec-
tively.

SAS OnlineDoc: Version 8

Loop Arcs � 279

Case Sensitivity

Whenever the NETFLOW procedure has to compare character strings, whether they
are node names, arc names, nonarc names, or constraint names, if the two strings
have different lengths, or on a character by character basis the character is different
or has different casesPROC NETFLOW judges the character strings to be different.

Not only is this rule enforced when one or both character strings are obtained as val-
ues of SAS variables in PROC NETFLOWs input data sets, it also should be obeyed
if one or both character strings were originally SAS variable names, or were ob-
tained as the values of options or statements parsed to PROC NETFLOW. For ex-
ample, if the network has only one node that has supply capability, or if you are
solving a MAXFLOW or SHORTPATH problem, you can indicate that node using
the SOURCE option. If you specify

proc netflow source=NotableNode

then PROC NETFLOW looks for a value of the TAILNODE list variable that is “No-
tableNode” (without the quotes).

Version 6 of the SAS System converts text that makes up statements into uppercase.
The name of the node searched for would be NOTABLENODE, even if this was your
SAS code:

proc netflow source=NotableNode

If you want PROC NETFLOW to behave as it did in Version 6, specify

options validvarname=v6;

If the SPARSECONDATA option is not specified, and you are running SAS software
Version 6, or have specified options validvarname=v6; using Version 7, all NAME
list variable values in the ARCDATA= data set are uppercased. This is because the
SAS System has uppercased all SAS variable names, particularly those in the VAR
list of the CONDATA= data set.

Entities that contain blanks must be enclosed in single or double quotes.

See the “Cautions” section on page 238 for additional discussion of case sensitivity.

Loop Arcs

When using the Primal Simplex Network algorithm, loop arcs (arcs directed toward
nodes from which they originate) are prohibited. Rather, introduce a dummy inter-
mediate node in loop arcs. For example, replace arc (A,A) with (A,B) and (B,A). B
is the name of a new node, and it must be distinct for each loop arc.

SAS OnlineDoc: Version 8

280 � Chapter 4. The NETFLOW Procedure

Multiple Arcs

Multiple arcs with the same tail and head nodes are prohibited. PROC NETFLOW
checks to ensure there are no such arcs before proceeding with the optimization. In-
troduce a new dummy intermediate node in multiple arcs. This node must be distinct
for each multiple arc. For example, if some network has three arcs directed from
node A toward node B, then replace one of these three with arcs (A,C) and (C,B)
and replace another one with (A,D) and (D,B). C and D are new nodes added to the
network.

Pricing Strategies

The pricing strategy is the part of the Simplex iteration that selects the nonbasic arc,
constraint slack, surplus, or nonarc variable that should have a flow or value change,
and perhaps enter the basis so that the total cost incurred is improved.

The pricing mechanism takes a large amount of computational effort, so it is impor-
tant to use the appropriate pricing strategy for the problem under study. As in other
large scale mathematical programming software, network codes can spend more than
half of their execution time performing Simplex iterations in the pricing step. Some
compromise must be made between using a fast strategy and improving the quality of
the flow or value change candidate selection, although more Simplex iterations may
need to be executed.

The configuration of the problem to be optimized has a great effect on the choice of
strategy. If a problem is to be run repeatedly, experimentation on that problem to
determine which scheme is best may prove worthwhile. The best pricing strategy to
use when there is a large amount of work to do (for example, when a cold start is
used) may not be appropriate when there is little work required to reach the optimum
(such as when a warm start is used). If paging is necessary, then a pricing strategy
that reduces the number of Simplex iterations performed might have the advantage.
The proportion of time spent doing the pricing step during stage 1 optimization is
usually less than the same proportion when doing stage 2 optimization. Therefore,
it is more important to choose a stage 2 pricing strategy that causes fewer, but not
necessarily the fewest, iterations to be executed.

There are many similarities between the pricing strategies for optimizing an uncon-
strained problem (or when constraints are temporarily ignored) and the pricing mech-
anisms for optimizing considering constraints. To prevent repetition, options have a
suffix or embeddedx . Replacex with 1 for optimization without constraint consid-
eration and 2 for optimization with constraint consideration.

There are three main types of pricing strategy:

� PRICETYPEx=NOQ

� PRICETYPEx=BLAND

� PRICETYPEx=Q

The pricing strategy that usually performs better than the others is PRICETYPEx=Q.
For this reason, PRICETYPEx=Q is the default.

SAS OnlineDoc: Version 8

Pricing Strategies � 281

PRICETYPEx=NOQ
PRICETYPEx=NOQ is the least complex pricing strategy, but it is nevertheless quite
efficient. In contrast to the specification of PRICETYPEx=Q, a candidate queue is
not set up.

The PxSCAN= option controls the amount of additional candidate selection work
done to find a better candidate after an eligible candidate has been found .

If PxSCAN=FIRST is specified, the search for candidates finishes when the first
eligible candidate is found, with this exception: if a node has more than one eligible
arc directed toward it, the best such arc is chosen.

If PxSCAN=BEST is specified, everything that is nonbasic is examined, and the best
candidate of all is chosen.

If PxSCAN=PARTIAL is specified, once an eligible candidate is found, the scan
continues for another PxNPARTIAL= cycles in the hope that during the additional
scan, a better candidate is found. Examining all nonbasic arcs directed toward a
single node is counted as only one cycle.

If PxSCAN=FIRST or PxSCAN=PARTIAL is specified, the scan for entering candi-
dates starts where the last iteration’s search left off. For example, if the last iteration’s
scan terminated after examining arcs that are directed toward the node with internal
numberi, next iterations scan starts by examining arcs directed toward the node with
internal numberi+ 1. If i is the largest node number, next iterations scan begins by
scanning arcs directed toward node1 (during stage 1) or scanning constraint slack or
surplus variables, if any, or nonarc variables, if any, (during stage 2). During stage 2,
if the scan terminated after examining the slack or surplus of constrainti, next itera-
tions scan starts by examining the slack or surplus of the constraint with the internal
number greater thani that has such a logical variable. If the scan terminated after ex-
amining the nonarc variablei, the next iterations scan starts by examining the nonarc
variable with internal numberi + 1, (or arcs directed to the node with the smallest
internal number if the nonarc variable with the greatest number has been examined).
This is termed awraparound search.

PRICETYPEx=Q
If PRICETYPEx=Q, a queue is set up. Candidates currently on the queue are tested
at each iteration and either enter the basis or are removed from the queue. The size
of the queue can be specified by using the option QSIZEx=. The default value for
QSIZE1= is

QSIZE1=number of arcs/200
if (QSIZE1<24) QSIZE1=24
else if (QSIZE1>100) QSIZE1=100

The default value for QSIZE2= is

QSIZE2=(number of arcs+number of nonarc variables)/200
if (QSIZE2<24) QSIZE2=24
else if (QSIZE2>100) QSIZE2=100

SAS OnlineDoc: Version 8

282 � Chapter 4. The NETFLOW Procedure

The PxSCAN= option controls the amount of additional candidate selection work
done to find a better candidate after an eligible candidate has been foundin the queue.

If you specify PxSCAN=BEST, the best eligible candidate found is removed from
the queue. It can sustain a flow or value change and possibly enter the basis.

If you specify PxSCAN=FIRST, the first eligible candidate found is removed from
the queue, and possibly sustains a flow or value change and enters the basis.

If you specify PxSCAN=PARTIAL, PxNPARTIAL= can then be specified as well.
After an eligible candidate has been found in the PxNPARTIAL= more queue mem-
bers are examined and the best of the eligible candidates found is chosen.

When PxSCAN=FIRST or PxSCAN=PARTIAL, the scan of the queue is
wraparound. When the member last added to the queue has been examined, the
scan continues from the member that was first added to the queue.

When the queue is empty, or after QSIZEx= times REFRESHQx= iterations have
been executed since the queue was last refreshed, new candidates are found and put
onto the queue. Valid values for the REFRESHQx= options are greater than 0.0
and less than or equal to 1.0. The default for REFRESHQx is 0.75. If the scan
cannot find enough candidates to fill the queue, the procedure reduces the value of
QSIZEx=. If qfoundis the number of candidates found, the new QSIZEx= value is
qfound + ((oldQSIZEx = �qfound) � REDUCEQSIZEx =). Valid values
of the REDUCEQSIZEx= option are between 0.0 and 1.0, inclusive. The default for
REDUCEQSIZEx= is 1.0.

The QxFILLSCAN= option controls the amount of additional candidate selection
work performed to find better candidates to put into the queue after the queue has
been filled.

If you specify QxFILLSCAN=FIRST, the nonbasic arcs, and during stage 2 opti-
mization, nonbasic constraint slack and surplus variables, and nonbasic nonarc vari-
ables are scanned; the scan stops when the queue is filled. If a node has more
than one eligible arc directed toward it, the best such arc is put onto the queue.
QxFILLSCAN=FIRST is the default.

If QxFILLSCAN=BEST is specified, everything that is nonbasic is scanned and the
best eligible candidates are used to fill the queue.

If QxFILLSCAN=PARTIAL is specified, after the queue is fill, the scan contin-
ues for another QxFILLNPARTIAL= cycles in the hope that during the additional
scan, better candidates are found to replace other candidates previously put onto
the queue. QxFILLNPARTIAL=10 is the default. If QxFILLSCAN=FIRST or
QxFILLSCAN=PARTIAL , the scan starts where the previous iteration ended; that
is, it is wrap-around.

In the following section, dual variables and reduced costs are explained. These help
PROC NETFLOW determine whether an arc, constraint slack, surplus, or nonarc
variable should have a flow or value change. P2SCAN=ANY and the DUALFREQ=
option can be specified to control stage 2 pricing, and how often dual variables and
reduced costs are calculated.

SAS OnlineDoc: Version 8

Dual Variables, Reduced Costs, and Status � 283

What usually happens when PRICETYPE2=Q is specified is that before the first it-
eration, the queue is filled with nonbasic variables that are eligible to enter the basis.
At the start of each iteration, a candidate on the queue is examined and its reduced
cost is calculated to ensure that it is still eligible to enter the basis. If it is ineligible
to enter the basis, it is removed from the queue and another candidate on the queue
is examined, until a candidate on the queue is found that can enter the basis. When
this happens, aminor iteration occurs. If there are no candidates left on the queue,
or several iterations have been performed since the queue was refreshed, new non-
basic variables that are eligible to enter the basis are found and are placed on the
queue. When this occurs, the iteration is termed amajor iteration. Dual variables are
calculated or maintained every iteration.

During most optimizations, if a variable is put onto the queue during a major itera-
tion, it usually remains eligible to enter the basis in later minor iterations. Specifying
P2SCAN=ANY indicates that PROC NETFLOW should chooseany candidate on
the queue and use that as the entering variable. Reduced costs are not calculated.
It is simply hoped that the chosen candidate is eligible. Sometimes, a candidate on
the queue is chosen that has become ineligible and the optimization takes “a step
backward” rather than “a step forward” toward the optimum. However, the disad-
vantages of incurring an occasional step backwards and the possible danger of never
converging to the optimum, are offset by not having to calculate reduced costs and,
more importantly, not having to maintain dual variable values. The calculation of
dual variables is one of two large linear equation systems that must be solved each
iteration in the Simplex iteration.

If P2SCAN=ANY is specified, dual variables are calculated after DUALFREQ= it-
erations have been performed since they were last calculated. These are used to cal-
culate the reduced costs of all the candidates currently on the queue. Any candidate
found to be ineligible to enter the basis is removed from the queue. DUALFREQ=4
is the default.

Once again, the practice of not maintaining correct dual variable values is dangerous
because backward steps are allowed, so the optimization is not guaranteed to con-
verge to the optimum. However, if PROC NETFLOW does not run forever, it can
find the optimum much more quickly than when the P2SCAN= option is not ANY.
Before concluding that any solution is optimal, PROC NETFLOW calculates true
dual variable values and reduced costs and uses these to verify that the optimum is
really at hand.

Whether P2SCAN=ANY is specified or not, dual variables are always calculated at
the start of major iterations.

PRICETYPEx=BLAND
PRICETYPEx=BLAND is equivalent to specifying in the PROC NETFLOW or
a RESET statement all three options PRICETYPEx=NOQ, PxSCAN=FIRST, and
LRATIOx , and the scans are not wraparound. Bland 1977 proved that this pivot rule
prevents the Simplex algorithm from cycling. However, because the pivots concen-
trate on the lower indexed arcs, constraint slack, surplus, and nonarc variables, opti-
mization with PRICETYPEx=BLAND can make the optimization execute slowly.

SAS OnlineDoc: Version 8

284 � Chapter 4. The NETFLOW Procedure

Dual Variables, Reduced Costs, and Status

During optimization, dual variables and reduced costs are used to determine whether
an arc, constraint slack, surplus, or nonarc variable should have a flow or value
change. The ARCOUT= and CONOUT= data sets each have a variable called

–RCOST– that contains reduced cost values. In the CONOUT= data set, this vari-
able also has the reduced costs of nonarc variables. For an arc, the reduced cost is
the amount that would be added to the total cost if that arc were made to convey one
more unit of flow. For a nonarc variable, the reduced cost is the amount that would
be added to the total cost if the value currently assigned to that nonarc variable were
increased by one.

During the optimization of a minimization problem, if an arc has a positive reduced
cost, PROC NETFLOW takes steps to decrease the flow through it. If an arc has a
negative reduced cost, PROC NETFLOW takes steps to increase the flow through it.
At optimality, the reduced costs of arcs with flow at their respective lower bounds are
nonnegative; otherwise, the optimizer would have tried to increase the flow, thereby
decreasing the total cost. The–STATUS– of each such nonbasic arc is LOWERBD
NONBASIC. The reduced costs of arcs with flow at capacity are nonpositive. The

–STATUS– of each such nonbasic arc is UPPERBD NONBASIC. Even though it
would decrease total cost, the optimizer cannot increase the flows through such arcs
because of the capacity bound. Similar arguments apply for nonarc variables.

The reduced cost is also the amount that would be subtracted from the total cost if
that arc was made to convey one less unit of flow. Similarly, a reduced cost is the
amount subtracted from the total cost if the value currently assigned to that nonarc
variable is decreased by one.

The dual variables and reduced costs can be used to detect whether multiple optimal
solutions exist. A zero reduced cost of a nonbasic arc indicates the existence of
multiple optimal solutions. A zero reduced cost indicates, by definition, that the flow
through such arcs can be changed with zero change to the total cost. (Basic arcs and
basic nonarc variables technically have zero reduced costs. A missing value is used
for these so that reduced costs of nonbasic arcs and nonbasic nonarc variables that
are zero are highlighted.)

The range over which costs can vary before the present solution becomes nonoptimal
can be determined through examination of the reduced costs. For any nonbasic arc
with assigned flow equal to its lower bound, the amount by which the cost must be
decreased before it becomes profitable for this arc to convey additional flow is the
value of its reduced cost. The cost reduction necessary for a nonbasic arc currently
assigned capacity flow to undergo a worthwhile flow decrease is the absolute value
of its reduced cost. In both cases, this minimum cost reduction changes the reduced
cost to zero. Any further reduction promotes a possible basis change.

The reduced cost of an arc(t; h) is rct;h = ct;h � �t + �h where�i is the dual value
for nodei andct;h is the cost of the arc with tail nodet and head nodeh.

SAS OnlineDoc: Version 8

The Working Basis Matrix � 285

If the problem has side constraints and arc(t; h) has nonzero lhs coefficients, then
the following term must be subtracted fromrct;h.

P
i condualiHi;(t;h)

whereconduali is the dual variable of constrainti, Hi;(t;h) is the coefficient of arc
(t; h) in constrainti.

If dn is the objective function coefficient of nonarc variablen, the reduced cost is
rcn = dn �

P
i condualiQi;n whereQi;n is the coefficient of nonarc variablen in

constrainti.

The Working Basis Matrix

LetT be the basis matrix of NPSC. The following partitioning is done:

T =

�
A B

C D

�

where

� n is the number of nodes

� k is the number of side constraints

� A (n x n) is the network component of the basis. Most of the columns of
this matrix are columns of the problem’s node-arc incidence matrix. The arcs
associated with columns ofA , called key basic variables or key arcs, form
a spanning tree. The data structures of the spanning tree of this submatrix of
the basisT enable the computations involvingT and the manner in thatT is
updated to be very efficient, especially those dealing withA (orA�1).

� C (k x n) are the key arcs’ side constraint coefficient columns.

� B (n x k) are the node-arc incidence matrix columns of the nontree arcs. The
columns ofB having nonzero elements are associated with basic nonspanning
tree arcs.

� D (k x k) are the constraint coefficient columns of nonkey basic variables.
Nonkey basic variables not only include nontree basic arcs but also basic slack,
surplus, artificial, or nonarc variables.

It is more convenient to factorT by block triangular matricesP andM , such that
P = TM . The matricesP andM are used instead ofT because they are less
burdensome to work with. You can perform block substitution when solving the
Simplex iteration linear systems of equations.

P =

�
A 0

C Dw

�

M =

�
I �A�1B
0 I

�

whereDw = D�CA�1B and is called the working basis matrix.

SAS OnlineDoc: Version 8

286 � Chapter 4. The NETFLOW Procedure

To perform block substitution, you need the tree data structure of theA matrix, also
theC , B , andDw matrices. Because theC matrix consists of columns of the
constraint coefficient matrix, the maintenance ofC from iteration to iteration simply
entails changing information specifying which columns of the constraint coefficient
matrix composeC .

TheA�1B matrix is usually very sparse. Fortunately, the information inA�1B can
be initialized easily using the tree structures. In most iterations, only one column is
replaced by a new one. The values of the elements of the new column may already
be known from preceding steps of the Simplex iteration.

The working basis matrix is the submatrix that presents the most computational com-
plexity. However, PROC NETFLOW usually can use classical Simplex pivot tech-
niques. In many iterations, only one column ofDw changes. Sometimes it is not
necessary to updateDw or its inverse at all.

If INVD –2D is specified in the PROC NETFLOW statement, only one row and one
column may need to be changed in theD�1w before the next Simplex iteration can be-
gin. The new contents of the changed column are already known. The new elements
of the row that changes are influenced by the contents of a row ofA�1B that is very
sparse.

If INVD –2D is not specified in the PROC NETFLOW statement, the Bartels-Golub
update can be used to update theLU factors ofDw . The choice must be made
whether to perform a series of updates (how many depends on the number of nonzeros
in a row ofA�1B), or refactorization.

Flow and Value Bounds

The capacity and lower flow bound of an arc can be equal. Negative arc capacities
and lower flow bounds are permitted. If both arc capacities and lower flow bounds
are negative, the lower flow bound must be at least as negative as the capacity. An arc
(A;B) that has a negative flow of�f units can be interpreted as an arc that conveys
f units of flow from nodeB to nodeA.

The upper and lower value bound of a nonarc variable can be equal. Negative upper
and lower bounds are permitted. If both are negative, the lower bound must be at least
as negative as the upper bound.

Tightening Bounds and Side Constraints

If any piece of data is furnished to PROC NETFLOW more than once, PROC NET-
FLOW checks for consistency so that no conflict exists concerning the data values.
For example, if the cost of some arc is seen to be one value and as more data are read,
the cost of the same arc is seen to be another value, PROC NETFLOW issues an error
message on the SAS log and stops. There are two exceptions to this.

� The bounds of arcs and nonarc variables are made as tight as possible. If several
different values are given for the lower flow bound of an arc, the greatest value
is used. If several different values are given for the lower bound of a nonarc

SAS OnlineDoc: Version 8

Reasons for Infeasibility � 287

variable, the greatest value is used. If several different values are given for the
capacity of an arc, the smallest value is used. If several different values are
given for the upper bound of a nonarc variable, the smallest value is used.

� Several values can be given for inequality constraint right-hand-sides. For a
particular constraint, the lowest rhs value is used for the rhs if the constraint is
of less than or equal totype. For a particular constraint, the greatest rhs value
is used for the rhs if the constraint is ofgreater than or equal totype.

Reasons for Infeasibility

Before optimization commences, PROC NETFLOW tests to ensure that the problem
is not infeasible by ensuring that, with respect to supplies, demands, and arc flow
bounds, flow conservation can be obeyed at each node.

� Let IN be the sum of lower flow bounds of arcs directed toward a node plus
the node’s supply. LetOUT be the sum of capacities of arcs directed from that
node plus the node’s demand. IfIN exceedsOUT , not enough flow can leave
the node.

� Let OUT be the sum of lower flow bounds of arcs directed from a node plus
the node’s demand. LetIN be the total capacity of arcs directed toward the
node plus the node’s supply. IfOUT exceedsIN , not enough flow can arrive
at the node.

Reasons why a network problem can be infeasible are similar to those previously
mentioned but apply to a set of nodes rather than for an individual node.

Consider the network illustrated in Figure 4.13.

NODE_1----------------->NODE_2
/ capac=55 \

/ lo=50 \
/ \

/ \
/ \

NODE_3 NODE_4
supply=100 \ / demand=120

\ /
\ /

\ capac=62 /
\ lo=60 /

NODE_5----------------->NODE_6

Figure 4.13. An infeasible network.

The demand of NODE–4 is 120. That can never be satisfied because the maximal
flow through arcs (NODE–1, NODE–2) and (NODE–5, NODE–6) is 117. More
specifically, the implicit supply of NODE–2 and NODE–6 is only 117, which is
insufficient to satisfy the demand of other nodes (real or implicit) in the network.

Furthurmore, the lower flow bounds of arcs (NODE–1, NODE–2) and (NODE–5,
NODE–6) are greater than the flow that can reach the tail nodes of these arcs, that,

SAS OnlineDoc: Version 8

288 � Chapter 4. The NETFLOW Procedure

by coincidence, is the total supply of the network. The implicit demand of nodes
NODE–1 and NODE–5 is 110, which is greater than the amount of flow that can
reach these nodes.

When PROC NETFLOW detects that the problem is infeasible, it indicates why the
solution, obtained after optimization stopped, is infeasible. It can report that the so-
lution cannot obey flow conservation constraints and which nodes these conservation
constraints are associated with. If applicable, the side constraints that the solution
disobeys are also output.

If stage 1 optimization obtains a feasible solution to the network, stage 2 optimiza-
tion can determine that the problem is infeasible and note that some flow conservation
constraint is broken while all side constraints are obeyed. The infeasibility messages
issued by PROC NETFLOW pertain to why thecurrent solution is infeasible, not
quite the same as the reasons why theproblemis infeasible. However, the messages
highlight areas in the problem where the infeasibility can be tracked down. If the
problem is infeasible, make PROC NETFLOW do a stage 1 unconstrained optimiza-
tion by removing the CONDATA= data set specification in the PROC NETFLOW
statement. If a feasible network solution is found, then the side constraints are the
source of the infeasibility in the problem.

Missing S Supply and Missing D Demand Values

In some models, you may want a node to be either a supply or demand node but you
want the node to supply or demand the optimal number of flow units. To indicate
that a node is such a supply node, use a missing S value in the SUPPLY list variable
in the ARCDATA= data set or the SUPDEM list variable in the NODEDATA= data
set. To indicate that a node is such a demand node, use a missing D value in the
DEMAND list variable in the ARCDATA= data set or the SUPDEM list variable in
the NODEDATA= data set.

Once a missing S or missing D value is found in the input data sets, the THRUNET
option is automatically made active.

Suppose the Oil example in the “Introductory Example” section on page 197 is
changed so that crude oil can be obtained from either the Middle East or U.S.A.
in any amounts. You should specify that the node “middle east” is a supply node, but
you do not want to stipulate that it supplies 100 units, as before. The node “u.s.a.”
should also remain a supply node, but you do not want to stipulate that it supplies 80
units. You must specify that these nodes have missing S supply capabilities.

title ’Oil Industry Example’;
title3 ’Crude Oil can come from anywhere’;
data miss_s;

missing S;
input _node_&$15. _sd_;
datalines;

middle east S
u.s.a. S
servstn1 gas -95
servstn1 diesel -30

SAS OnlineDoc: Version 8

Missing S Supply and Missing D Demand Values � 289

servstn2 gas -40
servstn2 diesel -15
;

The following PROC NETFLOW run uses the same ARCDATA= and CONDATA=
data sets used in the “Introductory Example” section on page 197.

proc netflow
nodedata=miss_s /* the supply (missing S) and */

/* demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */

run;
print some_arcs(’middle east’ ’u.s.a.’,_all_)/short;
proc print;sum _fcost_;run;

The following messages appear on the SAS log:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 0 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of iterations performed (neglecting any

constraints)= 9 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 50040 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of arc and nonarc variable side

constraint coefficients= 8 .
NOTE: Number of iterations, optimizing with

constraints= 3 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= 50075 .

The PRINT statement reports the arcs directed away from the supply nodes, shown
in Figure 4.14. The amount of crude obtained from the Middle East and U.S.A. is
145 and 35 units.

SAS OnlineDoc: Version 8

290 � Chapter 4. The NETFLOW Procedure

Oil Industry Example

Crude Oil can come from anywhere

NETFLOW PROCEDURE

N _from_ _to_ _cost_ _capac_ _lo_ _name_

1 middle east refinery 1 63 95 20 m_e_ref1
2 u.s.a. refinery 1 55 99999999 0
3 middle east refinery 2 81 80 10 m_e_ref2
4 u.s.a. refinery 2 49 99999999 0

N _FLOW_

1 20
2 125
3 10
4 25

Figure 4.14. Print statement, Oil example, missing S supplies.

The CONOUT= data set is shown in Figure 4.15.

Obs _from_ _to_ _cost_ _capac_ _lo_ _name_ _SUPPLY_

1 refinery 1 r1 200 175 50 thruput1 .
2 refinery 2 r2 220 100 35 thruput2 .
3 r1 ref1 diesel 0 75 0 .
4 r1 ref1 gas 0 140 0 r1_gas .
5 r2 ref2 diesel 0 75 0 .
6 r2 ref2 gas 0 100 0 r2_gas .
7 middle east refinery 1 63 95 20 m_e_ref1 S
8 u.s.a. refinery 1 55 99999999 0 S
9 middle east refinery 2 81 80 10 m_e_ref2 S

10 u.s.a. refinery 2 49 99999999 0 S
11 ref1 diesel servstn1 diesel 18 99999999 0 .
12 ref2 diesel servstn1 diesel 36 99999999 0 .
13 ref1 gas servstn1 gas 15 70 0 .
14 ref2 gas servstn1 gas 17 35 5 .
15 ref1 diesel servstn2 diesel 17 99999999 0 .
16 ref2 diesel servstn2 diesel 23 99999999 0 .
17 ref1 gas servstn2 gas 22 60 0 .
18 ref2 gas servstn2 gas 31 99999999 0 .

Obs _DEMAND_ _FLOW_ _FCOST_ _RCOST_ _ANUMB_ _TNUMB_ _STATUS_

1 . 145.00 29000.00 . 7 2 KEY_ARC BASIC
2 . 35.00 7700.00 17 8 3 LOWERBD NONBASIC
3 . 36.25 0.00 . 10 5 KEY_ARC BASIC
4 . 108.75 0.00 . 9 5 KEY_ARC BASIC
5 . 8.75 0.00 . 12 6 KEY_ARC BASIC
6 . 26.25 0.00 . 11 6 KEY_ARC BASIC
7 . 20.00 1260.00 8 2 1 LOWERBD NONBASIC
8 . 125.00 6875.00 . 3 4 KEY_ARC BASIC
9 . 10.00 810.00 32 4 1 LOWERBD NONBASIC

10 . 25.00 1225.00 . 5 4 KEY_ARC BASIC
11 30 30.00 540.00 . 17 8 KEY_ARC BASIC
12 30 0.00 0.00 12 18 10 LOWERBD NONBASIC
13 95 68.75 1031.25 . 13 7 KEY_ARC BASIC
14 95 26.25 446.25 . 14 9 NONKEY ARC BASIC
15 15 6.25 106.25 . 19 8 KEY_ARC BASIC
16 15 8.75 201.25 . 20 10 KEY_ARC BASIC
17 40 40.00 880.00 . 15 7 KEY_ARC BASIC
18 40 0.00 0.00 7 16 9 LOWERBD NONBASIC

========
50075.00

Figure 4.15. Missing S SUPDEM values in NODEDATA

SAS OnlineDoc: Version 8

Missing S Supply and Missing D Demand Values � 291

The optimal supplies of nodes “middle east” and “u.s.a.” are 145 and 35 units, re-
spectively. For this example, the same optimal solution is obtained if these nodes had
supplies less than these values (each supplies 1 unit, for example) and the THRUNET
option was specified in the PROC NETFLOW statement. With the THRUNET option
active, when total supply exceeds total demand, the specified nonmissing demand val-
ues are the lowest number of flow units that must be absorbed by the corresponding
node. This is demonstrated in the following PROC NETFLOW run. The missing S is
most useful when nodes are to supply optimal numbers of flow units and it turns out
that for some nodes, the optimal supply is zero.

data miss_s_x;
missing S;
input _node_&$15. _sd_;
datalines;

middle east 1
u.s.a. 1
servstn1 gas -95
servstn1 diesel -30
servstn2 gas -40
servstn2 diesel -15
;
proc netflow

thrunet
nodedata=miss_s_x /* No supply (missing S) */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */

run;
print some_arcs(’middle east’ ’u.s.a.’,_all_)/short;
proc print;sum _fcost_;run;

The following messages appear on the SAS log. Note that the Total supply= 2, not
zero as in the last run.

