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Chapter 5
The NLP Procedure

Overview

The NLP procedure (NonL inear Programming) offers a set of optimization tech-
niques for minimizing or maximizing a continuous nonlinear functionf(x) of n deci-
sion variables,x = (x1; : : : ; xn)

T with lower and upper bound, linear and nonlinear,
equality and inequality constraints. This can be expressed as solving

minx2Rn f(x)
subject to ci(x) = 0 i = 1; : : : ;me

ci(x) � 0 i = me + 1; : : : ;m
ui � xi � li i = 1; : : : ; n

wheref is the objective function, theci’s are the nonlinear functions, andui, li’s are
the upper and lower bounds. Problems of this type are found in many settings ranging
from optimal control to maximum likelihood estimation.

The NLP procedure provides a number of algorithms for solving this problem that
take advantage of special structure on the objective function and constraints. One
example is the quadratic programming problem:

f(x) =
1

2
xTGx+ gTx+ b

subject to ci(x) = 0 i = 1; : : : ;me

where theci(x)’s are linear functions;g = (g1; : : : ; gn)
T andb = (b1; : : : ; bn)

T are
vectors andG is ann� n symmetric matrix.

Another example is the least-squares problem:

f(x) =
1

2
ff21 (x) + � � �+ f2l (x)g

subject to ci(x) = 0 i = 1; : : : ;me

where theci(x)’s are linear functions, andf1(x); :::; fm(x) are nonlinear functions
of x.

The following problems are handled by PROC NLP.

� quadratic programming with an option for sparse problems

� unconstrained minimization/maximization
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� constrained minimization/maximization

� linear complementarity problem

The following optimization techniques are supported in PROC NLP.

� Quadratic Active Set Technique

� Trust-Region Method

� Newton-Raphson Method With Line-Search

� Newton-Raphson Method With Ridging

� Quasi-Newton Methods

� Double-Dogleg Method

� Conjugate Gradient Methods

� Nelder-Mead Simplex Method

� Levenberg-Marquardt Method

� Hybrid Quasi-Newton Methods

These optimization techniques require a continuous objective functionf , and all but
one (NMSIMP) require continuous first-order derivatives of the objective functionf .
Some of the techniques also require continuous second-order derivatives. There are
three ways to compute derivatives in PROC NLP:

� analytically (using a special derivative compiler), the default method

� via finite difference approximations

� via user-supplied exact or approximate numerical functions

Nonlinear programs can be input into the procedure in various ways. The objective,
constraint, and derivative functions are specified using the programming statements
of PROC NLP. In addition, information in SAS data sets can be used to define the
structure of objectives and constraints as well as specify constants used in objectives,
constraints and derivatives.

PROC NLP uses data sets to input various pieces of information.

� The DATA= data set enables you to specify data shared by all functions in-
volved in a least-squares problem.

� The INQUAD= data set contains the arrays appearing in a quadratic program-
ming problem.

� The INVAR= data set specifies initial values for the decision variables, the
values of constants that are referred to in the program statements, and simple
boundary and general linear constraints.

� The MODEL= data set specifies a model (functions, constraints, derivatives)
saved at a previous execution of the NLP procedure.
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PROC NLP uses data sets to output various results.

� The OUTVAR= data set saves the values of the decision variables, the deriva-
tives, the solution, and the covariance matrix at the solution.

� The OUT= output data set contains variables generated in the program state-
ments defining the objective function as well as selected variables of the
DATA= input data set, if available.

� The OUTMODEL= data set saves the programming statements. It can be used
to input a model in the MODEL= input data set.

Getting Started

The NLP procedure solves general nonlinear programs. It has several optimizers that
are tuned to best perform on a particular class of problems. Guidelines for choosing
a particular optimizer for a problem can be found in the “Details” section.

Regardless of the selected optimizer, it is necessary to specify an objective function
and constraints that the optimal solution must satisfy. In PROC NLP, the objective
function and the constraints are specified by using SAS programming statements that
are similar to those used in the SAS DATA step. Some of the differences are discussed
in the sections “Program Statements” and the “ARRAY Statement”. As with any
programming language, there are many different ways to specify the same problem.
Some are more economical than others.

Introductory Examples

The following introductory examples illustrate how to get started using the NLP pro-
cedure.

An Unconstrained Problem
Consider the simple example of minimizing the Rosenbrock function (Rosenbrock
1960).

f(x) =
1

2
f100(x2 � x21)

2 + (1� x1)
2g

=
1

2
ff21 (x) + f22 (x)g; x = (x1; x2)

The minimum function value isf(x�) = 0 at x� = (1; 1). This problem does not
have any constraints.

The following statements can be used to solve this problem:

proc nlp;
min f;
decvar x1 x2;
f1 = 10 * (x2 - x1 * x1);
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f2 = 1 - x1;
f = .5 * (f1 * f1 + f2 * f2);

run;

The MIN statement identifies the symbolf that characterizes the objective function
in terms off1 andf2, and the DECVAR statement names the decision variablesX1
andX2. Because there is no explicit optimizing algorithm option specified (TECH=)
PROC NLP uses the Newton-Raphson method with ridging, the default algorithm
when there are no constraints.

A better way to solve this problem is to take advantage of the fact thatf is a sum
of squares off1 andf2 and to treat it as a least-squares problem. Using the LSQ
statement instead of the MIN statement tells the procedure that this is a least-squares
problem, which results in the use of one of the specialized algorithms for solving
least-squares problems (for example Levenberg-Marquardt).

proc nlp;
lsq f1 f2;
decvar x1 x2;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

run;

The LSQ statement results in the minimization of a function that is the sum of squares
of functions that appear in the LSQ statement. The least-squares specification is
preferred because it enabless the procedure to exploit the structure in the problem for
numeric stability and performance.
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PROC NLP: Least Squares Minimization

Levenberg-Marquardt Optimization

Scaling Update of More (1978)

Parameter Estimates 2
Functions (Observations) 2

Optimization Start

Active Constraints 0 Objective Function 3.25
Max Abs Gradient Element 25.5 Radius 358.01571195

Actual
Max Abs Over

Rest Func Act Objective Obj Fun Gradient Pred
Iter arts Calls Con Function Change Element Lambda Change

1 0 2 0 3.12500 0.1250 50.0000 0 0.0385
2 0 3 0 3.6214E-29 3.1250 3.62E-14 0 1.000

Optimization Results

Iterations 2 Function Calls 4
Jacobian Calls 3 Active Constraints 0
Objective Function 3.621365E-29 Max Abs Gradient Element 3.619327E-14
Lambda 0 Actual Over Pred Change 1
Radius 5

ABSGCONV convergence criterion satisfied.

PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 x1 1.000000 -3.61933E-14
2 x2 1.000000 2.220446E-14

Value of Objective Function = 3.621365E-29

Figure 5.1. Least-Squares Minimization

PROC NLP displays the iteration history and the solution to this least-squares prob-
lem as shown in Figure 5.1. It shows that the solution hasx1 = 1 andx2 = 1. As
expected in an unconstrained problem, the gradient at the solution is very close to0.

Boundary Constraints on the Decision Variables
Bounds on the decision variables can be used. Suppose, for example, that it is nec-
essary to constrain the decision variables in the previous example to be less than0:5.
That can be done by adding a BOUNDS statement.

proc nlp;
lsq f1 f2;
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decvar x1 x2;
bounds x1 - x2 <= .5;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

run;

The solution in Figure 5.2 shows that the decision variables meet the constraint
bounds.

PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 x1 0.500000 -0.500000 Upper BC
2 x2 0.250000 0

Value of Objective Function = 0.125

Figure 5.2. Least-Squares with Bounds Solution

Linear Constraints on the Decision Variables
More general linear equality or inequality constraints of the form

nX
j=1

aijxjf� j = j �gbifori = 1; : : : ;m

can be specified in a LINCON statement. For example, suppose that in addition to
the bounds constraints on the decision variables it is necessary to guarantee that the
sumx1 + x2 is less than or equal to 0.6. That can be achieved by adding a LINCON
statement:

proc nlp;
lsq f1 f2;
decvar x1 x2;
bounds x1 - x2 <= .5;
lincon x1 + x2 <= .6;
f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

run;

The output in Figure 5.3 displays the iteration history and the convergence criterion.
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PROC NLP: Least Squares Minimization

Levenberg-Marquardt Optimization

Scaling Update of More (1978)

Parameter Estimates 2
Functions (Observations) 2
Lower Bounds 0
Upper Bounds 2
Linear Constraints 1

Actual
Max Abs Over

Rest Func Act Objective Obj Fun Gradient Pred
Iter arts Calls Con Function Change Element Lambda Change

1 0 3 0 8.19877 21.0512 39.5420 0.0170 0.729
2 0 4 0 1.05752 7.1412 13.6170 0.0105 0.885
3 0 5 1 1.04396 0.0136 18.6337 0 0.0128
4 0 6 1 0.16747 0.8765 0.5552 0 0.997
5 0 7 1 0.16658 0.000895 0.000324 0 0.998
6 0 8 1 0.16658 3.06E-10 5.911E-7 0 0.998

Optimization Results

Iterations 6 Function Calls 9
Jacobian Calls 7 Active Constraints 1
Objective Function 0.1665792899 Max Abs Gradient Element 5.9108825E-7
Lambda 0 Actual Over Pred Change 0.998176801
Radius 0.0000532357

GCONV convergence criterion satisfied.

PROC NLP: Least Squares Minimization

Value of Objective Function = 0.1665792899

Figure 5.3. Least-Squares with Bounds and Linear Constraints Iteration History

Figure 5.4 shows that the solution satisfies the linear constraint. Note that the proce-
dure displays the active constraints (the constraints that are tight) at optimality.
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PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 x1 0.423645 -0.312000
2 x2 0.176355 -0.312001

Value of Objective Function = 0.1665792899

Linear Constraints Evaluated at Solution

1 ACT -8.327E-17 = 0.6000 - 1.0000 * x1 - 1.0000 * x2

Figure 5.4. Least-Squares with Bounds and Linear Constraints Solution

Nonlinear Constraints on the Decision Variables
More general nonlinear equality or inequality constraints can be specified using an
NLINCON statement. Consider the least-squares problem with the additional con-
straint

x21 � 2x2 � 0

This constraint is specified by a new functionc1 constrained to be greater than or
equal to 0 in the NLINCON statement. The functionc1 is defined in the programming
statements.

proc nlp tech=QUANEW;
min f;
decvar x1 x2;
bounds x1 - x2 <= .5;
lincon x1 + x2 <= .6;
nlincon c1 >= 0;

c1 = x1 * x1 - 2 * x2;

f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

f = .5 * (f1 * f1 + f2 * f2);
run;

Not all of the optimization methods support nonlinear constraints. In particular
the Levenberg-Marquardt method, the default for LSQ, does not support nonlinear
constraints. (For more information about the particular algorithms, see the sec-
tion “Optimization Algorithms” on page 427.) The Quasi-Newton method is the
prime choice for solving nonlinear programs with nonlinear constraints. The option
TECH=QUANEW in the PROC NLP statement causes the Quasi-Newton method to
be used.
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Figure 5.5 shows the iteration history.

PROC NLP: Nonlinear Minimization

Dual Quasi-Newton Optimization

Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)

Parameter Estimates 2
Lower Bounds 0
Upper Bounds 2
Linear Constraints 1
Nonlinear Constraints 1

Optimization Start

Objective Function 2.6202630894 Maximum Constraint 0
Violation

Maximum Gradient of the 20.729163858
Lagran Func

Maximum
Gradient

Element
Maximum Predicted of the

Function Objective Constraint Function Step Lagrange
Iter Restarts Calls Function Violation Reduction Size Function

1 0 7 0.45639 0 0.00935 1.000 0.954
2’ 0 8 0.44713 0 0.0904 1.000 0.963
3 0 9 0.37332 0 0.1396 1.000 0.584
4 0 11 0.35295 0 0.0466 0.195 0.376
5 0 12 0.33948 0 0.0194 1.000 0.944
6 0 13 0.33082 0 0.00148 1.000 0.0701
7 0 14 0.33008 0 0.000089 1.000 0.0351
8 0 15 0.33003 0 5.438E-6 1.000 0.00091
9 0 16 0.33003 0 2.608E-9 1.000 4.78E-6

Optimization Results

Iterations 9 Function Calls 17
Gradient Calls 12 Active Constraints 1
Objective Function 0.3300307168 Maximum Constraint 0

Violation
Maximum Projected Gradient 2.153257E-6 Value Lagrange Function 0.3300307155
Maximum Gradient of the 2.0904556E-6 Slope of Search Direction -2.607736E-9
Lagran Func

PROC NLP: Nonlinear Minimization

Value of Objective Function = 0.3300307168

Value of Lagrange Function = 0.3300307155

Figure 5.5. Least-Squares with Bounds, Linear and Nonlinear Constraints, Itera-
tion History
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Figure 5.6 shows the solution to this problem.

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient Gradient
Objective Lagrange

N Parameter Estimate Function Function

1 x1 0.246955 0.753051 0.000002683
2 x2 0.030493 -3.049335 0.000000663

Value of Objective Function = 0.33003072

Value of Lagrange Function = 0.3300307155

Linear Constraints Evaluated at Solution

1 0.32255 = 0.6000 - 1.0000 * x1 - 1.0000 * x2

Values of Nonlinear Constraints

Lagrange
Constraint Value Residual Multiplier

[ 2 ] c1_G 2.941E-9 2.941E-9 1.5247 Active NLIC

Figure 5.6. Least-Squares with Bounds, Linear and Nonlinear Constraints, Solu-
tion

A Simple Maximum Likelihood Example
The following is a very simple example of a maximum likelihood estimation problem
with the log likelihood function:

l(�; �) = � log(�)� 1

2
(
x� �

�
)2

The maximum likelihood estimates of the parameters� and� is the solution to

max
�;�>0

X
i

li(�; �)

where

li(�; �) = � log(�)� 1

2
(
xi � �

�
)2

In the following DATA step, values forx are input into SAS data set X; this data set
provides the values ofxi.

data x;
input x @@;
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datalines;
1 3 4 5 7
;

In the following statements, the DATA=X specification drives the building of the ob-
jective function. When each observation in the DATA=X data set is read, a new term
li(�; �) using the value ofxi is added to the objective function LOGLIK specified in
the MAX statement.

proc nlp data=x vardef=n covariance=h pcov phes;
profile mean sigma / alpha=.5 .1 .05 .01;
max loglik;
parms mean=0, sigma=1;
bounds sigma > 1e-12;
loglik=-0.5*((x-mean)/sigma)**2-log(sigma);

run;

After a few iterations of the default Newton-Raphson optimization algorithm, PROC
NLP procedure produces the following results.

PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.894427 4.472136 0.006566
2 sigma 2.000000 0.632456 3.162278 0.025031

Optimization Results
Parameter Estimates

Gradient
Objective

Function

-1.33149E-10
5.6064146E-9

Value of Objective Function = -5.965735903

Figure 5.7. Maximum Likelihood Estimates

In unconstrained maximization, the gradient (that is, the vector of first derivatives) at
the solution must be very close to zero and the Hessian matrix at the solution (that is,
the matrix of second derivatives) must have nonpositive eigenvalues.
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Hessian Matrix

mean sigma

mean -1.250000003 1.33149E-10
sigma 1.33149E-10 -2.500000014

Determinant = 3.1250000245

Matrix has Only Negative Eigenvalues

Figure 5.8. Hessian Matrix

Under reasonable assumptions, the approximate standard errors of the estimates are
the square roots of the diagonal elements of the covariance matrix of the parameter
estimates which (because of the COV=H specification) is the same as the inverse of
the Hessian matrix:

Covariance Matrix 2: H = (NOBS/d) inv(G)

mean sigma

mean 0.7999999982 4.260769E-11
sigma 4.260769E-11 0.3999999978

Factor sigm = 1

Determinant = 0.3199999975

Matrix has 2 Positive Eigenvalue(s)

Figure 5.9. Covariance Matrix

The PROFILE statement computes the values of the profile likelihood confidence
limits on SIGMA and the MEAN as specified.
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Matrix has 2 Positive Eigenvalue(s)

Wald and PL Confidence Limits

Profile Likelihood
N Parameter Estimate Alpha Confidence Limits

1 mean 4.000000 0.500000 3.384431 4.615569
1 mean . 0.100000 2.305716 5.694284
1 mean . 0.050000 1.849538 6.150462
1 mean . 0.010000 0.670351 7.329649
2 sigma 2.000000 0.500000 1.638972 2.516078
2 sigma . 0.100000 1.283506 3.748633
2 sigma . 0.050000 1.195936 4.358321
2 sigma . 0.010000 1.052584 6.064107

Wald and PL Confidence Limits

Wald Confidence Limits

3.396718 4.603282
2.528798 5.471202
2.246955 5.753045
1.696108 6.303892
1.573415 2.426585
0.959703 3.040297
0.760410 3.239590
0.370903 3.629097

Figure 5.10. Confidence Limits
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Syntax

The following statements are used with the NLP procedure:

PROC NLP options ;
MIN function names ;
MAX function names ;
LSQ function names ;
MINQUAD matrix, vector, or number ;
MAXQUAD function names ;
DECVAR function names ;
VAR function names ;
PARMS function names ;
PARAMETERS function names ;
ARRAY function names ;
BOUNDS boundary constraints ;
BY variables ;
CRPJAC variables ;
GRADIENT variables ;
HESSIAN variables ;
INCLUDE model files ;
JACNLC variables ;
JACOBIAN function names ;
LABEL decision variable labels ;
LINCON linear constraints ;
MATRIX matrix specification ;
NLINCON nonlinear constraints ;
PROFILE profile specification ;
Program Statements ;

Functional Summary

The following table outlines the options in the NLP statement classified by function.

Description Option

Input Data Set Specifications
data set DATA=
initial values and constraints INEST=
quadratic objective function INQUAD=
program statements MODEL=
skip missing value observations NOMISS

Output Data Set Specifications
variables and derivatives OUT=
result parameter values OUTEST=
program statements OUTMODEL=
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Description Option

combining various OUT... statements OUTALL
CRP Jacobian to OUTEST= data set OUTCRPJAC
derivatives in the OUT= data set OUTDER
grid in the OUTEST= data set OUTGRID
Hessian to OUTEST= data set OUTHESSIAN
iterative output to the OUTEST= data set OUTITER
Jacobian in the OUTEST= data set OUTJAC
NLC Jacobian in the OUTEST= data set OUTNLCJAC
time in the OUTEST= data set OUTTIME

Optimization Specifications
minimization method TECHNIQUE=
update technique UPDATE=
version of optimization technique VERSION=
line-search method LINESEARCH=
line-search precision LSPRECISION=
type of Hessian scaling HESCAL=
start for approximated Hessian INHESSIAN=
iteration number for update restart RESTART=

Initial Value Specifications
best grid point number BEST=
infeasible points in grid search INFEASIBLE=
pseudorandom initial values RANDOM=
constant initial values INITIAL=

Derivatives Specifications
finite-difference derivatives FD[=]
finite-difference derivatives FDHESSIAN[=]
compute finite-difference interval FDINT=
use only diagonal of Hessian DIAHES
test gradient specification GRADCHECK[=]

Constraint Specifications
range for active constraints LCEPSILON=
LM tolerance for deactivating LCDEACT=
tolerance for dependent constraints LCSINGULAR=

Termination Criteria Specifications
maximum number of function calls MAXFUNC=
maximum number of iterations MAXITER=
minimum number of iterations MINITER=
upper limit seconds of CPU time MAXTIME=
absolute function convergence criterion ABSCONV=
absolute function convergence criterion ABSFCONV =
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Description Option

absolute gradient convergence criterion ABSGCONV=
absolute parameter convergence criterion ABSXCONV=
relative function convergence criterion FCONV =
relative function convergence criterion FCONV 2=
relative gradient convergence criterion GCONV=
relative gradient convergence criterion GCONV2=
relative parameter convergence criterion XCONV=
used in FCONV , GCONV criterion FSIZE=
used in XCONV criterion XSIZE=

Covariance Matrix Specifications
kind of covariance matrix COVARIANCE=
�2 factor of COV matrix SIGSQ=
determines factor of COV matrix VARDEF=
absolute singularity for inertia ASINGULAR=
relative M singularity for inertia MSINGULAR=
relative V singularity for inertia VSINGULAR=
threshold for Moore-Penrose inverse G4
tolerance for singular COV matrix COVSING=
profile confidence limits CLPARM=

Printed Output Specifications
print (almost) all printed output PALL
suppresses all printed output NOPRINT
reduces some default output PSHORT
reduces most default output PSUMMARY
initial values PINIT
optimization history PHISTORY
Jacobian matrix PJACOBI
crossproduct Jacobian matrix PCRPJAC
Hessian matrix PHESSIAN
Jacobian of nonlinear constraints PNLCJAC
values of grid points PGRID
values of functions in LSQ, MIN, MAX PFUNCTION
approximate standard errors PSTDERR
covariance matrix PCOV
eigenvalues for covariance matrix PEIGVAL
prints code evaluation problems PERROR
model program, variables LIST
compiled model program LISTCODE

Step Length Specifications
damped steps in line-search DAMPSTEP[=]
maximum trust-region radius MAXSTEP=
initial trust-region radius INSTEP=
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Description Option

Miscellaneous Options
number accurate digits in objective function FDIGITS=
number accurate digits in nonlinear constraints CDIGITS=
general singularity criterion SINGULAR=
do not compute inertia of matrices NOEIGNUM
check optimality in neighborhood OPTCHECK[=]

PROC NLP Statement

This statement invokes the NLP procedure.