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 2 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of iterations performed (neglecting any

constraints)= 13 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 50040 .
NOTE: Number of <= side constraints= 0 .
NOTE: Number of == side constraints= 2 .
NOTE: Number of >= side constraints= 2 .
NOTE: Number of arc and nonarc variable side

constraint coefficients= 8 .
NOTE: Number of iterations, optimizing with

constraints= 3 .
NOTE: Of these, 0 were degenerate.

SAS OnlineDoc: Version 8

292 � Chapter 4. The NETFLOW Procedure

NOTE: Optimum reached.
NOTE: Minimal total cost= 50075 .

The PRINT statement and the CONDATA= data set are very similar; the supplies of
the supply nodes are 1, not missing S. Otherwise, the solutions are identical.

If total supply exceeds total demand, any missing S values are ignored. If total de-
mand exceeds total supply, any missing D values are ignored.

Warm Starts

Using a warm start can increase the overall speed of PROC NETFLOW when it is
used repetitively on problems with similar structure. It is most beneficial when a
solution of a previous optimization is close to the optimum of the same network
with some of its parameters, for example, arc costs, changed. Whether a problem is
changed or not, a nonoptimal solution resulting from a previous optimization can be
used to restart optimization, thereby saving PROC NETFLOW from having to repeat
work to reach the warm start already available.

Time also is saved in the data structure initialization part of the NETFLOW proce-
dure’s execution. Information about the previous optimal solution, particularly con-
cerning the size of the problem, a description of the basis spanning tree structure,
and what is basic in constraint rows, is known. Information about which nonbasic
arcs have capacity flow and which nonbasic nonarc variables are at their respective
upper bounds also makes up part of the warm start. The procedure can place arc data
into the internal arc length arrays in precisely defined locations, in order of ascending
head node internal number. It is not necessary to have multiple passes through the
data because literals such as node, nonarc variable, arc, constraint, and special row
names are defined and meaning is attached to each. This saves a considerable amount
of memory as well. None of the pre-optimization feasibility checks need be repeated.

Warm starts also are useful if you want to determine the effect of arcs being closed
to carrying flow. The costs of these arcs are set high enough to ensure that the next
optimal solution never has flow through them. Similarly, the effect of opening arcs
can be determined by changing the cost of such arcs from an extreme to a reasonable
value.

Specify the FUTURE1 or FUTURE2 option to ensure that additional data about a
solution to be used as a warm start are output to output data sets. If the FUTURE1
option is specified, extra observations with information on what is to be the warm start
are set up for the NODEOUT= and ARCOUT= data sets. The warm start solution
in these data sets is a solution obtained after optimization neglecting side constraints.
Any cost list variable value in the ARCOUT= data set (and, if there are side con-
straints, any constraint data in the CONDATA= data set) can be changed before the
solution is used as a warm start in a subsequent PROC NETFLOW run. Any nonarc
variable data in the CONDATA= data set can be changed at this time as well. New
nonarc variables not present in the original problem when the warm start was gen-
erated can also be added to the CONDATA= data set before the problem is warm
started.

SAS OnlineDoc: Version 8

Warm Starts � 293

If the FUTURE2 option is specified, extra variables containing information on what
will be the warm start solution are set up for the DUALOUT= and CONOUT= data
sets. The warm start solution in these data sets is obtained after optimization that
considers side constraints has been performed. Part of the warm start is concerned
with the constraint part of the basis. Only cost list variable values in the CONOUT=
data set can be changed before the solution is used as a warm start in a subsequent
PROC NETFLOW run.

If a Primal Simplex optimization is to use a warm start, the WARM option must
be specified in the PROC NETFLOW statement. Otherwise, the Primal Simplex
Network algorithm processes the data for a cold start and the extra information is not
used.

The ARCDATA= data set is either the ARCOUT= data set from a previous run of
PROC NETFLOW with the FUTURE1 option specified (if an unconstrained warm
start is used) or the CONOUT= data set from a previous run of PROC NETFLOW
with the FUTURE2 option specified (if the warm start was obtained after optimization
that considers side constraints was used).

The NODEDATA= data set is the NODEOUT= data set from a previous run of PROC
NETFLOW with FUTURE1 specified if an unconstrained warm start is being used.
Otherwise, the DUALIN= is the DUALOUT= data sets from a previous run of PROC
NETFLOW with FUTURE2 specified, if the warm start was obtained after optimiza-
tion that considers side constraints was used.

You never need to alter the NODEOUT= data set or the DUALOUT= data set between
the time they are generated and when they are used as a warm start. The results
would be unpredictable if incorrect changes were made to these data sets, or if a
NODEDATA= or a DUALIN= data set were used with an ARCDATA= data set of a
different solution.

It is possible, and often useful, to specify WARM and either FUTURE1 or FU-
TURE2, or both, in the same PROC NETFLOW statement if a new warm start is
to be generated from the present warm start.

The extent of the changes allowed to a Primal Simplex warm start between the time
it is generated and when it is used depends on whether the warm start describes an
unconstrained or constrained solution. The following list describes parts of a con-
strained or an unconstrained warm start that can be altered:

� COST list variable values

� the value of an arc’s capacity, as long as the new capacity value is not less than
the lower flow bound or the flow through the arc

� any nonarc variable information, in an unconstrained warm start

� for an unconstrained warm start, any side constraint data

The changes that can be made in constraint data for a constrained warm start are more
restrictive than those for an unconstrained warm start. The lhs coefficients type, and

SAS OnlineDoc: Version 8

294 � Chapter 4. The NETFLOW Procedure

rhs value of a constraint can be changed as long as that constraint’s slack, surplus, or
artificial variable is basic. The constraint name cannot be changed.

Example of a Warm Start
The following sample SAS session demonstrates how the warm start facilities are
used to obtain optimal solutions to an unconstrained network where some arc cost
changes occur or optimization is halted before the optimum is found.

/* data already in data sets node0 and arc0 */
proc netflow

nodedata=node0 /* if supply_demand information */
/* is in this SAS data set */

arcdata=arc0;
/* variable list specifications go here */
/* assume that they are not necessary here */
/* if they are, they must be included in */
/* all the PROC NETFLOW calls that follow */

reset
future1
nodeout=node2 /* nodeout and arcout are necessary */

/* when FUTURE1 is used */
arcout=arc1;

proc print
data=arc1; /* display the optimal solution */

proc fsedit
data=arc1; /* change some arc costs */

data arc2;
reset arc1;

oldflow=_flow_;
oldfc=_fcost_;

/* make duplicates of the flow and flowcost*/
/* variables. If a id list was explicitly */
/* specified, add oldflow and oldfc to this*/
/* list so that they appear in subsequently*/
/* created arcout= data sets */

The following PROC NETFLOW uses the warm start created previously, performs
250 stage 2 iterations and saves that solution, which (as future1 and arcout= data set
and nodeout= data set are specified) can be used as a warm start in another PROC
NETFLOW run.

proc netflow
warm
nodedata=node2
arcdata=arc2;

reset
maxit1=250
future1;

run;
save

nodeout=savelib.node3
arcout=savelib.arc3;

/* optimization halted because 250 iterations */

SAS OnlineDoc: Version 8

Warm Starts � 295

/* were performed to resume optimization, */
/* possibly in another session (the output */
/* data sets were saved in a SAS library */
/* called savelib) */

Using the latest warm start, PROC NETFLOW is re-envoked to find the optimal
solution.

proc netflow
warm
nodedata=savelib.node3
arcdata=savelib.arc3;

reset
future1
nodeout=node4
arcout=arc4;

run;

If this problem has constraints with data in a data set called CON0, then in each of the
previous PROC NETFLOW statements, specify CONDATA=CON0. Between PROC
NETFLOW runs, you can change constraint data. In each of the RESET statements,
you could specify the CONOUT= data set to save the last (possibly optimal) solution
reached by the optimizer if it reaches stage 2. You could specify FUTURE2 and the
DUALOUT= data set to generate a constrained warm start.

proc netflow
warm
nodedata=node4
arcdata=arc4
condata=con0;

reset
maxit2=125 /* optional, here as a reason why */

/* optimum will not be obtained */
scratch /* optional, but warm start might be good */

/* enough to start stage 2 optimization */
future2

run;
/* optimization halted after 125 stage 2 iterations */

save dualout=dual1 conout=conout1;

Stage 2 optimization halted before optimum was reached. Now you can make cost
and nonarc variable objective function coefficient changes. Then to restart optimiza-
tion, use

proc netflow
warm
condata=con0

/* NB. NETFLOW reads constraint data only */
dualin=dual1
arcdata=con1;

reset

SAS OnlineDoc: Version 8

296 � Chapter 4. The NETFLOW Procedure

future2
dualout=dual2
conout=con2;

run;

How to Make the Data Read of PROC NETFLOW More Efficient

This section contains information useful when you want to solve large constrained
network problems. However, much of this information is also useful if you have a
large linear programming problem. All of the options described in this section that
are not directly applicable to networks (options such as ARCS–ONLY–ARCDATA
ARC–SINGLE–OBS, NNODES, and NARCS) can be specified to improve the speed
at which LP data is read.

Large Constrained Network Problems
Many of the models presented to PROC NETFLOW are enormous. They can be con-
sidered large by linear programming standards; problems with thousands of variables
and constraints. When dealing with side constrained network programming prob-
lems, models can have not only a linear programming component of that magnitude,
but also a larger, possiblymuchlarger, network component.

The majority of network problem’s decision variables are arcs. Like an LP decision
variable, an arc has an objective function coefficient, upper and lower value bounds,
and a name. Arcs can have coefficients in constraints. Therefore, an arc is quite
similar to an LP variable and places the same memory demands on optimization
software as an LP variable. But a typical network model has many more arcs and
nonarc variables than the typical LP model has variables. And arcs have tail and head
nodes. Storing and processing node names require huge amounts of memory. To
make matters worse, node names occupy memory at times when alot of other data
should reside in memory as well.

While memory requirements are lower for a model with embedded network compo-
nent compared with the equivalent LPonce optimization starts, the same is usually
not trueduring the data read. Even though nodal flow conservation constraints in
the LP should not be specified in the constrained network formulation, the memory
requirements to read the latter are greater because each arc (unlike an LP variable)
originates at one node, and is directed toward another.

Paging
PROC NETFLOW has facilities to read data when the available memory is insuffi-
cient to store all the data at once. PROC NETFLOW does this by allocating memory
for different purposes, for example, to store an array or receive data read from an
input SAS data set. After that memory has filled, the information is sent to disk and
PROC NETFLOW can resume filling that memory with new information. Often, in-
formation must be retrieved from disk so that data previously read can be examined or
checked for consistency. Sometimes, to prevent any data from being lost, or to retain
any changes made to the information in memory, the contents of the memory must
be sent to disk before other information can take its place. This process of swapping
information to and from disk is called paging. Paging can be very time consuming,
so it is crucial to minimize the amount of paging performed.

SAS OnlineDoc: Version 8

How to Make the Data Read of PROC NETFLOW More Efficient � 297

There are several steps you can take to make PROC NETFLOW read the data of
network and linear programming models more efficiently, particularly when memory
is scarse and the amount of paging must be reduced. PROC NETFLOW will then be
able to tackle large problems in what can be considered reasonable amounts of time.

The Order of Observations
PROC NETFLOW is quite flexible in the ways data can be supplied to it. Data can
be given by any reasonable means. PROC NETFLOW has convenient defaults that
can save you work when generating the data. There can be several ways to supply
the same piece of data, and some pieces of data can be given more than once. PROC
NETFLOW reads everything, then merges it all together. However, this flexibility
and convenience come at a price; PROC NETFLOW may not assume the data has
a characteristic that, if possessed by the data, could save time and memory during
the data read. There are several options that indicate the data has some exploitable
characteristic.

For example, an arc cost can be specified once or several times in the ARCDATA= or,
CONDATA= data set, or both. Every time it is given in ARCDATA, a check is made
to ensure that the new value is the same as any corresponding value read in a previous
observation of ARCDATA. Every time it is given in CONDATA, a check is made to
ensure that the new value is the same as the value read in a previous observation of
CONDATA, or previously in ARCDATA. It would save PROC NETFLOW time if it
knew that arc cost data would be encountered only once while reading ARCDATA, so
performing the time consuming check for consistency would not be necessary. Also,
if you indicate that CONDATA contains data for constraints only, PROC NETFLOW
will not expect any arc information, so memory will not be allocated to receive such
data while reading CONDATA. This memory is used for other purposes and this
might lead to a reduction in paging. If applicable, use the ARC–SINGLE–OBS or the
CON–SINGLE–OBS option, or both, and the NON–REPLIC=COEFS specification
to improve how ARCDATA and CONDATA are read.

PROC NETFLOW allows the observations in input data sets to be in any order. How-
ever, major time savings can result if you are prepared to order observations in partic-
ular ways. Time spent by the SORT procedure to sort the input data sets, particularly
the CONDATA= data set, may be more than made up for when PROC NETFLOW
reads them, because PROC NETFLOW has in memory information possibly used
when the previous observation was read. PROC NETFLOW can assume a piece of
data is either similar to that of the last observation read or is new. In the first case,
valuable information such as an arc or a nonarc variable number or a constraint num-
ber is retained from the previous observation. In the last case, checking the data with
what has been read previously is not necessary.

Even if you do not sort the CONDATA= data set, grouping observations that contain
data for the same arc or nonarc variable or the same row pays off. PROC NETFLOW
establishes whether an observation being read is similar to the observation just read.

SAS OnlineDoc: Version 8

298 � Chapter 4. The NETFLOW Procedure

Practically, lots of input data sets for PROC NETFLOW might have this character-
istic, because it is natural for data for each constraint to be grouped together (dense
format of CONDATA) or data for each column to be grouped together (sparse format
of CONDATA). If data for each arc or nonarc is spread over more than one observa-
tion of the ARCDATA= data set, it is natural to group these observation together.

Use the GROUPED parameter to indicate whether observations of the ARCDATA=
data set, CONDATA= data set, or both, are grouped in a way that can be exploited
during data read.

Time is saved if the type data for each row appears near the top of the CONDATA=
data set, especially if it has the sparse format. Otherwise, when reading an observa-
tion, if PROC NETFLOW does not know if a row is a constraint or special row, so
the data is set aside. Once the data set has been completely read, PROC NETFLOW
must reprocess the data it set aside. By then, it knows the type of each constraint or
row or, if it’s type was not provided, it is assumed to have a default type.

Better Memory Utilization
In order for PROC NETFLOW to make better utilization of available memory, you
can now specify options that indicate the approximate size of the model. PROC
NETFLOW then knows what to expect. For example, if you indicate that the problem
has no nonarc variables, PROC NETFLOW will not allocate memory to store nonarc
data. That memory is utilized better for other purposes. Memory is often allocated
to receive or store data of some type. If you indicate that the model does not have
much data of a particular type, the memory that would otherwise have been allocated
to receive or store that data can be used to receive or store data of another type.

� NNODES= approximate number of nodes

� NARCS= approximate number of arcs

� NNAS= approximate number of nonarc variables or LP variables

� NCONS= approximate number of constraints

� NCOEFS= approximate number of constraint coefficients

These options will sometimes be referred to as Nxxxx= options.

You do not need to specify all these option for the model, but the more you do,
the better. If you do not specify some or all of these options, PROC NETFLOW
guesses the size of the problem by using what it already knows about the model.
Sometimes PROC NETFLOW guesses the size of the model by looking at the number
of observations in the ARCDATA= and CONDATA= data sets. However, PROC
NETFLOW uses rough rules of thumb; that typical models are proportioned in certain
ways (for example, if there are constraints, arcs and nonarcsusually have 5 constraint
coefficients). If your model has an unusual shape or a disproportionate number of
something, you are encouraged to use these options.

If you do use the options, if you do not know the exact values to specify,overestimate
the values. For example, if you specify NARCS=10000 but the model has 10100 arcs,
when dealing with the last 100 arcs, PROC NETFLOW might have to page out data
for 10000 arcs each time one of the last arcs must be dealt with. Memory could have

SAS OnlineDoc: Version 8

How to Make the Data Read of PROC NETFLOW More Efficient � 299

been allocated for all 10100 arcs without affecting (much) the rest of the data read,
so NARCS=10000 could be more of a hindrance than a help.

The point of these Nxxxx= options is to indicate the model size when PROC NET-
FLOW does not know it. When PROC NETFLOW knows the "real" value, that value
is used instead of Nxxxx= .

When PROC NETFLOW is given a constrained solution warm start, PROC NET-
FLOW knows from the warm start information all model size parameters, so
Nxxxx= options are not used. When an unconstrained warm start is used and the
SAME–NONARC–DATA is specified, PROC NETFLOW knows the number of
nonarc variables, so that is used instead of the value of the NNAS= option.

ARCS–ONLY–ARCDATA indicates that data for only arcs are in the ARCDATA=
data set. Memory would not be wasted to receive data for nonarc and LP variables.

Use the memory usage parameters:

� BYTES= size of PROC NETFLOW main working memory in number of bytes

� MAXARRAYBYTES= maximum number of bytes that an array can occupy

� MEMREP indicates that memory usage report is to be displayed on the SAS
log

Specifying the BYTES= parameter is particularly important. Specify as large a num-
ber as possible, but not such a large number of bytes that will cause PROC NET-
FLOW (rather, the SAS System running underneath PROC NETFLOW) to run out
of memory. Use the MAXARRAYBYTES= option if the model is really large or
“disproportionate”. Try increasing or decreasing the MAXARRAYBYTES= option.
Limiting the amount of memory for use by big arrays is good if they would take
up too much memory to the detriment of smaller arrays, buffers, and other things
that require memory. However, too small a value of the MAXARRAYBYTES= op-
tion might cause PROC NETFLOW to page a big array excessively. Never specify a
value for the MAXARRAYBYTES= option that is smaller than the main node length
array. PROC NETFLOW reports the size of this array on the SAS log if you spec-
ify the MEMREP option. The MAXARRAYBYTES= option influences paging not
only in the data read, but also during optimization. It is often better if optimization is
performed as fast as possible, even if the read is made slower as a consequence.

Use Defaults to Reduce the Amount of Data
Use as much as possible the parameters that specify default values. For example, if
there are lots of arcs with the same cost valuec, use DEFCOST=c for arcs that have
that cost. Use missing values in the COST variable in ARCDATA instead ofc. PROC
NETFLOW ignores missing values, but must read, store, and process nonmissing
values, even if they are equal to a default option or could have been equal to a default
parameter had it been specified. Sometimes, using default parameters makes the need
for some SAS variables in the ARCDATA= and CONDATA= data sets no longer
necessary, or reduces the quantity of data that must be read. The default options are:

� DEFCOST= default cost of arcs, objective function of nonarc variables or LP
variables

SAS OnlineDoc: Version 8

300 � Chapter 4. The NETFLOW Procedure

� DEFMINFLOW= default lower flow bound of arcs, lower bound of nonarc
variables or LP variables

� DEFCAPACITY= default capacity of arcs, upper bound of nonarc variables or
LP variables

� DEFCONTYPE=LE DEFCONTYPE=<=
DEFCONTYPE=EQ DEFCONTYPE==
DEFCONTYPE=GE DEFCONTYPE=>= default constraint type

The default options themselves have defaults. For example, you do not need to spec-
ify DEFCOST=0 in the PROC NETFLOW statement. You should still have missing
values in the COST variable in ARCDATA for arcs that have zero costs.

If the network has only one supply node, one demand node of both use

� SOURCE= name of single node that has supply capability

� SUPPLY= the amount of supply of SOURCE

� SINK= name of single node that demands flow

� DEMAND= the amount of flow SINK demands

Do not specify that a constraint has zero right-hand-side values. That is the default.
The only time it might be practical to specify a zero rhs is in observations of CON-
DATA read early so that PROC NETFLOW can infer that a row is a constraint. This
could prevent coefficient data from being put aside because PROC NETFLOW did
not know the row was a constraint.

Names of Things
To cut data read time and memory requirements, reduce the number of bytes in the
longest node name, longest arc name, and longest constraint name to 8 bytes or less.
The longer a name, the more bytes must be stored and compared with other names.

If an arc has no constraint coefficients, do not give it a name in the NAME list variable
in the ARCDATA= data set. Names for such arcs serve no purpose.

PROC NETFLOW can have a default name for each arc. If an arc is directed
from node tailname toward nodeheadname, the default name for that arc is
tailname–headname. If you do not want PROC NETFLOW to use these default arc
names, specify NAMECTRL=1. Otherwise, PROC NETFLOW must use memory
for storing node names and these node names must be searched often.

If you want to use the defaulttailname–headname name, that is, NAMECTRL=2 or
NAMECTRL=3, do not use underscores in node names. If a CONDATA has a dense
format and has a variable in the VAR listA–B–C–D, or if the valueA–B–C–D is
encountered as a value of the COLUMN list variable when reading CONDATA that
has the sparse format, PROC NETFLOW first looks for a node named A. If it finds it,
it looks for a node calledB–C–D. It then looks for a node with the nameA–B and
possibly a node with nameC–D. A search for a node namedA–B–C and possibly
a node named D is done. Underscores could have caused PROC NETFLOW to look
unnecessarily for nonexistant nodes. Searching for node names can be expensive,

SAS OnlineDoc: Version 8

Macro Variable –ORNETFL � 301

and the amount of memory to store node names large. It might be better to assign the
arc nameA–B–C–D directly to an arc by having that value as a NAME list variable
value for that arc in ARCDATA and specify NAMECTRL=1.

Other Ways to Speed-up Data Reads
Use warm starts as much as possible.

� WARM indicates that the input SAS data sets contain a warm start.

The data read of a warm start is much faster than a cold start data read. The model size
is known before the read starts. The observations of the NODEDATA or DUALIN
data sets have observations ordered by node name and constraint name. Information
is stored directly into the data structures used by PROC NETFLOW. For a cold start,
much of preprocessing must be performed before the information can be stored in the
same way. And using a warm start can greatly reduce the time PROC NETFLOW
spends doing optimization.

� SAME–NONARC–DATA is an option that excludes data from processing.

This option indicates that the warm start nonarc variable data in ARCDATA is read
and any nonarc variable data in CONDATA is to be ignored. Use this option if it is ap-
plicable, or when CONDATA has no nonarc variable data, or such data is duplicated
in ARCDATA. ARCDATA is always read before CONDATA.

Arcs and nonarc variables can have associated with them values or quantities that
have no bearing with the optimization. This information is given in ARCDATA in the
ID list variables. For example, in a distribution problem, information such as truck
number and driver’s name can be associated with each arc. This is useful when a
solution is saved in an output SAS data set. However, PROC NETFLOW needs to re-
serve memory to process this information when data is being read. For large problems
when memory is scarse, it might be better to remove ancilliary data from ARCDATA.
After PROC NETFLOW runs, use SAS software to merge this information into the
output data sets that contain the optimal solution.

Macro Variable –ORNETFL

The NETFLOW procedure always creates and initializes a SAS macro called

–ORNETFL . After each PROC NETFLOW run, you can examine this macro by
specifying %put–ORNETFL; and see whether PROC NETFLOW ran correctly or
what error or difficulty it encountered.

The value of–ORNETFL consists of four parts:

� ERROR–STATUS, indicating the existence or absence of any errors

� OPT–STATUS, the stage of the optimization, or what solution has been found

� OBJECTIVE=objective - the total cost or profit of the current so-
lution. If PROC NETFLOW is solving a maximal flow problem,
MAXFLOW=maxflow, the amount of the current solution’s maximal flow,

SAS OnlineDoc: Version 8

302 � Chapter 4. The NETFLOW Procedure

will follow. If solving a minimal flow problem (MAXFLOW and MAXIMIZE
specified at the same time), MINFLOW=minflow, the amount of the current
solution’s mimimal flow, will follow instead

� SOLUTION, describing the nature of the current solution

The value of–ORNETFL is in the form

ERROR–STATUS=charstr OPT–STATUS=charstr OBJECTIVE=objective
SOLUTION=charstr .

Nontrailing blank characters that are unnecessary are removed. Ideally, at the end a
PROC NETFLOW run,–ORNETFL would have the value:

ERROR_STATUS=OK OPT_STATUS=OPTIMAL OBJECTIVE=x
SOLUTION=OPTIMAL

Table 4.23 has alternate values for the–ORNETFL value parts:

Table 4.23. PROC NETFLOW –ORNETFL macro values

Key word Value Meaning

ERROR–STATUS OK no errors
MEMORY memory request failed
IO input-output error
DATA error in the data
BUG error with PROC NETFLOW
SEMANTIC semantic error
SYNTAX syntax error
UNKNOWN unknown error

OPT–STATUS START no optimization has been done
STAGE–1 performing stage 1 optimization
UNCON–OPT reached unconstrained optimum,

but there are side constraints
STAGE–2 performing stage 2 optimization
OPTIMAL reached the optimum

OBJECTIVE objective total cost or profit
MINFLOW minflow if MAXFLOW MAXIMIZE specified
MAXFLOW maxflow if MAXFLOW specified
SOLUTION NONOPTIMAL more optimization is required

STAGE–2–REQUIRED reached unconstrained optimum,
stage 2 optimization is required.

OPTIMAL have determined the optimum
INFEASIBLE infeasible. No solution exists.

SAS OnlineDoc: Version 8

Introduction � 303

The Interior Point Algorithm

Introduction

The Simplex algorithm, developed shortly after World War II, was the main method
used to solve Linear Programming problems. Over the last decade, the Interior Point
algorithm has been developed to also solve Linear Programming problems. From
the start it showed great theoretical promise, and considerable research in the area
resulted in practical implementations that performed competivitely with the Simplex
algorithm. More recently, Interior Point algorithms have evolved to become superior
to the Simplex algorithm, in general, especially when the problems are large.

The Interior Point algorithm has been implemented in PROC NETFLOW. This al-
gorithm can be used to solve Linear Programs, as well as network problems. When
PROC NETFLOW detects that the problem has no network component, it automati-
cally envokes the Interior Point aglorithm to solve the problem. The data required by
PROC NETFLOW for a Linear Program resembles the data for nonarc variables and
constraints for constrained network problems.

If PROC NETFLOW does detect a network component to the problem, (the problem
has arcs), you must specify the option INTPOINT in the PROC NETFLOW state-
ment if you want to use the Interior Point algorithm. PROC NETFLOW first converts
the constrained network model into an equivalent Linear Programming formulation,
solves that, then converts the LP back to the network model. These models remain
conceptionally easy since they are based on network diagrams that represent the prob-
lem pictorially. This procedure accepts the network specification in a format that is
particularly suited to networks. This not only simplifies problem description but also
aids in the interpretation of the solution. The conversion to and from the equivalent
LP is done “behind the scenes”.

There are many variations of Interior Point algorithms. PROC NETFLOW uses the
Primal-Dual with Predictor-Corrector algorithm. This algorithm and related theory
can be found in the texts by Roos, Terlaky, and Vial 1997, Wright 1996, and Ye 1996.