PROC NLP options ;

The following options are used with the PROC NLP statement.

ABSCONV=r
ABSTOL= r

specifies an absolute function convergence criterion. For minimization (maximiza-
tion), termination requiresf(x(k)) � (�)r: The default value of ABSTOL is the
negative (positive) square root of the largest double precision value.

ABSFCONV =r[n]
ABSFTOL= r[n]

specifies an absolute function convergence criterion. For all techniques except NM-
SIMP, termination requires a small change of the function value in successive itera-
tions:

jf(x(k�1))� f(x(k))j � r

For the NMSIMP technique the same formula is used, butx(k) is defined as the vertex
with the lowest function value, andx(k�1) is defined as the vertex with the highest
function value in the simplex. The default value isr = 0. The optional integer
valuen specifies the number of successive iterations for which the criterion must be
satisfied before the process can be terminated.

ABSGCONV=r[n]
ABSGTOL= r[n]

specifies the absolute gradient convergence criterion. Termination requires the maxi-
mum absolute gradient element to be small:

max
j
jgj(x(k))j � r

This criterion is not used by the NMSIMP technique. The default value isr = 1e�5.
The optional integer valuen specifies the number of successive iterations for which
the criterion must be satisfied before the process can be terminated.
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ABSXCONV=r[n]
ABSXTOL= r[n]

specifies the absolute parameter convergence criterion. For all techniques except NM-
SIMP, termination requires a small Euclidean distance between successive parameter
vectors,

k x(k) � x(k�1) k2� r

For the NMSIMP technique, termination requires either a small length�(k) of the
vertices of a restart simplex

�(k) � r

or a small simplex size
�(k) � r

where the simplex size�(k) is defined as the L1 distance of the simplex vertexy(k)

with the smallest function value to the othern simplex pointsx(k)l 6= y(k):

�(k) =
X
xl 6=y

k x(k)l � y(k) k1

The default value isr = 1e�4 for the COBYLA NMSIMP technique,r = 1e�8 for
the standard NMSIMP technique, andr = 0 otherwise. The optional integer valuen
specifies the number of successive iterations for which the criterion must be satisfied
before the process can be terminated.

ASINGULAR= r
ASING=r

specifies an absolute singularity criterion for measuring singularity of Hessian and
crossproduct Jacobian and their projected forms, which may have to be converted to
compute the covariance matrix. The default is the square root of the smallest positive
double precision value. For more information, see the section “Covariance Matrix”
on page 451.

BEST=i
produces thei best grid points only. This option not only restricts the output, it
also can significantly reduce the computation time needed for sorting the grid point
information.

CDIGITS=r
specifies the number of accurate digits in nonlinear constraint evaluations. Fractional
values such as CDIGITS=4.7 are allowed. The default value isr=-log10(�), where�
is the machine precision. The value ofr is used to compute the interval sizeh for the
computation of finite-difference approximations of the Jacobian matrix of nonlinear
constraints.

CLPARM= PL | WALD | BOTH
The CLPARM = option is similar to but not the same as that used by other SAS
procedures. Using CLPARM=BOTH is equivalent to specifying

PROFILE / ALPHA=0.5 0.1 0.05 0.01 OUTTABLE;
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The CLMPARM=BOTH option specifies that PL CLs for all parameters and for
� = :5; :1; :05; :01 are computed and displayed or written to the OUTEST= data set.
Computing the profile confidence limits for all parameters can be very expensive and
should be avoided when a difficult optimization problem or one with many parame-
ters is solved. The OUTTABLE option is valid only when an OUTEST= data set is
specified in the PROC NLP statement. For CLPARM=BOTH, the table of displayed
output contains the Wald confidence limits computed from the standard errors as well
as the PL CLs. The Wald confidence limits are not computed (displayed or written
to the OUTEST= data set) unless the approximate covariance matrix of parameters is
computed.

COVARIANCE=1 | 2 | 3 | 4 | 5 | 6 | M | H | J | B | E | U
COV=1 | 2 | 3 | 4 | 5 | 6 | M | H | J | B | E | U

specifies one of six formulas for computing the covariance matrix. For more infor-
mation, see the section “Covariance Matrix” on page 451.

COVSING=r > 0
specifies a threshold that determines whether the eigenvalues of a singular Hessian
matrix or crossproduct Jacobian matrix are considered to be zero. For more informa-
tion, see the section “Covariance Matrix” on page 451.

DAMPSTEP[=r]
DS[=r]

specifies that the initial step size value�(0) for each line-search (used by the
QUANEW, HYQUAN, CONGRA, or NEWRAP technique) cannot be larger than
r times the step size value used in the former iteration. If the DAMPSTEP option
is specified but not factorr, the default isr = 2. The DAMPSTEP=r option can
prevent the line-search algorithm from repeatedly stepping into regions where some
objective functions are difficult to compute or where they could lead to floating point
overflows during the computation of objective functions and their derivatives. The
DAMPSTEP=r option can save time-costly function calls during the line-searches
of objective functions that result in very small step. For more information, see the
section “Restricting the Step Length” on page 447.

DATA=SAS-data-set
allows variables from the specified data set to be used in the specification of the
objective functionf . For more information, see the section “DATA= Input Data Set”
on page 455.

DIAHES
specifies that only the diagonal of the Hessian or crossproduct Jacobian is used. This
saves function evaluations but may considerably slow the convergence process. Note
that the DIAHES option refers to both the Hessian and the crossproduct Jacobian
when using the LSQ statement. When derivatives are specified using the HESSIAN
or CRPJAC statement, these statements must refer only to then diagonal derivative
elements (otherwise, then(n+ 12)=2 derivatives of the lower triangle must be spec-
ified). The DIAHES option is ignored if a quadratic programming with a constant
Hessian is specified by TECH=QUADAS or TECH=LICOMP.
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FCONV =r[n]
FTOL=r[n]

specifies the relative function convergence criterion. For all techniques except NM-
SIMP, termination requires a small relative change of the function value in successive
iterations,

jf(x(k))� f(x(k�1))j
max(jf(x(k�1))j;FSIZE)

� r

where FSIZE is defined by the FSIZE= option. For the NMSIMP technique, the
same formula is used, butx(k) is defined as the vertex with the lowest function value,
andx(k�1) is defined as the vertex with the highest function value in the simplex.
The default value isr=10�FDIGITS where FDIGITS is the value of the FDIGITS=
option. The optional integer valuen specifies the number of successive iterations for
which the criterion must be satisfied before the process can be terminated.

FCONV 2=r[n]
FTOL2=r[n]

specifies another function convergence criterion. For least-squares problems and all
techniques except NMSIMP, termination requires a small predicted reduction

df (k) � f(x(k))� f(x(k) + s(k))

of the objective function. The predicted reduction

df (k) = �g(k)T s(k) � 1

2
s(k)TG(k)s(k)

= �1

2
s(k)T g(k)

� r

is based on approximating the objective functionf by the first two terms of the Taylor
series and substituting the Newton step

s(k) = �G(k)�1g(k)

For the NMSIMP technique, termination requires a small standard deviation of the

function values of then+ 1 simplex verticesx(k)l , l = 0; : : : ; n,

s
1

n+ 1

X
l

(f(x
(k)
l )� f(x(k)))2 � r

wheref(x(k)) = 1
n+1

P
l f(x

(k)
l ). If there arenact boundary constraints active at

x(k), the mean and standard deviation are computed only for then + 1 � nact un-
constrained vertices. The default value isr=1e-6 for the NMSIMP technique and the
QUANEW technique with nonlinear constraints andr = 0 otherwise. The optional
integer valuen specifies the number of successive iterations for which the criterion
must be satisfied before the process can be terminated.
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FD[=FORWARD | CENTRAL | number]
specifies that all derivatives be computed using finite difference approximations. The
following specifications are permitted:

FD=FORWARD uses forward differences.

FD=CENTRAL uses central differences.

FD=number uses central differences for the initial and final evaluations of the
gradient, Jacobian, and Hessian. During iteration, start with for-
ward differences and switch to a corresponding central-difference
formula during the iteration process when one of the following two
criteria is satisfied:

� The absolute maximum gradient element is less than or equal
to numbertimes the ABSGTOL threshold.

� The term left of the GTOL criterion is less than or equal to
max(1:0E � 6;number�GTOL threshold). The1:0E � 6 en-
sures that the switch is done, even if you set the GTOL thresh-
old to zero.

FD is equivalent to FD=100.

Note that the FD and FDHESSIAN options cannot apply at the same time. The FD-
HESSIAN option is ignored when only first-order derivatives are used, for example,
when the LSQ statement is used and the HESSIAN is not explicitly needed (displayed
or written to a data set). For more information, see the section “Finite-Difference Ap-
proximations of Derivatives” on page 439.

FDHESSIAN[=FORWARD | CENTRAL]
FDHES[=FORWARD | CENTRAL]
FDH[=FORWARD | CENTRAL]

specifies that second-order derivatives be computed using finite difference approxi-
mations based on evaluations of the gradients.

FDHESSIAN=FORWARD uses forward differences.

FDHESSIAN=CENTRAL uses central differences.

FDHESSIAN uses forward differences for the Hessian except for the initial and
final output.

Note that the FD and FDHESSIAN options cannot apply at the same time. For more
information, see the section “Finite-Difference Approximations of Derivatives” on
page 439

FDIGITS=r
specifies the number of accurate digits in evaluations of the objective function. Frac-
tional values such as FDIGITS=4.7 are allowed. The default value isr=-log10(�),
where� is the machine precision. The value ofr is used to compute the interval size
h for the computation of finite-difference approximations of the derivatives of the
objective function and for the default value of the FCONV = option.
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FDINT= OBJ | CON | ALL
specifies how the finite difference intervalsh should be computed. For FDINT=OBJ,
the intervalh is based on the behavior of the objective function; for FDINT=CON,
the intervalh is based on the behavior of the nonlinear constraints functions; and for
FDINT=ALL, the intervalh is based on the behavior of the objective function and
the nonlinear constraints functions. For more information, see the section “Finite-
Difference Approximations of Derivatives” on page 439.

FSIZE=r
specifies the FSIZE parameter of the relative function and relative gradient termina-
tion criteria. The default value isr = 0. For more details, see the FCONV = and
GCONV= options in the the section “PROC NLP Statement” on page 386.

G4=n > 0
The G4= option is used when the covariance matrix is singular. The valuen deter-
mines which generalized inverse is computed. The default value ofn is 60. For more
information, see the section “Covariance Matrix” on page 451.

GCONV=r[n]
GTOL=r[n]

specifies the relative gradient convergence criterion. For all techniques except the
CONGRA and NMSIMP techniques, termination requires that the normalized pre-
dicted function reduction is small,

g(x(k))T [G(k)]�1g(x(k))

max(jf(x(k))j;FSIZE)
� r

where FSIZE is defined by the FSIZE= option. For the CONGRA technique (where
a reliable Hessian estimateG is not available)

k g(x(k)) k22 k s(x(k)) k2
k g(x(k))� g(x(k�1)) k2 max(jf(x(k))j;FSIZE)

� r

is used. This criterion is not used by the NMSIMP technique. The default value is
r = 1e�8. The optional integer valuen speicfies the number of successive iterations
for which the criterion must be satisfied before the process can be terminated.

GCONV2=r[n]
GTOL2=r[n]

specifies another relative gradient convergence criterion.

max
j

jgj(x(k))jq
f(x(k))G

(k)
j;j

� r

This option is valid only when using the TRUREG, LEVMAR, NRRIDG, and
NEWRAP techniques on least-squares problems. The default value isr = 0. The
optional integer valuen specifies the number of successive iterations for which the
criterion must be satisfied before the process can be terminated.
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GRADCHECK[= NONE | FAST | DETAIL]
GC[= NONE | FAST | DETAIL]

Specifying GRADCHECK= DETAIL computes a test vector and test matrix to check
whether the gradientg specified by a GRADIENT (or indirectly by a JACOBIAN)
statement is appropriate for the functionf computed by the program statements. If
the specification of the first derivatives is correct, the elements of the test vector and
test matrix should be relatively small. For very large optimization problems, the al-
gorithm can be too expensive in terms of computer time and memory. If the GRAD-
CHECK option is not specified, a fast derivative test identical to the GRADCHECK=
FAST specification is performed by default. It is possible to suppress the default
derivative test by specifying GRADCH=NONE. For more information, see the sec-
tion “Testing the Gradient Specification” on page 442.

HESCA=0j1j2j3
HS=0j1j2j3

specifies the scaling version of the Hessian or crossproduct Jacobian matrix used in
NRRIDG, TRUREG, LEVMAR, NEWRAP, or DBLDOG optimization. If the value
of the HS=option is not equal to zero, the first iteration and each restart iteration sets

the diagonal scaling matrixD(0) = diag(d
(0)
i ):

d
(0)
i =

q
max(jG(0)

i;i j; �)

whereG(0)
i;i are the diagonal elements of the Hessian or crossproduct Jacobian matrix.

In every other iteration, the diagonal scaling matrixD(0) = diag(d
(0)
i ) is updated

depending on the HS=option:

HS=0 specifies that no scaling is done.

HS=1 specifies the Moré (1978) scaling update:

d
(k+1)
i = max(d

(k)
i ;

q
max(jG(k)

i;i j; �))

HS=2 specifies the Dennis, Gay, & Welsch (1981) scaling update:

d
(k+1)
i = max(0:6 � d(k)i ;

q
max(jG(k)

i;i j; �))

HS=3 specifies thatdi is reset in each iteration:

d
(k+1)
i =

q
max(jG(k)

i;i j; �)

where� is the relative machine precision. The default value is HS=1 for LEVMAR
minimization and HS=0 otherwise. Scaling of the Hessian or crossproduct Jacobian
matrix can be time-consuming in the case where general linear constraints are active.
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INEST=SAS-data-set
INVAR=SAS-data-set
ESTDATA=SAS-data-set

can be used to specify the initial values of the parameters defined in a PARMS or
VAR statement as well as simple boundary constraints and general linear constraints.
The INEST= data set can contain additional variables with names corresponding to
constants used in the program statements. At the beginning of each run of PROC NLP,
the values of the constants are read from the PARMS observation, initializing the
constants in the program statements. For more information, see the section “INEST=
Input Data Set” on page 455.

INFEASIBLE
IFP

specifies that the function values of both feasible and infeasible grid points are to
be computed, displayed, and written to the OUTEST= or OUTVAR= data set, al-
though only the feasible grid points are candidates for the starting pointx(0). This
option enables you to explore the shape of the objective function of points surround-
ing the feasible region. For the output, the grid points are sorted first with decreas-
ing values of the maximum constraint violation. Points with the same value of the
maximum constraint violation are then sorted with increasing (minimization) or de-
creasing (maximization) value of the objective function. Using the BEST= option
restricts only the number of best grid points in the displayed output, not those in the
data set. The INFEASIBLE option affects both the displayed output and the output
saved to the OUTEST= data set. The OUTGRID option can be used to write the
grid points and their function values to an OUTEST= or OUTVAR= data set. After
small modifications (deleting unneeded information), this data set can be used with
the G3D procedure of the SAS/GRAPHR
 product to generate a three-dimensional
surface plot of the objective function depending on two selected parameters. For
more information on grids, see the section “DECVAR Statement” on page 418.

INHESSIAN[=r]
INHESS[=r]

specifies how the initial estimate of the approximate Hessian is defined for the quasi-
Newton techniques QUANEW, DBLDOG, and HYQUAN. There are two alterna-
tives:

� The= r specification is not used: the initial estimate of the approximate Hes-
sian is set to the true Hessian or crossproduct Jacobian atx(0).

� The= r specification is used: the initial estimate of the approximate Hessian
is set to the multiple of the identity matrixrI.

By default, if INHESSIAN=r is not specified, the initial estimate of the approximate
Hessian is set to the multiple of the identity matrixrI, where the scalarr is computed
from the magnitude of the initial gradient. For most applications, this is a sufficiently
good first approximation.
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INITIAL=r
specifies a valuer as the common initial value for all parameters for which no other
initial value assignments by the PARMS or VAR statement or an INEST= (or IN-
VAR= or ESTDATA=) data set are made. For more information, see the description
of the INITIAL option in the section “PROC NLP Statement” on page 386.

INQUAD=SAS-data-set
can be used to specify (the nonzero elements of) the matrixH, vectorg, and scalarc
of a quadratic programming problem,f(x) = 1

2x
THx+gTx+c. This option cannot

be used together with the NLINCON statement. Two forms (denseandsparse) of the
INQUAD= data set can be used. For more information,see the section “INQUAD=
Input Data Set” on page 456.

INSTEP=r
For highly nonlinear objective functions, such as the EXP function, the default initial
radius of the trust-region algorithm TRUREG, DBLDOG, or LEVMAR or the default
step length of the line-search algorithms can result in arithmetic overflows. If this
occurs, decreasing values of0 < r < 1 should be specified, such as INSTEP=1e� 1,
INSTEP=1e� 2, INSTEP=1e� 4, and so on, until the iteration starts successfully.

� For trust-region algorithms (TRUREG, DBLDOG, LEVMAR) the INSTE=P
option specifies a factorr > 0 for the initial radius�(0) of the trust region.
The default initial trust-region radius is the length of the scaled gradient. This
step corresponds to the default radius factor ofr = 1.

� For line-search algorithms (NEWRAP, CONGRA, QUANEW, HYQUAN) the
INSTEP= option specifies an upper bound for the initial step length for the line-
search during the first five iterations. The default initial step length isr = 1.

� For the Nelder-Mead simplex algorithm, using TECH= NMSIMP, the
INSTEP=r option defines the size of the initial simplex.

For more details, see the section “Computational Problems” on page 449.

LCDEACT=r
LCD=r

specifies a thresholdr for the Lagrange multiplier that decides whether an active
inequality constraint remains active or can be deactivated. For a maximization (min-
imization), an active inequality constraint can be deactivated only if its Lagrange
multiplier is greater (less) than the threshold valuer. For maximization,r must be
greater than zero; for minimization,r must be smaller than zero. The default value is

r = �min(0:01;max(0:1 � ABSGCONV ; 0:001 � gmax(k)))

where the+ stands for maximization, the� for minimization, ABSGCONV is the
value of the absolute gradient criterion, andgmax(k) is the maximum absolute ele-
ment of the (projected) gradientg(k) orZT g(k).
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LCEPSILON=r > 0
LCEPS=r > 0
LCE=r > 0

specifies the range for active and violated boundary and linear constraints. During
the optimization process, the introduction of rounding errors can force PROC NLP
to increase the value ofr by a factor of 10, 100,... If this happens it is indicated by
a message written to the log. For more information, see the section “Linear Comple-
mentarity (LICOMP)” on page 432.

LCSINGULAR= r > 0
LCSING=r > 0
LCS=r > 0

specifies a criterionr used in the update of the QR decomposition that decides
whether an active constraint is linearly dependent on a set of other active constraints.
The default value isr = 1e�8. The largerr becomes, the more the active constraints
are recognized as being linearly dependent. If the value ofr is larger than0:1, it is
reset to0:1.

LINESEARCH=i
LIS=i

specifies the line-search method for the CONGRA, QUANEW, HYQUAN, and
NEWRAP optimization techniques. Refer to Fletcher (1987) for an introduction to
line-search techniques. The value ofi can be1; : : : ; 8. For CONGRA, QUANEW,
and NEWRAP, the default value isi = 2. A special line-search method is the default
for the least-squares technique HYQUAN that is based on an algorithm developed
by Lindström & Wedin (1984). Although it needs more memory, this default line-
search method sometimes works better with large least-squares problems. However,
by specifying LIS=i, i = 1; : : : ; 8, it is possible to use one of the standard techniques
with HYQUAN.

LIS=1 specifies a line-search method that needs the same number of func-
tion and gradient calls for cubic interpolation and cubic extrapola-
tion.

LIS=2 specifies a line-search method that needs more function than gra-
dient calls for quadratic and cubic interpolation and cubic extrap-
olation; this method is implemented as shown in Fletcher (1987)
and can be modified to an exact line-search by using the LSPRE-
CISION= option.

LIS=3 specifies a line-search method that needs the same number of func-
tion and gradient calls for cubic interpolation and cubic extrapola-
tion; this method is implemented as shown in Fletcher (1987) and
can be modified to an exact line-search by using the LSPRECI-
SION= option.

LIS=4 specifies a line-search method that needs the same number of func-
tion and gradient calls for stepwise extrapolation and cubic inter-
polation.

LIS=5 specifies a line-search method that is a modified version of LIS=4.
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LIS=6 specifies golden section line-search (Polak 1971), which uses only
function values for linear approximation.

LIS=7 specifies bisection line-search (Polak 1971), which uses only func-
tion values for linear approximation.

LIS=8 specifies the Armijo line-search technique, (Polak 1971) which
uses only function values for linear approximation.

LIST
displays the model program and variable lists. The LIST option is a debugging feature
and is not normally needed. This output is not included in either the default output or
the output specified by the PALL option.

LISTCODE
diplays the derivative tables and the compiled program code. The LISTCODE option
is a debugging feature and is not normally needed. This output is not included in
either the default output or the output specified by the PALL option. The option is
similar to that used in MODEL procedure in SAS/ETS software.

LSPRECISION=r
LSP=r

specifies the degree of accuracy that should be obtained by the line-search algorithms
LIS=2 and LIS=3. Usually an imprecise line-search is inexpensive and sufficient for
convergence to the optimum. For difficult optimization problems, a more precise
and expensive line-search may be necessary (Fletcher 1987). The second (default for
NEWRAP, QUANEW, and CONGRA) and third line-search methods approach exact
line-search for small LSPRECISION= values. In the presence of numerical problems,
it is advised to decrease the LSPRECISION= value to obtain a more precise line-
search. The default values are as follows.

TECH= UPDATE= LSP default
QUANEW DBFGS, BFGS r = 0.4
QUANEW DDFP, DFP r = 0.06
HYQUAN DBFGS r = 0.1
HYQUAN DDFP r = 0.06
CONGRA all r = 0.1
NEWRAP no update r = 0.9

For more details, refer to Fletcher (1987).

MAXFUNC=i
MAXFU=i

specifies the maximum numberi of function calls in the optimization process. The
default values are

� TRUREG, LEVMAR, NRRIDG, NEWRAP: 125

� QUANEW, HYQUAN, DBLDOG: 500

� CONGRA, QUADAS: 1000

� NMSIMP: 3000
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Note that the optimization can be terminated only after completing a full iteration.
Therefore, the number of function calls that are actually performed can exceed the
number that is specified by the MAXFUNC= option.

MAXITER=i[n]
MAXIT=i[n]

specifies the maximum numberi of iterations in the optimization process. The default
values are:

� TRUREG, LEVMAR, NRRIDG, NEWRAP: 50

� QUANEW, HYQUAN, DBLDOG: 200

� CONGRA, QUADAS: 400

� NMSIMP: 1000

This default value is valid also wheni is specified as a missing value. The optional
second valuen is valid only for TECH= QUANEW with nonlinear constraints. It
specifies an upper boundn for the number of iterations of an algorithm used to reduce
the violation of nonlinear constraints at a starting point. The default value isn=20.

MAXSTEP=r[n]
specifies an upper bound for the step length of the line-search algorithms during the
first n iterations. By default,r is the largest double precision value andn is the
largest integer available. Setting this option can reduce the speed of convergence for
TECH=CONGRA, TECH=QUANEW, TECH=HYQUAN, and TECH=NEWRAP.

MAXTIME=r
specifies an upper limit ofr seconds of CPU time for the optimization process. The
default value is the largest floating point double representation of the computer. Note
that the time specified by the MAXTIME= option is checked only once at the end
of each iteration. Therefore, the actual running time of the PROC NLP job may
be longer than that specified by the MAXTIME= option. The actual running time
includes the rest of the time needed to finish the iteration, time for the output of the
(temporary) results, and (if required) the time for saving the results in an OUTEST=
or OUTVAR= data set. Using the MAXTIME= option with a permanent OUTEST=
data set enables you to separate large optimization problems into a series of smaller
problems that need smaller amounts of CPU time.

MINITER=i
MINIT=i

specifies the minimum number of iterations. The default value is zero. If more itera-
tions than are actually needed are requested for convergence to a stationary point, the
optimization algorithms can behave strangely. For example,the effect of rounding er-
rors can prevent the algorithm from continuing for the required number of iterations.

MODEL=model-name, model-list
MOD=model-name, model-list
MODFILE=model-name, model-list

reads the program statements from one or more input model files created by previous
PROC NLP steps using the OUTMODEL= option. If it is necessary to include the
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program code at a special location in newly written code, the INCLUDE statement
can be used instead of using the MODEL= option. Using both the MODEL= option
and the INCLUDE statement with the same model file will include the same model
twice, which can produce different results than including it once. The MODEL=
option is similar to the option used in PROC MODEL in SAS/ETS software.

MSINGULAR=r > 0
MSING=r > 0

specifies a relative singularity criterion for measuring singularity of Hessian and
crossproduct Jacobian and their projected forms. The default value is1e � 12 if the
SINGULAR= option is not specified andmax(10 � �;1e-4�SINGULAR otherwise.
For more information, see the section “Covariance Matrix” on page 451.

NOEIGNUM
suppresses the computation and output of the determinant and the inertia of the Hes-
sian, crossproduct Jacobian, and covariance matrices. The inertia of a symmetric
matrix are the numbers of negative, positive, and zero eigenvalues. For large applica-
tions, the NOEIGNUM option can save computer time.

NOMISS
is valid only for those variables of the DATA= data set that are referred to in program
statements. If the NOMISS option is specified, observations with any missing value
for those variables are skipped. If the NOMISS option is not specified, the miss-
ing value may result in a missing value of the objective function, implying that the
corresponding BY group of data is not processed.

NOPRINT
NOP

suppresses the output.

OPTCHECK [=r]
computes the function valuesf(xl) of a grid of pointsxl in a small neighborhood of
x�. Thexl are located in a ball of radius ofr aboutx�. If the OPTCHECK optioin
is specified withoutr, the default value isr = 0:1 at the starting point andr = 0:01
at terminating point. If a pointx�l is found with a better function value thanf(x�),
then optimization is restarted atx�l . For more information on grids, see the section
“DECVAR Statement” on page 418.

OUT=SAS-data-set
creates an output data set that contains those variables of a DATA= input data set
referred to in the program statements plus additional variables computed by perform-
ing the program statements of the objective function, derivatives, and nonlinear con-
straints. The OUT= data set can also contain first- and second-order derivatives of
these variables if the OUTDER= option is specified. The variables and derivatives
are evaluated atx�; for TECH=NONE, they are evaluated atx0.

OUTALL
if an OUTEST= data set is specified, this option sets the OUTHESSIAN option if
the MIN or MAX statement is used. If the LSQ statement is used, the OUTALL
option sets the OUTCRPJAC option. If nonlinear constraints are specified using the
NLINCON statement, the OUTALL option sets the OUTNLCJAC option.
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OUTCRPJAC
if an OUTVAR= data set is specified, the crossproduct Jacobian matrix of them
functions composing the least-squares function is written to the OUTVAR= data set.

OUTDER= 0, 1, 2
specifies whether or not derivatives are written to the OUT= data set. For OUT-
DER=2, first- and second-order derivatives are written to the data set; for OUT-
DER=1, only first-order derivatives are written; for OUTDER=0, no derivatives are
written to the data set. The default value is OUTDER=0. Derivatives are evaluated at
x�.

OUTVAR=SAS-data-set
OUTEST=SAS-data-set

creates an output data set that contains the results of the optimization. This is useful
for reporting and for restarting the optimzation in a subsequent execution of the pro-
cedure. Information in the data set can include parameter estimates, gradient values,
constraint information, Lagrangian values, Hessian values, Jacobian values, covari-
ance, standard errors, and confidence intervals.

OUTGRID
writes the grid points and their function values to the OUTEST= data set. By default,
only the feasible grid points points are saved; however, if the INFEASIBLE option is
specified, all feasible and infeasible grid points are saved. Note that the BEST= op-
tion does not affect the output of grid points to the OUTEST= or OUTVAR= data set.
For more information on grids, see the section “DECVAR Statement” on page 418.

OUTHESSIAN
OUTHES

writes the Hessian matrix of the objective function to the OUTEST= data set. If the
Hessian matrix is computed for some other reason (if, for example, the PHESSIAN
option is specified), the OUTHESSIAN option is set by default.

OUTITER
during each iteration writes the parameter estimates, the value of the objective func-
tion, the gradient (if available), and (if OUTTIME is specified) the time in seconds
from the start of the optimization to the OUTEST= or OUTVAR= data set.

OUTJAC
writes the Jacobian matrix of them functions composing the least-squares function to
the OUTEST= or OUTVAR= data set. If the PJAC option is specified, the OUTJAC
option is set by default.

OUTMODEL=model-name
OUTMOD=model-name
OUTM=model-name

the name of an output model file to which the program statements are to be written.
The program statements of this file can be included into the program statements of
a succeeding PROC NLP run using the MODEL= option or the INCLUDE program
statement. The OUTMODEL= option is similar to the option used in PROC MODEL
in SAS/ETS software. Note that the following statements are not part of the program
code that is written to an OUTMODEL= data set: MIN, MAX, LSQ, MINQUAD,
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MAXQUAD, PARMS, BOUNDS, BY, CRPJAC, GRADIENT, HESSIAN, JACNLC,
JACOBIAN, LABEL, LINCON, MATRIX, NLINCON.

OUTNLCJAC
if an OUTEST= or OUTVAR= data set is specified, the Jacobian matrix of the non-
linear constraint functions specified by the NLINCON statement is written to the
OUTEST= data set. If the Jacobian matrix of the nonlinear constraint functions is
computed for some other reason (if, for example, the PNLCJAC option is specified),
the OUTNLCJAC option is set by default.

OUTTIME
if an OUTEST= or OUTVAR= data set is specified and if the OUTITER option is
specified, during each iteration, the time in seconds from the start of the optimization
is written to the OUTEST= or OUTVAR= data set.

PALL
ALL

displays all optional output except the output generated by the PSTDERR , PCOV ,
LIST, or LISTCODE option.

PCOV
diplays the covariance matrix specified by the COV= option. The PCOV option is set
automatically if the PALL and COV= options are set.

PCRPJAC
PJTJ

diplays then�n crossproduct Jacobian matrixJTJ . If the PALL option is specified
and the LSQ statement is used, this option is set automatically. If general linear
constraints are active at the solution, the projected crossproduct Jacobian matrix is
also displayed.

PEIGVAL
diplays the distribution of eigenvalues if a G4 inverse is computed for the covariance
matrix. The PEIGVAL option is useful for observing which eigenvalues of the matrix
are recognized as zero eigenvalues when the generalized inverse is computed, and it
is the basis for setting the COVSING= option in a subsequent execution of PROC
NLP. For more information, see the section “Covariance Matrix” on page 451

PERROR
the PERROR option specifies additional output for such applications where the pro-
gram code for objective function or nonlinear constraints cannot be evaluated during
the iteration process. The PERROR option is set by default during the evaluations at
the starting point but not during the optimization process.

PFUNCTION
diplays the values of all functions specified in a LSQ, MIN, or MAX statement for
each observation read fom the DATA= input data set. The PALL option sets the
PFUNCTION option automatically.

PGRID
diplays the function values from the grid search. For more information on grids, see
the section “DECVAR Statement” on page 418.
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PHESSIAN
PHES

diplays then� n Hessian matrixG. If the PALL option is specified and the MIN or
MAX statement is used, this option is set automatically. If general linear constraints
are active at the solution, the projected Hessian matrix is also displayed.

PHISTORY
PHIS

diplays the optimization history. No optimization history is displayed for
TECH=LICOMP. This output is included in both the default output and the out-
put specified by the PALL option.

PINIT
PIN

diplays the initial values and derivatives (if available). This output is included in both
the default output and the output specified by the PALL option.

PJACOBI
PJAC

diplays them� n Jacobian matrixJ . Because of the memory requirement for large
least-squares problems, this option is not invoked by using the PALL option.

PNLCJAC
diplays the Jacobian matrix of nonlinear constraints specified by the NLINCON state-
ment. The PNLCJAC option is set automatically if the PALL option is specified.

PSHORT
SHORT
PSH

restricts the amount of default output. If PSHORT is specified, then

� the initial values are not displayed

� the listing of constraints is not displayed

� if there is more than one function in the MIN, MAX, or LSQ statement, their
values are not displayed

� if the GRADCHECK[=DETAIL] option is used, only the test vector is dis-
played

PSTDERR
STDERR
SE

standard errors that are defined as square roots of the diagonal elements of the co-
variance matrix. Thet values and probabilities> jtj are displayed together with the
approximate standard errors. The type of covariance matrix must be specified using
the COV= option. The SIGSQ= option, the VARDEF= option, and the special vari-
ables–NOBS– and–DF– defined in the program statements can be used to define
a scalar factor�2 of the covariance matrix and the approximate standard errors. For
more information, see the section “Covariance Matrix” on page 451.
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PSUMMARY
SUMMARY
SUM

restricts the amount of default displayed output to a short form of iteration history
and notes, warnings and errors.

PTIME
specifies the output of four different but partially overlapping differences of CPU
time:

� total running time

� total time for the evaluation of objective function, nonlinear constraints, and
derivatives: shows the total time spent executing the programming statements
specifying the objective function, derivatives, and nonlinear constraints, and (if
necessary) their firs-t and second-order derivatives. This is the total of the time
needed for code evaluation before, during, and after iterating

� total time for optimization shows the total time spent iterating.

� time for some CMP parsing: shows the time needed for parsing the program
statements and its derivatives. In most applications this is a negligible num-
ber, but for applications that contain ARRAY statements or DO loops or use
an optimization technique with analytic second-order derivatives, it can be a
considerable.

RANDOM=i
specifies a positive integer as a seed value for the pseudorandom number generator.
Pseudorandom numbers are used as initial valuex(0). For more information, see the
section “PROC NLP Statement” on page 386.

RESTART=i > 0
REST=i > 0

specifies that the QUANEW, HYQUAN, or CONGRA algorithm is restarted with a
steepest descent/ascent search direction after at mosti iterations. Default values are
as follows:

� CONGRA: UPDATE=PB: restart is done automatically so specification ofi is
not used.

� CONGRA: UPDATE6=PB: i = min(10n; 80), wheren is the number of pa-
rameters.

� QUANEW, HYQUAN: i is the largest integer available.

SIGSQ=sq > 0
specifies a scalar factor�2 for computing the covariance matrix. If the SIGSQ=
option is specified, VARDEF=N is the default. For more information, see the section
“Covariance Matrix” on page 451.
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SINGULAR=r > 0
SING=r > 0

specifies the singularity criterionr for the inversion of the Hessian matrix and
crossproduct Jacobian. The default value is1e � 8. See the MSINGULAR= and
the VSINGULAR= options in the section “PROC NLP Statement” on page 386.

TECHNIQUE=x
TECH=x

specifies the optimization technique. Valid values for it are as follows:

� CONGRA
chooses one of four different conjugate-gradient optimization algorithms,

which can be more precisely specified with the UPDATE= option and modified
with the LINESEARCH= option. When this option is selected, UPDATE=PB
by default. Forn � 400, CONGRA is the default optimization technique.

� DBLDOG
performs a version of double dogleg optimization, which can be more pre-

cisely specified with the UPDATE= option. When this option is selected, UP-
DATE=DBFGS by default.

� HYQUAN
chooses one of three different hybrid quasi-Newton optimization algorithms

which can be more precisely defined with the VERSION= option and mod-
ified with the LINESEARCH= option. By default,VERSION=2 and UP-
DATE=DBFGS.

� LM
performs the Levenberg-Marquardt minimization. Forn < 40, this is the

default minimization technique for least-squares problems.

� LCP
solves a quadratic program as a linear complementarity problem.

� NMSIMP
performs the Nelder-Mead simplex optimization method.

� NONE
does not perform any optimization. This option can be used

– to do grid search without optimization

– to compute and display derivatives and covariance matrices which cannot
be obtained efficiently with any of the optimization techniques

� NEWRAP
performs the Newton-Raphson optimization technique. The algorithm com-

bines a line-search algorithm with ridging. The line-search algorithm LIS=2 is
the default.
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� NRRIDG
performs the Newton-Raphson optimization technique. Forn � 40 and non-

linear least-squares, this is the default.

� QUADAS performs a special quadratic version of the active set strategy.

� QUANEW
chooses one of four quasi-Newton optimization algorithms which can be de-

fined more precisely with the UPDATE= option and modified with the LINE-
SEARCH= option. This is the default for40 < n < 400 or if there are nonlin-
ear constraints.

� TRUREG
performs the trust region optimization technique.

UPD=method
specifies the update method for the (dual) quasi-Newton, double dogleg, hybrid quasi-
Newton, or conjugate-gradient optimization technique. Not every update method can
be used with each optimizer. For more information, see the section “Optimization
Algorithms” on page 427. Valid values form are as follows:

BFGS performs the original BFGS (Broyden, Fletcher, Goldfarb, & Shanno) update
of the inverse Hessian matrix.

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, & Shanno) update of
the Cholesky factor of the Hessian matrix.

DDFP performs the dual DFP (Davidon, Fletcher, & Powell) update of the Cholesky
factor of the Hessian matrix.

DFP performs the original DFP (Davidon, Fletcher, & Powell) update of the inverse
Hessian matrix.

PB performs the automatic restart update method of Powell (1977) and Beale
(1972).

FR performs the Fletcher-Reeves update (Fletcher 1987).

PR performs the Polak-Ribiere update (Fletcher 1987).

CD performs a conjugate-descent update of Fletcher (1987).

VARDEF=DF,N
specifies the divisord used in the calculation of the covariance matrix and approx-
imate standard errors. If the SIGSQ= option is not specified, the default value is
VARDEF= DF; otherwise, VARDEF=N is default. For more information, see the
section “Covariance Matrix” on page 451.

VERSION=1, 2, 3
VS=1, 2, 3

zx specifies the version of the hybrid quasi-Newton optimization technique or the
version of the quasi-Newton optimization technique with nonlinear constraints.
For hybrid quasi-Newton optimization technique
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VS=1 specifies version HY1 of Fletcher & Xu (1987)

VS=2 specifies version HY2 of Fletcher & Xu (1987)

VS=3 specifies version HY3 of Fletcher & Xu (1987)

For quasi-Newton optimization technique with nonlinear constraints,

VS=1 specifies the update of the� vector like Powell (1978) (update like VF02AD)

VS=2 specifies the update of the� vector like Powell (1982) (update like VMCWD)

In both cases, the default value is VS=2.

VSINGULAR=r > 0
VSING=r > 0

specifies a relative singularity criterion for measuring singularity of Hessian and
crossproduct Jacobian and their projected forms, which may have to be converted
to compute the covariance matrix. The default value for VSING is1e� 8 if the SIN-
GULAR= option is not specified and the value of SINGULAR otherwise. For more
information, see the section “Covariance Matrix” on page 451.

XCONV=r[n]
XTOL=r[n]

specifies the relative parameter convergence criterion. For all techniques except NM-
SIMP, termination requires a small relative parameter change in subsequent iterations,

maxj jx(k)j � x
(k�1)
j j

max(jx(k)j j; jx(k�1)j j;XSIZE)
� r

For the NMSIMP technique, the same formula is used, butx
(k)
j is defined as the vertex

with the lowest function value andx(k�1)j is defined as the vertex with the highest
function value in the simplex. The default value isr = 1e � 8 for the NMSIMP
technique andr = 0 otherwise. The optional integer valuen specifies the number of
successive iterations for which the criterion must be satisfied before the process can
be terminated.

XSIZE=r > 0
specifies the XSIZE parameter of the relative parameter termination criterion. The
default value isr = 0. For more detail, see the XCONV= option in the section
“PROC NLP Statement” on page 386.

ARRAY Statement

ARRAY arrayname [{ dimensions }] [$] [variables and constants] ;

The ARRAY statement is similar to, but not the same as, the ARRAY statement in
the SAS DATA step. The ARRAY statement is used to associate a name (of no more
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than eight characters) with a list of variables and constants. The array name is used
with subscripts in the program to refer to the array elements. The following code
illustrates this

array r[8] r1-r8;

do i = 1 to 8;
r[i] = 0;
end;

The ARRAY statement does not support all the features of the DATA step ARRAY
statement. It cannot be used to give initial values to array elements. Implicit indexing
of variables cannot be used; all array references must have explicit subscript expres-
sions. Only exact array dimensions are allowed; lower-bound specifications are not
supported and a maximum of six dimensions is allowed.

On the other hand, the ARRAY statement does allow both variables and constants to
be used as array elements. (Constant array elements cannot have values assigned to
them.) Both dimension specification and the list of elements are optional, but at least
one must be given. When the list of elements is not given or fewer elements than the
size of the array are listed, array variables are created by suffixing element numbers
to the array name to complete the element list.

BOUNDS Statement

BOUNDS b–con [ , b–con... ] ;

whereb–con := numberoperatorparameter–list operatornumber
or b–con := numberoperatorparameter–list
or b–con := parameter–list operatornumber
and operator :=<=; <;>=; >;=

Boundary constraints are specified with a BOUNDS statement. One- or two-sided
boundary constraints are allowed. The list of boundary constraints are separated by
commas. For example,

bounds 0 <= a1-a9 X <= 1, -1 <= c2-c5;
bounds b1-b10 y >= 0;

More than one BOUNDS statement can be used. If more than one lower (upper)
bound for the same parameter is specified, the maximum (minimum) of these is taken.
If the maximumlj of all lower bounds is larger than the minimum of all upper bounds
uj for the same variablexj , the boundary constraint is replaced byxj := lj :=
min(uj) defined by the minimum of all upper bounds specified forxj .
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BY Statement

BY variables ;

A BY statement can be used with PROC NLP to obtain separate analyses on DATA=
data set observations in groups defined by the BY variables. That means, for values
of the TECH=option other than NONE, an optimization problem is solved for each
BY group separately. When a BY statement appears, the procedure expects the input
DATA= data set to be sorted in order of the BY variables. If the input data set is not
sorted in ascending order, it is necessary to use one of the following alternatives:

� Use the SORT procedure with a similar BY statement to sort the data.

� Use the BY statement option NOTSORTED or DESCENDING in the BY state-
ment for the NLP procedure. As a cautionary note, the NOTSORTED option
does not mean that the data are unsorted but rather that the data are arranged in
groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

� Use the DATASETS procedure (in Base SAS software) to create an index on
the BY variables.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide, Version 6.