The remainder of this section is split into two parts. In the first part, how you use
PROC NETFLOW’s Interior Point algorithm to solve network problems is described.
In the second part, using PROC NETFLOW to solve Linear Programming problems
(it’s Interior Point algorithm must be used) is described. Both parts are organized
similarly:

� The way data is supplied to PROC NETFLOW is outlined in a “Getting
Started” subsection.

� An “Introductory Example” is solved to demonstrate how the data is set up,
how PROC NETFLOW is used to do the solution and the optimum saved.

� More sophisticated ways to use PROC NETFLOW interactively are detailed in
a “Iteractively” subsection.

SAS OnlineDoc: Version 8

304 � Chapter 4. The NETFLOW Procedure

� A “Functional Summary” lists the statements and options that can be used to
control PROC NETFLOW. Of particular interest are the options used to control
the optimizer, and the way the solution is saved into output data sets or is
displayed.

The part for Linear Programs has additional subsections:

� “Mathematical Description of LP”

� “Interior Point Algorithmic Details”, a brief theory of the algorithm containing
information about the options that can be specified to control the Interior Point
algorithm.

� “Syntax” subsection, which is a subset of the syntax when the Simplex algo-
rithm is used. Gone are the statements and lists relevant only when the Simplex
algorithm is used.

Network Models: Interior Point Algorithm

The data required by PROC NETFLOW for a network problem isidenticalwhether
the Simplex algorithm or the Interior Point algorithm is used as the optimizer. By
default, the Simplex algorithm is used for problems with a network component. To
use the Interior Point algorithm, all you need to do is specify the INTPOINT option
in the PROC NETFLOW statement. You can optionally specify some options that
control the Interior Point algorithm, of which there are only a few. The Interior Point
algorithm is remarkedly robust when reasonable choices are made during the design
and implementation, so it does not need to be tuned to the same extent as the Simplex
algorithm.

When to Use INTPOINT: Network Models: Interior Point algorithm
PROC NETFLOW uses the Primal Simplex Network algorithm and the Primal Parti-
tioning Algorithm to solve constrained network problems. These algorithms are fast,
since they take advantage of algebraic properties of the network component of the
problem.

If the network component of the model is large compared to the side constraint com-
ponent, PROC NETFLOW’s optimizer can store what would otherwise be a large
matrix as a spanning tree computer data structure. Computations involving the span-
ning tree data structure can be performed much faster than those using matrices. Only
the nonnetwork part of the problem, hopefully quite small, needs to be manipulated
by PROC NETFLOW as matrices.

In contrast, LP optimizers must contend with matrices that can be large for large
problems. Arithmetic operations on matrices often accumulate rounding errors that
cause difficulties for the algorithm. So in addition to the performance improvements,
network optimization is generally more numerically stable than LP optimization.

The nodal flow conservation constraints do not need to be specified in the network
model. They are implied by the network structure. However, flow conservation con-
straints do make up the data for the equivalent LP model. If you have an LP that is

SAS OnlineDoc: Version 8

Network Models: Interior Point Algorithm � 305

small after the flow conservation constraints are removed, that problem is a definite
candidate for solution by PROC NETFLOW specialized Simplex method.

However, some constrained network problems are solved more quickly by the Interior
Point algorithm than the network optimizer in PROC NETFLOW. Usually, they have
a large number of side constraints or nonarc variables. These models are more like
LPs than network problems. The network component of the problem is so small that
PROC NETFLOW’s Network Simplex method cannot recoup the effort to exploit
that component rather than treat the whole problem as an LP. If this is the case, it
is worthwhile to get PROC NETFLOW to convert a constrained network problem to
the equivalent LP and use it’s Interior Point algorithm. This conversion must be done
before any optimization has been performed (specify the INTPOINT option in the
PROC NETFLOW statement)

Even though some network problems are better solved by converting them to an LP,
the input data and the output solution are more conveniently maintained as networks.
You retain the advantages of casting problems as networks: ease of problem gener-
ation and expansion when more detail is required. The model and optimal solutions
are easy to understand, as a network can be drawn.

Getting Started: Network Models: Interior Point algorithm
To solve network programming problems with side constraints using PROC NET-
FLOW, you save a representation of the network and the side constraints in three
SAS data sets. These data sets are then passed to PROC NETFLOW for solution.
There are various forms that a problem’s data can take. You can use any one or a
combination of several of these forms.

The NODEDATA= data set contains the names of the supply and demand nodes and
the supply or demand associated with each. These are the elements in the column
vectorb in problem (NPSC).

The ARCDATA= data set contains information about the variables of the problem.
Usually these are arcs, but there can be data related to nonarc variables in the ARC-
DATA= data set as well. If there are no arcs, this is a Linear Programming problem.

An arc is identified by the names of its tail node (where it originates) and head node
(where it is directed). Each observation can be used to identify an arc in the network
and, optionally, the cost per flow unit across the arc, the arc’s capacity, lower flow
bound, and name. These data are associated with the matrixF and the vectorsc, l,
andu in problem (LPSC).

Note: althoughF is a node-arc incidence matrix, it is specified in the ARCDATA=
data set by arc definitions. Do not explicitly specify these flow conservation con-
straints as constraints of the problem.

In addition, the ARCDATA= data set can be used to specify information about nonarc
variables, including objective function coefficients, lower and upper value bounds,
and names. These data are the elements of the vectorsd,m, andv in problem (NPSC).
Data for an arc or nonarc variable can be given in more than one observation.

SAS OnlineDoc: Version 8

306 � Chapter 4. The NETFLOW Procedure

Supply and demand data also can be specified in the ARCDATA= data set. In such a
case, the NODEDATA= data set may not be needed.

The CONDATA= data set describes the side constraints and their right-hand-sides.
These data are elements of the matricesH andQ and the vectorr. Constraint types
are also specified in the CONDATA= data set. You can include in this data set up-
per bound values or capacities, lower flow or value bounds, and costs or objective
function coefficients. It is possible to give all information about some or all nonarc
variables in the CONDATA= data set.

An arc or nonarc variable is identified in this data set by it’s name. If you specify an
arc’s name in the ARCDATA= data set, then this name is used to associate data in
the CONDATA= data set with that arc. Each arc also has a default name that is the
name of the tail and head node of the arc concatenated together and separated by an
underscore character;tail–head, for example.

If you use the dense side constraint input format and want to use these default arc
names, these arc names are names of SAS variables in the VAR list of the CON-
DATA= data set.

If you use the sparse side constraint input format (described later as well) and want
to use these default arc names, these arc names are values of the COLUMN list SAS
variable of the CONDATA= data set.

When using the Interior Point algorithm, the execution of PROC NETFLOW has two
stages. In the preliminary (zeroth) stage, the data are read from the NODEDATA=
data set, the ARCDATA= data set, and the CONDATA= data set. Error checking is
performed. The model is converted into an equivalent Linear Program

In the next stage, the Linear Program is preprocessed. This is optional but highly
recommended. Preprocessing analyses the model and tries to determine before opti-
mization whether variables can be “fixed” to their optimal values. Knowing that, the
model can be modified and these variables dropped out. It can be determined that
some constraints are redundant. Sometimes, preprocessing succeeds in reducing the
size of the problem, thereby making the subsequent optimization easier and faster.

The optimal solution to the Linear Program is then found. The Linear Program is
converted back to the original constrained network problem, and the optimum for
this is derived from the optimum of the equivalent Linear Program. If the problem
was preprocessed, the model is now post-processed, where fixed variables are rein-
troduced. The solution can be saved in the CONOUT= data set. This data set is also
named in the PROC NETFLOW, RESET, and SAVE statements.

The Interior Point algorithm cannot efficiently be warm started, so options such as
FUTURE1 and FUTURE2 options are irrelevant.

SAS OnlineDoc: Version 8

Network Models: Interior Point Algorithm � 307

Introductory Example: Network Models: Interior Point Algorithm
Consider the following transshipment problem for an oil company in the “Introduc-
tory Example” section on page 197. Recall that crude oil is shipped to refineries
where it is processed into gasoline and diesel fuel. The gasoline and diesel fuel are
then distributed to service stations. At each stage there are shipping, processing, and
distribution costs. Also, there are lower flow bounds and capacities. In addition,
there are side constraints to model crude mix stipulations, and model the limitations
on the amount of Middle Eastern crude that can be processed by each refinery and
the conversion proportions of crude to gasoline and diesel fuel. The network diagram
is reproduced in Figure 4.16.

diesel

u.s.a.

refinery1 r1

r2

ref1 gas

ref2 gas

servstn1

gas

servstn1

servstn2

gas

servstn2

middle

east

refinery2

diesel

diesel

refl

diesel

ref2

Figure 4.16. Oil Industry Example

To solve this problem with PROC NETFLOW, a representation of the model is saved
in three SAS data sets, that are identical to the data sets supplied to PROC NETFLOW
when the Simplex algorithm was used.

To find the minimum cost flow through the network that satisfies the supplies, de-
mands, and side constraints, invoke PROC NETFLOW as follows:

proc netflow
intpoint /* <<<--- Interior Point used */
nodedata=noded /* the supply and demand data */
arcdata=arcd1 /* the arc descriptions */
condata=cond1 /* the side constraints */
conout=solution; /* the solution data set */

run;

SAS OnlineDoc: Version 8

308 � Chapter 4. The NETFLOW Procedure

The following messages, that appear on the SAS log, summarize the model as read
by PROC NETFLOW and note the progress toward a solution:

NOTE: Number of nodes= 14 .
NOTE: Number of supply nodes= 2 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 180 , total demand= 180 .
NOTE: Number of arcs= 18 .
NOTE: Number of variables= 18 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 16 .
NOTE: Number of >= constraints= 2 .
NOTE: Number of constraint coefficients= 44 .
NOTE: After preprocessing, number of <= constraints= 0.
NOTE: After preprocessing, number of == constraints= 6.
NOTE: After preprocessing, number of >= constraints= 2.
NOTE: The preprocessor eliminated 10 constraints from

the problem.
NOTE: The preprocessor eliminated 22 constraint

coefficients from the problem.
NOTE: After preprocessing, number of variables= 8.
NOTE: The preprocessor eliminated 10 variables from the

problem.
NOTE: 2 columns, 0 rows and 2 coefficients were added to

the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 18 nonzero elements in A * A transpose.
NOTE: Number of fill-ins=5.
NOTE: Of the 8 rows and columns, 2 are sparse.
NOTE: During factorization, 1 of the dense rows were found

to be completely dense and were treated as such from
then on. This should have saved time.

NOTE: There are 8 nonzero elements in the sparse rows of the
factored A * A transpose. This includes fill-ins in the
sparse rows.

NOTE: There are 3 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q]
to factorize the sparse rows of A * A transpose.

NOTE: Constraint feasibility, bound feasibility, and dual
feasibility attained by iteration 1 as a affine step
(mu=0) of length 1 was done.

NOTE: Primal-Dual Predictor-Corrector Interior point algorithm
performed 8 iterations.

NOTE: Objective = 50875.000253.
NOTE: The data set WORK.SOLUTION has 18 observations and

14 variables.

The first set of messages provide statistics on the size of the equivalent Linear Pro-
gramming problem. The number of variables may not equal the number of arcs if the
problem has nonarc variables. This example has none. To convert a network to an
equivalent LP problem, a flow conservation constraint must be created for each node
(including an excess or bypass node, if required). This explains why the number of

SAS OnlineDoc: Version 8

Network Models: Interior Point Algorithm � 309

equality side constraints and the number of constraint coefficients change when the
Interior Point algorithm is used.

If the preprocessor was successful in decreasing the problem size, some messages
will report how well it did. In this example, the model size was cut in half!

The following set of messages describe aspects of the Interior Point algorithm. Of
particular interest are those concerned with the Cholesky factorization ofAAT where
A is the coefficient matrix of the final LP. It is crucial to preorder the rows and
columns of this matrix to preventfill-in and reduce the number of row operations
to undertake the factorization. See the “Interior Point Algorithmic Details” section
on page 316 for more explanation.

Unlike PROC LP, which displays the solution and other information as output, PROC
NETFLOW saves the optimum in output SAS data sets you specify. For this example,
the solution is saved in the SOLUTION data set. It can be displayed with PROC
PRINT as

proc print data=solution;
var _from_ _to_ _cost_ _capac_ _lo_ _name_

supply _demand_ _flow_ _fcost_ _rcost_;
sum _fcost_;
title3 ’Constrained Optimum’; run;

SAS OnlineDoc: Version 8

310 � Chapter 4. The NETFLOW Procedure

Constrained Optimum

Obs _from_ _to_ _cost_ _capac_ _lo_ _name_

1 refinery 1 r1 200 175 50 thruput1
2 refinery 2 r2 220 100 35 thruput2
3 r1 ref1 diesel 0 75 0
4 r1 ref1 gas 0 140 0 r1_gas
5 r2 ref2 diesel 0 75 0
6 r2 ref2 gas 0 100 0 r2_gas
7 middle east refinery 1 63 95 20 m_e_ref1
8 u.s.a. refinery 1 55 99999999 0
9 middle east refinery 2 81 80 10 m_e_ref2

10 u.s.a. refinery 2 49 99999999 0
11 ref1 diesel servstn1 diesel 18 99999999 0
12 ref2 diesel servstn1 diesel 36 99999999 0
13 ref1 gas servstn1 gas 15 70 0
14 ref2 gas servstn1 gas 17 35 5
15 ref1 diesel servstn2 diesel 17 99999999 0
16 ref2 diesel servstn2 diesel 23 99999999 0
17 ref1 gas servstn2 gas 22 60 0
18 ref2 gas servstn2 gas 31 99999999 0

Obs _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_ _RCOST_

1 . . 145.00 29000.00 .
2 . . 35.00 7700.00 29
3 . . 36.25 0.00 .
4 . . 108.75 0.00 .
5 . . 8.75 0.00 .
6 . . 26.25 0.00 .
7 100 . 80.00 5040.00 .
8 80 . 65.00 3575.00 .
9 100 . 20.00 1620.00 .

10 80 . 15.00 735.00 .
11 . 30 30.00 540.00 .
12 . 30 0.00 0.00 12
13 . 95 68.75 1031.25 .
14 . 95 26.25 446.25 .
15 . 15 6.25 106.25 .
16 . 15 8.75 201.25 .
17 . 40 40.00 880.00 .
18 . 40 0.00 0.00 7

========
50875.00

Figure 4.17. conout=solution

Notice that, in thesolution data set (Figure 4.17), the optimal flow through each arc
in the network is given in the variable named–FLOW– , and the cost of flow through
each arc is given in the variable–FCOST– . As expected, the miminal total cost of
the solution found by the Interior Point algorithm is equal to miminal total cost of the
solution found by the Simplex algorithm. In this example, the solutions are the same
(within several significant digits), but sometimes the solutions can be different.

SAS OnlineDoc: Version 8

Network Models: Interior Point Algorithm � 311

u.s.a.

refinery1 r1

r2

ref1 gas

ref2 gas

26.25

servstn1

gas

servstn1

servstn2

gas

servstn2

middle

east

refinery2

diesel

diesel

refl

diesel

ref2

diesel

65

20

145
40

30

6.25

8.75

-15

-95

-30

-40

80

15

80

100

35

108.75

36.25

26.25

8.75

68.75

Figure 4.18. Oil Industry solution

Interactivity: Network Models: Interior Point algorithm
PROC NETFLOW can be used interactively. You begin by giving the PROC NET-
FLOW statement with INTPOINT specified, and you must specify the ARCDATA=
data set. The CONDATA= data set must also be specified if the problem has side
constraints. If necessary, specify the NODEDATA= data set.

The variable lists should be given next. If you have variables in the input data sets
that have special names (for example, a variable in the ARCDATA= data set named

–TAIL– that has tail nodes of arcs as values), it may not be necessary to have many
or any variable lists.

So far, this is the same when the Simplex algorithm is used, except the INTPOINT
option is specified in the PROC NETFLOW statement. The PRINT, QUIT, SAVE,
SHOW, RESET, and RUN statements follow and can be listed in any order. The
QUIT statements can be used only once. The others can be used as many times as
needed.

The CONOPT and PIVOT statements are not relevant to the Interior Point algorithm
and should not be used.

Use the RESET or SAVE statement to change the name of the output data set. There
is only on output data set, the CONOUT= data set. With the RESET statement, you
can also indicate the reasons why optimization should stop, (for example, you can in-
dicate the maximum number of iterations that can be performed). PROC NETFLOW
then has a chance to either execute the next statement, or, if the next statement is
one that PROC NETFLOW does not recognize (the next PROC or DATA step in the
SAS session), do any allowed optimization and finish. If no new statement has been

SAS OnlineDoc: Version 8

312 � Chapter 4. The NETFLOW Procedure

submitted, you are prompted for one. Some options of the RESET statement enable
you to control aspects of the Interior Point algorithm. Specifying certain values for
these options can reduce the time it takes to solve a problem. Note that any of the
RESET options can be specified in the PROC NETFLOW statement.

The RUN statement starts optimization. Once the optimization has started, it runs
until the optimum is reached. The RUN statement should be specified at most once.

The QUIT statement immediately stops PROC NETFLOW. The SAVE statement has
options that allow you to name the output data set; information about the current so-
lution is put in this output data set. Use the SHOW statement if you want to examine
the values of options of other statements. Information about the amount of optimiza-
tion that has been done and the STATUS of the current solution can also be displayed
using the SHOW statement.

The PRINT statement makes PROC NETFLOW display parts of the problem. The
way the PRINT statements are specified are identical whether the Interior Point algo-
rithm or the Simplex algorithm is used, however there are minor differences in what
is displayed for each arc, nonarc variable or constraint coefficient.

PRINT ARCS produces information on all arcs. PRINT SOME–ARCS limits this
output to a subset of arcs. There are similar PRINT statements for nonarc variables
and constraints:

PRINT NONARCS;
PRINT SOME_NONARCS;
PRINT CONSTRAINTS;
PRINT SOME_CONS;

PRINT CON–ARCS enables you to limit constraint information that is obtained to
members of a set of arcs and that have nonzero constraint coefficients in a set of con-
straints. PRINT CON–NONARCS is the corresponding statement for nonarc vari-
ables.

For example, an interactive PROC NETFLOW run might look something like this:

proc netflow
intpoint /* use the Interior Point algorithm */
arcdata=data set
other options;

variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */

run; /* do the optimization */
print options; /* look at the optimal solution */
save options; /* keep optimal solution */

If you are interested only in finding the optimal solution, have used SAS variables
that have special names in the input data sets, and want to use default setting for
everything, then the following statement is all you need.

proc netflow intpoint arcdata= data set options ;

SAS OnlineDoc: Version 8

Network Models: Interior Point Algorithm � 313

Functional Summary: Network Models: Interior Point algorithm
The following tables outline the options available for the NETFLOW procedure when
the Interior Point algorithm is being used, classified by function.

Table 4.24. Input Data Set Options

Description Statement Option
arcs input data set NETFLOW ARCDATA=
nodes input data set NETFLOW NODEDATA=
constraint input data setNETFLOW CONDATA=

Table 4.25. Options for Networks

Description Statement Option
default arc cost NETFLOW DEFCOST=
default arc capacity NETFLOW DEFCAPACITY=
default arc lower flow bound NETFLOW DEFMINFLOW=
network’s only supply node NETFLOW SOURCE=
SOURCE’s supply capability NETFLOW SUPPLY=
network’s only demand node NETFLOW SINK=
SINK’s demand NETFLOW DEMAND=
excess supply or demand is conveyed through networkNETFLOW THRUNET
find maximal flow between SOURCE and SINK NETFLOW MAXFLOW
cost of bypass arc when solving MAXFLOW problemNETFLOW BYPASSDIV=
find shortest path from SOURCE to SINK NETFLOW SHORTPATH

Table 4.26. Miscellaneous Options

Description Statement Option
infinity value NETFLOW INFINITY=
do constraint row and/or nonarc variable column coefficientNETFLOW SCALE=
scaling, or neither
maximization instead of minimization NETFLOW MAXIMIZE

Table 4.27. Data Set Read Options

Description Statement Option
CONDATA has sparse data format NETFLOW SPARSECONDATA
default constraint type NETFLOW DEFCONTYPE=
special COLUMN variable value NETFLOW TYPEOBS=
special COLUMN variable value NETFLOW RHSOBS=
is used to interpret arc and nonarc variable namesNETFLOW NAMECTRL=
in the CONDATA
no new nonarc variables NETFLOW SAME–NONARC–DATA
no nonarc data in the ARCDATA NETFLOW ARCS–ONLY–ARCDATA
data for an arc found in only one obs of ARCDATANETFLOW ARC–SINGLE–OBS
data for an constraint found in only one NETFLOW CON–SINGLE–OBS
obs of CONDATA
data for a coefficient found once in CONDATA NETFLOW NON–REPLIC=
data is grouped, exploited during data read NETFLOW GROUPED=

SAS OnlineDoc: Version 8

314 � Chapter 4. The NETFLOW Procedure

Table 4.28. Problem Size (approx.) Options

Description Statement Option
number of nodes NETFLOW NNODES=
number of arcs NETFLOW NARCS=
number of nonarc variablesNETFLOW NNAS=
number of coefficients NETFLOW NCOEFS=
number of constraints NETFLOW NCONS=

Table 4.29. Memory Control Options

Description Statement Option
issue memory usage messages to SASLOGNETFLOW MEMREP
number of bytes to use for main memory NETFLOW BYTES=
proportion of memory used by frequently NETFLOW COREFACTOR=
accessed arrays
maximum bytes for a single array NETFLOW MAXARRAYBYTES=

Table 4.30. Output Data Set Options: RESET

Description Statement Option
constrained solution data setRESET CONOUT=

Table 4.31. PRINT Statement Options

Description Statement Option
display everything PRINT PROBLEM
display arc information PRINT ARCS
display nonarc variable information PRINT NONARCS
display variables information PRINT VARIABLES
display constraint information PRINT CONSTRAINTS
display information for some arcs PRINT SOME–ARCS
display information for some nonarc variablesPRINT SOME–NONARCS
display information for some variables PRINT SOME–VARIABLES
display information for some constraints PRINT SOME–CONS
display information for some constraints PRINT CON–ARCS
associated with some arcs
display information for some constraints PRINT CON–NONARCS
associated with some nonarc variables
display information for some constraints PRINT CON–VARIABLES
associated with some variables

Table 4.32. PRINT Statement Qualifiers

Description Statement Option
produce a short report PRINT / SHORT
produce a long report PRINT / LONG
only arcs (nonarc variables) with zero flow (value) PRINT / ZERO
only arcs (nonarc variables) with nonzero flow (value)PRINT / NONZERO

SAS OnlineDoc: Version 8

Linear Programming Models: Interior Point Algorithm � 315

Table 4.33. SHOW Statement Options

Description Statement Option
show problem, optimization status SHOW STATUS
show network model parameters SHOW NETSTMT
show data sets that have, will be createdSHOW DATA SETS

Table 4.34. Output Data Set Options: SAVE

Description Statement Option
constrained solution data setSAVE CONOUT=

Table 4.35. Interior Point algorithm Options

Description Statement Option
use Interior Point algorithm NETFLOW INTPOINT
allowed amount of dual infeasibility RESET TOLDINF=
allowed amount of primal infeasibility RESET TOLPINF=
cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
density threshold for Cholesky processing RESET DENSETHR=
maximum number of Interior Point algorithm iterationsRESET MAXITERB=
Primal-Dual (Duality) gap tolerance RESET PDGAPTOL=
step-length multiplier RESET PDSTEPMULT=
preprocessing type RESET PRSLTYPE=

Linear Programming Models: Interior Point Algorithm

By default, the Interior Point algorithm is used for problems without a network com-
ponent, that is, a Linear Programming problem. You do not need to specify the INT-
POINT option in the PROC NETFLOW statement (although you will do no harm if
you do).

Data for a linear programming problem resembles the data for side constraints and
nonarc variables supplied to PROC NETFLOW when solving a constrained network
problem. It is also very similar to the data required by the LP procedure.

Mathematical Description of LP
If the network component of NPSC is removed, the result is the mathematical descrip-
tion of the Linear Programming problem. If an LP hasg variables, andk constraints,
then the formal statement of the problem solved by PROC NETFLOW is

minfdT zg

subject to Qz �;=;� r

m � z � v

where

d is theg x 1 objective function coefficient of variables vector.

z is theg x 1 variable value vector.

SAS OnlineDoc: Version 8

316 � Chapter 4. The NETFLOW Procedure

Q is thek x g constraint coefficient matrix for variables, whereQi;j is the coefficient
of variablej in theith constraint.

r is thek x 1 side constraint right-hand-side vector.

m is theg x 1 variable value lower bound vector.

v is theg x 1 variable value upper bound vector.

Interior Point Algorithmic Details
After preprocessing, the Linear Program to be solved is

minfcTxg

subject to Ax = b

x � 0

This is theprimal problem. The matrices ofd z Q of NP have been renamedc
x andA respectively, as these symbols are by convention used more, the problem
to be solved is different from the original because of preprocessing, and there has
been a change of primal variable to transform the LP into one whose variables have
zero lower bounds. To simplify the algebra here, assume that variables have infinite
bounds, and constraints are equalities. (Interior Point algorithms do efficiently handle
finite bounds, and it is easy to introduce primal slack variables to change inequalities
into equalities.) The problem hasn variables.i is a variable number.k is an iteration
number, and if used as a subscript or superscript denotes “of iterationk”.

There exists an equivalent problem, thedual problem, stated as

maxfbT yg

subject to AT y + s = c

s � 0

where y are dual variables, and s are dual constraint slacks

What the Interior Point has to do is solve the system of equations to satisfy the
Karush-Kuhn-Tucker (KKT) conditions for optimality:

Ax = b

AT y + s = c

xT s = 0

x � 0

s � 0

These are the conditions for feasibility, with thecomplementarityconditionxT s = 0
added.cTx = bT y must occur at the optimum. Complementarity forces the optimal
objectives of the primal and dual to be equal,cTxopt = bT yopt, as

SAS OnlineDoc: Version 8

Linear Programming Models: Interior Point Algorithm � 317

0 = xToptsopt = sToptxopt = (c�AT yopt)
Txopt =

cTxopt � yTopt(Axopt) = cTxopt � bT yopt

0 = cTxopt � bT yopt

Before the optimum is reached, a solution(x; y; s) may not satisfy the KKT condi-
tions.

� Primal constraints can be broken,infeasb = b�Ax 6= 0.

� Dual constraints can be broken,infeasc = c�AT y � s 6= 0.

� Complementarity is unsatisfied,xT s = cTx � bT y 6= 0. This is called the
duality gap.

Interior Point algorithm works by using Newtons method to find a direction to
move (�xk;�yk;�sk) from the current solution(xk; yk; sk) toward a better so-
lution.

(xk+1; yk+1; sk+1) = (xk; yk; sk) + �(�xk;�yk;�sk)

� is thestep lengthand is assigned a value as large as possible but� 1:0 and not so
large that axk+1

i or sk+1
i is “too close” to zero. The direction in which to move is

found using

A�xk = �infeasb

AT�yk +�sk = �infeasc

Sk�xk +Xk�sk = �XkSke

where S = diag(s), X = diag(x), and e = vector with all elements = 1

To greatly improve performance, the third equation is changed to

Sk�xk +Xk�sk = �XkSke+ �k�ke

where �k = 1=nXkSke, the average complementarity, and

0 � �k � 1

The effect now is to find a direction in which to move to reduce infeasibilities and
to reduce the complementarity toward zero, but if anyxki s

k
i is too close to zero, it

is “nudged out” to�, anyxki s
k
i that is larger than� is “nudged into”�. A �k close

to or equal to 0.0 biases a direction toward the optimum, and a value for�k close
to or equal to 1.0 “centers” the direction toward a point where all pairwise products
xki s

k
i = �. Such points make up theCentral Pathin the interior. Although centering

directions make little, if any, progress in reducing� and moving the solution closer
to the optimum, substantial progress toward the optimum can usually be made in the
next iteration.

The Central Path is crucial to why the Interior Point algorithm is so efficient. This
path “guides” the algorithm to the optimum through the interior of feasible space.

SAS OnlineDoc: Version 8

318 � Chapter 4. The NETFLOW Procedure

Without centering, the algorithm would find a series of solutions near each other
close to the boundary of feasible space. Step lengths along the direction would be
small and many more iterations would probably be required to reach the optimum.

That in a nutshell is the Primal-Dual Interior Point algorithm. Varieties of the algo-
rithm differ in the way� and�k are chosen and the direction adjusted each iteration.
A wealth of information can be found in the texts by Roos, Terlaky, and Vial 1997,
Wright 1996, and Ye 1996.

The calculation of the direction is the most time-consuming step of the Interior Point
algorithm. Assume thekth iteration is being performed, so the subscript and super-
scriptk can be dropped from the algebra.

A�x = �infeasb

AT�y +�s = �infeasc

S�x+X�s = �XSe+ ��e

Rearranging the second equation

�s = �infeasc �AT�y

Rearranging the third equation

�s = X�1(�S�x�XSe+ ��e)

�s = ���x� Se+X�1��e

where � = SX�1

Equating these two expressions for�s and rearranging

���x� Se+X�1��e = �infeasc �AT�y

���x = Se�X�1��e� infeasc �AT�y

�x = ��1(�Se+X�1��e+ infeasc +AT�y)

�x = �+��1AT�y

where � = ��1(�Se+X�1��e+ infeasc)

Substituting into the first direction equation

A�x = �infeasb

A(�+��1AT�y) = �infeasb

A��1AT�y = �infeasb �A�

�y = (A��1AT)�1(�infeasb �A�)

SAS OnlineDoc: Version 8

Linear Programming Models: Interior Point Algorithm � 319

�, �, �y, �x and�s are calculated in that order. The hardest term is the factoriza-
tion of the(A��1AT) matrix to determine�y. Fortunately, although thevaluesof
(A��1AT) is different each iteration, thelocationsof the nonzeroes in this matrix
remain fixed; the nonzero locations is the same as those in the matrix(AAT). This
is due to��1 = XS�1 being a diagonal matrix that has the effect of merely scaling
the columns of(AAT).

The fact that the nonzeroes inA��1AT has a constant pattern is exploited by all
Interior Point algorithms, and is a major reason for their excellent performance. Be-
fore iterations begin,AAT is examined and it’s rows and columns permutated so
that during Cholesky Factorization, the number offillins created is smaller. A list of
arithmetic operations to perform the factorization is saved in concise computer data
structures (working with memory locations rather than actual numerical values). This
is calledsymbolic factorization. During iterations, when memory has been initialized
with numerical values, the operations list is performed sequentially. Determining
how the factorization should be performed again and again is unnecessary.

Getting Started: Linear Programming Models: Interior Point algorithm
To solve linear programming problem using PROC NETFLOW, you save a represen-
tation of the variables and the constraints in one or two SAS data sets. These data
sets are then passed to PROC NETFLOW for solution. There are various forms that
a problem’s data can take. You can use any one or a combination of several of these
forms.

The ARCDATA= data set contains information about the variables of the problem.
Although this data set is called ARCDATA, it contains data for no arcs. Instead, all
data in this data set are related to variables.

The ARCDATA= data set can be used to specify information about variables, includ-
ing objective function coefficients, lower and upper value bounds, and names. These
data are the elements of the vectorsd,m, andv in problem (NP). Data for an variable
can be given in more than one observation.

When the data for a constrained network problem is being provided, the ARCDATA=
data set always contains information necessary for arcs, their tail and head nodes, and
optionally the supply and demand information of these nodes. When the data for a
linear programming problem is being provided, none of this information is present,
as the model has no arcs. This is the way PROC NETFLOW decides which type of
problem it is to solve.

PROC NETFLOW was originally designed to solve models with networks, so an
ARCDATA= data set is always expected. If an ARCDATA= data set is not specified,
by default the last data set created before PROC NETFLOW is envoked is assumed
to be an ARCDATA= data set. However, these characteristics of PROC NETFLOW
are not helpful when a Linear Programming problem is being solved and all data is
provided in a single data set specified by the CONDATA= data set, and that data set
is not the last data set created before PROC NETFLOW starts. In this case, you must
specify that an ARCDATA= data set and a CONDATA= data set are both equal to the
input data set. PROC NETFLOW then knows that a Linear Programming problem is
to be solved, and the data reside in one data set.

SAS OnlineDoc: Version 8

320 � Chapter 4. The NETFLOW Procedure

The CONDATA= data set describes the constraints and their right-hand-sides. These
data are elements of the matrixQ and the vectorr.

Constraint types are also specified in the CONDATA= data set. You can include
in this data set variable data such as upper bound values, lower value bounds, and
objective function coefficients. It is possible to give all information about some or all
variables in the CONDATA= data set.

A variable is identified in this data set by its name. If you specify a variable’s name in
the ARCDATA= data set, then this name is used to associate data in the CONDATA=
data set with that variable.

If you use the dense constraint input format, these variable names are names of SAS
variables in the VAR list of the CONDATA= data set.

If you use the sparse constraint input format, these variable names are values of the
COLUMN list SAS variable of CONDATA= data set.

When using the Interior Point algorithm, the execution of PROC NETFLOW has two
stages. In the preliminary (zeroth) stage, the data are read from the ARCDATA= data
set (if used) and the CONDATA= data set. Error checking is performed. In the next
stage, the Linear Program is preprocessed, then the optimal optimal solution to the
Linear Program is found. The solution is saved in the CONOUT= data set. This data
set is also named in the PROC NETFLOW, RESET, and SAVE statements.

See the “Getting Started: Network Models: Interior Point algorithm” section on
page 305 for a fuller description of the stages of the Interior Point algorithm.

Introductory Example: Linear Programming Models: Interior Point algorithm
Consider the Linear Programming problem in the “An Introductory Example” section
on page 58 in the chapter on the LP procedure.

data dcon1;
input _id_ $14.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
profit -175 -165 -205 0 0 0 300 300 max .
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
available 110 165 80 upperbd .
;

To find the minimum cost solution and to examine all or parts of the optimum, you
use PRINT statements.

� print problem/short; outputs information for all variables and all constraint
coefficients. See Figure 4.19.

SAS OnlineDoc: Version 8

Linear Programming Models: Interior Point Algorithm � 321

� print some–variables(j:)/short; is information about a set of variables, (in
this case, those with names that start with the character string (here, the single
character “j” (without the quotes)) preceeding the colon. See Figure 4.20.

� print some–cons(recipe–1)/short; is information about a set of constraints
(here, that set only has one member, the constraint called recipe–1). See Figure
4.21.

� print con–variables(–all–,brega)/short; lists the constraint information for a
set of variables (here, that set only has one member, the variable called brega).
See Figure 4.22.

� print con–variables(recipe:,n: jet–1)/short; coefficient information for
those in a set of constraints belonging to a set of variables. See Figure 4.23.

proc netflow
condata=dcon1
conout=solutn1;

run;
print problem/short;
print some_variables(j:)/short;
print some_cons(recipe_1)/short;
print con_variables(_all_,brega)/short;
print con_variables(recipe:,n: jet_1)/short;

The following messages, that appear on the SAS log, summarize the model as read
by PROC NETFLOW and note the progress toward a solution:

NOTE: Number of variables= 8 .
NOTE: Number of <= constraints= 0 .
NOTE: Number of == constraints= 5 .
NOTE: Number of >= constraints= 0 .
NOTE: Number of constraint coefficients= 18 .
NOTE: 0 columns, 0 rows and 0 coefficients were added

to the problem to handle unrestricted variables,
variables that are split, and constraint slack or
surplus variables.

NOTE: There are 8 nonzero elements in A * A transpose.
NOTE: Number of fill-ins=0.
NOTE: Of the 5 rows and columns, 0 are sparse.
NOTE: There are 0 nonzero elements in the sparse rows of

the factored A * A transpose. This includes fill-ins
in the sparse rows.

NOTE: There are 0 operations of the form
u[i,j]=u[i,j]-u[q,j]*u[q,i]/u[q,q] to factorize the
sparse rows of A * A transpose.

NOTE: Constraint feasibility attained by iteration 3.
NOTE: Bound feasibility attained by iteration 3.
NOTE: Dual feasibility attained by iteration 3.
NOTE: Primal-Dual Predictor-Corrector Interior point

algorithm performed 8 iterations.
NOTE: Objective = 1544.0000121.
NOTE: The data set WORK.SOLUTN1 has 8 observations and

6 variables.

SAS OnlineDoc: Version 8

322 � Chapter 4. The NETFLOW Procedure

NETFLOW PROCEDURE

N _NAME_ _OBJFN_ _UPPERBD _LOWERBD _VALUE_

1 a_heavy -165 165 0 5.583E-7
2 a_light -175 110 0 110
3 brega -205 80 0 80
4 heatingo 0 99999999 0 77.3
5 jet_1 300 99999999 0 60.65
6 jet_2 300 99999999 0 63.33
7 naphthai 0 99999999 0 21.8
8 naphthal 0 99999999 0 7.45

NETFLOW PROCEDURE

N _id_ _type_ _rhs_ _NAME_ _COST_ _CAPAC_

1 heating_o_conv EQ 0 a_heavy -165 165
2 heating_o_conv EQ 0 a_light -175 110
3 heating_o_conv EQ 0 brega -205 80
4 heating_o_conv EQ 0 heatingo 0 99999999
5 naphtha_i_conv EQ 0 a_heavy -165 165
6 naphtha_i_conv EQ 0 a_light -175 110
7 naphtha_i_conv EQ 0 brega -205 80
8 naphtha_i_conv EQ 0 naphthai 0 99999999
9 naphtha_l_conv EQ 0 a_heavy -165 165

10 naphtha_l_conv EQ 0 a_light -175 110
11 naphtha_l_conv EQ 0 brega -205 80
12 naphtha_l_conv EQ 0 naphthal 0 99999999
13 recipe_1 EQ 0 heatingo 0 99999999
14 recipe_1 EQ 0 jet_1 300 99999999
15 recipe_1 EQ 0 naphthai 0 99999999
16 recipe_2 EQ 0 heatingo 0 99999999
17 recipe_2 EQ 0 jet_2 300 99999999
18 recipe_2 EQ 0 naphthal 0 99999999

N _LO_ _VALUE_ _COEF_

1 0 5.583E-7 0.3
2 0 110 0.39
3 0 80 0.43
4 0 77.3 -1
5 0 5.583E-7 0.075
6 0 110 0.1
7 0 80 0.135
8 0 21.8 -1
9 0 5.583E-7 0.03

10 0 110 0.035
11 0 80 0.045
12 0 7.45 -1
13 0 77.3 0.7
14 0 60.65 -1
15 0 21.8 0.3
16 0 77.3 0.8
17 0 63.33 -1
18 0 7.45 0.2

Figure 4.19. print problem/short;

NETFLOW PROCEDURE

N _NAME_ _COST_ _CAPAC_ _LO_ _VALUE_

1 jet_1 300 99999999 0 60.65
2 jet_2 300 99999999 0 63.33

Figure 4.20. print some–variables(j:)/short;

SAS OnlineDoc: Version 8

Linear Programming Models: Interior Point Algorithm � 323

NETFLOW PROCEDURE

N _id_ _type_ _rhs_ _NAME_ _COST_ _CAPAC_

1 recipe_1 EQ 0 heatingo 0 99999999
2 recipe_1 EQ 0 jet_1 300 99999999
3 recipe_1 EQ 0 naphthai 0 99999999

N _LO_ _VALUE_ _COEF_

1 0 77.3 0.7
2 0 60.65 -1
3 0 21.8 0.3

Figure 4.21. print some–cons(recipe–1)/short;

NETFLOW PROCEDURE

N _id_ _type_ _rhs_ _NAME_ _COST_ _CAPAC_

1 heating_o_conv EQ 0 brega -205 80
2 naphtha_i_conv EQ 0 brega -205 80
3 naphtha_l_conv EQ 0 brega -205 80

N _LO_ _VALUE_ _COEF_

1 0 80 0.43
2 0 80 0.135
3 0 80 0.045

Figure 4.22. print con–variables(–all– ,brega)/short;

NETFLOW PROCEDURE

N _id_ _type_ _rhs_ _NAME_ _COST_ _CAPAC_

1 recipe_1 EQ 0 jet_1 300 99999999
2 recipe_1 EQ 0 naphthai 0 99999999
3 recipe_2 EQ 0 naphthal 0 99999999

N _LO_ _VALUE_ _COEF_

1 0 60.65 -1
2 0 21.8 0.3
3 0 7.45 0.2

Figure 4.23. print con–variables(recipe:,n: jet–1)/short;

Unlike PROC LP, that displays the solution and other information as output, PROC
NETFLOW saves the optimum in output SAS data sets you specify. For this example,
the solution is saved in the SOLUTION data set. It can be displayed with PROC
PRINT as

proc print data=solutn1;
var _name_ _cost_ _capac_ _lo_ _flow_ _fcost_;
sum _fcost_;
title3 ’LP Optimum’; run;

Notice, in the CONOUT=SOLUTION (Figure 4.24), the optimal value through each
variable in the Linear program is given in the variable named–FLOW– , and the cost
of value for each variable is given in the variable–FCOST– .

SAS OnlineDoc: Version 8

324 � Chapter 4. The NETFLOW Procedure

LP Optimum

Obs _NAME_ _COST_ _CAPAC_ _LO_ _FLOW_ _FCOST_

1 a_heavy -165 165 0 0.000 -0.00
2 a_light -175 110 0 110.000 -19250.00
3 brega -205 80 0 80.000 -16400.00
4 heatingo 0 99999999 0 77.300 0.00
5 jet_1 300 99999999 0 60.650 18195.00
6 jet_2 300 99999999 0 63.330 18999.00
7 naphthai 0 99999999 0 21.800 0.00
8 naphthal 0 99999999 0 7.450 0.00

=========
1544.00

Figure 4.24. CONOUT=SOLUTN1

The same model can be specified in the sparse format as in the followingscon2
dataset. This format enables you to omit the zero coefficients.

data scon2;
input _type_ $ @10 _col_ $13. @24 _row_ $16. _coef_;
datalines;

max . profit .
eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
upperbd . available .
. a_light profit -175
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_light available 110
. a_heavy profit -165
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. a_heavy available 165
. brega profit -205
. brega napha_l_conv .045
. brega napha_i_conv .135
. brega heating_oil_conv .430
. brega available 80
. naphthal napha_l_conv -1
. naphthal recipe_2 .2
. naphthai napha_i_conv -1
. naphthai recipe_1 .3
. heatingo heating_oil_conv -1
. heatingo recipe_1 .7
. heatingo recipe_2 .8
. jet_1 profit 300
. jet_1 recipe_1 -1
. jet_2 profit 300
. jet_2 recipe_2 -1
;

SAS OnlineDoc: Version 8

Linear Programming Models: Interior Point Algorithm � 325

To find the minimum cost solution, invoke PROC NETFLOW (note the SPARSEC-
ONDATA option which must be specified) as follows:

proc netflow
sparsecondata
condata=scon2
conout=solutn2;

run;

A data set that is used as an ARCDATA= data set can be initialized as follows:

data vars3;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
heatingo 0 .
jet_1 300 .
jet_2 300 .
naphthai 0 .
naphthal 0 .
;

The following CONDATA= data set is the original dense format CONDATA= dcon1
data set with the variable information removed. (You could have left some or all of
that information in CONDATA as PROC NETFLOW “merges” data, but doing that
and checking for consistency uses time.)

data dcon3;
input _id_ $14.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2
type $ _rhs_;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0 eq 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0 eq 0
heating_o_conv .390 .300 .430 0 0 -1 0 0 eq 0
recipe_1 0 0 0 0 .3 .7 -1 0 eq 0
recipe_2 0 0 0 .2 0 .8 0 -1 eq 0
;

It is important to note that it is now necessary to specify the MAXIMIZE option;
otherwise, PROC NETFLOW will optimize to the minimum (which, incidently, has a
total objective = -3539.25). You must indicate that the SAS variable profit in the AR-
CDATA= vars3 data set has values that are objective function coefficients, by speci-
fying the OBJFN statement. The UPPERBD must be specified as the SAS variable
available that has as values upper bounds.

proc netflow
maximize /* ***** necessary ***** */

SAS OnlineDoc: Version 8

326 � Chapter 4. The NETFLOW Procedure

arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

The ARCDATA=vars3 data set can become more concise by noting that the model
variables heatingo, naphthai, and naphthal have zero objective function coefficients
(the default) and default upper bounds, so those observations need not be present.

data vars4;
input _name_ $ profit available;
datalines;

a_heavy -165 165
a_light -175 110
brega -205 80
jet_1 300 .
jet_2 300 .
;

The CONDATA=dcon3 data set can become more concise by noting that all the con-
straints have the same type (eq) and zero (the default) rhs values. This model is a
good candidate for using the DEFCONTYPE= options.

The DEFCONTYPE= option can be useful not only whenall constraints have the
same type as is the case here, but also whenmostconstraints have the same type or, if
when you prefer to change the default type from� to = or�. The essential constraint
type data in CONDATA= data set is that which overrides the DEFCONTYPE= type
you specified.

data dcon4;
input _id_ $14.

a_light a_heavy brega naphthal naphthai
heatingo jet_1 jet_2;

datalines;
naphtha_l_conv .035 .030 .045 -1 0 0 0 0
naphtha_i_conv .100 .075 .135 0 -1 0 0 0
heating_o_conv .390 .300 .430 0 0 -1 0 0
recipe_1 0 0 0 0 .3 .7 -1 0
recipe_2 0 0 0 .2 0 .8 0 -1
;

proc netflow
maximize defcontype=eq
arcdata=vars3
condata=dcon3
conout=solutn3;

objfn profit;
upperbd available;
run;

SAS OnlineDoc: Version 8

Linear Programming Models: Interior Point Algorithm � 327

Several different ways of using an ARCDATA= data set and a sparse format CON-
DATA= data set for this Linear Program follows. The following CONDATA= data set
is the result of removing the profit and available data from the original sparse format
CONDATA=scon2 data set.

data scon5;
input _type_ $ @10 _col_ $13. @24 _row_ $16. _coef_;
datalines;

eq . napha_l_conv .
eq . napha_i_conv .
eq . heating_oil_conv .
eq . recipe_1 .
eq . recipe_2 .
. a_light napha_l_conv .035
. a_light napha_i_conv .100
. a_light heating_oil_conv .390
. a_heavy napha_l_conv .030
. a_heavy napha_i_conv .075
. a_heavy heating_oil_conv .300
. brega napha_l_conv .045
. brega napha_i_conv .135
. brega heating_oil_conv .430
. naphthal napha_l_conv -1
. naphthal recipe_2 .2
. naphthai napha_i_conv -1
. naphthai recipe_1 .3
. heatingo heating_oil_conv -1
. heatingo recipe_1 .7
. heatingo recipe_2 .8
. jet_1 recipe_1 -1
. jet_2 recipe_2 -1
;

proc netflow
maximize
sparsecondata
arcdata=vars3 /* or arcdata=vars4 */
condata=scon5
conout=solutn5;

objfn profit;
upperbd available;
run;

The CONDATA=scon5 data set can become more concise by noting that all the con-
straints have the same type (eq) and zero (the default) rhs values. Use the DEFCON-
TYPE= option again. Once the first 5 observations of the CONDATA=scon5 data set
are removed, the–type– SAS variable has values that are missing in the remaining
observations. Therefore, this SAS variable can be removed.

data scon6;
input _col_ $ _row_&$16. _coef_;
datalines;

SAS OnlineDoc: Version 8

328 � Chapter 4. The NETFLOW Procedure

a_light napha_l_conv .035
a_light napha_i_conv .100
a_light heating_oil_conv .390
a_heavy napha_l_conv .030
a_heavy napha_i_conv .075
a_heavy heating_oil_conv .300
brega napha_l_conv .045
brega napha_i_conv .135
brega heating_oil_conv .430
naphthal napha_l_conv -1
naphthal recipe_2 .2
naphthai napha_i_conv -1
naphthai recipe_1 .3
heatingo heating_oil_conv -1
heatingo recipe_1 .7
heatingo recipe_2 .8
jet_1 recipe_1 -1
jet_2 recipe_2 -1
;

proc netflow
maximize
defcontype=eq
sparsecondata
arcdata=vars4 /* or arcdata=vars4 */
condata=scon6
conout=solutn6;

objfn profit;
upperbd available;
run;

Interactivity: Linear Programming Models: Interior Point algorithm
PROC NETFLOW can be used interactively. You begin by giving the PROC NET-
FLOW statement, and you must specify the CONDATA= data set. If necessary, spec-
ify the ARCDATA= data set.

The variable lists should be given next. If you have variables in the input data sets
that have special names (for example, a variable in the ARCDATA= data set named

–COST– that has objective function coefficients as values), it may not be necessary
to have many or any variable lists.

The PRINT, QUIT, SAVE, SHOW, RESET, and RUN statements follow and can be
listed in any order. The QUIT statements can be used only once. The others can be
used as many times as needed.

The CONOPT and PIVOT are not relevant to the Interior Point algorithm and should
not be used.

Use the RESET or SAVE statement to change the name of the output data set. There
is only one output data set, the CONOUT= data set. With the RESET statement, you
can also indicate the reasons why optimization should stop, (for example, you can in-
dicate the maximum number of iterations that can be performed). PROC NETFLOW
then has a chance to either execute the next statement or, if the next statement is one

SAS OnlineDoc: Version 8

Linear Programming Models: Interior Point Algorithm � 329

that PROC NETFLOW does not recognize (the next PROC or DATA step in the SAS
session), do any allowed optimization and finish. If no new statement has been sub-
mitted, you are prompted for one. Some options of the RESET statement enable you
to control aspects of the Interior Point algorithm. Specifying certain values for these
options can reduce the time it takes to solve a problem. Note that any of the RESET
options can be specified in the PROC NETFLOW statement.

The RUN statement starts optimization. Once the optimization has started, it runs
until the optimum is reached. The RUN statement should be specified at most once.

The QUIT statement immediately stops PROC NETFLOW. The SAVE statement has
options that enable you to name the output data set; information about the current
solution is saved in this output data set. Use the SHOW statement if you want to
examine the values of options of other statements. Information about the amount of
optimization that has been done and the STATUS of the current solution can also be
displayed using the SHOW statement.

The PRINT statement instructs PROC NETFLOW to display parts of the problem.
The ways the PRINT statements are specified are identical whether the Interior Point
algorithm or the Simplex algorithm is used; however, there are minor differences in
what is displayed for each variable or constraint coefficient.

PRINT VARIABLES produces information on all arcs. PRINT SOME–VARIABLES
limits this output to a subset of variables. There are similar PRINT statements for
variables and constraints:

PRINT CONSTRAINTS;
PRINT SOME_CONS;

PRINT CON–VARIABLES enables you to limit constraint information that is ob-
tained to members of a set of variables that have nonzero constraint coefficients in a
set of constraints.

For example, an interactive PROC NETFLOW run might look something like this:

proc netflow
condata=data set
other options;

variable list specifications; /* if necessary */
reset options;
print options; /* look at problem */

run; /* do some optimization */
print options; /* look at the optimal solution */
save options; /* keep optimal solution */

If you are interested only in finding the optimal solution, have used SAS variables
that have special names in the input data sets, and want to use default setting for
everything, then the following statement is all you need:

proc netflow condata= data set options ;

SAS OnlineDoc: Version 8

330 � Chapter 4. The NETFLOW Procedure

Functional Summary: Linear Programming Models: Interior Point algorithm
The following tables outline the options available for the NETFLOW procedure when
the Interior Point algorithm is being used to solve a linear programming problem,
classified by function.

Table 4.36. Input Data Set Options

Description Statement Option
arcs input data set NETFLOW ARCDATA=
constraint input data setNETFLOW CONDATA=

Table 4.37. Options for Networks

Description Statement Option
default variable objective function coefficientNETFLOW DEFCOST=
default variable upper bound NETFLOW DEFCAPACITY=
default variable lower bound NETFLOW DEFMINFLOW=

Table 4.38. Miscellaneous Options

Description Statement Option
infinity value NETFLOW INFINITY=
do constraint row and/or variable column coefficientNETFLOW SCALE=
scaling, or neither
maximization instead of minimization NETFLOW MAXIMIZE

Table 4.39. Data Set Read Options

Description Statement Option
CONDATA has sparse data format NETFLOW SPARSECONDATA
default constraint type NETFLOW DEFCONTYPE=
special COLUMN variable value NETFLOW TYPEOBS=
special COLUMN variable value NETFLOW RHSOBS=
data for an constraint found in only one obs of CONDATANETFLOW CON–SINGLE–OBS
data for a coefficient found once in CONDATA NETFLOW NON–REPLIC=
data is grouped, exploited during data read NETFLOW GROUPED=

Table 4.40. Problem Size (approx.) Options

Description Statement Option
number of variables NETFLOW NNAS=
number of coefficients NETFLOW NCOEFS=
number of constraints NETFLOW NCONS=

Table 4.41. Memory Control Options

Description Statement Option
issue memory usage messages to SASLOGNETFLOW MEMREP
number of bytes to use for main memory NETFLOW BYTES=
proportion of memory used by frequently NETFLOW COREFACTOR=
accessed arrays
maximum bytes for a single array NETFLOW MAXARRAYBYTES=

SAS OnlineDoc: Version 8

Linear Programming Models: Interior Point Algorithm � 331

Table 4.42. Output Data Set Options: RESET

Description Statement Option
solution data set RESET CONOUT=

Table 4.43. PRINT Statement Options

Description Statement Option
display everything PRINT PROBLEM
display variables information PRINT VARIABLES
display constraint information PRINT CONSTRAINTS
display information for some variables PRINT SOME–VARIABLES
display information for some constraintsPRINT SOME–CONS
display information for some constraintsPRINT CON–VARIABLES
associated with some variables

Table 4.44. PRINT Statement Qualifiers

Description Statement Option
produce a short report PRINT / SHORT
produce a long report PRINT / LONG
only variables with zero value PRINT / ZERO
only variables with nonzero valuePRINT / NONZERO

Table 4.45. SHOW Statement Options

Description Statement Option
show problem, optimization status SHOW STATUS
show LP model parameters SHOW NETSTMT
show data sets that have, will be createdSHOW DATA SETS

Table 4.46. Output Data Set Options: SAVE

Description Statement Option
constrained solution data setSAVE CONOUT=

Table 4.47. Interior Point algorithm Options

Description Statement Option
use Interior Point algorithm NETFLOW INTPOINT
allowed amount of dual infeasibility RESET TOLDINF=
allowed amount of primal infeasibility RESET TOLPINF=
cut-off tolerance for Cholesky factorization RESET CHOLTINYTOL=
density threshold for Cholesky processing RESET DENSETHR=
maximum number of Interior Point algorithm iterationsRESET MAXITERB=
Primal-Dual (Duality) gap tolerance RESET PDGAPTOL=
step-length multiplier RESET PDSTEPMULT=
preprocessing type RESET PRSLTYPE=

SAS OnlineDoc: Version 8

332 � Chapter 4. The NETFLOW Procedure

Syntax: Linear Programming Models: Interior Point algorithm
Below are statements used in PROC NETFLOW, listed in alphabetical order as they
appear in the text that follows.

PROC NETFLOW options ;
CAPACITY variable ;
COEF variables ;
COLUMN variable ;
COST variable ;
DEMAND variable ;
ID variables ;
LO variable ;
NAME variable ;
PRINT options ;
QUIT;
RESET options ;
ROW variables ;
RHS variables ;
RUN;
SAVE options ;
TYPE variable ;
VAR variables ;

SAS OnlineDoc: Version 8

Linear Programming Models: Interior Point Algorithm � 333

PROC NETFLOW options ; required statement

COST variable ;

CAPACITY variable ;

LO variable ;

NAME variable ;

ID variables ;

9>>>>=
>>>>;

optional ARCDATA lists

COLUMN variable ;

ROW variables ;

COEF variables ;
TYPE variable ;

VAR variables ;

RHS variable;

9>>>>>>=
>>>>>>;

optional CONDATA lists

RESET options ;

SAVE options ;

SHOW options ;

PRINT options ;

RUN;

QUIT;

9>>>>>>=
>>>>>>;

optional interactive statements

SAS OnlineDoc: Version 8

334 � Chapter 4. The NETFLOW Procedure

Examples

The following examples illustrate some of the capabilities of PROC NETFLOW.
These examples, together with the other SAS/OR examples, can be found in the SAS
sample library.