CRPJAC Statement

CRPJAC variables ;

The CRPJAC statement defines the crossproduct JacobianJT J matrix used in solv-
ing least-squares problems. For more information, see the section “Derivatives”
on page 426. If the DIAHES option is not specified, the CRPJAC statement lists
n(n+ 1)=2 variable names, which correspond to the elementsJTJj;k; j � k; of the
lower triangle of the symmetric crossproduct Jacobian matrix listed by rows. For
example, the statements

lsq f1-f3;
decvar x1-x3;
crpjac jj1-jj6;

correspond to the crossproduct Jacobian matrix

JTJ =

2
4 JJ1 JJ2 JJ4
JJ2 JJ3 JJ5
JJ4 JJ5 JJ6

3
5
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If the DIAHES option is specified, only then diagonal elements must be listed in the
CRPJAC statement. Then rows and columns of the crossproduct Jacobian matrix
must be in the same order as then corresponding parameter names listed in the DEC-
VAR statement. To specify the values of nonzero derivatives, the variables specified
in the CRPJAC statement have to be defined at the left-hand side of algebraic expres-
sions in programming statements. For example, consider the Rosenbrock Function:

proc nlp tech=levmar;
lsq f1 f2;
decvar x1 x2;
gradient g1 g2;
crpjac cpj1-cpj3;

f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;
g1 = -200 * x1 * (x2 - x1 * x1) - (1 - x1);
g2 = 100 * (x2 - x1 * x1);

cpj1 = 400 * x1 * x1 _ 1 ;
cpj2 = -200 * x1;
cpj3 = 100;

run;

GRADIENT Statement

GRADIENT variables ;

The GRADIENT statement defines the gradient vector which contains the first-order
derivatives of the objective functionf with respect tox1; : : : ; xn. For more infor-
mation, see the section “Derivatives” on page 426. To specify the values of nonzero
derivatives, the variables specified in the GRADIENT statement must be defined at
the left-hand side of algebraic expressions in programming statements. For exam-
ple,consider the Rosenbrock function:

proc nlp tech=congra;
min y;
decvar x1 x2;
gradient g1 g2;

y1 = 10 * (x2 - x1 * x1);
y2 = 1 - x1;

y = .5 * (y1 * y1 + y2 * y2);

g1 = -200 * x1 * (x2 - x1 * x1) - (1 - x1);
g2 = 100 * (x2 - x1 * x1);

run;
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HESSIAN Statement

HESSIAN variables ;

The HESSIAN statement defines the Hessian matrixG containing the second-order
derivatives of the objective functionf with respect tox1; : : : ; xn. For more informa-
tion, see the section “Derivatives” on page 426.

If the DIAHES option is not specified, the HESSIAN statement listsn(n + 1)=2
variable names which correspond to the elementsGj;k; j � k; of the lower triangle
of the symmetric Hessian matrix listed by rows. For example, the statements

min f;
decvar x1 - x3;
hessian g1-g6;

correspond to the Hessian matrix

G =

2
4 G1 G2 G4
G2 G3 G5
G4 G5 G6

3
5 =

2
4 @2f=@x21 @2f=@x1@x2 @2f=@x1@x3
@2f=@x2@x1 @2f=@x22 @2f=@x2@x3
@2f=@x3@x1 @2f=@x3@x2 @2f=@x23

3
5 :

If the DIAHES option is specified, only then diagonal elements must be listed in
the HESSIAN statement. Then rows and columns of the Hessian matrixG must
correspond to the order of then parameter names listed in the DECVAR statement.
To specify the values of nonzero derivatives, the variables specified in the HESSIAN
statement have to be defined in on the left-hand side of algebraic expressions in the
programming statements. For example, consider the Rosenbrock function:

proc nlp tech=nrridg;
min f;
decvar x1 x2;
gradient g1 g2;
hessian h1-h3;

f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

f = .5 * (f1 * f1 + f2 * f2);

g1 = -200 * x1 * (x2 - x1 * x1) - (1 - x1);
g2 = 100 * (x2 - x1 * x1);

h1 = -200 * (x2 - 3 * x1 * x1) + 1;
h2 = -200 * x1;
h3 = 100;

run;
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INCLUDE Statement

INCLUDE model files ;

The INCLUDE statement can be used to append model code to the current model
code. The contents of included model files, created using the OUTMOUDEL= op-
tion, are inserted into the model program at the position in which the INCLUDE
statement appears.

JACNLC Statement

JACNLC variables ;

The JACNLC statement defines the Jacobian matrix for the system of constraint func-
tionsc1(x); : : : ; cmc(x). The statements lists themc �n variable names which corre-
spond to the elementsCJi;j, i = 1; : : : ;mc, j = 1; : : : ; n, of the Jacobian matrix by
rows.

For example, the statements

nlincon c1-c3;
decvar x1-x2;
jacnlc cj1-cj6;

correspond to the Jacobian matrix

CJ =

2
4 CJ1 CJ2
CJ3 CJ4
CJ5 CJ6

3
5 =

2
4 @c1=@x1 @c1=@x2
@c2=@x1 @c2=@x2
@c3=@x1 @c3=@x2

3
5 :

Themc rows of the Jacobian matrix must be in the same order as themc correspond-
ing names of nonlinear constraints listed in the NLINCON statement. Then columns
of the Jacobian matrix must be in the same order as then corresponding parameter
names listed in the DECVAR statement. To specify the values of nonzero deriva-
tives, the variables specified in the JACOBIAN statement have to be defined on the
left-hand side of algebraic expressions in programming statements.

For example,

array cd[3,4] cd1-cd12;
nlincon c1-c3 >= 0;
jacnlc cd1-cd12;

c1 = 8 - x1 * x1 - x2 * x2 - x3 * x3 - x4 * x4 -
x1 + x2 - x3 + x4;

c2 = 10 - x1 * x1 - 2 * x2 * x2 - x3 * x3 - 2 * x4 * x4 +
x1 + x4;

c3 = 5 - 2 * x1 * x2 - x2 * x2 - x3 * x3 - 2 * x1 + x2 + x4;
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cd[1,1]= -1 - 2 * x1; cd[1,2]= 1 - 2 * x2;
cd[1,3]= -1 - 2 * x3; cd[1,4]= 1 - 2 * x4;
cd[2,1]= 1 - 2 * x1; cd[2,2]= -4 * x2;
cd[2,3]= -2 * x3; cd[2,4]= 1 - 4 * x4;
cd[3,1]= -2 - 4 * x1; cd[3,2]= 1 - 2 * x2;
cd[3,3]= -2 * x3; cd[3,4]= 1;

JACOBIAN Statement

JACOBIAN variables ;

The JACOBIAN statement defines the JACOBIAN matrix J for a system of objective
functions. For more information, see the section “Derivatives” on page 426.

The JACOBIAN statement listsm�n variable names that correspond to the elements
Ji;j , i = 1; : : : ;m, j = 1; : : : ; n, of the Jacobian matrix listed by rows.

For example, the statements

lsq f1-f3;
decvar x1 x2;
jacobian j1-j6;

correspond to the Jacobian matrix

J =

2
4 J1 J2
J3 J4
J5 J6

3
5 =

2
4 @f1=@x1 @f1=@x2
@f2=@x1 @f2=@x2
@f3=@x1 @f3=@x2

3
5 :

Them rows of the Jacobian matrix must correspond to the order of them function
names listed in the MIN, MAX, or LSQ statement. Then columns of the Jacobian
matrix must correspond to the order of then decision variables listed in the DEC-
VAR statement. To specify the values of nonzero derivatives, the variables specified
in the JACOBIAN statement have to be defined in the left-hand side of algebraic
expressions in programming statements.

For example, consider the Rosenbrock Function:

proc nlp tech=levmar;
array j[2,2] j1-j4;
lsq f1 f2;
decvar x1 x2;
jacobian j1-j4;

f1 = 10 * (x2 - x1 * x1);
f2 = 1 - x1;

j[1,1] = -20 * x1;
j[1,2] = 10;
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j[2,1] = -1;
j[2,2] = 0; /* is not needed */

run;

The JACOBIAN statement is useful only if more than one objective function is given
in the MIN, MAX, or LSQ statement, or if a DATA= input data set specifies more
than one function. If the MIN, MAX, or LSQ statement contains only one objective
function and no DATA= input data set is used, the JACOBIAN and GRADIENT
statements are equivalent. In the case of least-squares minimization, the crossproduct
Jacobian is used as an approximative Hessian matrix.

LABEL Statement

LABEL variable=’label’ [ ,variable=’label’... ] ;

The LABEL statement can be used to assign labels (up to 40 chararcters) to the de-
cision variables listed in the DECVAR statement. The INVAR= data set can also
be used to assign labels. The labels are attached to the output and are used in an
OUTVAR= data set.

LINCON Statement

LINCONl–con [ , l–con ... ] ;

wherel–con := linear–term operatornumber
or l–con := numberoperator linear–term
for linear–term := < +j� > < number *> parameter< +j� < number *> variable ...>

operator:= <= j < j >= j > j =

The LINCON statement specifies equality or inequality constraints

nX
j=1

aijxjf� j = j �gbi for i = 1; : : : ;m

separated by commas. For example, the constraint4x1 � 3x2 = 0 is expressed as

decvar x1 x2;
lincon 4 * x1 - 3 * x2 = 0;

and the constraints
10x1 � x2 � 10

x1 + 5x2 � 15

are programmed as

decvar x1 x2;
lincon 10 <= 10 * x1 - x2,

x1 + 5 * x2 >= 15;
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MATRIX Statement

MATRIX M–name pattern–definitions ;

The MATRIX statement defines a matrixH and the vectorg, which can be given in
the MINQUAD or MAXQUAD statement. The matrixH and vectorg are initialized
to zero, so that only the nonzero elements are given. The five different forms of the
MATRIX statement are illustrated with the following example.

H =

2
664

100 10 1 0
10 100 10 1
1 10 100 10
0 1 10 100

3
775 g =

2
664

1
2
3
4

3
775 c = 0:

Each MATRIX statement first names the matrix or vector and then lists its elements.
If more than one MATRIX statement is given for the same matrix, then later defini-
tions override the earlier ones.

The rows and columns in matrixH and vectorg correspond to the order of decision
variables in the DECVAR statement.

� Full Matrix Definition : The MATRIX statement consists ofH–name or
g–namefollowed by an equal sign and all (nonredundant) numerical values
of the matrixH or vectorg. Assuming symmetry, only the elements of the
lower triangular part of the matrixH must be listed. This specification should
be used mainly for small problems with almost denseH matrices.

MATRIX H= 100
10 100

1 10 100
0 1 10 100;

MATRIX G= 1 2 3 4;

� Band-diagonal Matrix Definition : This form of pattern definitionis useful
if the H matrix has (almost) constant band-diagonal structure. The MATRIX
statement consists ofH–namefollowed by empty brackets[; ], an equal sign,
and a list ofk + 1 numbers are assigned to the diagonal elements and the
following k numbers are assigned to the adjacentk subdiagonals.

MATRIX H[,]= 100 10 1;
MATRIX G= 1 2 3 4;

� Sparse Matrix Definitions: In each of the following three specification types,
theH–nameor g–nameis followed by a list ofpattern definitionsseparated by
commas. Eachpattern definitionconsists of a location specification in brackets
on the left side of an equal sign that is followed by a list ofk + 1 numbers.

– (Sub)Diagonalwise: This form of pattern definitionis useful if theH
matrix contains nonzero elements along diagonals or subdiagonals. The
starting location is specified by an index pair in brackets[i; j]. Thek + 1
numbers at the right-hand side are assigned to the elements[i; j]; : : : ; [i+
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k; j + k] in a diagonal direction of theH matrix. The special casek = 0
can be used to assign values to single nonzero element locations inH.

MATRIX H [1,1]= 4 * 100,
[2,1]= 3 * 10,
[3,1]= 2 * 1;

MATRIX G [1,1]= 1 2 3 4;

– Columnwise Starting in Diagonal: This form of pattern definitionis
useful if theH matrix contains nonzero elements columnwise starting in
the diagonal. The starting location is specified by only one indexj in
brackets[; j]. Thek + 1 numbers at the right-hand side are assigned to
the elements[j; j]; : : : ; [min(j + k; n); j].

MATRIX H [,1]= 100 10 1,
[,2]= 100 10 1,
[,3]= 100 10,
[,4]= 100;

MATRIX G [,1]= 1 2 3 4;

– Rowwise Starting in First Column: This form of pattern definitionis
useful if theH matrix contains nonzero elements rowwise ending in the
diagonal. The starting location is specified by only one indexi in brackets
[i; ]. Thek+1 numbers at the right-hand side are assigned to the elements
[i; 1]; : : : ; [i;min(k + 1; i)].

MATRIX H [1,]= 100,
[2,]= 10 100,
[3,]= 1 10 100,
[4,]= 0 1 10 100;

MATRIX G [1,]= 1 2 3 4;

MIN, MAX, and LSQ Statement

MIN variables ;
MAX variables ;

LSQ variables ;

The MIN, MAX, or LSQ statement specifies the objective functions. Only one of the
three statements can be used at a time and at least one must be given. The MIN and
LSQ statements are for minimizing the objective function, and the MAX statement is
for maximizing the objective function. The MIN, MAX, or LSQ statement lists one
or more variables naming the objective functionsfi, i = 1; : : : ;m, (later defined by
SAS program code).

� If the MIN or MAX statement listsm function namesf1; : : : ; fm, the objective
functionf is

f(x) =

mX
i=1

fi
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� If the LSQ statement listsm function namesf1; : : : ; fm, the objective function
f is

f(x) =
1

2

mX
i=1

f2i (x)

Note that the LSQ statement can be used only if TECH=LEVMAR or
TECH=HYQUAN.

MINQUAD and MAXQUAD Statements

MINQUAD H–name [ , g–name [ , c–number ] ] ;
MAXQUAD H–name [ , g–name [ , c–number ] ] ;

The MINQUAD and MAXQUAD statements specify theH, g, andc, matrices that
define a quadratic objective function. The MINQUAD statement is for minimizing
the objective and the MAXQUAD statement is for maximizing the objective function.

The rows and columns inH andg correspond to the order of decision variables given
in the DECVAR statement. Specifying the objective function with a MINQUAD or
MAXQUAD statement indirectly defines the analytic derivatives for the objective
function. Therefore, statements specifying derivatives are not valid in these cases.
Also, only use these statements when TECH=LINCOMP or TECH=QUADAS and
no nonlinear constraints are imposed.

There are three ways of using the MINQUAD or MAXQUAD statement:

� Using ARRAY Statements:
The namesH–nameandg–namespecified in the MINQUAD or MAXQUAD
statement can be used in ARRAY statements. This specification is mainly for
small problems with almost denseH matrices.

proc nlp pall;
array h[2,2] .4 0

0 4;
minquad h, -100;
decvar x1 x2 = -1;
bounds 2 <= x1 <= 50,

-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;

run;

� Using Elementwise Setting:
The namesH–nameandg–namespecified in the MINQUAD or MAXQUAD
statement can be followed directly by one-dimensional indices specifying the
corresponding elements of matrixH and vectorg. These element names can
be used at the left side of numerical assignments. The one-dimensional index
valuel following H–namewhich corresponds to the elementHij is computed
by l = (i � 1)n + j; i � j. The matrixH and vectorg are initialized to zero,
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so that only the nonzero elements need be given. This specification is efficient
for small problems with sparseH matrices.

proc nlp pall;
minquad h, -100;
decvar x1 x2;
bounds 2 <= x1 <= 50,

-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;
h1 = .4; h4 = 4;

run;

� Using MATRIX Statements:
The namesH–nameandg–namespecified in the MINQUAD or MAXQUAD
statement can be used in MATRIX statements. There are different ways to
specify the nonzero elements of matrixH and vectorg by MATRIX statements.
The following example illustrates one way to use the MATRIX statement.

proc nlp all;
matrix h[1,1] = .4 4;
minquad h, -100;
decvar x1 x2 = -1;
bounds 2 <= x1 <= 50;

-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;

run;

NLINCON Statement

NLINCON nlcon [ , nlcon ...] [ / option ] ;
NLC nlcon [ , nlcon ...] [ / option ] ;

wherenlcon := numberoperatorvariable–list operatornumber
or nlcon := -number operator variable–list
or nlcon := variable–list operator number
and operator :=<= j < j >= j > j =
and option := SUMOBS | EVERYOBS

General nonlinear equality and inequality constraints are specified with the NLIN-
CON statement. The syntax of the NLINCON statement is similar to that of the
BOUNDS statement with two small additions:

� The BOUNDS statement can contain only the names of decision variables.
The NLINCON statement can also contain the names of continuous functions
of the decision variables. These functions must be computed in the program
statements, and since they can depend on the values of some of the variables in
the DATA= data set there are two possibilities:
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– If the continuous functions should be summed across all observations
read from the DATA= data set, the NLINCON statement must be termi-
nated by the / SUMOBS option.

– If the continuous functions should be evaluated separately for each obser-
vation in the data set, the NLINCON statement must be terminated by the
/ EVERYOBS option. One constraint is generated for each observation
in the data set.

� If the continuous function has to be evaluated only once for the entire data set,
the NLINCON statement has the same form as the BOUNDS statement. If this
constraint does depend on the values of variables in the DATA= data set, it is
evaluated using the data of the first observation.

One- or two-sided constraints can be specified in the NLINCON statement. However,
equality constraints must be one-sided. The pairs of operators (<,<=) and (>,>=)
are treated in the same way.

These three statements require the values of the three functionsv1; v2; v3 to be be-
tween zero and ten, and they are equivalent:

nlincon 0 <= v1 - v3,
v1 - v3 <= 10;

nlincon 0 <= v1 - v3 <= 10;

nlincon 10 >= v1 - v3 >= 0;

Also, consider the Rosen-Suzuki problem. It has three nonlinear inequality con-
straints:

8� x21 � x22 � x23 � x24 � x1 + x2 � x3 + x4 � 0

10� x21 � 2x22 � x23 � 2x24 + x1 + x4 � 0

5� 2x21 � x22 � x23 � 2x1 + x2 + x4 � 0

These are specified as:

nlincon c1 - c3 >= 0;

c1 = 8 - x1 * x1 - x2 * x2 - x3 * x3 - x4 * x4 -
x1 + x2 - x3 + x4;

c2 = 10 - x1 * x1 - 2 * x2 * x2 - x3 * x3 - 2 * x4 * x4 +
x1 + x4;

c3 = 5 - 2 * x1 * x1 - x2 * x2 - x3 * x3 - 2 * x1 + x2 + x4;

Note: QUANEW and NMSIMP are the only optimization subroutines that support
the NLINCON statement.
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DECVAR Statement

DECVAR name–list [=numbers] [, name–list [=numbers] ...] ;
VAR name–list [=numbers] [, name–list [=numbers] ...] ;

PARMS name–list [=numbers] [, name–list [=numbers] ...] ;

PARAMETERS name–list [=numbers] [, name–list [=numbers] ...] ;

The DECVAR statement lists the names of then > 0 decision variables and speci-
fies grid search and initial values for an iterative optimization process. The decision
variables listed in the DECVAR statement cannot also be used in the MIN, MAX,
MINQUAD, MAXQUAD, LSQ, GRADIENT, HESSIAN, JACOBIAN, CRPJAC, or
NLINCON statement.

The DECVAR statement contains a list of decision variable names (not separated by
commas) optionally followed by an equal sign and a list of numbers. If the number list
consists of only one number, this number defines the initial value for all the decision
variables listed to the left of the equal sign.

If the number list consists of more than one number, these numbers specify the grid
locations for each of the decision variables listed left of the equal sign. You can use
the TO and BY keywords to specify a number list for a grid search can be used.
When a grid of points is specified with a DECVAR statement, PROC NLP computes
the objective function value at each grid point and chooses the best (feasible) grid
point as a starting point for the optimization process. The use of the BEST= option
is recommended to save computing time and memory for the storing and sorting of
all grid point information. Usually only feasible grid points are included in the grid
search. If the specified grid contains points located outside the feasible region and
you are interested in the function values at those points, it is possible to use the
INFEASIBLE option to compute (and display) their function values as well.

PROFILE Statement

PROFILE parms [ / [ ALPHA= values ] [ options ] ] ;

whereparms := pnam–1 pnam–2 ... pnam–n
values := list of alpha values in (0,1)
options := additional options

The PROFILE statement

� writes the(x; y) coordinates of profile points for each of the listed parameters
to the OUTEST= data set

� displays, or writes to the OUTEST= data set, the profile likelihood confidence
limits (PL CL) for the listed parameters for the specified� values. If the ap-
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proximate standard errors are available, the corresponding Wald confidence
limits can be computed.

When computing the profile points or likelihood profile confidence intervals, PROC
NLP assumes that a maximization of the log likelihood function is desired. Each point
of the profile and each endpoint of the confidence interval is computed by solving
corresponding nonlinear optimization problems.

The keyword PROFILE must be followed by the names of parameters for which the
profile or the PL CLs should be computed. If the parameter name list is empty, the
profiles and PL CLs for all parameters are computed. Then, optionally, the alpha
values follow. The list of� values may contain TO and BY keywords. Each element
must satisfy0 < � < 1. The following is an example:

profile l11-l15 u1-u5 c /
alpha= .9 to .1 by -.1 .09 to .01 by -.01;

Duplicate� values or values outside(0; 1) are automatically eliminated from the list.

A number of additional options can be specified.

FFACTOR=r specifies the factor relating the discrepancy functionf(�) to the�2

quantile. The default value isr = 2.

FORCHI= F | CHI : defines the scale for they values written to the OUTEST= data
set. For FORCHI=F, they values are scaled to the values of the log
likelihood functionf = f(�); for FORCHI=CHI, they values are
scaled so that̂y = �2. The default value is FORCHI=F.