Example 4.1. Shortest Path Problem

Whole pineapples are served in a restaurant in London. To ensure freshness, the
pineapples are purchased in Hawaii and air freighted from Honolulu to Heathrow in
London. The following network diagram (Figure 4.25) outlines the different routes
that the pineapples could take.

Honolulu
65

San Francisco New York Heathrow

London

Chicago Boston

Los Angeles Atlanta

105 71

48

88

76
68

75

56

45

63 44

57
Figure 4.25. Pineapple routes

The cost to freight a pineapple is known for each arc. You can use PROC NETFLOW
to determine what routes should be used to minimize total shipping cost. The shortest
path is the least cost path that all pineapples should use. The SHORTPATH option
indicates this type of network problem.

The SINK= option value HEATHROW LONDON is not a valid SAS variable name
so it must be enclosed in single quotes. The TAILNODE list variable is FFROM.
Because the name of this variable is not–TAIL– or –FROM– , the TAILNODE list
must be specified in the PROC NETFLOW statement. The HEADNODE list must
also be explicitly specified because the variable that belongs to this list does not have
the name–HEAD– or –TO– , but isTTO.

title ’Shortest Path Problem’;
title2 ’How to get Hawaiian Pineapples to a London Restaurant’;
data aircost1;

input ffrom&$13. tto&$15. _cost_ ;

SAS OnlineDoc: Version 8

Example 4.2. Shortest Path Problem � 335

datalines;
Honolulu Chicago 105
Honolulu San Francisco 75
Honolulu Los Angeles 68
Chicago Boston 45
Chicago New York 56
San Francisco Boston 71
San Francisco New York 48
San Francisco Atlanta 63
Los Angeles New York 44
Los Angeles Atlanta 57
Boston Heathrow London 88
New York Heathrow London 65
Atlanta Heathrow London 76
;

proc netflow
shortpath
sourcenode=Honolulu
sinknode=’Heathrow London’ /* Quotes for embedded blank */

ARCDATA=aircost1
arcout=spath;

tail ffrom;
head tto;

proc print data=spath; sum _fcost_;
run;

The length at optimality is written to the SAS log as

NOTE: Number of nodes= 8 .
NOTE: Number of arcs= 13 .
NOTE: Number of iterations performed (neglecting any

constraints)= 5 .
NOTE: Of these, 4 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Shortest path= 177 .
NOTE: The data set WORK.SPATH has 13 observations and 13

variables.

The output data set ARCOUT=SPATH in Output 4.1.1 shows that the best route for
the pineapples is from Honolulu to Los Angeles to New York to Heathrow London.

SAS OnlineDoc: Version 8

336 � Chapter 4. The NETFLOW Procedure

Output 4.1.1. ARCOUT=SPATH

Shortest Path Problem
How to get Hawaiian Pineapples to a London Restaurant

Obs ffrom tto _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_

1 San Francisco Atlanta 63 99999999 0 . .
2 Los Angeles Atlanta 57 99999999 0 . .
3 Chicago Boston 45 99999999 0 . .
4 San Francisco Boston 71 99999999 0 . .
5 Honolulu Chicago 105 99999999 0 1 .
6 Boston Heathrow London 88 99999999 0 . 1
7 New York Heathrow London 65 99999999 0 . 1
8 Atlanta Heathrow London 76 99999999 0 . 1
9 Honolulu Los Angeles 68 99999999 0 1 .

10 Chicago New York 56 99999999 0 . .
11 San Francisco New York 48 99999999 0 . .
12 Los Angeles New York 44 99999999 0 . .
13 Honolulu San Francisco 75 99999999 0 1 .

Obs _FLOW_ _FCOST_ _RCOST_ _ANUMB_ _TNUMB_ _STATUS_

1 0 0 13 9 3 LOWERBD NONBASIC
2 0 0 . 10 4 KEY_ARC BASIC
3 0 0 4 4 2 LOWERBD NONBASIC
4 0 0 . 5 3 KEY_ARC BASIC
5 0 0 . 1 1 KEY_ARC BASIC
6 0 0 57 11 5 LOWERBD NONBASIC
7 1 65 . 12 6 KEY_ARC BASIC
8 0 0 24 13 7 LOWERBD NONBASIC
9 1 68 . 3 1 KEY_ARC BASIC

10 0 0 49 6 2 LOWERBD NONBASIC
11 0 0 11 7 3 LOWERBD NONBASIC
12 1 44 . 8 4 KEY_ARC BASIC
13 0 0 . 2 1 KEY_ARC BASIC

=======
177

Example 4.2. Minimum Cost Flow Problem

You can continue to use the pineapple example in Example 4.1 by supposing that the
airlines now stipulate that no more than 350 pineapples per week can be handled in
any single leg of the journey. The restaurant uses 500 pineapples each week. How
many pineapples should take each route between Hawaii and London?

You will probably have more minimum cost flow problems because they are more
general than maximal flow and shortest path problems. A shortest path formulation
is no longer valid because the sink node does not demand one flow unit.

All arcs have the same capacity of 350 pineapples. Because of this, the DEFCAPAC-
ITY= option can be specified in the PROC NETFLOW statement, rather than having
a CAPACITY list variable in ARCDATA=aircost1. You can have a CAPACITY list
variable, but the value of this variable would be 350 in all observations, so using the
DEFCAPACITY= option is more convenient. You would have to use the CAPACITY
list variable if arcs had differing capacities. You can use both the DEFCAPACITY=
option and a CAPACITY list variable.

There is only one supply node and one demand node. These can be named in the
SOURCE= and SINK= options. DEMAND=500 is specified for the restaurant de-
mand. There is no need to specify SUPPLY=500, as this is assumed.

SAS OnlineDoc: Version 8

Example 4.2. Minimum Cost Flow Problem � 337

title ’Minimum Cost Flow Problem’;
title2 ’How to get Hawaiian Pineapples to a London Restaurant’;
proc netflow

defcapacity=350
sourcenode=’Honolulu’
sinknode=’Heathrow London’ /* Quotes for embedded blank */
demand=500

arcdata=aircost1
arcout=arcout1
nodeout=nodeout1;

tail ffrom;
head tto;

set future1;
proc print data=arcout1; sum _fcost_;
proc print data=nodeout1;
run;

The following notes appear on the SAS log:

NOTE: Sourcenode was assigned supply of the total network
demand= 500 .

NOTE: Number of nodes= 8 .
NOTE: Number of supply nodes= 1 .
NOTE: Number of demand nodes= 1 .
NOTE: Total supply= 500 , total demand= 500 .
NOTE: Number of arcs= 13 .
NOTE: Number of iterations performed (neglecting any

constraints)= 6 .
NOTE: Of these, 4 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 93750 .
NOTE: The data set WORK.ARCOUT1 has 13 observations and

13 variables.
NOTE: The data set WORK.NODEOUT1 has 9 observations and

10 variables.

SAS OnlineDoc: Version 8

338 � Chapter 4. The NETFLOW Procedure

150
Honolulu San Francisco New York Heathrow

London

Chicago Boston

Los Angeles Atlanta

150

200

150

350 150

350

The routes and numbers of pineapples in each arc can be seen in the output data set
ARCOUT=arcout1 in Output 4.2.1.

Output 4.2.1. ARCOUT=ARCOUT1

Minimum Cost Flow Problem
How to get Hawaiian Pineapples to a London Restaurant

Obs ffrom tto _cost_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_

1 San Francisco Atlanta 63 350 0 . .
2 Los Angeles Atlanta 57 350 0 . .
3 Chicago Boston 45 350 0 . .
4 San Francisco Boston 71 350 0 . .
5 Honolulu Chicago 105 350 0 500 .
6 Boston Heathrow London 88 350 0 . 500
7 New York Heathrow London 65 350 0 . 500
8 Atlanta Heathrow London 76 350 0 . 500
9 Honolulu Los Angeles 68 350 0 500 .

10 Chicago New York 56 350 0 . .
11 San Francisco New York 48 350 0 . .
12 Los Angeles New York 44 350 0 . .
13 Honolulu San Francisco 75 350 0 500 .

Obs _FLOW_ _FCOST_ _RCOST_ _ANUMB_ _TNUMB_ _STATUS_

1 0 0 2 9 3 LOWERBD NONBASIC
2 150 8550 . 10 4 KEY_ARC BASIC
3 0 0 4 4 2 LOWERBD NONBASIC
4 0 0 . 5 3 KEY_ARC BASIC
5 0 0 . 1 1 KEY_ARC BASIC
6 0 0 22 11 5 LOWERBD NONBASIC
7 350 22750 -24 12 6 UPPERBD NONBASIC
8 150 11400 . 13 7 KEY_ARC BASIC
9 350 23800 -11 3 1 UPPERBD NONBASIC

10 0 0 38 6 2 LOWERBD NONBASIC
11 150 7200 . 7 3 KEY_ARC BASIC
12 200 8800 . 8 4 KEY_ARC BASIC
13 150 11250 . 2 1 KEY_ARC BASIC

=======
93750

NODEOUT=NODEOUT1 is shown in Output 4.2.2.

SAS OnlineDoc: Version 8

Example 4.3. Using a Warm Start � 339

Output 4.2.2. NODEOUT=NODEOUT1

_
S _ _ _

_ U _ N _ _ S A _
N P D N P T C R F _
O D U U R R E C L F

O D E A M E A S I O B
b E M L B D V S D W Q
s _ _ _ _ _ _ _ _ _ _

1 _ROOT_ 0 0 9 0 1 0 -1 81 -14
2 Atlanta . -136 7 4 8 2 10 150 9
3 Boston . -146 5 3 9 1 5 0 4
4 Chicago . -105 2 1 3 1 1 0 1
5 Heathrow London -500 -212 8 7 5 1 13 150 11
6 Honolulu 500 0 1 9 2 8 -14 0 -1
7 Los Angeles . -79 4 6 7 3 -8 200 3
8 New York . -123 6 3 4 4 7 150 6
9 San Francisco . -75 3 1 6 6 2 150 2

Example 4.3. Using a Warm Start

Suppose that the airlines state that the freight cost per pineapple in flights that leave
Chicago has been reduced by 30. How many pineapples should take each route be-
tween Hawaii and London? This example illustrates how PROC NETFLOW uses a
warm start.

In Example 4.2, the RESET statement of PROC NETFLOW is used to specify FU-
TURE1. A NODEOUT= data set is also specified. The warm start information is
saved in thearcout1 andnodeout1 data sets.

In the following DATA step, the costs, reduced costs, and flows in thearcout1 data
set are saved in variables calledoldcost, oldflow, andoldfc. These variables form
an implicit ID list in the following PROC NETFLOW run and will appear in AR-
COUT=arcout2. Thus, it is easy to compare the previous optimum and the new opti-
mum.

title ’Minimum Cost Flow Problem - Warm Start’;
title2 ’How to get Hawaiian Pineapples to a London Restaurant’;
data aircost2;

set arcout1;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if ffrom=’Chicago’ then _cost_=_cost_-30;

proc netflow
warm

arcdata=aircost2
nodedata=nodeout1
arcout=arcout2;

tail ffrom;
head tto;

proc print data=arcout2;
var ffrom tto _cost_ oldcost _capac_ _lo_

flow oldflow _fcost_ oldfc;

SAS OnlineDoc: Version 8

340 � Chapter 4. The NETFLOW Procedure

sum _fcost_ oldfc;
run;

The following notes appear on the SAS log:

NOTE: Number of nodes= 8 .
NOTE: Number of supply nodes= 1 .
NOTE: Number of demand nodes= 1 .
NOTE: Total supply= 500 , total demand= 500 .
NOTE: Number of iterations performed (neglecting any

constraints)= 3 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= 93150 .

ARCOUT=arcout2 is shown in Output 4.3.1.

Output 4.3.1. ARCOUT=ARCOUT2

Minimum Cost Flow Problem - Warm Start
How to get Hawaiian Pineapples to a London Restaurant

o _ o _
_ l C _ l F

f c d A F d C o
f o c P _ L f O l

O r t s o A L O l S d
b o t t s C O W o T f
s m o _ t _ _ _ w _ c

1 San Francisco Atlanta 63 63 350 0 0 0 0 0
2 Los Angeles Atlanta 57 57 350 0 0 150 0 8550
3 Chicago Boston 15 45 350 0 150 0 2250 0
4 San Francisco Boston 71 71 350 0 0 0 0 0
5 Honolulu Chicago 105 105 350 0 150 0 15750 0
6 Boston Heathrow London 88 88 350 0 150 0 13200 0
7 New York Heathrow London 65 65 350 0 350 350 22750 22750
8 Atlanta Heathrow London 76 76 350 0 0 150 0 11400
9 Honolulu Los Angeles 68 68 350 0 350 350 23800 23800

10 Chicago New York 26 56 350 0 0 0 0 0
11 San Francisco New York 48 48 350 0 0 150 0 7200
12 Los Angeles New York 44 44 350 0 350 200 15400 8800
13 Honolulu San Francisco 75 75 350 0 0 150 0 11250

===== =====
93150 93750

Example 4.4. Production, Inventory, Distribution Problem

Example 4.4 through Example 4.8 use data from a company that produces two sizes of
televisions in order to illustrate variations in the use the NETFLOW procedure. The
company makes televisions with a diagonal screen measurement of either 19 inches
or 25 inches. These televisions are made between March and May at both of the
company’s two factories. Each factory has a limit on the total number of televisions
of each screen dimension that can be made during those months.

The televisions are distributed to one of two shops, stored at the factory where they
were made and sold later, or shipped to the other factory. Some sets can be used to
fill back orders from the previous months. Each shop demands a number of each type
of TV for the months March through May. The following network in Figure 4.26
illustrates the model. Arc costs can be interpreted as production costs, storage costs,

SAS OnlineDoc: Version 8

Example 4.4. Production, Inventory, Distribution Problem � 341

back order penalty costs, inter-factory transportation costs, and sales profits. The arcs
can have capacities and lower flow bounds.

production

fact1

f1_mar

f1_apl

f1_may

f2_mar

f2_apl

f2_may

shop2fact2

shop1

distribution

backorders
Inventory and

Inter-factory

Figure 4.26. TV problem

There are two similarly structured networks, one for the 19-inch televisions and the
other for the 25-inch screen TVs. The minimum cost production, inventory, and
distribution plan for both TV types can be determined in the same run of PROC
NETFLOW. To ensure that node names are unambiguous, the names of nodes in the
19-inch network have suffix–1, and the node names in the 25-inch network have
suffix –2.

The FUTURE1 option is specified because further processing could be required.
Information concerning an optimal solution is retained so it can be used to warm
start later optimizations. Warm start information is mostly in variables named

–NNUMB– , –PRED– , –TRAV–, –SCESS– , –ARCID– , and –FBQ– and in
observations for nodes named–EXCESS– and –ROOT–, that are in the NODE-
OUT=NODE2 output data set. (PROC NETFLOW uses similar devices to store
warm start information in the DUALOUT= data set when the FUTURE2 option is
specified.) Variables–ANUMB– and–TNUMB– and observations for arcs directed
from or toward a node called–EXCESS– are present in ARCOUT=arc1. (PROC

SAS OnlineDoc: Version 8

342 � Chapter 4. The NETFLOW Procedure

NETFLOW uses similar devices to store warm start information in the CONOUT=
data set when the FUTURE2 option is specified.)

The following code shows how to save the problem data in data sets and solve the
model with PROC NETFLOW:

title ’Minimum Cost Flow problem’;
title2 ’Production Planning/Inventory/Distribution’;
data node0;

input _node_ $ _supdem_ ;
datalines;

fact1_1 1000
fact2_1 850
fact1_2 1000
fact2_2 1500
shop1_1 -900
shop2_1 -900
shop1_2 -900
shop2_2 -1450
;

data arc0;
input _tail_ $ _head_ $ _cost_ _capac_ _lo_ diagonal factory

key_id $10. mth_made $ _name_&$17. ;
datalines;

fact1_1 f1_mar_1 127.9 500 50 19 1 production March prod f1 19 mar
fact1_1 f1_apr_1 78.6 600 50 19 1 production April prod f1 19 apl
fact1_1 f1_may_1 95.1 400 50 19 1 production May .
f1_mar_1 f1_apr_1 15 50 . 19 1 storage March .
f1_apr_1 f1_may_1 12 50 . 19 1 storage April .
f1_apr_1 f1_mar_1 28 20 . 19 1 backorder April back f1 19 apl
f1_may_1 f1_apr_1 28 20 . 19 1 backorder May back f1 19 may
f1_mar_1 f2_mar_1 11 . . 19 . f1_to_2 March .
f1_apr_1 f2_apr_1 11 . . 19 . f1_to_2 April .
f1_may_1 f2_may_1 16 . . 19 . f1_to_2 May .
f1_mar_1 shop1_1 -327.65 250 . 19 1 sales March .
f1_apr_1 shop1_1 -300 250 . 19 1 sales April .
f1_may_1 shop1_1 -285 250 . 19 1 sales May .
f1_mar_1 shop2_1 -362.74 250 . 19 1 sales March .
f1_apr_1 shop2_1 -300 250 . 19 1 sales April .
f1_may_1 shop2_1 -245 250 . 19 1 sales May .
fact2_1 f2_mar_1 88.0 450 35 19 2 production March prod f2 19 mar
fact2_1 f2_apr_1 62.4 480 35 19 2 production April prod f2 19 apl
fact2_1 f2_may_1 133.8 250 35 19 2 production May .
f2_mar_1 f2_apr_1 18 30 . 19 2 storage March .
f2_apr_1 f2_may_1 20 30 . 19 2 storage April .
f2_apr_1 f2_mar_1 17 15 . 19 2 backorder April back f2 19 apl
f2_may_1 f2_apr_1 25 15 . 19 2 backorder May back f2 19 may
f2_mar_1 f1_mar_1 10 40 . 19 . f2_to_1 March .
f2_apr_1 f1_apr_1 11 40 . 19 . f2_to_1 April .
f2_may_1 f1_may_1 13 40 . 19 . f2_to_1 May .
f2_mar_1 shop1_1 -297.4 250 . 19 2 sales March .
f2_apr_1 shop1_1 -290 250 . 19 2 sales April .
f2_may_1 shop1_1 -292 250 . 19 2 sales May .

SAS OnlineDoc: Version 8

Example 4.4. Production, Inventory, Distribution Problem � 343

f2_mar_1 shop2_1 -272.7 250 . 19 2 sales March .
f2_apr_1 shop2_1 -312 250 . 19 2 sales April .
f2_may_1 shop2_1 -299 250 . 19 2 sales May .
fact1_2 f1_mar_2 217.9 400 40 25 1 production March prod f1 25 mar
fact1_2 f1_apr_2 174.5 550 50 25 1 production April prod f1 25 apl
fact1_2 f1_may_2 133.3 350 40 25 1 production May .
f1_mar_2 f1_apr_2 20 40 . 25 1 storage March .
f1_apr_2 f1_may_2 18 40 . 25 1 storage April .
f1_apr_2 f1_mar_2 32 30 . 25 1 backorder April back f1 25 apl
f1_may_2 f1_apr_2 41 15 . 25 1 backorder May back f1 25 may
f1_mar_2 f2_mar_2 23 . . 25 . f1_to_2 March .
f1_apr_2 f2_apr_2 23 . . 25 . f1_to_2 April .
f1_may_2 f2_may_2 26 . . 25 . f1_to_2 May .
f1_mar_2 shop1_2 -559.76 . . 25 1 sales March .
f1_apr_2 shop1_2 -524.28 . . 25 1 sales April .
f1_may_2 shop1_2 -475.02 . . 25 1 sales May .
f1_mar_2 shop2_2 -623.89 . . 25 1 sales March .
f1_apr_2 shop2_2 -549.68 . . 25 1 sales April .
f1_may_2 shop2_2 -460.00 . . 25 1 sales May .
fact2_2 f2_mar_2 182.0 650 35 25 2 production March prod f2 25 mar
fact2_2 f2_apr_2 196.7 680 35 25 2 production April prod f2 25 apl
fact2_2 f2_may_2 201.4 550 35 25 2 production May .
f2_mar_2 f2_apr_2 28 50 . 25 2 storage March .
f2_apr_2 f2_may_2 38 50 . 25 2 storage April .
f2_apr_2 f2_mar_2 31 15 . 25 2 backorder April back f2 25 apl
f2_may_2 f2_apr_2 54 15 . 25 2 backorder May back f2 25 may
f2_mar_2 f1_mar_2 20 25 . 25 . f2_to_1 March .
f2_apr_2 f1_apr_2 21 25 . 25 . f2_to_1 April .
f2_may_2 f1_may_2 43 25 . 25 . f2_to_1 May .
f2_mar_2 shop1_2 -567.83 500 . 25 2 sales March .
f2_apr_2 shop1_2 -542.19 500 . 25 2 sales April .
f2_may_2 shop1_2 -461.56 500 . 25 2 sales May .
f2_mar_2 shop2_2 -542.83 500 . 25 2 sales March .
f2_apr_2 shop2_2 -559.19 500 . 25 2 sales April .
f2_may_2 shop2_2 -489.06 500 . 25 2 sales May .

;

proc netflow
nodedata=node0
arcdata=arc0;

set future1
nodeout=node2
arcout=arc1;

proc print data=arc1; sum _fcost_;
proc print data=node2;
run;

The following notes appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .

SAS OnlineDoc: Version 8

344 � Chapter 4. The NETFLOW Procedure

NOTE: Number of iterations performed (neglecting any
constraints)= 74 .

NOTE: Of these, 1 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1281110.35 .
NOTE: The data set WORK.ARC1 has 68 observations and

18 variables.
NOTE: The data set WORK.NODE2 has 22 observations and

10 variables.

The solution is given in the NODEOUT=node2 and ARCOUT=arc1 data sets. In
the ARCOUT= data set, shown in Output 4.4.1, the variablesdiagonal, factory,
key–id, andmth–made form an implicit ID list. Thediagonal variable has one of
two values, 19 or 25.factory also has one of two values, 1 or 2, to denote the factory
where either production or storage occurs, from where TVs are either sold to shops
or satisfy back orders. PRODUCTION, STORAGE, SALES, and BACKORDER are
values of thekey–id variable.

Other values of this variable, F1–TO–2 and F2–TO–1, are used when flow through
arcs represents the transportation of TVs between factories. Themth–made variable
has values MARCH, APRIL, and MAY, the months when TVs that are modeled as
flow through an arc were made (assuming that no televisions are stored for more than
one month and none manufactured in May are used to fill March back orders).

These ID variables can be used after the PROC NETFLOW run to produce reports and
perform analysis on particular parts of the company’s operation. For example, reports
can be generated for production numbers for each factory; optimal sales figures for
each shop; and how many TVs should be stored, used to fill back orders, sent to the
other factory, or any combination of these, for TVs with a particular screen, those
produced in a particular month, or both.

SAS OnlineDoc: Version 8

Example 4.4. Production, Inventory, Distribution Problem � 345

Output 4.4.1. ARCOUT=ARC1

Minimum Cost Flow problem
Production Planning/Inventory/Distribution

OBS _TAIL_ _HEAD_ _COST_ _CAPAC_ _LO_ _NAME_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 0.00 99999999 0 1000 200 5 0.00
2 fact2_1 _EXCESS_ 0.00 99999999 0 850 200 45 0.00
3 fact1_2 _EXCESS_ 0.00 99999999 0 1000 200 10 0.00
4 fact2_2 _EXCESS_ 0.00 99999999 0 1500 200 140 0.00
5 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl 1000 . 600 47160.00
6 f1_mar_1 f1_apr_1 15.00 50 0 . . 0 0.00
7 f1_may_1 f1_apr_1 28.00 20 0 back f1 19 may . . 0 0.00
8 f2_apr_1 f1_apr_1 11.00 40 0 . . 0 0.00
9 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl 1000 . 550 95975.00

10 f1_mar_2 f1_apr_2 20.00 40 0 . . 0 0.00
11 f1_may_2 f1_apr_2 41.00 15 0 back f1 25 may . . 15 615.00
12 f2_apr_2 f1_apr_2 21.00 25 0 . . 0 0.00
13 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar 1000 . 345 44125.50
14 f1_apr_1 f1_mar_1 28.00 20 0 back f1 19 apl . . 20 560.00
15 f2_mar_1 f1_mar_1 10.00 40 0 . . 40 400.00
16 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar 1000 . 400 87160.00
17 f1_apr_2 f1_mar_2 32.00 30 0 back f1 25 apl . . 30 960.00
18 f2_mar_2 f1_mar_2 20.00 25 0 . . 25 500.00
19 fact1_1 f1_may_1 95.10 400 50 1000 . 50 4755.00
20 f1_apr_1 f1_may_1 12.00 50 0 . . 50 600.00
21 f2_may_1 f1_may_1 13.00 40 0 . . 0 0.00
22 fact1_2 f1_may_2 133.30 350 40 1000 . 40 5332.00
23 f1_apr_2 f1_may_2 18.00 40 0 . . 0 0.00
24 f2_may_2 f1_may_2 43.00 25 0 . . 0 0.00
25 f1_apr_1 f2_apr_1 11.00 99999999 0 . . 30 330.00
26 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl 850 . 480 29952.00
27 f2_mar_1 f2_apr_1 18.00 30 0 . . 0 0.00
28 f2_may_1 f2_apr_1 25.00 15 0 back f2 19 may . . 0 0.00
29 f1_apr_2 f2_apr_2 23.00 99999999 0 . . 0 0.00
30 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl 1500 . 680 133756.00
31 f2_mar_2 f2_apr_2 28.00 50 0 . . 0 0.00
32 f2_may_2 f2_apr_2 54.00 15 0 back f2 25 may . . 15 810.00
33 f1_mar_1 f2_mar_1 11.00 99999999 0 . . 0 0.00
34 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar 850 . 290 25520.00
35 f2_apr_1 f2_mar_1 17.00 15 0 back f2 19 apl . . 0 0.00
36 f1_mar_2 f2_mar_2 23.00 99999999 0 . . 0 0.00
37 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar 1500 . 645 117390.00
38 f2_apr_2 f2_mar_2 31.00 15 0 back f2 25 apl . . 0 0.00
39 f1_may_1 f2_may_1 16.00 99999999 0 . . 100 1600.00
40 fact2_1 f2_may_1 133.80 250 35 850 . 35 4683.00
41 f2_apr_1 f2_may_1 20.00 30 0 . . 15 300.00
42 f1_may_2 f2_may_2 26.00 99999999 0 . . 0 0.00
43 fact2_2 f2_may_2 201.40 550 35 1500 . 35 7049.00
44 f2_apr_2 f2_may_2 38.00 50 0 . . 0 0.00
45 f1_mar_1 shop1_1 -327.65 250 0 . 900 155 -50785.75
46 f1_apr_1 shop1_1 -300.00 250 0 . 900 250 -75000.00
47 f1_may_1 shop1_1 -285.00 250 0 . 900 0 0.00
48 f2_mar_1 shop1_1 -297.40 250 0 . 900 250 -74350.00
49 f2_apr_1 shop1_1 -290.00 250 0 . 900 245 -71050.00
50 f2_may_1 shop1_1 -292.00 250 0 . 900 0 0.00
51 f1_mar_2 shop1_2 -559.76 99999999 0 . 900 0 0.00
52 f1_apr_2 shop1_2 -524.28 99999999 0 . 900 0 0.00
53 f1_may_2 shop1_2 -475.02 99999999 0 . 900 25 -11875.50
54 f2_mar_2 shop1_2 -567.83 500 0 . 900 500 -283915.00
55 f2_apr_2 shop1_2 -542.19 500 0 . 900 375 -203321.25
56 f2_may_2 shop1_2 -461.56 500 0 . 900 0 0.00
57 f1_mar_1 shop2_1 -362.74 250 0 . 900 250 -90685.00
58 f1_apr_1 shop2_1 -300.00 250 0 . 900 250 -75000.00
59 f1_may_1 shop2_1 -245.00 250 0 . 900 0 0.00
60 f2_mar_1 shop2_1 -272.70 250 0 . 900 0 0.00
61 f2_apr_1 shop2_1 -312.00 250 0 . 900 250 -78000.00
62 f2_may_1 shop2_1 -299.00 250 0 . 900 150 -44850.00
63 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450 455 -283869.95
64 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450 535 -294078.80
65 f1_may_2 shop2_2 -460.00 99999999 0 . 1450 0 0.00
66 f2_mar_2 shop2_2 -542.83 500 0 . 1450 120 -65139.60
67 f2_apr_2 shop2_2 -559.19 500 0 . 1450 320 -178940.80
68 f2_may_2 shop2_2 -489.06 500 0 . 1450 20 -9781.20

===========
-1281110.35

SAS OnlineDoc: Version 8

346 � Chapter 4. The NETFLOW Procedure

OBS _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ DIAGONAL FACTORY KEY_ID MTH_MADE

1 . 65 1 KEY_ARC BASIC . .
2 . 66 10 KEY_ARC BASIC . .
3 . 67 11 KEY_ARC BASIC . .
4 . 68 20 KEY_ARC BASIC . .
5 -0.650 4 1 UPPERBD NONBASIC 19 1 production April
6 63.650 5 2 LOWERBD NONBASIC 19 1 storage March
7 43.000 6 4 LOWERBD NONBASIC 19 1 backorder May
8 22.000 7 6 LOWERBD NONBASIC 19 . f2_to_1 April
9 -14.350 36 11 UPPERBD NONBASIC 25 1 production April

10 94.210 37 12 LOWERBD NONBASIC 25 1 storage March
11 -16.660 38 14 UPPERBD NONBASIC 25 1 backorder May
12 30.510 39 16 LOWERBD NONBASIC 25 . f2_to_1 April
13 . 1 1 KEY_ARC BASIC 19 1 production March
14 -20.650 2 3 UPPERBD NONBASIC 19 1 backorder April
15 -29.900 3 5 UPPERBD NONBASIC 19 . f2_to_1 March
16 -45.160 33 11 UPPERBD NONBASIC 25 1 production March
17 -42.210 34 13 UPPERBD NONBASIC 25 1 backorder April
18 -61.060 35 15 UPPERBD NONBASIC 25 . f2_to_1 March
19 0.850 8 1 LOWERBD NONBASIC 19 1 production May
20 -3.000 9 3 UPPERBD NONBASIC 19 1 storage April
21 29.000 10 7 LOWERBD NONBASIC 19 . f2_to_1 May
22 2.110 40 11 LOWERBD NONBASIC 25 1 production May
23 75.660 41 13 LOWERBD NONBASIC 25 1 storage April
24 40.040 42 17 LOWERBD NONBASIC 25 . f2_to_1 May
25 . 14 3 KEY_ARC BASIC 19 . f1_to_2 April
26 -27.850 15 10 UPPERBD NONBASIC 19 2 production April
27 15.750 16 5 LOWERBD NONBASIC 19 2 storage March
28 45.000 17 7 LOWERBD NONBASIC 19 2 backorder May
29 13.490 46 13 LOWERBD NONBASIC 25 . f1_to_2 April
30 -1.660 47 20 UPPERBD NONBASIC 25 2 production April
31 11.640 48 15 LOWERBD NONBASIC 25 2 storage March
32 -16.130 49 17 UPPERBD NONBASIC 25 2 backorder May
33 50.900 11 2 LOWERBD NONBASIC 19 . f1_to_2 March
34 . 12 10 KEY_ARC BASIC 19 2 production March
35 19.250 13 6 LOWERBD NONBASIC 19 2 backorder April
36 104.060 43 12 LOWERBD NONBASIC 25 . f1_to_2 March
37 . 44 20 KEY_ARC BASIC 25 2 production March
38 47.360 45 16 LOWERBD NONBASIC 25 2 backorder April
39 . 18 4 KEY_ARC BASIC 19 . f1_to_2 May
40 23.550 19 10 LOWERBD NONBASIC 19 2 production May
41 . 20 6 KEY_ARC BASIC 19 2 storage April
42 28.960 50 14 LOWERBD NONBASIC 25 . f1_to_2 May
43 73.170 51 20 LOWERBD NONBASIC 25 2 production May
44 108.130 52 16 LOWERBD NONBASIC 25 2 storage April
45 . 21 2 KEY_ARC BASIC 19 1 sales March
46 -21.000 22 3 UPPERBD NONBASIC 19 1 sales April
47 9.000 23 4 LOWERBD NONBASIC 19 1 sales May
48 -9.650 24 5 UPPERBD NONBASIC 19 2 sales March
49 . 25 6 KEY_ARC BASIC 19 2 sales April
50 18.000 26 7 LOWERBD NONBASIC 19 2 sales May
51 47.130 53 12 LOWERBD NONBASIC 25 1 sales March
52 8.400 54 13 LOWERBD NONBASIC 25 1 sales April
53 . 55 14 KEY_ARC BASIC 25 1 sales May
54 -42.000 56 15 UPPERBD NONBASIC 25 2 sales March
55 . 57 16 KEY_ARC BASIC 25 2 sales April
56 10.500 58 17 LOWERBD NONBASIC 25 2 sales May
57 -46.090 27 2 UPPERBD NONBASIC 19 1 sales March
58 -32.000 28 3 UPPERBD NONBASIC 19 1 sales April
59 38.000 29 4 LOWERBD NONBASIC 19 1 sales May
60 4.050 30 5 LOWERBD NONBASIC 19 2 sales March
61 -33.000 31 6 UPPERBD NONBASIC 19 2 sales April
62 . 32 7 KEY_ARC BASIC 19 2 sales May
63 . 59 12 KEY_ARC BASIC 25 1 sales March
64 . 60 13 KEY_ARC BASIC 25 1 sales April
65 32.020 61 14 LOWERBD NONBASIC 25 1 sales May
66 . 62 15 KEY_ARC BASIC 25 2 sales March
67 . 63 16 KEY_ARC BASIC 25 2 sales April
68 . 64 17 KEY_ARC BASIC 25 2 sales May

SAS OnlineDoc: Version 8

Example 4.5. Using an Unconstrained Solution Warm Start � 347

Output 4.4.2. NODEOUT=NODE2

_
s _ _ _

_ u _ N _ _ S A _
n p D N P T C R F _
o d U U R R E C L F

O d e A M E A S I O B
b e m L B D V S D W Q
s _ _ _ _ _ _ _ _ _ _

1 _ROOT_ 238 0.00 22 0 8 0 3 166 -69
2 _EXCESS_ -200 -100000198.75 21 1 11 13 65 5 65
3 f1_apr_1 . -100000278.00 3 6 7 1 -14 30 4
4 f1_apr_2 . -100000387.60 13 19 17 1 -60 535 36
5 f1_mar_1 . -100000326.65 2 8 1 15 -21 155 1
6 f1_mar_2 . -100000461.81 12 19 13 1 -59 455 33
7 f1_may_1 . -100000293.00 4 7 2 1 -18 100 8
8 f1_may_2 . -100000329.94 14 18 12 1 -55 25 40
9 f2_apr_1 . -100000289.00 6 8 3 5 -25 245 14

10 f2_apr_2 . -100000397.11 16 19 18 3 -63 320 46
11 f2_mar_1 . -100000286.75 5 10 22 1 12 255 11
12 f2_mar_2 . -100000380.75 15 20 19 8 44 610 43
13 f2_may_1 . -100000309.00 7 6 9 3 20 15 18
14 f2_may_2 . -100000326.98 17 19 10 1 -64 20 50
15 fact1_1 1000 -100000198.75 1 2 21 14 -1 295 -1
16 fact1_2 1000 -100000198.75 11 21 20 1 -67 10 -33
17 fact2_1 850 -100000198.75 10 21 5 2 -66 45 -33
18 fact2_2 1500 -100000198.75 20 21 15 9 -68 140 -65
19 shop1_1 -900 -99999999.00 8 22 6 21 0 0 21
20 shop1_2 -900 -99999854.92 18 16 14 2 57 375 53
21 shop2_1 -900 -100000010.00 9 7 4 1 32 150 27
22 shop2_2 -1450 -99999837.92 19 15 16 7 62 120 59

Example 4.5. Using an Unconstrained Solution Warm Start

This example examines the effect of changing some of the arc costs. The back order
penalty costs are increased by twenty percent. The sales profit of 25-inch TVs sent to
the shops in May is increased by thirty units. The backorder penalty costs of 25-inch
TVs manufactured in May for April consumption is decreased by thirty units. The
production cost of 19- and 25-inch TVs made in May are decreased by five units and
twenty units, respectively. How does the optimal solution of the network after these
arc cost alterations compare with the optimum of the original network? If you want
to use the warm start facilities of PROC NETFLOW to solve this undefined problem,
specify the WARM option. Notice that the FUTURE1 option was specified in the last
PROC NETFLOW run.

These SAS statements produce the new NODEOUT= and ARCOUT= data sets.

title ’Minimum Cost Flow problem- Unconstrained Warm Start’;
title2 ’Production Planning/Inventory/Distribution’;
data arc2;

set arc1;
oldcost=_cost_;
oldfc=_fcost_;
oldflow=_flow_;
if key_id=’backorder’

then _cost_=_cost_*1.2;

SAS OnlineDoc: Version 8

348 � Chapter 4. The NETFLOW Procedure

else if _tail_=’f2_may_2’ then _cost_=_cost_-30;
if key_id=’production’ & mth_made=’May’ then

if diagonal=19 then _cost_=_cost_-5;
else _cost_=_cost_-20;

proc netflow
warm future1
nodedata=node2
arcdata=arc2
nodeout=node3
arcout=arc3;

proc print data=arc3 (drop = _status_ _rcost_);
var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_

cost _flow_ _fcost_ oldcost oldflow oldfc
diagonal factory key_id mth_made _anumb_ _tnumb_;
/* to get this variable order */

sum oldfc _fcost_;
proc print data=node3;
run;

The following notes appear on the SAS log:

NOTE: Number of nodes= 21 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 5 .
NOTE: Total supply= 4350 , total demand= 4350 .
NOTE: Number of iterations performed (neglecting any

constraints)= 8 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1285086.45 .
NOTE: The data set WORK.ARC3 has 64 observations and

21 variables.
NOTE: The data set WORK.NODE3 has 20 observations and

10 variables.

The solution is displayed in Output 4.5.1.

SAS OnlineDoc: Version 8

Example 4.5. Using an Unconstrained Solution Warm Start � 349

Output 4.5.1. ARCOUT=ARC3

Minimum Cost Flow problem- Unconstrained Warm Start
Production Planning/Inventory/Distribution

OBS _TAIL_ _HEAD_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_ _NAME_ _COST_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 99999999 0 1000 200 0.00 5 0.00
2 fact2_1 _EXCESS_ 99999999 0 850 200 0.00 45 0.00
3 fact1_2 _EXCESS_ 99999999 0 1000 200 0.00 0 0.00
4 fact2_2 _EXCESS_ 99999999 0 1500 200 0.00 150 0.00
5 fact1_1 f1_apr_1 600 50 1000 . prod f1 19 apl 78.60 540 42444.00
6 f1_mar_1 f1_apr_1 50 0 . . 15.00 0 0.00
7 f1_may_1 f1_apr_1 20 0 . . back f1 19 may 33.60 0 0.00
8 f2_apr_1 f1_apr_1 40 0 . . 11.00 0 0.00
9 fact1_2 f1_apr_2 550 50 1000 . prod f1 25 apl 174.50 250 43625.00

10 f1_mar_2 f1_apr_2 40 0 . . 20.00 0 0.00
11 f1_may_2 f1_apr_2 15 0 . . back f1 25 may 49.20 15 738.00
12 f2_apr_2 f1_apr_2 25 0 . . 21.00 0 0.00
13 fact1_1 f1_mar_1 500 50 1000 . prod f1 19 mar 127.90 340 43486.00
14 f1_apr_1 f1_mar_1 20 0 . . back f1 19 apl 33.60 20 672.00
15 f2_mar_1 f1_mar_1 40 0 . . 10.00 40 400.00
16 fact1_2 f1_mar_2 400 40 1000 . prod f1 25 mar 217.90 400 87160.00
17 f1_apr_2 f1_mar_2 30 0 . . back f1 25 apl 38.40 30 1152.00
18 f2_mar_2 f1_mar_2 25 0 . . 20.00 25 500.00
19 fact1_1 f1_may_1 400 50 1000 . 90.10 115 10361.50
20 f1_apr_1 f1_may_1 50 0 . . 12.00 0 0.00
21 f2_may_1 f1_may_1 40 0 . . 13.00 0 0.00
22 fact1_2 f1_may_2 350 40 1000 . 113.30 350 39655.00
23 f1_apr_2 f1_may_2 40 0 . . 18.00 0 0.00
24 f2_may_2 f1_may_2 25 0 . . 13.00 0 0.00
25 f1_apr_1 f2_apr_1 99999999 0 . . 11.00 20 220.00
26 fact2_1 f2_apr_1 480 35 850 . prod f2 19 apl 62.40 480 29952.00
27 f2_mar_1 f2_apr_1 30 0 . . 18.00 0 0.00
28 f2_may_1 f2_apr_1 15 0 . . back f2 19 may 30.00 0 0.00
29 f1_apr_2 f2_apr_2 99999999 0 . . 23.00 0 0.00
30 fact2_2 f2_apr_2 680 35 1500 . prod f2 25 apl 196.70 680 133756.00
31 f2_mar_2 f2_apr_2 50 0 . . 28.00 0 0.00
32 f2_may_2 f2_apr_2 15 0 . . back f2 25 may 64.80 0 0.00
33 f1_mar_1 f2_mar_1 99999999 0 . . 11.00 0 0.00
34 fact2_1 f2_mar_1 450 35 850 . prod f2 19 mar 88.00 290 25520.00
35 f2_apr_1 f2_mar_1 15 0 . . back f2 19 apl 20.40 0 0.00
36 f1_mar_2 f2_mar_2 99999999 0 . . 23.00 0 0.00
37 fact2_2 f2_mar_2 650 35 1500 . prod f2 25 mar 182.00 635 115570.00
38 f2_apr_2 f2_mar_2 15 0 . . back f2 25 apl 37.20 0 0.00
39 f1_may_1 f2_may_1 99999999 0 . . 16.00 115 1840.00
40 fact2_1 f2_may_1 250 35 850 . 128.80 35 4508.00
41 f2_apr_1 f2_may_1 30 0 . . 20.00 0 0.00
42 f1_may_2 f2_may_2 99999999 0 . . 26.00 335 8710.00
43 fact2_2 f2_may_2 550 35 1500 . 181.40 35 6349.00
44 f2_apr_2 f2_may_2 50 0 . . 38.00 0 0.00
45 f1_mar_1 shop1_1 250 0 . 900 -327.65 150 -49147.50
46 f1_apr_1 shop1_1 250 0 . 900 -300.00 250 -75000.00
47 f1_may_1 shop1_1 250 0 . 900 -285.00 0 0.00
48 f2_mar_1 shop1_1 250 0 . 900 -297.40 250 -74350.00
49 f2_apr_1 shop1_1 250 0 . 900 -290.00 250 -72500.00
50 f2_may_1 shop1_1 250 0 . 900 -292.00 0 0.00
51 f1_mar_2 shop1_2 99999999 0 . 900 -559.76 0 0.00
52 f1_apr_2 shop1_2 99999999 0 . 900 -524.28 0 0.00
53 f1_may_2 shop1_2 99999999 0 . 900 -475.02 0 0.00
54 f2_mar_2 shop1_2 500 0 . 900 -567.83 500 -283915.00
55 f2_apr_2 shop1_2 500 0 . 900 -542.19 400 -216876.00
56 f2_may_2 shop1_2 500 0 . 900 -491.56 0 0.00
57 f1_mar_1 shop2_1 250 0 . 900 -362.74 250 -90685.00
58 f1_apr_1 shop2_1 250 0 . 900 -300.00 250 -75000.00
59 f1_may_1 shop2_1 250 0 . 900 -245.00 0 0.00
60 f2_mar_1 shop2_1 250 0 . 900 -272.70 0 0.00
61 f2_apr_1 shop2_1 250 0 . 900 -312.00 250 -78000.00
62 f2_may_1 shop2_1 250 0 . 900 -299.00 150 -44850.00
63 f1_mar_2 shop2_2 99999999 0 . 1450 -623.89 455 -283869.95
64 f1_apr_2 shop2_2 99999999 0 . 1450 -549.68 235 -129174.80
65 f1_may_2 shop2_2 99999999 0 . 1450 -460.00 0 0.00
66 f2_mar_2 shop2_2 500 0 . 1450 -542.83 110 -59711.30
67 f2_apr_2 shop2_2 500 0 . 1450 -559.19 280 -156573.20
68 f2_may_2 shop2_2 500 0 . 1450 -519.06 370 -192052.20

===========
-1285086.45

SAS OnlineDoc: Version 8

350 � Chapter 4. The NETFLOW Procedure

OBS OLDCOST OLDFLOW OLDFC DIAGONAL FACTORY KEY_ID MTH_MADE _ANUMB_ _TNUMB_

1 0.00 5 0.00 . . 65 1
2 0.00 45 0.00 . . 66 10
3 0.00 10 0.00 . . 67 11
4 0.00 140 0.00 . . 68 20
5 78.60 600 47160.00 19 1 production April 4 1
6 15.00 0 0.00 19 1 storage March 5 2
7 28.00 0 0.00 19 1 backorder May 6 4
8 11.00 0 0.00 19 . f2_to_1 April 7 6
9 174.50 550 95975.00 25 1 production April 36 11

10 20.00 0 0.00 25 1 storage March 37 12
11 41.00 15 615.00 25 1 backorder May 38 14
12 21.00 0 0.00 25 . f2_to_1 April 39 16
13 127.90 345 44125.50 19 1 production March 1 1
14 28.00 20 560.00 19 1 backorder April 2 3
15 10.00 40 400.00 19 . f2_to_1 March 3 5
16 217.90 400 87160.00 25 1 production March 33 11
17 32.00 30 960.00 25 1 backorder April 34 13
18 20.00 25 500.00 25 . f2_to_1 March 35 15
19 95.10 50 4755.00 19 1 production May 8 1
20 12.00 50 600.00 19 1 storage April 9 3
21 13.00 0 0.00 19 . f2_to_1 May 10 7
22 133.30 40 5332.00 25 1 production May 40 11
23 18.00 0 0.00 25 1 storage April 41 13
24 43.00 0 0.00 25 . f2_to_1 May 42 17
25 11.00 30 330.00 19 . f1_to_2 April 14 3
26 62.40 480 29952.00 19 2 production April 15 10
27 18.00 0 0.00 19 2 storage March 16 5
28 25.00 0 0.00 19 2 backorder May 17 7
29 23.00 0 0.00 25 . f1_to_2 April 46 13
30 196.70 680 133756.00 25 2 production April 47 20
31 28.00 0 0.00 25 2 storage March 48 15
32 54.00 15 810.00 25 2 backorder May 49 17
33 11.00 0 0.00 19 . f1_to_2 March 11 2
34 88.00 290 25520.00 19 2 production March 12 10
35 17.00 0 0.00 19 2 backorder April 13 6
36 23.00 0 0.00 25 . f1_to_2 March 43 12
37 182.00 645 117390.00 25 2 production March 44 20
38 31.00 0 0.00 25 2 backorder April 45 16
39 16.00 100 1600.00 19 . f1_to_2 May 18 4
40 133.80 35 4683.00 19 2 production May 19 10
41 20.00 15 300.00 19 2 storage April 20 6
42 26.00 0 0.00 25 . f1_to_2 May 50 14
43 201.40 35 7049.00 25 2 production May 51 20
44 38.00 0 0.00 25 2 storage April 52 16
45 -327.65 155 -50785.75 19 1 sales March 21 2
46 -300.00 250 -75000.00 19 1 sales April 22 3
47 -285.00 0 0.00 19 1 sales May 23 4
48 -297.40 250 -74350.00 19 2 sales March 24 5
49 -290.00 245 -71050.00 19 2 sales April 25 6
50 -292.00 0 0.00 19 2 sales May 26 7
51 -559.76 0 0.00 25 1 sales March 53 12
52 -524.28 0 0.00 25 1 sales April 54 13
53 -475.02 25 -11875.50 25 1 sales May 55 14
54 -567.83 500 -283915.00 25 2 sales March 56 15
55 -542.19 375 -203321.25 25 2 sales April 57 16
56 -461.56 0 0.00 25 2 sales May 58 17
57 -362.74 250 -90685.00 19 1 sales March 27 2
58 -300.00 250 -75000.00 19 1 sales April 28 3
59 -245.00 0 0.00 19 1 sales May 29 4
60 -272.70 0 0.00 19 2 sales March 30 5
61 -312.00 250 -78000.00 19 2 sales April 31 6
62 -299.00 150 -44850.00 19 2 sales May 32 7
63 -623.89 455 -283869.95 25 1 sales March 59 12
64 -549.68 535 -294078.80 25 1 sales April 60 13
65 -460.00 0 0.00 25 1 sales May 61 14
66 -542.83 120 -65139.60 25 2 sales March 62 15
67 -559.19 320 -178940.80 25 2 sales April 63 16
68 -489.06 20 -9781.20 25 2 sales May 64 17

===========
-1281110.35

The associated NODEOUT data set is in Output 4.5.2

SAS OnlineDoc: Version 8

Example 4.6. Adding Side Constraints, Using a Warm Start � 351

Output 4.5.2. NODEOUT=NODE3

_
s _ _ _

_ u _ N _ _ S A _
n p D N P T C R F _
o d U U R R E C L F

O d e A M E A S I O B
b e m L B D V S D W Q
s _ _ _ _ _ _ _ _ _ _

1 _ROOT_ 238 0.00 22 0 8 0 3 166 -69
2 _EXCESS_ -200 -100000198.75 21 1 20 13 65 5 65
3 f1_apr_1 . -100000277.35 3 1 6 2 4 490 4
4 f1_apr_2 . -100000387.60 13 19 11 2 -60 235 36
5 f1_mar_1 . -100000326.65 2 8 1 20 -21 150 1
6 f1_mar_2 . -100000461.81 12 19 13 1 -59 455 33
7 f1_may_1 . -100000288.85 4 1 7 3 8 65 8
8 f1_may_2 . -100000330.98 14 17 10 1 -50 335 40
9 f2_apr_1 . -100000288.35 6 3 4 1 14 20 14

10 f2_apr_2 . -100000397.11 16 19 18 2 -63 280 46
11 f2_mar_1 . -100000286.75 5 10 22 1 12 255 11
12 f2_mar_2 . -100000380.75 15 20 19 9 44 600 43
13 f2_may_1 . -100000304.85 7 4 9 2 18 115 18
14 f2_may_2 . -100000356.98 17 19 14 2 -64 370 50
15 fact1_1 1000 -100000198.75 1 2 3 19 -1 290 -1
16 fact1_2 1000 -100000213.10 11 13 17 1 -36 200 -33
17 fact2_1 850 -100000198.75 10 21 5 2 -66 45 -33
18 fact2_2 1500 -100000198.75 20 21 15 10 -68 150 -65
19 shop1_1 -900 -99999999.00 8 22 2 21 0 0 21
20 shop1_2 -900 -99999854.92 18 16 12 1 57 400 53
21 shop2_1 -900 -100000005.85 9 7 21 1 32 150 27
22 shop2_2 -1450 -99999837.92 19 15 16 8 62 110 59

Example 4.6. Adding Side Constraints, Using a Warm Start

The manufacturer of Gizmo chips, which are parts needed to make televisions, can
supply only 2600 chips to factory 1 and 3750 chips to factory 2 in time for production
in each of the months March and April. However, Gizmo chips will not be in short
supply in May. Three chips are required to make each 19-inch TV while the 25-
inch TVs require four chips each. To limit the production of televisions produced at
factory 1 in March so that the TVs have the correct number of chips, a side constraint
called FACT1 MAR GIZMO is used. The form of this constraint is

3 * prod f1 19 mar + 4 * prod f1 25 mar <= 2600

“prod f1 19 mar” is the name of the arc directed from the node fact1–1 toward node
f1–mar–1 and, in the previous constraint, designates the flow assigned to this arc. The
ARCDATA= and ARCOUT= data sets have arc names in a variable called–name–.

The other side constraints (shown below) are called FACT2 MAR GIZMO , FACT1
APL GIZMO and FACT2 APL GIZMO.

3 * prod f2 19 mar + 4 * prod f2 25 mar <= 3750
3 * prod f1 19 apl + 4 * prod f1 25 apl <= 2600
3 * prod f2 19 apl + 4 * prod f2 25 apl <= 3750

SAS OnlineDoc: Version 8

352 � Chapter 4. The NETFLOW Procedure

To maintain customer goodwill, the total number of backorders is not to exceed 50
sets. The side constraint TOTAL BACKORDER that models this restriction is:

back f1 19 apl + back f1 25 apl +
back f2 19 apl + back f2 25 apl +
back f1 19 may + back f1 25 may +
back f2 19 may + back f2 25 may <= 50

The sparse CONDATA= data set format is used. All side constraints are less than
or equal type. Because this is the default type value for the DEFCONTYPE= op-
tion, type information is not necessary in the following CONDATA=CON3. Also,
DEFCONTYPE=’<=’ does not have to be specified in the PROC NETFLOW state-
ment that follows. Notice that the–column– variable value CHIP/BO LIMIT indi-
cates that an observation of the CON3 data set contains rhs information. Therefore,
specify RHSOBS=’CHIP/BO LIMIT’ .

title ’Adding Side Constraints and Using a Warm Start’;
title2 ’Production Planning/Inventory/Distribution’;
data con3;

input _column_ &$14. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
CHIP/BO LIMIT FACT1 MAR GIZMO 2600
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
CHIP/BO LIMIT FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
CHIP/BO LIMIT FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
CHIP/BO LIMIT FACT2 APL GIZMO 3750
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
CHIP/BO LIMIT TOTAL BACKORDER 50
;

The four pairs of data sets that follow can be used as ARCDATA= and NODEDATA=
data sets in the following PROC NETFLOW run. The set used depends on which
cost information the arcs are to have and whether a warm start is to be used.

ARCDATA=arc0 NODEDATA=node0
ARCDATA=arc1 NODEDATA=node2
ARCDATA=arc2 NODEDATA=node2
ARCDATA=arc3 NODEDATA=node3

SAS OnlineDoc: Version 8

Example 4.6. Adding Side Constraints, Using a Warm Start � 353

arc0, node0, arc1, andnode2 were created in Example 4.4. The first two data sets
are the original input data sets.arc1 andnode2 were the ARCOUT= and NODE-
OUT= data sets of a PROC NETFLOW run with FUTURE1 specified. Now, if you
usearc1 andnode2 as the ARCDATA= data set and NODEDATA= data set in a
PROC NETFLOW run, you can specify WARM, as these data sets contain additional
information describing a warm start.

In Example 4.5,arc2 was created by modifyingarc1 to reflect different arc costs.
arc2 andnode2 can also be used as the ARCDATA= and NODEDATA= data sets in
a PROC NETFLOW run. Again, specify WARM, as these data sets contain additional
information describing a warm start, This start, however, contains the optimal basis
using the original costs.

If you are going to continue optimization using the changed arc costs, it is probably
best to usearc3 andnode3 as the ARCDATA= and NODEDATA= data sets. These
data sets, created in Example 4.6 by PROC NETFLOW when the FUTURE1 option
was specified, contain an optimal basis that can be used as a warm start.

PROC NETFLOW is used to find the changed cost network solution that obeys the
chip limit and backorder side constraints. The FUTURE2 option is specified in case
further processing is required. An explicit ID list has also been specified so that the
variablesoldcost, oldfc andoldflow do not appear in the subsequent output data sets.

proc netflow
nodedata=node3 arcdata=arc3 warm
condata=con3 sparsecondata rhsobs=’CHIP/BO LIMIT’
future2 dualout=dual4 conout=con4;

id diagonal factory key_id mth_made;
proc print data=con4;

sum _fcost_;
proc print data=dual4;

The following messages appear on the SAS log:

NOTE: The following 3 variables in ARCDATA do not belong to
any SAS variable list. These will be ignored.
OLDCOST
OLDFC
OLDFLOW

NOTE: The following 1 variables in NODEDATA do not belong to
any SAS variable list. These will be ignored.
DUAL

NOTE: Number of nodes= 21 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 5 .
NOTE: The greater of total supply and total demand= 4350 .
NOTE: Number of iterations performed (neglecting any

constraints)= 1 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1285086.45 .
NOTE: Number of <= side constraints= 5 .