FEASRATIO=r specifies a factor of the Wald confidence limit (or an approxima-
tion of it if standard errors are not computed) defining an upper
bound for the search for confidence limits. In general, the range
of x values in the profile graph is betweenr = 1 andr = 2 of
the size of the corresponding Wald interval. For many examples,
the�2 quantiles corresponding to small� values define ay level
ŷ � 1

2q1(1 � �), which is too far away from̂y to be reached by
y(x) for x within the range of twice the Wald confidence limit.
The search for an intersection with such ay level at a practically
infinite value ofx can be computationally expensive. A smaller
value forr can speed up computation time by restricting the search
for confidence limits to a region closer tôx. The default value of
r = 1000 practically disables the FEASRATIO= option.

OUTTABLE specifies that the complete set� of parameter estimates rather than
only x = �j for each confidence limit is written to the OUTEST=
data set. This output can be helpful for further analyses on how
small changes inx = �j affect the changes in the�i; i 6= j.
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For some applications, it may be computationally less expensive to compute the PL
confidence limits for a few parameters than to compute the approximate covariance
matrix of many parameters, whichis the basis for the Wald confidence limits. How-
ever, the computation of the profile of the discrepancy function and the corresponding
CLs in general will be much more time consuming than that of the Wald CLs.

Program Statements

This section lists the program statements used to code the objective function and
nonlinear constraints and their derivatives, and it documents the differences between
program statements in the NLP procedure and program statements in the DATA step.
The syntax of program statements used in PROC NLP is identical to those used in the
CALIS, GENMOD, and MODEL procedures (refer to theSAS ETS User’s Guide).

Most of the program statements which can be used in the SAS DATA step can also
be used in the NLP procedure. See theSAS Language Guideor the SAS Base docu-
mentation for a description of the SAS program statements.

ABORT;
CALLname [ ( expression [, expression ... ] ) ];
DELETE;
DO[ variable = expression

[ TOexpression ] [BYexpression ]
[, expression [TOexpression ] [BYexpression ] ... ]

]
[ WHILEexpression ] [UNTIL expression ];

END;
GOTOstatement–label;
IF expression;
IF expressionTHENprogram–statement;

ELSEprogram–statement;
variable= expression;
variable+ expression;
LINK statement–label;
PUT[ variable] [ =] [...] ;
RETURN;
SELECT [( expression)] ;
STOP;
SUBSTR(variable, index, length) = expression;
WHEN (expression) program–statement;

OTHERWISEprogram–statement;

For the most part, the SAS program statements work as they do in the SAS DATA step
as documented in theSAS Language Guide. However, there are several differences
that should be noted.
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� The ABORT statement does not allow any arguments.

� The DO statement does not allow a character index variable. Thus

do i = 1,2,3;

is supported; however,

do i = ’A’,’B’,’C’;

is not.

� The PUT statement, used mostly for program debugging in PROC NLP, sup-
ports only some of the features of the DATA step PUT statement, and has some
new features that the DATA step PUT statement does not:

– The PROC NLP PUT statement does not support line pointers, factored
lists, iteration factors, overprinting,–INFILE–, the colon (:) format mod-
ifier, or “$”.

– The PROC NLP PUT statement does support expressions, but the expres-
sion must be enclosed inside of parentheses. For example, the following
statement diplays the square root of xput (sqrt(x));

– The PROC NLP PUT statement supports the print item–PDV– to print a
formatted listing of all variables in the program. For example, the follow-
ing statement displays a more readable listing of the variables than the

–all– print itemput - pdv - ;

� The WHEN and OTHERWISE statements allow more than one target state-
ment. That is, DO/END groups are not necessary for multiple statement
WHENs. For example, the following syntax is valid:

SELECT;
WHEN (exp1) stmt1;

stmt2;
WHEN (exp2) stmt3;

stmt4;
END;

It is recommended to keep some kind of order in the input of NLP, that is, between
the statements that define decision variables and constraints and the program code
used to specify objective functions and derivatives.

Use of Special Variables in Program Code
Except for the quadratic programming techniques (QUADAS and LICOMP) that do
not execute program statements during the iteration process, several special variables
in the program code can be used to communicate with PROC NLP in special situa-
tions:

� –OBS– If a DATA= input data sets used, it is possible to access a variable

–OBS– which contains the number of the observation processed from the
data set. You should not change the content of the–OBS– variable. This
variable enables you to modify the programming statements depending on the
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observation number processed in the DATA= input data set. For example, to
set variable A to 1 when observation 10 is processed, and otherwise to 2, it is
possible to specify

IF _OBS_ = 10 THEN A=1; ELSE A=2;

� –ITER – This variable is set by PROC NLP, and it contains the number of
the current iteration of the optimization technique as it is displayed in the
optimization history. You should not change the content of the–ITER– vari-
able. It is possible to read the value of this variable in order to modify the
programming statements depending on the iteration number processed. For
example, to display the content of the variables A, B, and C when there are
more than 100 iterations processed, it is possible to use

IF _ITER_ > 100 THEN PUT A B C;

� –DPROC– This variable is set by PROC NLP to indicate whether the code is
called only to obtain the values of them objective functionsfi (–DPROC–=0)
or whether specified derivatives (defined by the GRADIENT, JACOBIAN,
CRPJAC, or HESSIAN statement) also have to be computed (–DPROC–=1).
Checking the–DPROC– variable makes it possible to save computer time by
not performing derivative code that is not needed by the current call. In partic-
ular, when a DATA= input data set is used, the code is processed many times to
compute only the function values. If the programming statements in the pro-
gram contain the specification of computationally expensive first- and second-
order derivatives, you can put the derivative code in an IF statement that is
processed only if–DPROC– is not zero. You should not change the content of
the–DPROC– variable.

� –INDF– The –INDF– variable is set by PROC NLP to inform you of the
source of calls to the function or derivative programming.

–INDF–=0 indicates the first function call in a grid search. This is also the
first call evaluating the programming statements if there is a grid search
defined by grid values in the PARMS or VAR statement.

–INDF–=1 indicates further function calls in a grid search.

–INDF–=2 indicates the call for the feasible starting point. This is also the
first call evaluating the programming statements if there is no grid search
defined.

–INDF–=3 indicates calls from a gradient checking algorithm.

–INDF–=4 indicates calls from the minimization algorithm. The–ITER–
variable contains the iteration number.

–INDF–=5 if the active set algorithm leaves the feasible region (due to
rounding errors), an algorithm tries to return it into the feasible region;

–INDF–=5 indicates a call that is done when such a step is successful.

–INDF–=6 indicates calls from a factorial test subroutine that tests the neigh-
borhood of a pointx for optimality.
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–INDF–=7,8 indicates calls from subroutines needed to compute finite differ-
ence derivatives using only values of the objective function. No nonlinear
constraints are evaluated.

–INDF–=9 indicates calls from subroutines needed to compute second-order
finite difference derivatives using analytic (specified) first-order deriva-
tives. No nonlinear constraints are evaluated.

–INDF–=10 indicates calls where only the nonlinear constraints but no objec-
tive function are needed. The analytic derivatives of the nonlinear con-
straints are computed.

–INDF–=11 indicates calls where only the nonlinear constraints but no objec-
tive function are needed. The analytic derivatives of the nonlinear con-
straints are not computed.

–INDF–=-1 indicates the last call at the final solution.

You should not change the content of the–INDF– variable.

� –LIST –: You can set the–LIST– variable to control the output during the
iteration process:

–LIST –=0 is equivalent to the NOPRINT option. It suppresses all output.

–LIST –=1 is equivalent to the PSUM but not the PHIST option. The op-
timization start and termination messages are displayed. However, the
PSUM option suppresses the output of the iteration history.

–LIST –=2 is equivalent to the PSHORT option or to a combination of the
PSUM and PHIST options. The optimization start information, the itera-
tion history, and termination message are displayed.

–LIST –=3 Equivalent to: Not PSUM, not PSHORT, and not PALL: The opti-
mization start information, the iteration history, and the termination mes-
sage are displayed.

–LIST –=4 is equivalent to the PALL option. The extended optimization start
information (also containing settings of termination criteria and other
control parameters) is displayed.

–LIST –=5 In addition to the iteration history, the vectorx(k) of parameter
estimates is displayed for each iterationk.

–LIST –=6 In addition to the iteration history, the vectorx(k) of parameter
estimates and the gradientg(k) (if available) of the objective function are
displayed for each iterationk.

It is possible to set the–LIST– variable in the program code to obtain more or
less output in each iteration of the optimization process. For example,

IF _ITER_ = 11 THEN _LIST_=5;
ELSE IF _ITER_ > 11 THEN _LIST_=1;

ELSE _LIST_=3;

� –TOOBIG – The value of–TOOBIG– is initialized to zero by PROC NLP,
but you can set it to one during the iteration, indicating problems evaluating
the program statements. The objective function and derivatives must be com-
putable at the starting point. However, during the iteration it is possible to
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set the–TOOBIG– variable to 1, indicating that the programming statements
(computing the value of the objective function or the specified derivatives)
cannot be performed for the current value ofxk. Some of the optimization
techniques check the value of–TOOBIG– and try to modify the parameter
estimates so that the objective function (or derivatives) can be computed in a
following trial.

� –NOBS– The value of the–NOBS– variable is initialized by PROC NLP to
the product of the number of functionsmfun specified in the MIN, MAX or
LSQ statement and the number of valid observationsnobs in the current BY
group of the DATA= input data set. The value of the–NOBS– variable is used
for computing the scalar factor of the covariance matrix (see options COV=,
VARDEF=, nmd SIGSQ= in the section “PROC NLP Statement” on page 386).
If you reset the value of the–NOBS– variable, the value that is available at the
end of the iteration is used by PROC NLP to compute the scalar factor of the
covariance matrix.

� –DF– The value of the–DF– variable is initialized by PROC NLP to the num-
ber n of parameters specified in the DECVAR statement. The value of the

–DF– variable is used for computing the scalar factord of the covariance ma-
trix. See the options COV=, VARDEF=, and SIGSQ= in the section “PROC
NLP Statement” on page 386. If you reset the value of the–DF– variable,
the value that is available at the end of the iteration is used by PROC NLP to
compute the scalar factor of the covariance matrix.

� –LASTF– In each iteration (except the first one), the value of the–LASTF–
variable is set by PROC NLP to the final value of the objective function that
was achieved during the last iteration. This value should agree with the value
that is displayed in the iteration history and that is written in the OUTEST=
data set when the OUTITER option is specified.

Details

Criteria for Optimality

PROC NLP solves

min f(x); x 2 Rn

s.t. ci(x) = 0; i = 1; : : : ;me

ci(x) � 0; i = me + 1; : : : ;m

wheref is the objective function and them ci’s are the constraint functions.

A point x is feasible if it satisfies all the constraints. The feasible regionG is the set of
all the feasible points.x� is a global solution of the preceeding problem if no point in
G has a lower function value than f(x�). x� is a local solution of the problem if there
exists some open neighborhood surroundingx� in that no point has a lower function
value than f(x�). Nonlinear Programming algorithms cannot consistently find global
minima. All the algorithms in PROC NLP find a local minimum for this problem.
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If you need to check whether the obtained solution is a global minimum, you may
have to run PROC NLP with different starting points obtained either at random or by
selecting a point on a grid that containsG.

The local minimizerx� of this problem satisfies the following local optimality con-
ditions:

� The grdient (vector of first derivatives)g(x�) = rf(x�) of the objective func-
tion f (projected toward the feasible region if the problem is constrained) at
the pointx� is zero.

� The Hessian (matrix of second derivatives)G(x�) = r2f(x�) of the objective
function f (projected toward the feasible regionG in the constrained case) at
the pointx� is positive definite.

Most of the optimization algorithms in PROC NLP use iterative techniques that result
in a sequence of pointsx0; :::; xn; :::, that converges to a local solutionx�. At the
solution, PROC NLP performs tests to confirm that the (projected) gradient is close
to zero and that the (projected) Hessian matrix is positive definite.

Karush-Kuhn-Tucker Conditions
An important tool in the analysis and design of algorithms in constrained optimization
is theLagrangian Function, that is a linear combination of the objective function and
the constraints:

L(x; �) = f(x)�
mX
i=1

�ici(x)

The coefficients�i are calledLagrange multipliers. This tool makes it possible to
state necessary and sufficient conditions for a local minimum. The various algorithms
in PROC NLP create sequences of points, each of that is closer than the previous one
to satisfying these conditions.

Assuming that the functionsf andci are twice continuously differentiable, the point
x� is a local minimumof the nonlinear programming problem, if there exists a vector
�� = (��1; : : : ; �

�
m) that meets the following conditions.

1. first-order, Karush-Kuhn-Tucker conditions:

ci(x
�) = 0; i = 1; : : : ;me;

ci(x
�) � 0; ��i � 0; ��i ci(x

�) = 0; i = me + 1; : : : ;m
rxL(x

�; ��) = 0
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2. Second-order conditions:

Each nonzero vectory 2 Rn for which

yTrxci(x
�) = 0

�
i = 1; : : : ;me;
8i 2 fme + 1; : : : ;m : ��i > 0g

satisfies

yTr2
xL(x

�; ��)y > 0

Most of the algorithms to solve this problem attempt to find a combination of vectors
x and� for which the gradient of the Langrangian function in respect to x is zero.

Derivatives
The first and second order conditions of optimality are based on first and second
derivates of the object functionf and the constraintsci.

The gradient vector contains the first derivatives of the objective functionf with
respect to the parametersx1; : : : ; xn; as follows:

g(x) = rf(x) = (
@f

@xj
)

Then�n symmetric Hessian matrix contains the second derivatives of the objective
functionf with respect to the parametersx1; : : : ; xn; as follows:

G(x) = r2f(x) = (
@2f

@xj@xk
):

For Least-Squares problems, them � n Jacobian matrix contains the first-order
derivatives ofm objective functionsfi(x) with respect to the parametersx1; : : : ; xn;
as follows:

J(x) = (rf1; : : : ;rfm) = (
@fi
@xj

)

In case of Least-Squares problems, the crossproduct JacobianJTJ ,

JTJ = (

mX
i=1

@fi
@xj

@fi
@xk

)

is used as an approximate Hessian matrix. It is a very good approximation of the
Hessian if the residuals at the solution are “small.” (If the residuals are not sufficiently
small at the solution, this approach may result in slow convergence.) The fact that
it is possible to obtain Hessian approximations for this problem that do not require
any computation of second derivatives means that Least-Squares algorithms are more
efficient than unconstrained optimization algorithms. Using the vectorf = f(x) of
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function values,f(x) = (f1(x); : : : ; fm(x))T , PROC NLP computes the gradient
g = g(x) by

g(x) = JT (x)f(x)

Themc�n Jacobian matrix contains the first-order derivatives ofmc nonlinear con-
straint functionsci(x); i = 1; : : : ;mc; with respect to the parametersx1; : : : ; xn; as
follows:

CJ(x) = (rc1; : : : ;rcmc) = (
@ci
@xj

)

PROC NLP provides three ways to compute derivatives:

� It computes analytical first- and second-order derivatives of the objective func-
tion f with respect to then variablesxj .

� It computes first- and second-order finite difference approximations to the
derivatives. For more information, see the section “Finite-Difference Approxi-
mations of Derivatives” on page 439.

� The user supplies formulas for analytical or numerical first- and second-order
derivatives of the objective function in the GRADIENT, JACOBIAN, CRPJAC,
and HESSIAN statements. The JACNLC statement can be used to specify the
derivatives for the nonlinear constraints.

Optimization Algorithms

There are three groups of optimization techniques available in PROC NLP. A par-
ticular optimizer can be selected with the TECH=name option in the PROC NLP
statement.

Algorithm TECH=
Linear Complementary Problem LICOMP
Quadratic Active Set Technique QUADAS

Trust-Region Method TRUREG
Newton-Raphson Method With Line-Search NEWRAP

Newton-Raphson Method With Ridging NRRIDG
Quasi-Newton Methods (DBFGS, DDFP, BFGS, DFP)QUANEW

Double-Dogleg Method (DBFGS, DDFP) DBLDOG
Conjugate Gradient Methods (PB, FR, PR, CD) CONGRA

Nelder-Mead Simplex Method NMSIMP
Levenberg-Marquardt Method LEVMAR

Hybrid Quasi-Newton Methods (DBFGS, DDFP) HYQUAN

Since no single optimization technique is invariably superior to others, PROC NLP
provides a variety of optimization techniques that work well in various circumstances.
However, it possible to devise problems for which none of the techniques in PROC
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NLP can find the correct solution. Moreover, nonlinear optimization can be com-
putationally expensive in terms of time and memory, so care must be taken when
matching an algorithm to a problem.

All optimization techniques in PROC NLP useO(n2) memory except the conjugate
gradient methods, which use onlyO(n) memory and are designed to optimize prob-
lems with many variables. Since the techniques are iterative, they require the repeated
computation of

� the function value (optimization criterion)

� the gradient vector (first-order partial derivatives)

� for some techniques, the (approximate) Hessian matrix (second-order partial
derivatives)

� values of linear and nonlinear constraints

� the first-order partial derivatives (Jacobian) of nonlinear constraints

However, since each of the optimizers requires different derivatives and supports dif-
ferent types of constraints, some computational efficiencies can be gained. The fol-
lowing table shows, for each optimization technique, which derivatives are needed
(FOD: first-order derivatives; SOD: second-order derivatives) and what kind of con-
straints (BC: boundary constraints; LIC: linear constraints; NLC: nonlinear con-
straints) are supported.

Algorithm FOD SOD BC LIC NLC
LICOMP - - x x -
QUADAS - - x x -
TRUREG x x x x -
NEWRAP x x x x -
NRRIDG x x x x -
QUANEW x - x x x
DBLDOG x - x x -
CONGRA x - x x -
NMSIMP - - x x x
LEVMAR x - x x -
HYQUAN x - x x -

Preparation for Using Optimization Algorithms
It is rare that a problem is submitted to an optimization algorithm “as is.” By making
a few changes in your problem, you can reduce its complexity, that would increase
the chance of convergence and save execution time.

� Whenever possible, use linear functions instead of nonlinear functions. PROC
NLP will reward you with faster and more accurate solutions.

� Most optimization algorithms are based on quadratic approximations to non-
linear functions. You should try to avoid the use of funcions that cannot be
properly approximated by quadratic functions. Try to avoid the use of rational
functions.
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For example,the constraint

sin(x)

x+ 1
> 0

should be replaced by the equivalent constraint

sin(x)(x+ 1) > 0

and the constraint

sin(x)

x+ 1
= 1

should be replaced by the equivalent constraint

sin(x)� (x+ 1) = 0

� Try to avoid the use of exponential functions, if possible.

� If you can reduce the complexity of your function by the addition of a small
number of variables, that may help the algorithm avoid stationary points.

� Provide the best starting point you can. A good starting point leads to better
quadratic approximations and faster convergence.

Choosing an Optimization Algorithm
The factors that go into choosing a particular optimizer for a particular problem are
complex and may involve trial and error. The following should be taken into account:
First, the structure of the problem has to be considered: Is it quadratic? least-squares?
Does it have linear or nonlinear constraints? Next, it is important to consider the
type of derivatives of the objective function and the constraints that are needed and
whether these are analytically tractable or not. This section provides some guidelines
for making the right choices.

For many optimization problems, computing the gradient takes more computer time
than computing the function value, and computing the Hessian sometimes takesmuch
more computer time and memory than computing the gradient, especially when there
are many decision variables. Optimization techniques that do not use the Hessian
usually require more iterations than techniques that do use Hessian approximations
(such as finite differences or BFGS update) and so are often slower. Techniques that
do not use Hessians at all tend to be slow and less reliable.

The derivative compiler is not efficient in the computation second-order derivatives.
For large problems, memory and computer time can be saved by programming your
own derivatives using the GRADIENT, JACOBIAN, CRPJAC, HESSIAN, and JAC-
NLC statements. If you are not able or willing to specify first- and second-order
derivatives of the objective function, you can rely on finite difference gradients and
Hessian update formulas. This combination is frequently used and works very well
for small and medium size problems. For large size problems, you are advised not to
use an optimization technique that requires the computation of second derivatives.
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The following provides some guidance for matching an algorithm to a particular prob-
lem.

� Quadratic Programming

– QUADAS

– LINCOMP

� General Nonlinear Optimization

– Nonlinear Constraints

� Small Problems: NMSIMP
Not suitable for highly nonlinear problems or for problems withn >
20.

� Medium Problems: QUANEW

– Only Linear Constraints

� Small Problems: TRUREG (NEWRAP, NRRIDG)
(n � 40) where the Hessian matrix is not expensive to compute.
Sometimes NRRIDG can be faster than TRUREG, but TRUREG can
be more stable. NRRIDG needs only one matrix withn(n + 1)=2
double words; TRUREG and NEWRAP need two such matrices.

� Medium Problems: QUANEW (DBLDOG)
(n � 200) where the objective function and the gradient are much
faster to evaluate than the Hessian. QUANEW and DBLDOG
in general need more iterations than TRUREG, NRRIDG, and
NEWRAP, but each iteration can be much faster. QUANEW and
DBLDOG need only the gradient to update an approximate Hessian.
QUANEW and DBLDOG need slightly less memory than TRUREG
or NEWRAP (essentially one matrix withn(n+1)=2 double words).