SAS OnlineDoc: Version 8

354 � Chapter 4. The NETFLOW Procedure

NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of arc and nonarc variable side constraint

coefficients= 16 .
NOTE: Number of iterations, optimizing with constraints= 10 .
NOTE: Of these, 0 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= -1282708.625 .
NOTE: The data set WORK.CON4 has 68 observations and 18

variables.
NOTE: The data set WORK.DUAL4 has 27 observations and 14

variables.

SAS OnlineDoc: Version 8

Example 4.6. Adding Side Constraints, Using a Warm Start � 355

Output 4.6.1. CONOUT=CON4

Adding Side Constraints and Using a Warm Start
Production Planning/Inventory/Distribution

OBS _TAIL_ _HEAD_ _COST_ _CAPAC_ _LO_ _NAME_ _SUPPLY_ _DEMAND_ _FLOW_ _FCOST_

1 fact1_1 _EXCESS_ 0.00 99999999 0 1000 200 5.000 0.00
2 fact2_1 _EXCESS_ 0.00 99999999 0 850 200 45.000 0.00
3 fact1_2 _EXCESS_ 0.00 99999999 0 1000 200 0.000 0.00
4 fact2_2 _EXCESS_ 0.00 99999999 0 1500 200 150.000 0.00
5 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl 1000 . 533.333 41920.00
6 f1_mar_1 f1_apr_1 15.00 50 0 . . 0.000 0.00
7 f1_may_1 f1_apr_1 33.60 20 0 back f1 19 may . . 0.000 0.00
8 f2_apr_1 f1_apr_1 11.00 40 0 . . 0.000 0.00
9 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl 1000 . 250.000 43625.00

10 f1_mar_2 f1_apr_2 20.00 40 0 . . 0.000 0.00
11 f1_may_2 f1_apr_2 49.20 15 0 back f1 25 may . . 0.000 0.00
12 f2_apr_2 f1_apr_2 21.00 25 0 . . 0.000 0.00
13 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar 1000 . 333.333 42633.33
14 f1_apr_1 f1_mar_1 33.60 20 0 back f1 19 apl . . 20.000 672.00
15 f2_mar_1 f1_mar_1 10.00 40 0 . . 40.000 400.00
16 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar 1000 . 400.000 87160.00
17 f1_apr_2 f1_mar_2 38.40 30 0 back f1 25 apl . . 30.000 1152.00
18 f2_mar_2 f1_mar_2 20.00 25 0 . . 25.000 500.00
19 fact1_1 f1_may_1 90.10 400 50 1000 . 128.333 11562.83
20 f1_apr_1 f1_may_1 12.00 50 0 . . 0.000 0.00
21 f2_may_1 f1_may_1 13.00 40 0 . . 0.000 0.00
22 fact1_2 f1_may_2 113.30 350 40 1000 . 350.000 39655.00
23 f1_apr_2 f1_may_2 18.00 40 0 . . 0.000 0.00
24 f2_may_2 f1_may_2 13.00 25 0 . . 0.000 0.00
25 f1_apr_1 f2_apr_1 11.00 99999999 0 . . 13.333 146.67
26 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl 850 . 480.000 29952.00
27 f2_mar_1 f2_apr_1 18.00 30 0 . . 0.000 0.00
28 f2_may_1 f2_apr_1 30.00 15 0 back f2 19 may . . 0.000 0.00
29 f1_apr_2 f2_apr_2 23.00 99999999 0 . . 0.000 0.00
30 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl 1500 . 577.500 113594.25
31 f2_mar_2 f2_apr_2 28.00 50 0 . . 0.000 0.00
32 f2_may_2 f2_apr_2 64.80 15 0 back f2 25 may . . 0.000 0.00
33 f1_mar_1 f2_mar_1 11.00 99999999 0 . . 0.000 0.00
34 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar 850 . 290.000 25520.00
35 f2_apr_1 f2_mar_1 20.40 15 0 back f2 19 apl . . 0.000 0.00
36 f1_mar_2 f2_mar_2 23.00 99999999 0 . . 0.000 0.00
37 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar 1500 . 650.000 118300.00
38 f2_apr_2 f2_mar_2 37.20 15 0 back f2 25 apl . . 0.000 0.00
39 f1_may_1 f2_may_1 16.00 99999999 0 . . 115.000 1840.00
40 fact2_1 f2_may_1 128.80 250 35 850 . 35.000 4508.00
41 f2_apr_1 f2_may_1 20.00 30 0 . . 0.000 0.00
42 f1_may_2 f2_may_2 26.00 99999999 0 . . 350.000 9100.00
43 fact2_2 f2_may_2 181.40 550 35 1500 . 122.500 22221.50
44 f2_apr_2 f2_may_2 38.00 50 0 . . 0.000 0.00
45 f1_mar_1 shop1_1 -327.65 250 0 . 900 143.333 -46963.17
46 f1_apr_1 shop1_1 -300.00 250 0 . 900 250.000 -75000.00
47 f1_may_1 shop1_1 -285.00 250 0 . 900 13.333 -3800.00
48 f2_mar_1 shop1_1 -297.40 250 0 . 900 250.000 -74350.00
49 f2_apr_1 shop1_1 -290.00 250 0 . 900 243.333 -70566.67
50 f2_may_1 shop1_1 -292.00 250 0 . 900 0.000 0.00
51 f1_mar_2 shop1_2 -559.76 99999999 0 . 900 0.000 0.00
52 f1_apr_2 shop1_2 -524.28 99999999 0 . 900 0.000 0.00
53 f1_may_2 shop1_2 -475.02 99999999 0 . 900 0.000 0.00
54 f2_mar_2 shop1_2 -567.83 500 0 . 900 500.000 -283915.00
55 f2_apr_2 shop1_2 -542.19 500 0 . 900 400.000 -216876.00
56 f2_may_2 shop1_2 -491.56 500 0 . 900 0.000 0.00
57 f1_mar_1 shop2_1 -362.74 250 0 . 900 250.000 -90685.00
58 f1_apr_1 shop2_1 -300.00 250 0 . 900 250.000 -75000.00
59 f1_may_1 shop2_1 -245.00 250 0 . 900 0.000 0.00
60 f2_mar_1 shop2_1 -272.70 250 0 . 900 0.000 0.00
61 f2_apr_1 shop2_1 -312.00 250 0 . 900 250.000 -78000.00
62 f2_may_1 shop2_1 -299.00 250 0 . 900 150.000 -44850.00
63 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450 455.000 -283869.95
64 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450 220.000 -120929.60
65 f1_may_2 shop2_2 -460.00 99999999 0 . 1450 0.000 0.00
66 f2_mar_2 shop2_2 -542.83 500 0 . 1450 125.000 -67853.75
67 f2_apr_2 shop2_2 -559.19 500 0 . 1450 177.500 -99256.23
68 f2_may_2 shop2_2 -519.06 500 0 . 1450 472.500 -245255.85

===========
-1282708.63

SAS OnlineDoc: Version 8

356 � Chapter 4. The NETFLOW Procedure

OBS _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ DIAGONAL FACTORY KEY_ID MTH_MADE

1 . 65 1 KEY_ARC BASIC . .
2 . 66 10 KEY_ARC BASIC . .
3 30.187 67 11 LOWERBD NONBASIC . .
4 . 68 20 KEY_ARC BASIC . .
5 . 4 1 KEY_ARC BASIC 19 1 production April
6 63.650 5 2 LOWERBD NONBASIC 19 1 storage March
7 47.020 6 4 LOWERBD NONBASIC 19 1 backorder May
8 22.000 7 6 LOWERBD NONBASIC 19 . f2_to_1 April
9 . 36 11 KEY_ARC BASIC 25 1 production April

10 94.210 37 12 LOWERBD NONBASIC 25 1 storage March
11 . 38 14 NONKEY ARC BASIC 25 1 backorder May
12 30.510 39 16 LOWERBD NONBASIC 25 . f2_to_1 April
13 . 1 1 KEY_ARC BASIC 19 1 production March
14 -7.630 2 3 UPPERBD NONBASIC 19 1 backorder April
15 -34.750 3 5 UPPERBD NONBASIC 19 . f2_to_1 March
16 -31.677 33 11 UPPERBD NONBASIC 25 1 production March
17 -28.390 34 13 UPPERBD NONBASIC 25 1 backorder April
18 -61.060 35 15 UPPERBD NONBASIC 25 . f2_to_1 March
19 . 8 1 KEY_ARC BASIC 19 1 production May
20 6.000 9 3 LOWERBD NONBASIC 19 1 storage April
21 29.000 10 7 LOWERBD NONBASIC 19 . f2_to_1 May
22 -11.913 40 11 UPPERBD NONBASIC 25 1 production May
23 74.620 41 13 LOWERBD NONBASIC 25 1 storage April
24 39.000 42 17 LOWERBD NONBASIC 25 . f2_to_1 May
25 . 14 3 KEY_ARC BASIC 19 . f1_to_2 April
26 -14.077 15 10 UPPERBD NONBASIC 19 2 production April
27 10.900 16 5 LOWERBD NONBASIC 19 2 storage March
28 48.420 17 7 LOWERBD NONBASIC 19 2 backorder May
29 13.490 46 13 LOWERBD NONBASIC 25 . f1_to_2 April
30 . 47 20 KEY_ARC BASIC 25 2 production April
31 11.640 48 15 LOWERBD NONBASIC 25 2 storage March
32 32.090 49 17 LOWERBD NONBASIC 25 2 backorder May
33 55.750 11 2 LOWERBD NONBASIC 19 . f1_to_2 March
34 . 12 10 KEY_ARC BASIC 19 2 production March
35 34.920 13 6 LOWERBD NONBASIC 19 2 backorder April
36 104.060 43 12 LOWERBD NONBASIC 25 . f1_to_2 March
37 -23.170 44 20 UPPERBD NONBASIC 25 2 production March
38 60.980 45 16 LOWERBD NONBASIC 25 2 backorder April
39 . 18 4 KEY_ARC BASIC 19 . f1_to_2 May
40 22.700 19 10 LOWERBD NONBASIC 19 2 production May
41 9.000 20 6 LOWERBD NONBASIC 19 2 storage April
42 . 50 14 KEY_ARC BASIC 25 . f1_to_2 May
43 . 51 20 NONKEY ARC BASIC 25 2 production May
44 78.130 52 16 LOWERBD NONBASIC 25 2 storage April
45 . 21 2 KEY_ARC BASIC 19 1 sales March
46 -21.000 22 3 UPPERBD NONBASIC 19 1 sales April
47 . 23 4 NONKEY ARC BASIC 19 1 sales May
48 -14.500 24 5 UPPERBD NONBASIC 19 2 sales March
49 . 25 6 NONKEY ARC BASIC 19 2 sales April
50 9.000 26 7 LOWERBD NONBASIC 19 2 sales May
51 47.130 53 12 LOWERBD NONBASIC 25 1 sales March
52 8.400 54 13 LOWERBD NONBASIC 25 1 sales April
53 1.040 55 14 LOWERBD NONBASIC 25 1 sales May
54 -42.000 56 15 UPPERBD NONBASIC 25 2 sales March
55 . 57 16 KEY_ARC BASIC 25 2 sales April
56 10.500 58 17 LOWERBD NONBASIC 25 2 sales May
57 -37.090 27 2 UPPERBD NONBASIC 19 1 sales March
58 -23.000 28 3 UPPERBD NONBASIC 19 1 sales April
59 38.000 29 4 LOWERBD NONBASIC 19 1 sales May
60 8.200 30 5 LOWERBD NONBASIC 19 2 sales March
61 -24.000 31 6 UPPERBD NONBASIC 19 2 sales April
62 . 32 7 KEY_ARC BASIC 19 2 sales May
63 . 59 12 KEY_ARC BASIC 25 1 sales March
64 . 60 13 KEY_ARC BASIC 25 1 sales April
65 33.060 61 14 LOWERBD NONBASIC 25 1 sales May
66 . 62 15 KEY_ARC BASIC 25 2 sales March
67 . 63 16 KEY_ARC BASIC 25 2 sales April
68 . 64 17 KEY_ARC BASIC 25 2 sales May

SAS OnlineDoc: Version 8

Example 4.7. Using a Constrained Solution Warm Start � 357

Output 4.6.2. DUALOUT=DUAL4

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_

1 _ROOT_ 238 0.00 22 0 8 5
2 _EXCESS_ -200 -100000193.90 21 1 20 13
3 f1_apr_1 . -100000278.00 3 1 6 2
4 f1_apr_2 . -100000405.92 13 19 11 2
5 f1_mar_1 . -100000326.65 2 8 1 20
6 f1_mar_2 . -100000480.13 12 19 13 1
7 f1_may_1 . -100000284.00 4 1 7 3
8 f1_may_2 . -100000349.30 14 17 15 1
9 f2_apr_1 . -100000289.00 6 3 4 1

10 f2_apr_2 . -100000415.43 16 20 18 9
11 f2_mar_1 . -100000281.90 5 10 3 1
12 f2_mar_2 . -100000399.07 15 19 10 1
13 f2_may_1 . -100000300.00 7 4 9 2
14 f2_may_2 . -100000375.30 17 19 14 2
15 fact1_1 1000 -100000193.90 1 2 21 19
16 fact1_2 1000 -100000224.09 11 13 17 1
17 fact2_1 850 -100000193.90 10 21 5 2
18 fact2_2 1500 -100000193.90 20 21 16 10
19 shop1_1 -900 -99999999.00 8 22 2 21
20 shop1_2 -900 -99999873.24 18 16 19 1
21 shop2_1 -900 -100000001.00 9 7 22 1
22 shop2_2 -1450 -99999856.24 19 16 12 7
23 . -1.83 2 8 . .
24 . -1.62 0 8 . .
25 . -6.21 3 17 . .
26 . 0.00 1 1 . 1
27 . -7.42 4 13 . .

Obs _ARCID_ _FLOW_ _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

1 3 166.000 -69 0 75
2 65 5.000 65 . .
3 4 483.333 4 . .
4 -60 220.000 36 . .
5 -21 143.333 1 . .
6 -59 455.000 33 . .
7 8 78.333 8 . .
8 -50 350.000 40 . .
9 14 13.333 14 . .

10 47 542.500 46 . .
11 12 255.000 11 . .
12 -62 125.000 43 . .
13 18 115.000 18 . .
14 -64 472.500 50 . .
15 -1 283.333 -1 . .
16 -36 200.000 -33 . .
17 -66 45.000 -33 . .
18 -68 150.000 -65 . .
19 0 0.000 21 . .
20 57 400.000 53 . .
21 32 150.000 27 . .
22 63 177.500 59 . .
23 25 243.333 . 2600 2600 LE FACT1 APL GIZMO
24 23 13.333 . 2600 2600 LE FACT1 MAR GIZMO
25 51 87.500 . 3750 3750 LE FACT2 APL GIZMO
26 . 280.000 . 3470 3750 LE FACT2 MAR GIZMO
27 38 0.000 . 50 50 LE TOTAL BACKORDER

Example 4.7. Using a Constrained Solution Warm Start

Suppose the 25-inch screen TVs produced at factory 1 in May can be sold at either
shop with an increased profit of 40 dollars each. What is the new optimal solution?
Because only arc costs have been changed, information about the present solution in
DUALOUT=dual4 and CONOUT=con4 can be used as a warm start in the following
PROC NETFLOW run. It is still necessary to specify CONDATA=con3 SPARSEC-
ONDATA RHSOBS=’CHIP/BO LIMIT’, since the CONDATA= data set is always
read.

SAS OnlineDoc: Version 8

358 � Chapter 4. The NETFLOW Procedure

title ’Using a Constrained Solution Warm Start’;
title2 ’Production Planning/Inventory/Distribution’;
data new_con4;

set con4;
oldcost=_cost_;
oldflow=_flow_;
oldfc=_fcost_;
if _tail_=’f1_may_2’

& (_head_=’shop1_2’ | _head_=’shop2_2’)
then _cost_=_cost_-40;

proc netflow
warm arcdata=new_con4 dualin=dual4
condata=con3 sparsecondata rhsobs=’CHIP/BO LIMIT’
dualout=dual5 conout=con5;

proc print data=con5 (drop = _status_ _rcost_);
var _tail_ _head_ _capac_ _lo_ _supply_ _demand_ _name_

cost _flow_ _fcost_ oldcost oldflow oldfc
diagonal factory key_id mth_made _anumb_ _tnumb_;

/* to get this variable order */
sum oldfc _fcost_;

proc print data=dual5;

The following messages appear on the SAS log:

NOTE: Number of nodes= 21 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 5 .
NOTE: The greater of total supply and total demand= 4350 .
NOTE: Number of <= side constraints= 5 .
NOTE: Number of == side constraints= 0 .
NOTE: Number of >= side constraints= 0 .
NOTE: Number of arc and nonarc variable side constraint

coefficients= 16 .
NOTE: Number of iterations, optimizing with constraints= 7 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= -1295661.8 .
NOTE: The data set WORK.CON5 has 64 observations and 21

variables.
NOTE: The data set WORK.DUAL5 has 25 observations and 14

variables.

SAS OnlineDoc: Version 8

Example 4.7. Using a Constrained Solution Warm Start � 359

Output 4.7.1. CONOUT=CON5

Using a Constrained Solution Warm Start 21
Production Planning/Inventory/Distribution 16:23 Friday, May 28, 1993

OBS _TAIL_ _HEAD_ _CAPAC_ _LO_ _SUPPLY_ _DEMAND_ _NAME_ _COST_ _FLOW_ _FCOST_

1 fact1_1 f1_apr_1 600 50 1000 . prod f1 19 apl 78.60 533.333 41920.00
2 f1_mar_1 f1_apr_1 50 0 . . 15.00 0.000 0.00
3 f1_may_1 f1_apr_1 20 0 . . back f1 19 may 33.60 0.000 0.00
4 f2_apr_1 f1_apr_1 40 0 . . 11.00 0.000 0.00
5 fact1_2 f1_apr_2 550 50 1000 . prod f1 25 apl 174.50 250.000 43625.00
6 f1_mar_2 f1_apr_2 40 0 . . 20.00 0.000 0.00
7 f1_may_2 f1_apr_2 15 0 . . back f1 25 may 49.20 0.000 0.00
8 f2_apr_2 f1_apr_2 25 0 . . 21.00 0.000 0.00
9 fact1_1 f1_mar_1 500 50 1000 . prod f1 19 mar 127.90 333.333 42633.33

10 f1_apr_1 f1_mar_1 20 0 . . back f1 19 apl 33.60 20.000 672.00
11 f2_mar_1 f1_mar_1 40 0 . . 10.00 40.000 400.00
12 fact1_2 f1_mar_2 400 40 1000 . prod f1 25 mar 217.90 400.000 87160.00
13 f1_apr_2 f1_mar_2 30 0 . . back f1 25 apl 38.40 30.000 1152.00
14 f2_mar_2 f1_mar_2 25 0 . . 20.00 25.000 500.00
15 fact1_1 f1_may_1 400 50 1000 . 90.10 128.333 11562.83
16 f1_apr_1 f1_may_1 50 0 . . 12.00 0.000 0.00
17 f2_may_1 f1_may_1 40 0 . . 13.00 0.000 0.00
18 fact1_2 f1_may_2 350 40 1000 . 113.30 350.000 39655.00
19 f1_apr_2 f1_may_2 40 0 . . 18.00 0.000 0.00
20 f2_may_2 f1_may_2 25 0 . . 13.00 0.000 0.00
21 f1_apr_1 f2_apr_1 99999999 0 . . 11.00 13.333 146.67
22 fact2_1 f2_apr_1 480 35 850 . prod f2 19 apl 62.40 480.000 29952.00
23 f2_mar_1 f2_apr_1 30 0 . . 18.00 0.000 0.00
24 f2_may_1 f2_apr_1 15 0 . . back f2 19 may 30.00 0.000 0.00
25 f1_apr_2 f2_apr_2 99999999 0 . . 23.00 0.000 0.00
26 fact2_2 f2_apr_2 680 35 1500 . prod f2 25 apl 196.70 550.000 108185.00
27 f2_mar_2 f2_apr_2 50 0 . . 28.00 0.000 0.00
28 f2_may_2 f2_apr_2 15 0 . . back f2 25 may 64.80 0.000 0.00
29 f1_mar_1 f2_mar_1 99999999 0 . . 11.00 0.000 0.00
30 fact2_1 f2_mar_1 450 35 850 . prod f2 19 mar 88.00 290.000 25520.00
31 f2_apr_1 f2_mar_1 15 0 . . back f2 19 apl 20.40 0.000 0.00
32 f1_mar_2 f2_mar_2 99999999 0 . . 23.00 0.000 0.00
33 fact2_2 f2_mar_2 650 35 1500 . prod f2 25 mar 182.00 650.000 118300.00
34 f2_apr_2 f2_mar_2 15 0 . . back f2 25 apl 37.20 0.000 0.00
35 f1_may_1 f2_may_1 99999999 0 . . 16.00 115.000 1840.00
36 fact2_1 f2_may_1 250 35 850 . 128.80 35.000 4508.00
37 f2_apr_1 f2_may_1 30 0 . . 20.00 0.000 0.00
38 f1_may_2 f2_may_2 99999999 0 . . 26.00 0.000 0.00
39 fact2_2 f2_may_2 550 35 1500 . 181.40 150.000 27210.00
40 f2_apr_2 f2_may_2 50 0 . . 38.00 0.000 0.00
41 f1_mar_1 shop1_1 250 0 . 900 -327.65 143.333 -46963.17
42 f1_apr_1 shop1_1 250 0 . 900 -300.00 250.000 -75000.00
43 f1_may_1 shop1_1 250 0 . 900 -285.00 13.333 -3800.00
44 f2_mar_1 shop1_1 250 0 . 900 -297.40 250.000 -74350.00
45 f2_apr_1 shop1_1 250 0 . 900 -290.00 243.333 -70566.67
46 f2_may_1 shop1_1 250 0 . 900 -292.00 0.000 0.00
47 f1_mar_2 shop1_2 99999999 0 . 900 -559.76 0.000 0.00
48 f1_apr_2 shop1_2 99999999 0 . 900 -524.28 0.000 0.00
49 f1_may_2 shop1_2 99999999 0 . 900 -515.02 350.000 -180257.00
50 f2_mar_2 shop1_2 500 0 . 900 -567.83 500.000 -283915.00
51 f2_apr_2 shop1_2 500 0 . 900 -542.19 50.000 -27109.50
52 f2_may_2 shop1_2 500 0 . 900 -491.56 0.000 0.00
53 f1_mar_1 shop2_1 250 0 . 900 -362.74 250.000 -90685.00
54 f1_apr_1 shop2_1 250 0 . 900 -300.00 250.000 -75000.00
55 f1_may_1 shop2_1 250 0 . 900 -245.00 0.000 0.00
56 f2_mar_1 shop2_1 250 0 . 900 -272.70 0.000 0.00
57 f2_apr_1 shop2_1 250 0 . 900 -312.00 250.000 -78000.00
58 f2_may_1 shop2_1 250 0 . 900 -299.00 150.000 -44850.00
59 f1_mar_2 shop2_2 99999999 0 . 1450 -623.89 455.000 -283869.95
60 f1_apr_2 shop2_2 99999999 0 . 1450 -549.68 220.000 -120929.60
61 f1_may_2 shop2_2 99999999 0 . 1450 -500.00 0.000 0.00
62 f2_mar_2 shop2_2 500 0 . 1450 -542.83 125.000 -67853.75
63 f2_apr_2 shop2_2 500 0 . 1450 -559.19 500.000 -279595.00
64 f2_may_2 shop2_2 500 0 . 1450 -519.06 150.000 -77859.00

===========
-1295661.80

SAS OnlineDoc: Version 8

360 � Chapter 4. The NETFLOW Procedure

OBS OLDCOST OLDFLOW OLDFC DIAGONAL FACTORY KEY_ID MTH_MADE _ANUMB_ _TNUMB_

1 78.60 533.333 41920.00 19 1 production April 4 1
2 15.00 0.000 0.00 19 1 storage March 5 2
3 33.60 0.000 0.00 19 1 backorder May 6 4
4 11.00 0.000 0.00 19 . f2_to_1 April 7 6
5 174.50 250.000 43625.00 25 1 production April 36 11
6 20.00 0.000 0.00 25 1 storage March 37 12
7 49.20 0.000 0.00 25 1 backorder May 38 14
8 21.00 0.000 0.00 25 . f2_to_1 April 39 16
9 127.90 333.333 42633.33 19 1 production March 1 1

10 33.60 20.000 672.00 19 1 backorder April 2 3
11 10.00 40.000 400.00 19 . f2_to_1 March 3 5
12 217.90 400.000 87160.00 25 1 production March 33 11
13 38.40 30.000 1152.00 25 1 backorder April 34 13
14 20.00 25.000 500.00 25 . f2_to_1 March 35 15
15 90.10 128.333 11562.83 19 1 production May 8 1
16 12.00 0.000 0.00 19 1 storage April 9 3
17 13.00 0.000 0.00 19 . f2_to_1 May 10 7
18 113.30 350.000 39655.00 25 1 production May 40 11
19 18.00 0.000 0.00 25 1 storage April 41 13
20 13.00 0.000 0.00 25 . f2_to_1 May 42 17
21 11.00 13.333 146.67 19 . f1_to_2 April 14 3
22 62.40 480.000 29952.00 19 2 production April 15 10
23 18.00 0.000 0.00 19 2 storage March 16 5
24 30.00 0.000 0.00 19 2 backorder May 17 7
25 23.00 0.000 0.00 25 . f1_to_2 April 46 13
26 196.70 577.500 113594.25 25 2 production April 47 20
27 28.00 0.000 0.00 25 2 storage March 48 15
28 64.80 0.000 0.00 25 2 backorder May 49 17
29 11.00 0.000 0.00 19 . f1_to_2 March 11 2
30 88.00 290.000 25520.00 19 2 production March 12 10
31 20.40 0.000 0.00 19 2 backorder April 13 6
32 23.00 0.000 0.00 25 . f1_to_2 March 43 12
33 182.00 650.000 118300.00 25 2 production March 44 20
34 37.20 0.000 0.00 25 2 backorder April 45 16
35 16.00 115.000 1840.00 19 . f1_to_2 May 18 4
36 128.80 35.000 4508.00 19 2 production May 19 10
37 20.00 0.000 0.00 19 2 storage April 20 6
38 26.00 350.000 9100.00 25 . f1_to_2 May 50 14
39 181.40 122.500 22221.50 25 2 production May 51 20
40 38.00 0.000 0.00 25 2 storage April 52 16
41 -327.65 143.333 -46963.17 19 1 sales March 21 2
42 -300.00 250.000 -75000.00 19 1 sales April 22 3
43 -285.00 13.333 -3800.00 19 1 sales May 23 4
44 -297.40 250.000 -74350.00 19 2 sales March 24 5
45 -290.00 243.333 -70566.67 19 2 sales April 25 6
46 -292.00 0.000 0.00 19 2 sales May 26 7
47 -559.76 0.000 0.00 25 1 sales March 53 12
48 -524.28 0.000 0.00 25 1 sales April 54 13
49 -475.02 0.000 0.00 25 1 sales May 55 14
50 -567.83 500.000 -283915.00 25 2 sales March 56 15
51 -542.19 400.000 -216876.00 25 2 sales April 57 16
52 -491.56 0.000 0.00 25 2 sales May 58 17
53 -362.74 250.000 -90685.00 19 1 sales March 27 2
54 -300.00 250.000 -75000.00 19 1 sales April 28 3
55 -245.00 0.000 0.00 19 1 sales May 29 4
56 -272.70 0.000 0.00 19 2 sales March 30 5
57 -312.00 250.000 -78000.00 19 2 sales April 31 6
58 -299.00 150.000 -44850.00 19 2 sales May 32 7
59 -623.89 455.000 -283869.95 25 1 sales March 59 12
60 -549.68 220.000 -120929.60 25 1 sales April 60 13
61 -460.00 0.000 0.00 25 1 sales May 61 14
62 -542.83 125.000 -67853.75 25 2 sales March 62 15
63 -559.19 177.500 -99256.23 25 2 sales April 63 16
64 -519.06 472.500 -245255.85 25 2 sales May 64 17

===========
-1282708.63

SAS OnlineDoc: Version 8

Example 4.8. Nonarc Variables in the Side Constraints � 361

Output 4.7.2. DUALOUT=DUAL5

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_

1 f1_apr_1 . -100000278.00 3 1 6 2
2 f1_apr_2 . -100000405.92 13 19 11 2
3 f1_mar_1 . -100000326.65 2 8 1 20
4 f1_mar_2 . -100000480.13 12 19 13 1
5 f1_may_1 . -100000284.00 4 1 7 3
6 f1_may_2 . -100000363.43 14 18 10 1
7 f2_apr_1 . -100000289.00 6 3 4 1
8 f2_apr_2 . -100000390.60 16 20 18 3
9 f2_mar_1 . -100000281.90 5 10 3 1

10 f2_mar_2 . -100000399.07 15 19 16 1
11 f2_may_1 . -100000300.00 7 4 9 2
12 f2_may_2 . -100000375.30 17 20 19 6
13 fact1_1 1000 -100000193.90 1 2 21 19
14 fact1_2 1000 -100000224.09 11 13 15 1
15 fact2_1 850 -100000193.90 10 21 5 2
16 fact2_2 1500 -100000193.90 20 21 17 10
17 shop1_1 -900 -99999999.00 8 22 2 21
18 shop1_2 -900 -99999848.41 18 16 14 2
19 shop2_1 -900 -100000001.00 9 7 22 1
20 shop2_2 -1450 -99999856.24 19 17 12 5
21 . -1.83 2 8 . .
22 . -1.62 0 8 . .
23 . 0.00 3 3 . 3
24 . 0.00 1 1 . 1
25 . 0.00 4 4 . 4

Obs _ARCID_ _FLOW_ _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

1 4 483.333 4 . .
2 -60 220.000 36 . .
3 -21 143.333 1 . .
4 -59 455.000 33 . .
5 8 78.333 8 . .
6 -55 350.000 40 . .
7 14 13.333 14 . .
8 47 515.000 46 . .
9 12 255.000 11 . .

10 -62 125.000 43 . .
11 18 115.000 18 . .
12 51 115.000 50 . .
13 -1 283.333 -1 . .
14 -36 200.000 -33 . .
15 -66 45.000 -33 . .
16 -68 150.000 -65 . .
17 0 0.000 21 . .
18 57 50.000 53 . .
19 32 150.000 27 . .
20 64 150.000 59 . .
21 25 243.333 . 2600 2600 LE FACT1 APL GIZMO
22 23 13.333 . 2600 2600 LE FACT1 MAR GIZMO
23 . 110.000 . 3640 3750 LE FACT2 APL GIZMO
24 . 280.000 . 3470 3750 LE FACT2 MAR GIZMO
25 . 0.000 . 50 50 LE TOTAL BACKORDER

Example 4.8. Nonarc Variables in the Side Constraints

Notice in DUALOUT=dual5 from Example 4.7 the FACT2 MAR GIZMO constraint
(observation 24) has a–VALUE– of 3470, which is not equal to the–RHS– of this
constraint. Not all of the 3750 chips that can be supplied to factory 2 for March
production are used. It is suggested that all the possible chips be obtained in March
and those not used be saved for April production. Because chips must be kept in an
air-controlled environment, it costs 1 dollar to store each chip purchased in March
until April. The maximum number of chips that can be stored in this environment at
each factory is 150. In addition, a search of the parts inventory at factory 1 turned up
15 chips available for their March production.

SAS OnlineDoc: Version 8

362 � Chapter 4. The NETFLOW Procedure

Nonarc variables are used in the side constraints that handle the limitations of supply
of Gizmo chips. A nonarc variable called “f1 unused mar” has as a value the number
of chips that are not used at factory 1 in March. Another nonarc variable, “f2 unused
mar”, has as a value the number of chips that are not used at factory 2 in March.
“f1 chips from mar” has as a value the number of chips left over from March used
for production at factory 1 in April. Similarly, “f2 chips from mar” has as a value
the number of chips left over from March used for April production at factory 2 in
April. The last two nonarc variables have objective function coefficients of 1 and
upper bounds of 150. The Gizmo side constraints are

3*prod f1 19 mar + 4*prod f1 25 mar + f1 unused chips = 2615
3*prod f2 19 apl + 4*prod f2 25 apl + f2 unused chips = 3750
3*prod f1 19 apl + 4*prod f1 25 apl - f1 chips from mar = 2600
3*prod f2 19 apl + 4*prod f2 25 apl - f2 chips from mar = 3750
f1 unused chips + f2 unused chips -
f1 chips from mar - f2 chips from mar >= 0

The last side constraint states that the number of chips not used in March is not less
than the number of chips left over from March and used in April. Here, this constraint
is called CHIP LEFTOVER.

The following SAS code creates a new data set containing constraint data. It seems
that most of the constraints are now equalities, so you specify DEFCONTYPE=EQ in
the PROC NETFLOW statements from now on and provide constraint type data for
constraints that are not “equal to” type, using the default TYPEOBS value–TYPE–
as the–COLUMN– variable value to indicate observations that contain constraint
type data. Also, from now on, the default RHSOBS value is used.

title ’Nonarc Variables in the Side Constraints’;
title2 ’Production Planning/Inventory/Distribution’;
data con6;

input _column_ &$17. _row_ &$15. _coef_ ;
datalines;

prod f1 19 mar FACT1 MAR GIZMO 3
prod f1 25 mar FACT1 MAR GIZMO 4
f1 unused chips FACT1 MAR GIZMO 1
RHS FACT1 MAR GIZMO 2615
prod f2 19 mar FACT2 MAR GIZMO 3
prod f2 25 mar FACT2 MAR GIZMO 4
f2 unused chips FACT2 MAR GIZMO 1
RHS FACT2 MAR GIZMO 3750
prod f1 19 apl FACT1 APL GIZMO 3
prod f1 25 apl FACT1 APL GIZMO 4
f1 chips from mar FACT1 APL GIZMO -1
RHS FACT1 APL GIZMO 2600
prod f2 19 apl FACT2 APL GIZMO 3
prod f2 25 apl FACT2 APL GIZMO 4
f2 chips from mar FACT2 APL GIZMO -1
RHS FACT2 APL GIZMO 3750
f1 unused chips CHIP LEFTOVER 1
f2 unused chips CHIP LEFTOVER 1

SAS OnlineDoc: Version 8

Example 4.8. Nonarc Variables in the Side Constraints � 363

f1 chips from mar CHIP LEFTOVER -1
f2 chips from mar CHIP LEFTOVER -1
TYPE CHIP LEFTOVER 1
back f1 19 apl TOTAL BACKORDER 1
back f1 25 apl TOTAL BACKORDER 1
back f2 19 apl TOTAL BACKORDER 1
back f2 25 apl TOTAL BACKORDER 1
back f1 19 may TOTAL BACKORDER 1
back f1 25 may TOTAL BACKORDER 1
back f2 19 may TOTAL BACKORDER 1
back f2 25 may TOTAL BACKORDER 1
TYPE TOTAL BACKORDER -1
RHS TOTAL BACKORDER 50
;

The nonarc variables “f1 chips from mar” and “f2 chips from mar” have objective
function coefficients of 1 and upper bounds of 150. There are various ways in which
this information can be furnished to PROC NETFLOW. If there were a TYPE list
variable in the CONDATA= data set, observations could be in the form:

COLUMN _TYPE_ _ROW_ _COEF_
f1 chips from mar objfn . 1
f1 chips from mar upperbd . 150
f2 chips from mar objfn . 1
f2 chips from mar upperbd . 150

It is desireable to assign ID list variable values to all the nonarc variables:

data arc6;
set con5;
drop oldcost oldfc oldflow _flow_ _fcost_ _status_ _rcost_;

data arc6_b;
input _name_ &$17. _cost_ _capac_ factory key_id $;
datalines;

f1 unused chips . . 1 chips
f2 unused chips . . 2 chips
f1 chips from mar 1 150 1 chips
f2 chips from mar 1 150 2 chips
;

proc append
base=arc6 data=arc6_b;

proc netflow
nodedata=node0 arcdata=arc6
condata=con6 defcontype=eq sparsecondata
dualout=dual7 conout=con7;

run;
print nonarcs/short;

SAS OnlineDoc: Version 8

364 � Chapter 4. The NETFLOW Procedure

The following messages appear on the SAS log:

NOTE: Number of nodes= 20 .
NOTE: Number of supply nodes= 4 .
NOTE: Number of demand nodes= 4 .
NOTE: Total supply= 4350 , total demand= 4150 .
NOTE: Number of arcs= 64 .
NOTE: Number of nonarc variables= 8 .
NOTE: Number of iterations performed (neglecting any

constraints)= 70 .
NOTE: Of these, 1 were degenerate.
NOTE: Optimum (neglecting any constraints) found.
NOTE: Minimal total cost= -1295730.8 .
NOTE: Number of <= side constraints= 1 .
NOTE: Number of == side constraints= 4 .
NOTE: Number of >= side constraints= 1 .
NOTE: Number of arc and nonarc variable side constraint

coefficients= 24 .
NOTE: Number of iterations, optimizing with constraints= 13 .
NOTE: Of these, 3 were degenerate.
NOTE: Optimum reached.
NOTE: Minimal total cost= -1295542.742 .
NOTE: The data set WORK.CON7 has 68 observations and 18

variables.
NOTE: The data set WORK.DUAL7 has 26 observations and 14

variables.

The output in Output 4.8.1 is produced by print nonarcs/short;

Output 4.8.1. Output of PRINT NONARCS/SHORT;

Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

NETFLOW PROCEDURE

N _name_ _cost_ _capac_ _lo_ _VALUE_

1 f1 chips from mar 1 150 0 20
2 f1 unused chips 0 99999999 0 0
3 f2 chips from mar 1 150 0 0
4 f2 unused chips 0 99999999 0 280

The optimal solution data sets, CONOUT=CON7 in Output 4.8.2 and DU-
ALOUT=DUAL7 in Output 4.8.3 follow:

proc print data=con7;
sum _fcost_;

proc print data=dual7;

SAS OnlineDoc: Version 8

Example 4.8. Nonarc Variables in the Side Constraints � 365

Output 4.8.2. CONOUT=CON7

Nonarc Variables in the Side Constraints
Production Planning/Inventory/Distribution

OBS _TAIL_ _HEAD_ _COST_ _CAPAC_ _LO_ _NAME_ _SUPPLY_ _DEMAND_ _FLOW_

1 fact1_1 f1_apr_1 78.60 600 50 prod f1 19 apl 1000 . 540.000
2 f1_mar_1 f1_apr_1 15.00 50 0 . . 0.000
3 f1_may_1 f1_apr_1 33.60 20 0 back f1 19 may . . 0.000
4 f2_apr_1 f1_apr_1 11.00 40 0 . . 0.000
5 fact1_2 f1_apr_2 174.50 550 50 prod f1 25 apl 1000 . 250.000
6 f1_mar_2 f1_apr_2 20.00 40 0 . . 0.000
7 f1_may_2 f1_apr_2 49.20 15 0 back f1 25 may . . 0.000
8 f2_apr_2 f1_apr_2 21.00 25 0 . . 25.000
9 fact1_1 f1_mar_1 127.90 500 50 prod f1 19 mar 1000 . 338.333

10 f1_apr_1 f1_mar_1 33.60 20 0 back f1 19 apl . . 20.000
11 f2_mar_1 f1_mar_1 10.00 40 0 . . 40.000
12 fact1_2 f1_mar_2 217.90 400 40 prod f1 25 mar 1000 . 400.000
13 f1_apr_2 f1_mar_2 38.40 30 0 back f1 25 apl . . 30.000
14 f2_mar_2 f1_mar_2 20.00 25 0 . . 25.000
15 fact1_1 f1_may_1 90.10 400 50 1000 . 116.667
16 f1_apr_1 f1_may_1 12.00 50 0 . . 0.000
17 f2_may_1 f1_may_1 13.00 40 0 . . 0.000
18 fact1_2 f1_may_2 113.30 350 40 1000 . 350.000
19 f1_apr_2 f1_may_2 18.00 40 0 . . 0.000
20 f2_may_2 f1_may_2 13.00 25 0 . . 0.000
21 f1_apr_1 f2_apr_1 11.00 99999999 0 . . 20.000
22 fact2_1 f2_apr_1 62.40 480 35 prod f2 19 apl 850 . 480.000
23 f2_mar_1 f2_apr_1 18.00 30 0 . . 0.000
24 f2_may_1 f2_apr_1 30.00 15 0 back f2 19 may . . 0.000
25 f1_apr_2 f2_apr_2 23.00 99999999 0 . . 0.000
26 fact2_2 f2_apr_2 196.70 680 35 prod f2 25 apl 1500 . 577.500
27 f2_mar_2 f2_apr_2 28.00 50 0 . . 0.000
28 f2_may_2 f2_apr_2 64.80 15 0 back f2 25 may . . 0.000
29 f1_mar_1 f2_mar_1 11.00 99999999 0 . . 0.000
30 fact2_1 f2_mar_1 88.00 450 35 prod f2 19 mar 850 . 290.000
31 f2_apr_1 f2_mar_1 20.40 15 0 back f2 19 apl . . 0.000
32 f1_mar_2 f2_mar_2 23.00 99999999 0 . . 0.000
33 fact2_2 f2_mar_2 182.00 650 35 prod f2 25 mar 1500 . 650.000
34 f2_apr_2 f2_mar_2 37.20 15 0 back f2 25 apl . . 0.000
35 f1_may_1 f2_may_1 16.00 99999999 0 . . 115.000
36 fact2_1 f2_may_1 128.80 250 35 850 . 35.000
37 f2_apr_1 f2_may_1 20.00 30 0 . . 0.000
38 f1_may_2 f2_may_2 26.00 99999999 0 . . 0.000
39 fact2_2 f2_may_2 181.40 550 35 1500 . 122.500
40 f2_apr_2 f2_may_2 38.00 50 0 . . 0.000
41 f1_mar_1 shop1_1 -327.65 250 0 . 900 148.333
42 f1_apr_1 shop1_1 -300.00 250 0 . 900 250.000
43 f1_may_1 shop1_1 -285.00 250 0 . 900 1.667
44 f2_mar_1 shop1_1 -297.40 250 0 . 900 250.000
45 f2_apr_1 shop1_1 -290.00 250 0 . 900 250.000
46 f2_may_1 shop1_1 -292.00 250 0 . 900 0.000
47 f1_mar_2 shop1_2 -559.76 99999999 0 . 900 0.000
48 f1_apr_2 shop1_2 -524.28 99999999 0 . 900 0.000
49 f1_may_2 shop1_2 -515.02 99999999 0 . 900 347.500
50 f2_mar_2 shop1_2 -567.83 500 0 . 900 500.000
51 f2_apr_2 shop1_2 -542.19 500 0 . 900 52.500
52 f2_may_2 shop1_2 -491.56 500 0 . 900 0.000
53 f1_mar_1 shop2_1 -362.74 250 0 . 900 250.000
54 f1_apr_1 shop2_1 -300.00 250 0 . 900 250.000
55 f1_may_1 shop2_1 -245.00 250 0 . 900 0.000
56 f2_mar_1 shop2_1 -272.70 250 0 . 900 0.000
57 f2_apr_1 shop2_1 -312.00 250 0 . 900 250.000
58 f2_may_1 shop2_1 -299.00 250 0 . 900 150.000
59 f1_mar_2 shop2_2 -623.89 99999999 0 . 1450 455.000
60 f1_apr_2 shop2_2 -549.68 99999999 0 . 1450 245.000
61 f1_may_2 shop2_2 -500.00 99999999 0 . 1450 2.500
62 f2_mar_2 shop2_2 -542.83 500 0 . 1450 125.000
63 f2_apr_2 shop2_2 -559.19 500 0 . 1450 500.000
64 f2_may_2 shop2_2 -519.06 500 0 . 1450 122.500
65 1.00 150 0 f1 chips from mar . . 20.000
66 0.00 99999999 0 f1 unused chips . . 0.000
67 1.00 150 0 f2 chips from mar . . 0.000
68 0.00 99999999 0 f2 unused chips . . 280.000

SAS OnlineDoc: Version 8

366 � Chapter 4. The NETFLOW Procedure

OBS _FCOST_ _RCOST_ _ANUMB_ _TNUMB_ _STATUS_ DIAGONAL FACTORY KEY_ID MTH_MADE

1 42444.00 . 1 1 KEY_ARC BASIC 19 1 production April
2 0.00 66.150 2 3 LOWERBD NONBASIC 19 1 storage March
3 0.00 42.580 3 4 LOWERBD NONBASIC 19 1 backorder May
4 0.00 22.000 4 5 LOWERBD NONBASIC 19 . f2_to_1 April
5 43625.00 . 15 6 KEY_ARC BASIC 25 1 production April
6 0.00 94.210 16 8 LOWERBD NONBASIC 25 1 storage March
7 0.00 . 17 9 NONKEY ARC BASIC 25 1 backorder May
8 525.00 -1.510 18 10 UPPERBD NONBASIC 25 . f2_to_1 April
9 43272.83 . 5 1 KEY_ARC BASIC 19 1 production March

10 672.00 -17.070 6 2 UPPERBD NONBASIC 19 1 backorder April
11 400.00 -34.750 7 11 UPPERBD NONBASIC 19 . f2_to_1 March
12 87160.00 -28.343 19 6 UPPERBD NONBASIC 25 1 production March
13 1152.00 -35.330 20 7 UPPERBD NONBASIC 25 1 backorder April
14 500.00 -61.060 21 12 UPPERBD NONBASIC 25 . f2_to_1 March
15 10511.67 . 8 1 KEY_ARC BASIC 19 1 production May
16 0.00 3.500 9 2 LOWERBD NONBASIC 19 1 storage April
17 0.00 29.000 10 13 LOWERBD NONBASIC 19 . f2_to_1 May
18 39655.00 -15.520 22 6 UPPERBD NONBASIC 25 1 production May
19 0.00 67.680 23 7 LOWERBD NONBASIC 25 1 storage April
20 0.00 32.060 24 14 LOWERBD NONBASIC 25 . f2_to_1 May
21 220.00 . 11 2 KEY_ARC BASIC 19 . f1_to_2 April
22 29952.00 -35.592 12 15 UPPERBD NONBASIC 19 2 production April
23 0.00 13.400 13 11 LOWERBD NONBASIC 19 2 storage March
24 0.00 43.980 14 13 LOWERBD NONBASIC 19 2 backorder May
25 0.00 45.510 25 7 LOWERBD NONBASIC 25 . f1_to_2 April
26 113594.25 . 26 16 KEY_ARC BASIC 25 2 production April
27 0.00 43.660 27 12 LOWERBD NONBASIC 25 2 storage March
28 0.00 57.170 28 14 LOWERBD NONBASIC 25 2 backorder May
29 0.00 55.750 29 3 LOWERBD NONBASIC 19 . f1_to_2 March
30 25520.00 . 30 15 KEY_ARC BASIC 19 2 production March
31 0.00 25.480 31 5 LOWERBD NONBASIC 19 2 backorder April
32 0.00 104.060 32 8 LOWERBD NONBASIC 25 . f1_to_2 March
33 118300.00 -23.170 33 16 UPPERBD NONBASIC 25 2 production March
34 0.00 22.020 34 10 LOWERBD NONBASIC 25 2 backorder April
35 1840.00 . 35 4 KEY_ARC BASIC 19 . f1_to_2 May
36 4508.00 22.700 36 15 LOWERBD NONBASIC 19 2 production May
37 0.00 6.500 37 5 LOWERBD NONBASIC 19 2 storage April
38 0.00 6.940 38 9 LOWERBD NONBASIC 25 . f1_to_2 May
39 22221.50 . 39 16 KEY_ARC BASIC 25 2 production May
40 0.00 46.110 40 10 LOWERBD NONBASIC 25 2 storage April
41 -48601.42 . 41 3 KEY_ARC BASIC 19 1 sales March
42 -75000.00 -23.500 42 2 UPPERBD NONBASIC 19 1 sales April
43 -475.00 . 43 4 NONKEY ARC BASIC 19 1 sales May
44 -74350.00 -14.500 44 11 UPPERBD NONBASIC 19 2 sales March
45 -72500.00 -2.500 45 5 UPPERBD NONBASIC 19 2 sales April
46 0.00 9.000 46 13 LOWERBD NONBASIC 19 2 sales May
47 0.00 79.150 47 8 LOWERBD NONBASIC 25 1 sales March
48 0.00 40.420 48 7 LOWERBD NONBASIC 25 1 sales April
49 -178969.45 . 49 9 KEY_ARC BASIC 25 1 sales May
50 -283915.00 -9.980 50 12 UPPERBD NONBASIC 25 2 sales March
51 -28464.98 . 51 10 KEY_ARC BASIC 25 2 sales April
52 0.00 42.520 52 14 LOWERBD NONBASIC 25 2 sales May
53 -90685.00 -37.090 53 3 UPPERBD NONBASIC 19 1 sales March
54 -75000.00 -25.500 54 2 UPPERBD NONBASIC 19 1 sales April
55 0.00 38.000 55 4 LOWERBD NONBASIC 19 1 sales May
56 0.00 8.200 56 11 LOWERBD NONBASIC 19 2 sales March
57 -78000.00 -26.500 57 5 UPPERBD NONBASIC 19 2 sales April
58 -44850.00 . 58 13 KEY_ARC BASIC 19 2 sales May
59 -283869.95 . 59 8 KEY_ARC BASIC 25 1 sales March
60 -134671.60 . 60 7 KEY_ARC BASIC 25 1 sales April
61 -1250.00 . 61 9 NONKEY ARC BASIC 25 1 sales May
62 -67853.75 . 62 12 KEY_ARC BASIC 25 2 sales March
63 -279595.00 -32.020 63 10 UPPERBD NONBASIC 25 2 sales April
64 -63584.85 . 64 14 KEY_ARC BASIC 25 2 sales May
65 20.00 . -2 . NONKEY BASIC . 1 chips
66 0.00 1.617 0 . LOWERBD NONBASIC . 1 chips
67 0.00 2.797 -3 . LOWERBD NONBASIC . 2 chips
68 0.00 . -1 . NONKEY BASIC . 2 chips

===========
-1295542.74

SAS OnlineDoc: Version 8

References � 367

Output 4.8.3. DUALOUT=DUAL7

Obs _node_ _supdem_ _DUAL_ _NNUMB_ _PRED_ _TRAV_ _SCESS_

1 f1_apr_1 . -100000275.50 2 1 5 2
2 f1_apr_2 . -100000405.92 7 20 6 2
3 f1_mar_1 . -100000326.65 3 17 1 20
4 f1_mar_2 . -100000480.13 8 20 7 1
5 f1_may_1 . -100000284.00 4 1 13 3
6 f1_may_2 . -100000356.24 9 18 2 1
7 f2_apr_1 . -100000286.50 5 2 4 1
8 f2_apr_2 . -100000383.41 10 16 18 3
9 f2_mar_1 . -100000281.90 11 15 16 1

10 f2_mar_2 . -100000399.07 12 20 10 1
11 f2_may_1 . -100000300.00 13 4 19 2
12 f2_may_2 . -100000375.30 14 16 20 6
13 fact1_1 1000 -100000193.90 1 3 21 19
14 fact1_2 1000 -100000227.42 6 7 12 1
15 fact2_1 850 -100000193.90 15 21 11 2
16 fact2_2 1500 -100000193.90 16 21 14 10
17 shop1_1 -900 -99999999.00 17 22 3 21
18 shop1_2 -900 -99999841.22 18 10 9 2
19 shop2_1 -900 -100000001.00 19 13 22 1
20 shop2_2 -1450 -99999856.24 20 14 8 5
21 . 0.00 4 4 . 4
22 . -1.00 2 2 . .
23 . -1.62 0 17 . .
24 . 1.80 3 20 . .
25 . 0.00 1 1 . .
26 . -0.48 5 7 . .

Obs _ARCID_ _FLOW_ _FBQ_ _VALUE_ _RHS_ _TYPE_ _row_

1 1 490.000 1 . .
2 -60 245.000 15 . .
3 -41 148.333 5 . .
4 -59 455.000 19 . .
5 8 66.667 8 . .
6 -49 347.500 22 . .
7 11 20.000 11 . .
8 26 542.500 25 . .
9 30 255.000 29 . .

10 -62 125.000 32 . .
11 35 115.000 35 . .
12 39 87.500 38 . .
13 -5 288.333 -1 . .
14 -15 200.000 -15 . .
15 -67 45.000 -41 . .
16 -68 150.000 -41 . .
17 0 0.000 41 . .
18 51 52.500 47 . .
19 58 150.000 53 . .
20 64 122.500 59 . .
21 . 260.000 . 260 0 GE CHIP LEFTOVER
22 -2 20.000 . 2600 2600 EQ FACT1 APL GIZMO
23 43 1.667 . 2615 2615 EQ FACT1 MAR GIZMO
24 61 2.500 . 3750 3750 EQ FACT2 APL GIZMO
25 -1 280.000 . 3750 3750 EQ FACT2 MAR GIZMO
26 17 0.000 . 50 50 LE TOTAL BACKORDER

The optimal value of the nonarc variable “f2 unused chips” is 280. This means that
although there are 3750 chips that can be used at factory 2 in March, only 3470
are used. As the optimal value of “f1 unused chips” is zero, all chips available for
production in March at factory 1 are used. The nonarc variable “f2 chips from mar”
also has zero optimal value. This means that the April production at factory 2 does
not need any chips that could have been held in inventory since March. However,
the nonarc variable “f1 chips from mar” has value of 20. Thus, 3490 chips should
be ordered for factory 2 in March. Twenty of these chips should be held in inventory
until April, then sent to factory 1.

SAS OnlineDoc: Version 8

368 � Chapter 4. The NETFLOW Procedure

References

Bland, R.G. (1977), “New Finite Pivoting Rules for the Simplex Method”,Mathe-
matics of Operations Research, 2 (2) 103-107.

Kearney, T.D. (1990), “A Tutorial on the NETFLOW Procedure in SAS/OR”,Pro-
ceedings of the fifteenth Annual SAS Users Group International Conference, 97-
108.

Kennington, J.L. and Helgason, R.V. (1980), “Algorithms for Networking Program-
ming”, New York: Wiley Interscience, John Wiley & Sons.

Reid, J.K. (1975), “A Sparsity-Exploiting Variant of the Bartels-Golub Decomposi-
tion for Linear Programming Bases”,Harwell Report CSS 20, A.E.R.E., Didcot,
Oxfordshire, England.

Roos, C. Terlaky, T. Vial, J.-Ph. (1997) “Theory and Algorithms for Linear Opti-
mization”, John Wiley & Sons.

Ryan, D.M. and Osborne, M.R. (1988), “On the Solution of Highly Degenerate Lin-
ear Programmes”,Mathematical Programming, 41 385-392.

Wright, S.J. (1996) “Primal-Dual Interior Point Algorithms”, Philadelphia: SIAM

Ye, Y. (1996) “Interior Point Algorithms: Theory and Analysis”, Wiley-Interscience
Series in Discrete Mathematics and Optimization.

SAS OnlineDoc: Version 8

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/OR® User’s Guide: Mathematical Programming, Version 8, Cary, NC: SAS Institute
Inc., 1999. 566 pp.

SAS/OR® User’s Guide: Mathematical Programming, Version 8
Copyright © 1999 SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–491–8
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, ACF/VTAM®, AIX®, APPN®, MVS/ESA®, OS/2®, OS/390®, VM/ESA®, and VTAM®

are registered trademarks or trademarks of International Business Machines Corporation.
® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