� Large Problems: CONGRA
(n > 200) where the objective function and the gradient can be com-
puted much faster than the Hessian and where too much memory
is needed to store the (approximate) Hessian. CONGRA in general
needs more iterations than QUANEW or DBLDOG, but each itera-
tion can be much faster. Since CONGRA needs only a factor ofn
double-word memory, many large applications of PROC NLP can be
solved only by CONGRA.

� No Derivatives: NMSIMP
(n � 20) where derivatives are not continuous or are very difficult to
compute.

� Least-Squares Minimization

– Small Problems: LEVMAR (HYQUAN)
(n � 60) where the crossproduct Jacobian matrix is easy and inexpensive
to compute. In general, LEVMAR is more reliable, but there are problems
with high residuals where HYQUAN can be faster than LEVMAR.
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– Medium Problems: QUANEW (DBLDOG)
(n � 200) where the objective function and the gradient are much faster
to evaluate than the crossproduct Jacobian. QUANEW and DBLDOG
in general need more iterations than LEVMAR or HYQUAN, but each
iteration can be much faster.

– Large Problems: CONGRA

– No Derivatives: NMSIMP

Quadratic Programming Method
The QUADAS and LICOMP algorithms can be used to minimize or maximize a
quadratic objective function,

f(x) =
1

2
xTGx+ gTx+ c; with GT = G

with linear or boundary constraints

Ax � b or lj � xj � uj

wherex = (x1; : : : ; xn)
T , g = (g1; : : : ; gn)

T , G is ann � n symmetric matrix,A
is anm � n matrix of general linear constraints, andb = (b1; : : : ; bm)T . The value
of c modifies only the value of the objective function, not its derivatives, and the
location of the optimizerx� does not depend on the value of the constant termc. For
QUADAS or LICOMP, the objective function must be specified using the MINQUAD
or MAX QUAD statement or using an INQUAD= data set. In this case, derivatives
do not need to be specified. because the gradient vector

rf(x) = Gx+ g

and then� n Hessian matrix

r2f(x) = G

are easily obtained from the data input.

Simple boundary and general linear constraints can be specified using the BOUNDS
or LINCON statement or an INQUAD= or INEST= data set.

General Quadratic Programming (QUADAS)
The QUADAS algorithm is an active set method that iteratively updates theQT de-
composition of the matrixAk of active linear constraints and the Cholesky factor
of the projected HessianZTGZ simultaneously. The update of active boundary
and linear constraints is done separately; refer to Gill et al. (1984). HereQ is an
nfree � nfree orthogonal matrix composed of vectors spanning the null spaceZ of
Ak in its firstnfree�nalc columns and range spaceY in its lastnalc columns;T is an
nalc�nalc triangular matrix of special form,tij = 0 for i < n�j, wherenfree is the
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number of free parameters (n minus the number of active boundary constraints), and
nalc is the number of active linear constraints. The Cholesky factor of the projected
Hessian matrixZT

k GZk and theQT decomposition are updated simultaneously when
the active set changes.

Linear Complementarity (LICOMP)
The LICOMP technique solves a quadratic problem as a linear complementarity prob-
lem. It can be used only ifG is positive (negative) semi-definite for minimization
(maximization) and if the parameters are restricted to be positive.

This technique finds a point that meets the Karush-Kuhn-Tucker conditions by solv-
ing the linear complementary problem

w = Mz + q

with constraints

wT z � 0; w � 0; z � 0

where

z =

�
x
�

�
M =

�
G �AT

A 0

�
q =

�
g

�b
�

Only the LCEPSILON= option can be used to specify a tolerance used in computa-
tions.

General Nonlinear Optimization
Trust-Region Optimization (TRUREG)

The trust-region method uses the gradientg(x(k)) and Hessian matrixG(x(k)) and
thus requires that the objective functionf(x) have continuous first- and second-order
derivatives inside the feasible region.

The trust-region method iteratively optimizes a quadratic approximation to the non-
linear objective function within a hyperelliptic trust region with radius� that con-
strains the step size corresponding to the quality of the quadratic approximation.
The trust-region method is implemented using Dennis, Gay, & Welsch (1981), Gay
(1983), and Moré & Sorensen (1983) .

The trust region method performs well for small to medium-sized problems and does
not require many function, gradient, and Hessian calls. If the computation of the
Hessian matrix is computationally expensive, use the UPDATE= option for update
formulas (that gradually build the second-order information in the Hessian). For
larger problems, the conjugate gradient algorithm may be more appropriate.

Newton-Raphson Optimization With Line-Search (NEWRAP)
The NEWRAP technique uses the gradientg(x(k)) and Hessian matrixG(x(k)) and
thus requires that the objective function have continuous first- and second-order
derivatives inside the feasible region. If second-order derivatives are computed ef-
ficiently and precisely, the NEWRAP method may perform well for medium-sized to
large problems, and it does not need many function, gradient, and Hessian calls.
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This algorithm uses a pure Newton step when the Hessian is positive definite and
when the Newton step reduces the value of the objective function successfully. Oth-
erwise, a combination of ridging and line-search is done to compute successful steps.
If the Hessian is not positive definite, a multiple of the identity matrix is added to the
Hessian matrix to make it positive definite (Eskow and Schnabel 1991).

In each iteration, a line-search is done along the search direction to find an ap-
proximate optimum of the objective function. The default line-search method uses
quadratic interpolation and cubic extrapolation (LIS=2).

Newton-Raphson Ridge Optimization (NRRIDG)
The NRRIDG technique uses the gradientg(x(k)) and Hessian matrixG(x(k)) and
thus requires that the objective function have continuous first- and second-order
derivatives inside the feasible region.

This algorithm uses a pure Newton step when the Hessian is positive definite and
when the Newton step reduces the value of the objective function successfully. If at
least one of these two conditions is not satisfied, a multiple of the identity matrix is
added to the Hessian matrix. If this algorithm is used for least-squares problems, it
performs a ridged Gauss-Newton minimization.

The NRRIDG method performs well for small to medium-sized problems and does
not need many function, gradient, and Hessian calls. However, if the computation of
the Hessian matrix is computationally expensive, one of the (dual) quasi-Newton or
conjugate gradient algorithms may be more efficient.

Since NRRIDG uses an orthogonal decomposition of the approximate Hessian, each
iteration of NRRIDG can be slower than that of NEWRAP, that works with Cholesky
decomposition. However, usually NRRIDG needs fewer iterations than NEWRAP.

Quasi-Newton Optimization (QUANEW)
The (dual) quasi-Newton method uses the gradientg(x(k)) and does not need to com-
pute second-order derivatives since they are approximated. It works well for medium
to moderately large optimization problems where the objective function and the gra-
dient are much faster to compute than the Hessian, but in general it requires more
iterations than the techniques TRUREG, NEWRAP, and NRRIDG, which compute
second-order derivatives.

The QUANEW algorithm depends on whether or not there are nonlinear constraints.

Unconstrained or Linearly Constrained Problems
If there are no nonlinear constraints, QUANEW is either

� the original quasi-Newton algorithm that updates an approximation of the in-
verse Hessian

� the dual quasi-Newton algorithm that updates the Cholesky factor of an ap-
proximate Hessian (default)

depending upon the value of the UPDATE= options. For problems with general linear
inequality constraints, the dual quasi-Newton methods can be more efficient than the
original ones.
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Four update formulas can be specified with theUPDATE=option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, & Shanno)
update of the Cholesky factor of the Hessian matrix. This is the
default.

DDFP performs the dual DFP (Davidon, Fletcher, & Powell) update of the
Cholesky factor of the Hessian matrix.

BFGS performs the original BFGS (Broyden, Fletcher, Goldfarb, &
Shanno) update of the inverse Hessian matrix.

DFP performs the original DFP (Davidon, Fletcher, & Powell) update
of the inverse Hessian matrix.

In each iteration, a line-search is done along the search direction to find an approxi-
mate optimum. The default line-search method uses quadratic interpolation and cubic
extrapolation to obtain a step size� satisfying the Goldstein conditions. One of the
Goldstein conditions can be violated if the feasible region defines an upper limit of
the step size. Violating the left side Goldstein condition can affect the positive defi-
niteness of the quasi-Newton update. In those cases, either the update is skipped or
the iterations are restarted with an identity matrix resulting in the steepest descent
or ascent search direction. Line-search algorithms other than the default one can be
specified with the LIS= option.

Nonlinearly Constrained Problems
The algorithm used for nonlinearly constrained quasi-Newton optimization is an effi-
cient modification of Powell’s (1978, 1982)Variable Metric Constrained WatchDog
(VMCWD) algorithm. A similar but older algorithm (VF02AD) is part of the Har-
well library. Both VMCWD and VF02AD use Fletcher’s VE02AD algorithm (part
of the Harwell library) for positive definite quadratic programming. The PROC NLP
QUANEW implementation uses a quadratic programming subroutine that updates
and downdates the approximation of the Cholesky factor when the active set changes.
The nonlinear QUANEW algorithm is not a feasible point algorithm, and the value
of the objective function need not decrease (minimization) or increase (maximiza-
tion) monotonically. Instead, the algorithm tries to reduce a linear combination of the
objective function and constraint violations, called themerit function.

The following are similarities and differences between this algorithm and the VM-
CWD algorithm:

� A modification of this algorithm can be performed by specifying VERSION=1,
that replaces the update of the Lagrange vector� with the original update of
Powell (1978) that is used in VF02AD. This can be helpful for some applica-
tions with linearly dependent active constraints.

� If the VERSION option is not specified or if VERSION=2 is specified, the
evaluation of the Lagrange vector� is performed in the same way as Powell
(1982) describes.

� Instead of updating an approximate Hessian matrix, this algorithm uses the
dual BFGS (or DFP) update that updates the Cholesky factor of an approximate
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Hessian. If the condition of the updated matrix gets too bad, a restart is done
with a positive diagonal matrix. At the end of the first iteration after each
restart, the Cholesky factor is scaled.

� The Cholesky factor is loaded into the quadratic programming subroutine,
automatically ensuring positive definiteness of the problem. During the
quadratic programming step, the Cholesky factor of the projected Hessian ma-
trix ZT

k GZk and theQT decomposition are updated simultaneously when the
active set changes. Refer to Gill dt al. (1984) for more information.

� The line-search strategy is very similar to that of Powell (1982). However, this
algorithm does not call for derivatives during the line-search, so the algorithm
generally needs fewer derivative calls than function calls. VMCWD always
requires the same number of derivative and function calls. Sometimes Pow-
ell’s line-search method uses steps that are too long. In these cases, use the
INSTEP= option to restrict the step length�.

� The watchdog strategy is similar to that of Powell (1982); however, it doesn’t
return automatically after a fixed number of iterations to a former better point.
A return here is further delayed if the observed function reduction is close to
the expected function reduction of the quadratic model.

� The Powell termination criterion still is used (as FTOL2) but the QUANEW
implementation uses two additional termination criteria (GTOL and ABSG-
TOL).

The nonlinear QUANEW algorithm needs the Jacobian matrix of the first-order
derivatives (constraints normals) of the constraintsCJ(x).

You can specify two update formulas with the UPDATE=option:

� UPDATE=DBFGS performs the dual BFGS update of the Cholesky factor of
the Hessian matrix. This is the default.

� UPDATE=DDFP performs the dual DFP update of the Cholesky factor of the
Hessian matrix.

This algorithm uses its own line-search technique. All options and parameters (except
the INSTEP= option) controlling the line-search in the other algorithms do not apply
here. In several applications, large steps in the first iterations were troublesome. You
can use the INSTEP= option to impose an upper bound for the step size� during
the first five iterations. You may also use the INHESSIAN[=r] option to specify a
different starting approximation for the Hessian. Choosing simply the INHESSIAN
option will use the Cholesky factor of a (possibly ridged) finite difference approxi-
mation of the Hessian to initialize the quasi-Newton update process. The values of
the LCSINGULAR=, LCEPSILON=, and LCDEACT= options, which control the
processing of linear and boundary constraints, are valid only for the quadratic pro-
gramming subroutine used in each iteration of the nonlinear constraints QUANEW
algorithm.
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Double Dogleg Optimization (DBLDOG)
The double dogleg optimization method combines the ideas of quasi-Newton and
trust region methods. The double dogleg algorithm computes in each iteration the
steps(k) as the linear combination of the steepest descent or ascent search direction

s
(k)
1 and a quasi-Newton search directions(k)2 ,

s(k) = �1s
(k)
1 + �2s

(k)
2

The step is requested to remain within a prespecified trust region radius, refer to
Fletcher (1987, p. 107). Thus, the DBLDOG subroutine uses the dual quasi-Newton
update but does not perform a line-search. Two update formulas can be specified with
the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, & Shanno)
update of the Cholesky factor of the Hessian matrix. This is the
default.

DDFP performs the dual DFP (Davidon, Fletcher, & Powell) update of the
Cholesky factor of the Hessian matrix.

The double dogleg optimization technique works well for medium to moderately
large optimization problems where the objective function and the gradient are much
faster to compute than the Hessian. The implementation is based on Dennis & Mei
(1979) and Gay (1983) but is extended for dealing with boundary and linear con-
straints. DBLDOG generally needs more iterations than the techniques TRUREG,
NEWRAP, or NRRIDG that need second-order derivatives, but each of the DBLDOG
iterations is computationally cheap. Furthermore, DBLDOG needs only gradient
calls for the update of the Cholesky factor of an approximate Hessian.

Conjugate Gradient Optimization (CONGRA)
Second-order derivatives are not used by CONGRA. The CONGRA algorithm can
be expensive in function and gradient calls but needs onlyO(n) memory for un-
constrained optimization. In general, many iterations are needed to obtain a precise
solution, but each of the CONGRA iterations is computationally cheap. Four differ-
ent update formulas for generating the conjugate directions can be specified using the
UPDATE= option:

PB performs the automatic restart update method of Powell (1977) and Beale (1972).
This is the default.

FR performs the Fletcher-Reeves update (Fletcher 1987).

PR performs the Polak-Ribiere update (Fletcher 1987).

CD performs a conjugate-descent update of Fletcher (1987).

The default value is UPDATE=PB, since it behaved best in most test examples. You
are advised to avoid the option UPDATE=CD, that behaved worst in most test exam-
ples.
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The CONGRA subroutine should be used for optimization problems with largen. For
the unconstrained or boundary constrained case, CONGRA needs onlyO(n) bytes
of working memory, whereas all other optimization methods require orderO(n2)
bytes of working memory. Duringn successive iterations, uninterrupted by restarts
or changes in the working set, the conjugate gradient algorithm computes a cycle of
n conjugate search directions. In each iteration, a line-search is done along the search
direction to find an approximate optimum of the objective function. The default line-
search method uses quadratic interpolation and cubic extrapolation to obtain a step
size� satisfying the Goldstein conditions. One of the Goldstein conditions can be
violated if the feasible region defines an upper limit for the step size. Other line-
search algorithms can be specified with the LIS= option.

Nelder-Mead Simplex Optimization (NMSIMP)
The Nelder-Mead simplex method does not use any derivatives and does not assume
that the objective function has continuous derivatives. The objective function itself
needs to be continuous. This technique requires a large number of function evalua-
tions. It is unlikely to give accurate results forn� 40.

Depending on the kind of constraints, one of the following Nelder-Mead simplex
algorithms is used:

� unconstrained or only boundary constrained problems

The original Nelder-Mead simplex algorithm is implemented and extended to
boundary constraints. This algorithm does not compute the objective for in-
feasible points. This algorithm is automatically invoked if the LINCON or
NLINCON statement is not specified.

� general linearly constrained or nonlinearly constrained problems

A slightly modified version of Powell’s (1992) COBYLA (Constrained Opti-
mization BY Linear Approximations) implementation is used. This algorithm
is automatically invoked if either the LINCON or the NLINCON statement is
specified.

The original Nelder-Mead algorithm cannot be used for general linear or nonlinear
constraints but can be faster for the unconstrained or boundary constrained case. The
original Nelder-Mead algorithm changes the shape of the simplex adapting the non-
linearities of the objective function which contributes to an increased speed of con-
vergence. The two NMSIMP subroutines use special sets of termination criteria. For
more details, refer to the section “Termination Criteria” on page 443.

Powell’s COBYLA Algorithm (COBYLA)
Powell’s COBYLA algorithm is a sequential trust-region algorithm (originally with
a monotonically decreasing radius� of a spheric trust region) that tries to maintain
a regular-shaped simplex over the iterations. A small modification was made to the
original algorithm, that permits an increase of the trust-region radius� in special sit-
uations. A sequence of iterations is performed with a constant trust-region radius�
until the computed objective function reduction is much less than the predicted reduc-
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tion. Then, the trust-region radius� is reduced. The trust-region radius is increased
only if the computed function reduction is relatively close to the predicted reduction
and the simplex is well-shaped. The start radius�beg and the final radius�end can be
specified using�beg=INSTEPand�end=ABSXTOL. The convergence to small values
of �end (high precision) may take many calls of the function and constraint mod-
ules and may result in numerical problems. There are two main reasons for the slow
convergence of the COBYLA algorithm:

� Only linear approximations of the objective and constraint functions are used
locally.

� Maintaining the regular-shaped simplex and not adapting its shape to nonlin-
earities yields very small simplexes for highly nonlinear functions (for exam-
ple, fourth-order polynomials).

Nonlinear Least-Squares Optimization
Levenberg-Marquardt Least-Squares Method (LEVMAR)

The Levenberg-Marquardt method is a modification of the trust-region method for
nonlinear least-squares problems and is implemented as in Moré (1978).

This is the recommended algorithm for small- to medium-sized least-squares prob-
lems. Large least-squares problems can be transformed into minimization problems,
which can be processed with conjugate gradient or (dual) quasi-Newton techniques.
In each iteration, LEVMAR solves a quadratically constrained quadratic minimiza-
tion problem that restricts the step to stay at the surface of or inside ann dimensional
elliptical (or spherical) trust region. In each iteration, LEVMAR uses the crossprod-
uct Jacobian matrixJTJ as an approximate Hessian matrix.

Hybrid Quasi-Newton Least-Squares Methods (HYQUAN)
In each iteration of one of the Fletcher and Xu (1987) (refer also to AlBaali and
Fletcher 1985, 1986) hybrid quasi-Newton methods, a criterion is used to decide
whether a Gauss-Newton or a dual quasi-Newton search direction is appropriate. The
VERSION= option can be used to choose one of three criteria (HY1, HY2, HY3)
proposed by Fletcher and Xu (1987). The default is VERSION=2; that is, HY2. In
each iteration, HYQUAN computes the crossproduct Jacobian (used for the Gauss-
Newton step), updates the Cholesky factor of an approximate Hessian (used for the
quasi-Newton step), and does a line-search to compute an approximate minimum
along the search direction. The default line-search technique used by HYQUAN is
especially designed for least-squares problems (refer to Lindström and Wedin 1984
and AlBaali and Fletcher, 1986). Using the LIS= option you can choose a different
line-search algorithm than the default one.

Two update formulas can be specified with the UPDATE= option:

DBFGS performs the dual BFGS (Broyden, Fletcher, Goldfarb, and
Shanno) update of the Cholesky factor of the Hessian matrix.
This is the default.

DDFP performs the dual DFP (Davidon, Fletcher, and Powell) update of
the Cholesky factor of the Hessian matrix.
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The HYQUAN subroutine needs about the same amount of working memory as
the LEVMAR algorithm. In most applications, LEVMAR seems to be superior to
HYQUAN, and using HYQUAN is recommended only when problems are experi-
enced with the performance of LEVMAR.

Finite-Difference Approximations of Derivatives

The FD= and FDHESSIAN= options specify the use of finite difference approx-
imations of the derivatives. The FD= option specifies that all derivatives are ap-
proximated using function evaluations, and the FDHESSIAN= option specifies that
second-order derivatives are approximated using gradient evalutions.

Computing derivatives by finite-difference approximations can be very time consum-
ing, especially for second-order derivatives based only on values of the objective
function (FD= option). If analytical derivatives are difficult to obtain (for exam-
ple, if a function is computed by an iterative process), you might consider one of
the optimization techniques that uses first-order derivatives only (TECH=QUANEW,
TECH=DBLDOG, or TECH=CONGRA).

Forward Difference Approximations
The forward-difference derivative approximations consume less computer time but
are usually not as precise as those using central-difference formulas.

� First-order derivatives:n additional function calls are needed:

gi =
@f

@xi
=
f(x+ hiei)� f(x)

hi

� Second-order derivatives based on function calls only (Dennis and Schnabel
1983, p. 80, 104): for dense Hessian,n + n2=2 additional function calls are
needed:

@2f

@xi@xj
=
f(x+ hiei + hjej)� f(x+ hiei)� f(x+ hjej) + f(x)

hihj

� Second-order derivatives based on gradient calls (Dennis and Schnabel, 1983,
p. 103):n additional gradient calls are needed:

@2f

@xi@xj
=
gi(x+ hjej)� gi(x)

2hj
+
gj(x+ hiei)� gj(x)

2hi

Central Difference Approximations

� First-order derivatives:2n additional function calls are needed:

gi =
@f

@xi
=
f(x+ hiei)� f(x� hiei)

2hi
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� Second-order derivatives based on function calls only (Abramowitz and Stegun
1972, p. 884): for dense Hessian,2n + 4n2=2 additional function calls are
needed:

@2f

@x2i
=

�f(x+ 2hiei) + 16f(x+ hiei)� 30f(x) + 16f(x� hiei)� f(x� 2hiei)

12h2i
@2f

@xi@xj
=

f(x+ hiei + hjej)� f(x+ hiei � hjej)� f(x� hiei + hjej) + f(x� hiei � hjej)

4hihj

� Second-order derivatives based on gradient:2n additional gradient calls are
needed:

@2f

@xi@xj
=
gi(x+ hjej)� gi(x� hjej)

4hj
+
gj(x+ hiei)� gj(x� hiei)

4hi

The FDIGITS= and CDIGITS= options can be used for specifying the number of ac-
curate digits in the evaluation of objective function and nonlinear constraints. These
specifications are helpful in determining an appropriate interval sizeh to be used in
the finite-difference formulas.

The FDINT= option specifies whether the finite difference intervalsh should be com-
puted using an algorithm of Gill, Murray, Saunders, and Wright (1983) or based only
on the information of the FDIGITS= and CDIGITS= options. For FDINT=OBJ, the
intervalh is based on the behavior of the objective function; for FDINT=CON, the
interval h is based on the behavior of the nonlinear constraints functions; and for
FDINT=ALL, the intervalh is based on both, the behavior of the objective func-
tion and the nonlinear constraints functions. Note that the algorithm of Gill, Murray,
Saunders, and Wright (1983) to compute the finite difference intervalshj can be very
expensive in the number of function calls. If the FDINT= option is specified, it is
currently performed twice, the first time before the optimization process starts and
the second time after the optimization terminates.

If FDINT= is not specified, the step sizeshj , j = 1; : : : ; n, are defined as follows:

� for the forward-difference approximation of first-order derivatives using func-
tion calls and second-order derivatives using gradient calls:hj = 2

p
�j(1: +

jxj j),
� for the forward-difference approximation of second-order derivatives that use

only function calls and all central-difference formulas:hj = 3
p
�j(1:+ jxj j).

where� is defined using the FDIGITS= option:

� If the number of accurate digits is specified with FDIGITS=r, � is set to10�r.

� If FDIGITS= is not specified,� is set to the machine precision�.
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For FDINT=OBJ and FDINT=ALL, the FDIGITS= specification is used in comput-
ing the forward and central finite-difference intervals.

If the problem has nonlinear constraints and the FD[=] option is specified, the first-
order formulas are used to compute finite difference approximations of the Jacobian
matrixJC(x). You can use the CDIGITS= option to specify the number of accurate
digits in the constraint evaluations to define the step sizeshj , j = 1; : : : ; n. For
FDINT=CON and FDINT=ALL, the CDIGITS= specification is used in computing
the forward and central finite-difference intervals.

Note: If you are not able to specify analytic derivatives and the finite-difference ap-
proximations provided by PROC NLP are not good enough to solve your problem,
you may program better finite-difference approximations using the GRADIENT, JA-
COBIAN, CRPJAC, or HESSIAN statement and the program statements.

Hessian and CRP Jacobian Scaling

The rows and columns of the Hessian and crossproduct Jacobian matrix can be scaled
when using the trust-region, Newton-Raphson, Double Dogleg, and Levenberg-
Marquardt optimization techniques. Each elementGi;j, i; j = 1; : : : ; n; is divided
by the scaling factordi � dj , where the scaling vectord = (d1; : : : ; dn) is iteratively
updated in a way specified by the HESCAL=i option, as follows:

i = 0 : No scaling is done (equivalent todi = 1).

i 6= 0 : First iteration and each restart iteration sets:

d
(0)
i =

q
max(jG(0)

i;i j; �)

i = 1 : refer to Moré (1978):

d
(k+1)
i = max(d

(k)
i ;

q
max(jG(k)

i;i j; �))

i = 2 : refer to Dennis, Gay, and Welsch (1981):

d
(k+1)
i = max(:6 � d(k)i ;

q
max(jG(k)

i;i j; �))

i = 3 : di is reset in each iteration:

d
(k+1)
i =

q
max(jG(k)

i;i j; �)

where� is the relative machine precision or, equivalently, the largest double precision
value that when added to 1 results in 1.
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Testing the Gradient Specification

There are three main ways to check the correctness of derivative specifications.

� Specify the FD[=] or FDHESSIAN[=] option in the PROC NLP statement to
compute finite difference approximations of first- and second-order derivatives.
In many applications, the finite difference approximations are computed with
high precision and do not differ too much from the derivatives that are com-
puted by specified formulas.

� Specify the GRADCHECK[=DETAIL] or GC[=DETAIL] option in the PROC
NLP statement to compute and display a test vector and a test matrix of the
gradient values at the start pointx(0) by the method of Wolfe (1982). If you
do not specify the GRADCHECK option, a fast derivative test identical to the
GRADCHECK= FAST specification is done by default.

� If the default analytical derivative compiler is used or if derivatives are speci-
fied using the GRADIENT or JACOBIAN statement, the gradient or Jacobian
computed at the initial pointx(0) is tested by default using finite difference
approximations. In some examples, the relative test can show significant dif-
ferences between the two forms of derivatives and result in a warning message
indicating that the specified derivatives could be wrong, even if they are cor-
rect. This happens especially in cases where the magnitude of the gradient at
the starting pointx(0) is small.

The algorithm of Wolfe (1982) is used to check whether the gradientg(x) specified
by a GRADIENT (or indirectly by a JACOBIAN) statement is appropriate for the
objective functionf(x) specified by the program statements.

Using function and gradient evaluations in the neighborhood of the starting point
x(0), second derivatives are approximated by finite difference formulas. Forward
differences of gradient values are used to approximate the Hessian elementGjk,

Gjk � Hjk =
gj(x+ �ek)� gj(x)

�

where� is a small step size andek = (0; : : : ; 0; 1; 0; : : : ; 0)T is the unit vector along
thekth coordinate axis. The test vectorS, with

sj = Hjj � 2

�
ff(x+ �ej)� f(x)

�
� gj(x)g

contains the differences between two sets of finite difference approximations for the
diagonal elements of the Hessian matrix

Gjj = @2f(x(0))=@x2j ; j = 1; : : : ; n

The test matrix�H contains the absolute differences of symmetric elements in the
approximate HessianjHjk�Hkjj, j; k = 1; : : : ; n, generated by forward differences
of the gradient elements.
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If the specification of the first derivatives is correct, the elements of the test vector
and test matrix should be relatively small. The location of large elements in the test
matrix points to erroneous coordinates in the gradient specification. For very large
optimization problems, this algorithm can be too expensive in terms of computer time
and memory.

Termination Criteria

All optimization techniques stop iterating atx(k) if at least one of a set of termination
criteria is satisfied. PROC NLP also terminates if the pointx(k) is fully constrained
by n linearly independent active linear or boundary constraints, and all Lagrange
multiplier estimates of active inequality constraints are greater than a small negative
tolerance.

Since the Nelder-Mead simplex algorithm does not use derivatives, no termina-
tion criterion is available based on the gradient of the objective function. Powell’s
COBYLA algorithm uses only one more termination criterion. COBYLA is a trust-
region algorithm that sequentially reduces the radius� of a spheric trust region be-
ginning from a start radius�beg = INSTEPto the final radius�end = ABSXTOL. The
default value is�end = 1e� 4. The convergence to small values of�end (high preci-
sion) may take many calls of the function and constraint modules and may result in
numerical problems.

In some applications, the small default value of the ABSGCONV= criterion is too
difficult to satisfy for some of the optimization techniques. This occurs most often
when finite difference approximations of derivatives are used.

The default setting for the GCONV= option sometimes leads to early termination far
from the location of the optimum. This is especially true for the special form of this
criterion used in the CONGRA optimization.

The QUANEW algorithms for nonlinearly constrained optimization does not mono-
tonically reduce either the value of the objective function or some kind of merit func-
tion which combines objective and constraint functions. Furthermore, the algorithm
uses the watchdog technique with backtracking (Chamberlain et.al. 1982). There-
fore, no termination criteria were implemented that are based on the values (x or f )
of successive iterations. In addition to the criteria used by all optimization techniques,
three more termination criteria are currently available, and are based on satisfying the
Karush-Kuhn-Tucker conditions. For more information, refer to the section “Criteria
for Optimality” on page 424, that requires that the gradient of the Lagrange function
is zero at the optimal point(x�; ��):

rxL(x
�; ��) = 0
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Active Set Methods

The parameter vectorx 2 Rn may be subject to a set ofm linear equality and
inequality constraints:

nX
j=1

aijxj = bi ; i = 1; : : : ;me

nX
j=1

aijxj � bi ; i = me + 1; : : : ;m

The coefficientsaij and right-hand sidesbi of the equality and inequality constraints
are collected in them� n matrixA and them vectorb.

Them linear constraints define a feasible regionG in Rn that must contain the point
x� that minimizes the problem. If the feasible regionG is empty, no solution to the
optimization problem exists.

All optimization techniques in PROC NLP (except those processing nonlinear con-
straints) areactive set methods. The iteration starts with a feasible pointx(0), which
either is provided by the user or can be computed by the Schittkowski and Stoer
(1979) algorithm implemented in PROC NLP. The algorithm then moves from one
feasible pointx(k�1) to a better feasible pointx(k) along a feasible search direction
s(k),

x(k) = x(k�1) + �(k)s(k) �(k) > 0:

Theoretically, the path of pointsx(k) never leaves the feasible regionG of the opti-
mization problem, but it can hit its boundaries. The active setA(k) of point x(k) is
defined as the index set of all linear equality constraints and those inequality con-
straints that are satisfied atx(k). If no constraint is activex(k), the point is located in
the interior ofG, and the active setA(k) = ; is empty. If the pointx(k) in iteration
k hits the boundary of inequality constrainti, this constrainti becomes active and is
added toA(k). Each equality constraint and each active inequality constraint reduces
the dimension (degrees of freedom) of the optimization problem.

In practice, the active constraints can be satisfied only with finite precision. The
LCEPSILON=r option specifies the range for active and violated linear constraints.
If the pointx(k) satisfies the condition

j
nX

j=1

aijx
(k)
j � bij � t

wheret = r � (jbij+ 1), the constrainti is recognized as an active constraint. Other-
wise, the constrainti is either an inactive inequality or a violated inequality or equal-
ity constraint. Due to rounding errors in computing the projected search direction,
error can be accumulated so that an iteratex(k) steps out of the feasible region. In
those cases, PROC NLP may try to pull the iteratex(k) into the feasible region. How-
ever, in some cases the algorithm needs to increase the feasible region by increasing
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the LCEPSILON=r value. If this happens it is indicated by a message displayed in
the log output.

If you cannot expect an improvement in the value of the objective function by moving
from an active constraint back into the interior of the feasible region, you use this
inequality constraint as an equality constraint in the next iteration. That means the
active setA(k+1) still contains the constrainti. Otherwise you release the active
inequality constraint and increase the dimension of the optimization problem in the
next iteration.

A serious numerical problem can arise when some of the active constraints become
(nearly) linearly dependent. Linearly dependent equality constraints are removed
before entering the optimization. You can use the LCSINGULAR= option to specify
a criterionr used in the update of the QR decomposition that decides whether an
active constraint is linearly dependent relative to a set of other active constraints.

If the final parameter setx� is subjected tonact linear equality or active inequality
constraints, the QR decomposition of then�nact matrix ÂT of the linear constraints
is computed byÂT = QR, whereQ is ann � n orthogonal matrix andR is an
n � nact upper triangular matrix. Then columns of matrixQ can be separated into
two matrices,Q = [Y;Z], whereY contains the firstnact orthogonal columns of
Q andZ the lastn � nact orthogonal columns ofQ. Then � (n � nact) column-
orthogonal matrixZ is also called the nullspace matrix of the active linear constraints
ÂT . Then� nact columns of then � (n� nact) matrixZ form a basis orthogonal
to the rows of thenact � n matrix Â.

At the end of the iteration process, the PROC NLP can display theprojected gradient
gZ ,

gZ = ZT g

In the case of boundary constrained optimization, the elements of the projected gradi-
ent correspond to the gradient elements of the free parameters. A necessary condition
for x� to be a local minimum of the optimization problem is

gZ(x
�) = ZT g(x�) = 0

The symmetricnact � nact matrixGZ ,

GZ = ZTGZ

is called aprojected Hessian matrix. A second-order necessary condition forx� to be
a local minimizer requires that the projected Hessian matrix is positive semidefinite.
If available, the projected gradient and projected Hessian matrix can be displayed and
written in an OUTEST= or OUTVAR= data set.
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Those elements of thenact vector of first-order estimates ofLagrange multipliers,

� = (ÂÂT )�1ÂZZT g;

which correspond to active inequality constraints indicate whether an improvement
of the objective function can be obtained by releasing this active constraint. For min-
imization (maximization), a significant negative (positive) Lagrange multiplier indi-
cates that a possible reduction (increase) of the objective function can be obtained by
releasing this active linear constraint. The LCDEACT=r option can be used to spec-
ify a thresholdr for the Lagrange multiplier that decides whether an active inequality
constraint remains active or can be deactivated. The Lagrange multipliers are dis-
played (and written in an OUTEST= or OUTVAR= data set) only if linear constraints
are active at the solutionx�. (In the case of boundary-constrained optimization, the
Lagrange multipliers for active lower (upper) constraints are the negative (positive)
gradient elements corresponding to the active parameters.)

Feasible Starting Point

Two algorithms are used to obtain a feasible starting point.

� When only boundary constraints are specified:

– If the parameterxj, 1 � j � n, violates a two-sided boundary constraint
(or an equality constraint)lj � xj � uj , the parameter is given a new
value inside the feasible interval, as follows:

xj = lj; if uj � lj

xj = lj +
1
2 (uj � lj); if uj � lj < 4

xj = lj +
1
10(uj � lj); if uj � lj � 4

– If the parameterxj , j = 1; : : : ; n, violates a one-sided boundary con-
straint lj � xj or xj � uj , the parameter is given a new value near the
violated boundary, as follows:

xj = lj +max(1; 1
10 lj); if lj violated

xj = uj �max(1; 1
10uj); if uj violated

� When general linear constraints are specified, a feasible point is computed by
the algorithm of Schittkowski and Stoer (1979), that may be quite far from a
user-specified infeasible point.
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Line-Search Methods

In each iterationk, the (dual) quasi-Newton, hybrid quasi-Newton, conjugate gra-
dient, and Newton-Raphson minimization techniques use iterative line-search algo-
rithms that try to optimize a linear, quadratic, or cubic approximation off along a
feasible descent search directions(k)

x(k+1) = x(k) + �(k)s(k); �(k) > 0

by computing an approximately optimal scalar�(k).

Therefore, a line-search algorithm is an iterative process that optimizes a nonlinear
functionf = f(�) of one parameter (�) within each iterationk of the optimization
technique, which itself tries to optimize a linear or quadratic approximation of the
nonlinear objective functionf = f(x) of n parametersx. Since the outside iteration
process is based only on the approximation of the objective function, the inside it-
eration of the line-search algorithm does not have to be perfect. Usually, the choice
of � significantly reduces (in a minimization) the objective function. Criteria often
used for termination of line-search algorithms are the Goldstein conditions (refer to
Fletcher 1987).

Various line-search algorithms can be selected by using the LIS= option. The line-
search method LIS=2 seems to be superior when function evaluation consumes sig-
nificantly less computation time than gradient evaluation. Therefore, LIS=2 is the
default value for Newton-Raphson, (dual) quasi-Newton, and conjugate gradient op-
timizations.

A special default line-search algorithm for TECH= HYQUAN is useful only for least-
squares problems and cannot be chosen by the LIS= option. This method uses three
columns of them� n Jacobian matrix, which can for largem require more memory
than using the algorithms designated by LIS=1 through LIS=8.

The line-search methods LIS=2 and LIS=3 can be modified to exact line-search by us-
ing the LSPRECISION= option (specifying the� parameter in Fletcher, 1987). The
line-search methods LIS=1, LIS=2, and LIS=3 satisfy the left-hand side and right-
hand side Goldstein conditions (refer to Fletcher 1987). When derivatives are avail-
able, the line-search methods LIS=6, LIS=7,and LIS=8 try to satisfy the right-hand
side Goldstein condition; if derivatives are not available, these line-search algorithms
use only function calls.

Restricting the Step Length

Almost all line-search algorithms use iterative extrapolation techniques which can
easily lead them to (feasible) points where the objective functionf is no longer de-
fined (For example, resulting in indefinite matrices for ML estimation) or difficult to
compute (For example, resulting in floating point overflows). Therefore, PROC NLP
provides options restricting the step length� or trust region radius�, especially dur-
ing the first main iterations.

The inner productgT s of the gradientg and the search directions is the slope of
f(�) = f(x + �s) along the search directions. The default starting value�(0) =
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�(k;0) in each line-search algorithm (min�>0 f(x+ �s)) during the main iterationk
is computed in three steps:

1. The first step uses either the differencedf = jf (k) � f (k�1)j of the function
values during the last two consecutive iterations or the final stepsize value�–

of the last iterationk � 1 to compute a first value of�(0)1 .

� Not using the DAMPSTEP option:

�
(0)
1 =

8<
:

step if 0:1 � step � 10
10 if step > 10
0:1 if step < 0:1

with

step =

�
df=jgT sj if jgT sj � �max(100df; 1)
1 otherwise

This value of�(0)1 can be too large and lead to a difficult or impossible
function evaluation, especially for highly nonlinear functions such as the
EXP function.

� Using the DAMPSTEP[=r] option:

�
(0)
1 = min(1; r�–)

The initial value for the new step length can be no larger thanr times the
final step length�– of the former iteration. The default value isr = 2.

2. During the first five iterations, the second step enables you to reduce�
(0)
1 to a

smaller starting value�(0)2 using the INSTEP=r option:

�
(0)
2 = min(�

(0)
1 ; r)

After more than five iterations,�(0)2 is set to�(0)1 .

3. The third step can further reduce the step length by

�
(0)
3 = min(�

(0)
2 ;min(10; u))

whereu is the maximum length of a step inside the feasible region.

The INSTEP=r option lets you specify a smaller or larger radius� of the trust re-
gion used in the first iteration of the trust-region, double dogleg, and the Levenberg-
Marquardt algorithm. The default initial trust region radius�(0) is the length of the
scaled gradient (Moré 1978). This step corresponds to the default radius factor of
r = 1. In most practical applications of the TRUREG, DBLDOG, and LEVMAR
algorithms, this choice is successful. However, for bad initial values and highly non-
linear objective functions (such as the EXP function), the default start radius can
result in arithmetic overflows. If this happens, you may try decreasing values of
INSTEP=r, 0 < r < 1, until the iteration starts successfully. A small factorr also
affects the trust region radius�(k+1) of the next steps because the radius is changed
in each iteration by a factor0 < c � 4, depending on the ratio� expressing the
goodness of quadratic function approximation. Reducing the radius� corresponds
to increasing the ridge parameter�, producing smaller steps directed more closely
toward the (negative) gradient direction.
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Computational Problems

First Iteration Overflows
If you use bad initial values for the parameters, the computation of the value of the
objective function (and its derivatives) can lead to arithmetic overflows in the first it-
eration. The line-search algorithms that work with cubic extrapolation are especially
sensitive to arithmetic overflows. If an overflow occurs with an optimization tech-
nique that uses line-search, you can use the INSTEP= option to reduce the length of
the first trial step during the line-search of the first five iterations or use the DAMP-
STEP or MAX STEP option to restrict the step length of the initial� in subsequent
iterations. If an arithmetic overflow occurs in gthe first iteration of the trust-region,
double dogleg, or Levenberg-Marquardt algorithm, you can use the INSTEP= option
to reduce the default trust region radius of the first iteration. You can also change the
minimization technique or the line-search method. If none of these methods helps,
consider the following actions:

� scale the parameters

� provide better initial values

� use boundary constraints to avoid the region where overflows may happen

� change the algorithm (specified in program statements) which computes the
objective function

Problems in Evaluating the Objective Function
The starting pointx(0) must be a point that can be evaluated by all the functions
involved in your problem. However, during optimization the optimizer may iterate to
a pointx(k) where the objective function or nonlinear constraint functions and their
derivatives cannot be evaluated. If you can identify the problematic region, you can
prevent the algorithm from reaching it by adding another constraint to the problem.
Another possiblity is a modification of the objective function, that will, as a result,
get a large, undesired function value. As a result, the optimization algorithm reduces
the step length and stays closer to the point that has been evaluated successfully in
the previous iteration. For more information, refer to the section “Missing Values in
Program Statements” on page 465.

Problems with Quasi-Newton Methods for Nonlinear Constraints
The sequential quadratic programming algorithm in QUANEW, that is used for solv-
ing nonlinearly constrained problems, can have problems updating the Lagrange mul-
tiplier vector�. This results usually in very high values of the Lagrange function and
in watchdogrestarts indicated in the iteration history. If this happens, there are three
actions you can try:

� By default, the Lagrange vector� is evaluated in the same way as Powell
(1982) describes. This corresponds to VERSION=2. By specifying VER-
SION=1, a modification of this algorithm replaces the update of the Lagrange
vector� with the original update of Powell (1978), that is used in VF02AD.

� You can use the INSTEP= option to impose an upper bound for the step size�
during the first five iterations.
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� You can use the INHESSIAN[=r] option to specify a different starting approx-
imation for the Hessian. Choosing simply the INHESSIAN option will use the
Cholesky factor of a (possibly ridged) finite difference approximation of the
Hessian to initialize the quasi-Newton update process.

Other Convergence Difficulties
There are a number of things to try if the optimizer fails to converge.

� Check the derivative specification:
If derivatives are specified by using the GRADIENT, HESSIAN, JACOBIAN,
CRPJAC, or JACNLC statement, you can compare the specified derivatives
with those computed by finite-difference approximations (specifying the FD
and FDHESSIAN option). Use the GRADCHECK option to check if the gra-
dientg is correct. For more information, refer to the section “Testing the Gra-
dient Specification” on page 442.

� Forward-difference derivatives specified with the FD[=] or FDHESSIAN[=]
option may not be precise enough to satisfy strong gradient termination criteria.
You may need to specify the more expensive central-difference formulas or use
analytical derivatives. The finite difference intervals may be too small or too
big and the finite difference derivatives may be erroneous. You can specify the
FDINT= option to compute better finite difference intervals.

� Change the optimization technique:
For example, if you use the default TECH=LEVMAR, you can

– change to TECH=QUANEW or to TECH=NRRIDG

– run some iterations with TECH= CONGRA, write the results in an OUT-
EST= or OUTVAR= data set, and use them as initial values specified by
an INEST= or INVAR= data set in a second run with a different TECH=
technique

� Change or modify the update technique and the line-search algorithm:
This method applies only to TECH=QUANEW, TECH=HYQUAN, or TECH=
CONGRA. For example, if you use the default update formula and the default
line-search algorithm, you can

– change the update formula with the UPDATE= option

– change the line-search algorithm with the LIS= option

– specify a more precise line-search with the LSPRECISION= option, if
you use LIS=2 or LIS=3

� Change the initial values by using a grid search specification to obtain a set of
good feasible starting values.

Convergence to Stationary Point
The (projected) gradient at a stationary point is zero and that translates into a zero
step size. The stopping criteria are satisfied.

There are two ways to avoid this situation:

� Use the PARMS statement to specify a grid of feasible starting points.
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� Use the OPTCHECK[=r] option to avoid terminating at the stationary point.

The signs of the eigenvalues of the (reduced) Hessian matrix contain information
regarding a stationary point.

� If all eigenvalues are positive, the Hessian matrix is positive definite and the
point is a minimum point.

� If some of the eigenvalues are positive and all remaining eigenvalues are zero,
the Hessian matrix is positive semidefinite and the point is a minimum or saddle
point.

� If all eigenvalues are negative, the Hessian matrix is negative definite and the
point is a maximum point.

� If some of the eigenvalues are negative and all remaining eigenvalues are zero,
the Hessian matrix is negative semidefinite and the point is a maximum or
saddle point.

� If all eigenvalues are zero, the point can be a minimum, maximum, or saddle
point.

Precision of Solution
In some applications, PROC NLP may result in parameter estimates that are not pre-
cise enough. Usually this means that the procedure terminated too early at a point too
far from the optimal point. The termination criteria define the size of the termination
region around the optimal point. Any point inside this region can be accepted for ter-
minating the optimization process. The default values of the termination criteria are
set to satisfy a reasonable compromise between the computational effort (computer
time) and the precision of the computed estimates for the most common applications.
However, there are a number of circumstances where the default values of the termi-
nation criteria specify a region that is either too large or is too small. If the termination
region is too large, then it can contain points with low precision. In such cases, you
should inspect your log or list output to find the message stating which termination
criterion terminated the optimization process. In many applications, you can obtain
a solution with higher precision by simply using the old parameter estimates as start-
ing values in a subsequent run where you specify a smaller value for the termination
criterion that was satisfied at the former run.

If the termination region is too small, the optimization process may take longer to find
a point inside such a region or cannot even find such a point due to rounding errors in
function values and derivatives. This can easily happen in applications where finite
difference approximations of derivatives are used and the GCONV and ABSGCONV
termination criteria are too small to respect rounding errors in the gradient values.

Covariance Matrix

The COV= option must be specified to compute an approximate covariance matrix
for the parameter estimates under asymptotic theory for least-squares, maximum-
likelihood, or Bayesian estimation, with or without corrections for degrees of freedom
as specified by the VARDEF= option.
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Two groups of six different forms of covariance matrices (and therefore approximate
standard errors) can be computed corresponding to the following two situations:

� The LSQ statement is specified, which means that least-squares estimates are
being computed,

min f(x) =
mX
i=1

f2i (x)

� The MIN or MAX statement is specified, which means that maximum-
likelihood or Bayesian estimates are being computed,

optf(x) =
mX
i=1

fi(x)

whereopt is eithermin ormax.

In either case, the following matrices are used:

G = r2f(x)

J(f) = (rf1; : : : ;rfm) = (
@fi
@xj

)

JJ(f) = J(f)TJ(f)

V = J(f)TDiag(f2i )J(f)

W = J(f)TDiag(f yi )J(f)

where

f yi =

�
0 if fi = 0
1=fi otherwise

For unconstrained minimization, or when none of the final parameter estimates is
subjected to linear equality or active inequality constraints, the formulas of the six
types of covariance matrices areas follows.

COV MIN or MAX Statement LSQ Statement

1 M –NOBS–
d

G�1JJ(f)G�1 –NOBS–
d

G�1V G�1

2 H –NOBS–
d

G�1 �2G�1

3 J 1
d
W�1 �2JJ(f)�1

4 B 1
d
G�1WG�1 �2G�1JJ(f)G�1

5 E –NOBS–
d

JJ(f)�1 1
d
V �1

6 U –NOBS–
d

W�1JJ(f)W�1 –NOBS–
d

JJ(f)�1V JJ(f)�1

The value ofd depends on the VARDEF= option and on the value of the–NOBS–
variable:

d =

�
max(1;–NOBS– � –DF–) for VARDEF= DF

–NOBS– for VARDEF= N
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where–DF– is either set in the program statements or set by default ton (the number
of parameters) and–NOBS– is either set in the program statements or set by default
to nobs� mfun; nobs is the number of observations in the data set and mfun is the
number of functions listed in the LSQ, MIN, or MAX statement.

The value�2 depends on the specifications of the SIGSQ= options and on the value
of d:

�2 =

�
sq � –NOBS–=d if SIGSQ=sq is specified
2 � f(x�)=d if SIGSQ= is not specified

wheref(x�) is the value of the objective function at the optimal parameter estimates
x�.

The two groups of formulas distinguish between two situations:

� For least-squares estimates, the error variance can be estimated from the objec-
tive function value and is used in three of the six different forms of covariance
matrices. If you have an independent estimate of the error variance, you can
specify it with the SIGSQ= option.

� For maximum-likelihood or Bayesian estimates, the objective function should
be the logarithm of the likelihood or of the posterior density when using the
MAX statement.

For minimization, the inversion of the matrices in these formulas is done so that
negative eigenvalues are considered zero, resulting always in a positive semidefinite
covariance matrix.

In small samples, estimates of the covariance matrix based on asymptotic theory are
often too small and should be used with caution.

If the final parameter estimates are subjected tonact > 0 linear equality or active
linear inequality constraints, the formulas of the covariance matrices are modified
similar to Gallant (1987) and Cramer (1986, p. 38) and additionally generalized for
applications with singular matrices. In the constrained case, the value ofd used in
the scalar factor�2 is defined by

d =

�
max(1;–NOBS– � –DF– + nact) for VARDEF= DF

–NOBS– for VARDEF= N

wherenact is the number of active constraints, and–NOBS– is set as in the uncon-
strained case.

For minimization, the covariance matrix should be positive definite; for maximization
it should be negative definite. There are several options available to check for a rank
deficiency of the covariance matrix:

� The ASINGULAR=, MSINGULAR=, and VSINGULAR= options can be
used to set three singularity criteria for the inversion of the matrixA needed
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to compute the covariance matrix, whenA is either the Hessian or one of the
crossproduct Jacobian matrices. The singularity criterion used for the inversion
is

jdj;j j � max(ASING;VSING � jAj;jj;MSING �max(jA1;1j; : : : ; jAn;nj))

wheredj;j is the diagonal pivot of the matrixA, and ASING, VSING and
MSING are the specified values of the ASINGULAR=, VSINGULAR=, and
MSINGULAR= options. The default values are

– ASING: the square root of the smallest positive double precision value

– MSING:1e�12 if the SINGULAR= option is not specified andmax(10:�
�; 1e � 4 � SINGULAR) otherwise, where� is the machine precision

– VSING: 1e� 8 if the SINGULAR= option is not specified and the value
of SINGULAR otherwise

Note: In many cases, a normalized matrixD�1AD�1 is decomposed and the
singularity criteria are modified correspondingly.

� If the matrixA is found singular in the first step, a generalized inverse is com-
puted. Depending on the G4= option, either a generalized inverse satisfying all
four Moore-Penrose conditions is computed or a generalized inverse satisfying
only two Moore-Penrose conditions in general. If the number of parameters
n of the application is less than or equal to G4=i, a G4 inverse is computed;
otherwise only a G2 inverse is computed. The G4 inverse is computed by (the
computationally very expensive but numerically stable) eigenvalue decompo-
sition, the G2 inverse is computed by Gauss transformation. The G4 inverse
is computed using the eigenvalue decompositionA = Z�ZT , whereZ is the
orthogonal matrix of eigenvectors and� is the diagonal matrix of eigenvalues,
� = diag(�1; :::; �n). If the PEIGVAL option is specified, the eigenvalues�i
are displayed. The G4 inverse ofA is set to

A� = Z��ZT

where the diagonal matrix�� = diag(��1 ; :::; �
�
n ) is defined using the COVS-

ING= option

��i =

�
1=�i if j�ij > COV SING
0 if j�ij � COV SING

If the COVSING= option is not specified, thenr smallest eigenvalues are set
to zero, wherenr is the number of rank deficiencies found in the first step.

For optimization techniques that do not use second-order derivatives, the covariance
matrix is usually computed using finite difference approximations of the derivatives.
By specifying TECH= NONE, any of the covariance matrices can be computed using
analytical derivatives. The covariance matrix specified by the COV= option can be
displayed (using the PCOV option) and is written to the OUTEST= or OUTVAR=
data set.
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Input and Output Data Sets

DATA= Input Data Set
The DATA= data set is used only to specify an objective functionf , that is a combi-
nation ofm other functionsfi. For each functionfi, i = 1; : : : ;m, listed in a MAX,
MIN, or LSQ statement, each observationl, l = 1; : : : ; nobs, in the DATA= data set
defines a specific functionfil that is evaluated by substituting the values of the vari-
ables of this observation into the program statements. If the MAX or MIN statement
is used, them �nobs specific functionsfil are added to a single objective functionf .
If the LSQ statement is used, the sum-of-squaresf of them�nobs specific functions
fil is minimized. The NOMISS option causes observations with missing values to be
skipped.

INEST= Input Data Set
The INEST= (or INVAR=, or ESTDATA=) input data set can be used to specify the
initial values of the parameters defined in a PARMS statement as well as boundary
constraints and the more general linear constraints which could be imposed on these
parameters. This form of input is similar to the dense format input used in PROC LP.

The variables of the INEST= data set are

� a character variable–TYPE– that indicates the type of the observation

� n numeric variables with the parameter names used in the PARMS statement

� the BY variables that are used in a DATA= input data set

� a numeric variable–RHS– (right-hand side) (needed only if linear constraints
are used)

� additional variables with names corresponding to constants used in the program
statements

The content of the–TYPE– variable defines the meaning of the observation of the
INEST= data set. PROC NLP recognizes the following–TYPE– values:

� PARMS, which specifies initial values for parameters. Additional variables can
contain the values of constants that are referred to in program statements. The
values of the constants in the PARMS observation initialize the constants in the
program statements.

� UPPERBD | UB, which as specifies upper bounds. Missing values indicate that
no upper bound is specified for the parameter.

� LOWERBD | LB, which specifies lower bounds. Missing values indicate that
no lower bound is specified for the parameter.

� LE |<= |<, which specifies linear constraint
P

j aijxj � bi. Then parameter
values contain the coefficientsaij , and the–RHS– variable contains the right-
hand sidebi. Missing values indicate zeros.

� GE |>= |>, which specifies linear constraint
P

j aijxj � bi. Then parameter
values contain the coefficientsaij , and the–RHS– variable contains the right-
hand sidebi. Missing value indicates zeros.

SAS OnlineDoc: Version 8



Input and Output Data Sets � 457

� EQ j =, which specifies linear constraint
P

j aijxj = bi. Then parameter
values contain the coefficientsaij , and the–RHS– variable contains the right-
hand sidebi. Missing value indicates zeros.

The constraints specified in an INEST= data set are added to the constraints speci-
fied in BOUNDS and LINCON statements. You can use an OUTEST= data set as
an INEST= data set in a subsequent run of PROC NLP. However, be aware that the
OUTEST= data set also contains the boundary and general linear constraints specified
in the former run of PROC NLP. When you are using this OUTEST= data set with-
out changes as an INEST= data set, PROC NLP adds the constraints from the data
set to the constraints specified by a BOUNDS and LINCON statement. Although
PROC NLP automatically eliminates multiple identical constraints you should avoid
specifying the same constraint a second time.

INQUAD= Input Data Set
Two types of INQUAD= data sets can be used to specify the objective function of a
quadratic programming problem for TECH=QUADAS or TECH=LICOMP,

f(x) =
1

2
xTGx+ gTx+ c; with GT = G

The denseINQUAD= data set must contain all numerical values of the symmetric
matrixG, vectorg, and the value of the scalarc. Using thesparseINQUAD= data
set allows to specify only the nonzero positions in matrixG and vectorg. Those
locations that are not set by thesparseINQUAD= data set are assumed to be zero.

Dense INQUAD= Data Set
A dense INQUAD= data set must contain two character variables–TYPE– and

–NAME– and at leastn numeric variables whose names are the parameter names.
The–TYPE– variable takes the following values:

� QUAD lists then values of the row of theG matrix that is defined by the
parameter name used in the–NAME– variable.

� LINEAR lists then values of theg vector.

� CONST sets the the value of the scalarc and cannot contain different numerical
values; however, it could contain up ton� 1 missing values.

� PARMS specifies initial values for parameters.

� UPPERBD | UB specifies upper bounds. Missing value indicates that no upper
bound is specified.

� LOWERBD | LB specifies lower bounds. The use of a missing value indicates
that no lower bound.

� LE |<= |< specifies linear constraint
P

j aijxj � bi. Then parameter values
contain the coefficientsaij , and the–RHS– variable contains the right-hand
sidebi. Missing values indicate zeros.

� GE |>= |> specifies linear constraint
P

j aijxj � bi. Then parameter values
contain the coefficientsaij , and the–RHS– variable contains the right-hand
sidebi. Missing values indicate zeros.
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� EQ | = specifies linear constraint
P

j aijxj = bi. Then parameter values
contain the coefficientsaij , and the–RHS– variable contains the right-hand
sidebi. Missing values indicate zeros.

Constraints specified in a dense INQUAD= data set are added to the constraints spec-
ified in BOUNDS and LINCON statements.

Sparse INQUAD= Data Set
A sparse INQUAD= data set must contain three character variables–TYPE–,

–ROW–, and–COL– and one numeric variable–VALUE–. The–TYPE– variable
can assume three values:

� QUAD specifies that the–ROW– and –COL– variables define the row and
column location of the value in theG matrix.

� LINEAR specifies that the–ROW– variable defines the row location of the
value in theg vector. The–COL– variable is not used.

Using both the MODEL= option and the INCLUDE program statement with the same
model file will include the file twice (erroneous in most cases).

OUT= Output Data Set
The OUT= data set contains those variables of a DATA= input data set that are re-
ferred to in the program statements and additionally variables computed by the pro-
gram statements for the objective function. Specifying the NOMISS option enables
you to skip observations with missing values in variables used in the program state-
ments. The OUT= data set can also contain first- and second-order derivatives of
these variables if the OUTDER= option is specified. The variables and derivatives
are the final parameter estimatesx� or (for TECH=NONE) the initial valuex0.

The variables of the OUT= data set are:

� the BY variables and all other variables that are used in a DATA= input data set
and referred to in the program code

� a variable–OBS– containing the number of observations read from a DATA=
input data set where the counting is restarted with the start of each BY group.
If there is no DATA= input data set, then–OBS–=1

� a character variable–TYPE– naming the type of the observation

� the parameter variables listed in the PARMS statement

� the function variables listed in the the MIN, MAX, or LSQ statement

� all other variables computed in the program statements

� the character variable–WRT– (if OUTDER=1) containing thewith respect to
variable for which the first-order derivatives are written in the function vari-
ables

� the two character variables–WRT1– and–WRT2–(if OUTDER=2) containing
the twowith respect tovariables for which the first- and second-order deriva-
tives are written in the function variables
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OUTEST= Output Data Set
The OUTEST= or OUTVAR= output data set saves the optimization solutions of the
use of the OUTEST= or OUTVAR= data set

� to save the values of the objective function on grid points to examine, for ex-
ample, surface plots using PROC G3D (use the OUTGRID option)

� to avoid any costly computation of analytical (first- or second-order) derivatives
during optimization when they only needed upon termination. In this case a
two-step approach is recommended:

1. In a first execution, the optimization is done; that is, optimal parameter
estimates are computed, and the results are saved in an OUTEST= data
set.

2. In a subsequent execution, the optimal parameter estimates in the for-
mer OUTEST= data set are read in an INEST= data set and used with
TECH=NONE to compute further results, such as analytical second-order
derivatives or some kind of covariance matrix.

� to restart the procedure using parameter estimates as initial values

� to split a timeconsuming optimization problem into a series of smaller prob-
lems using intermediate results as initial values in a subsequent runs. (Refer to
the MAXTIME=, MAXIT=, and MAXFU= options to trigger stopping in the
section “PROC NLP Statement” on page 386)

� to write the value of the objective function, the parameter estimates, the time in
seconds starting at the beginning of the optimization process and (if available)
the gradient to the OUTEST= data set during the iterations. After the PROC
NLP run is completed, the convergence progress can be inspected by graph-
ically displaying the iterative information. (Refer to the OUTITER option in
the section “PROC NLP Statement” on page 386)

The variables of the OUTEST= data set are

� the BY variables that are used in a DATA= input data set

� a character variable–TECH– naming the optimization technique used

� a character variable–TYPE– specifying the type of the observation

� a character variable–NAME– naming the observation. For a linear constraint,
the–NAME– variable indicates whether the constraint is active at the solution.
For the initial observations, the–NAME– variable indicates if the number in
the –RHS– variable corresponds to the number of positive, negative, or zero
eigenvalues

� n numeric variables with the parameter names used in the PARMS statement.
These variables contain a pointx of the parameter space, lower or upper bound-
ary constraints, or the coefficients of linear constraints

� a numeric variable–RHS– (right-hand side) that is used for the right-hand
side valuebi of a linear constraints or for the valuef = f(x) of the objective
function at a pointx of the parameter space
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� a numeric variable–ITER–, that is zero for initial values, equal to the iteration
number for the OUTITER output, and missing for the result output

The–TYPE– variable identifies how to interpret the observation. If–TYPE– is:

� PARMS then parameter named variables contain the coordinates of the result-
ing pointx�. The–RHS– variable containsf(x�).

� INITIAL then parameter named variables contain the feasible starting point
x(0). The–RHS– variable containsf(x(0)).

� GRIDPNT then (if the OUTGRID option is specified) parameter named vari-
ables contain the coordinates of any pointx(k) used in the grid search. The

–RHS– variable containsf(x(k)).

� GRAD then parameter named variables contain the gradient at the initial or
final estimates.

� STDERR then parameter named variables contain the approximate standard
errors (square roots of the diagonal elements of the covariance matrix) if the
COV= option is specified.

� –NOBS– then (if the COV= options is specified) all parameter variables con-
tain the value of–NOBS– used in computing the�2 value in the formula of
the covariance matrix.

� UPPERBD | UB then (if there are boundary constraints) the parameter variables
contain the upper bounds.

� LOWERBD | LB then (if there are boundary constraints) the parameter vari-
ables contain the lower bounds.

� NACTBC then all parameter variables contain the numbernabc of active
boundary constraints at the solutionx(�).

� ACTBC then (if there are active boundary constraints) three observation indi-
cate which of the parameters is actively constrained, as follows:

–NAME –=GE the active lower bounds

–NAME –=LE the active upper bounds

–NAME –=EQ the active equality constraints

� NACTLC then all parameter variables contain the numbernalc of active linear
constraints that are recognized as linear independent.

� NLDACTLC then all parameter variables contain the number of active linear
constraints that are recognized as linearly dependent.

� LE then (if there are linear constraints) the observation contains theith linear
constraint

P
j aijxj � bi. The parameter variables contain the coefficientsaij,

j = 1; : : : ; n, and the–RHS– variable containsbi. If the constrainti is active
at the solutionx�, then–NAME–= ’ACTLC’ or ’LDACTLC’.

� GE then (if there are linear constraints) the observation contains theith linear
constraint

P
j aijxj � bi. The parameter variables contain the coefficientsaij,

j = 1; : : : ; n, and the–RHS– variable containsbi. If the constrainti is active
at the solutionx�, then–NAME–= ’ACTLC’ or ’LDACTLC’.
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� EQ then (if there are linear constraints) the observation contains theith linear
constraint

P
j aijxj = bi. The parameter variables contain the coefficientsaij,

j = 1; : : : ; n, the–RHS– variable containsbi, and–NAME–= ’ACTLC’ or
’LDACTLC’.

� LAGRANGE then (if at least one of the linear constraints is an equality con-
straint or an inequality constraint that is active) the observation contains the
vector of Lagrange multipliers. The Lagrange multipliers of active boundary
constraints are listed first followed by those of active linear constraints and
those of active nonlinear constraints. Lagrange multipliers are only available
for the set of linearly independent active constraints.

� PROJGRAD then (if there are linear constraints) the observation contains the
n�nact values of the projected gradientgZ = Z 0g in the variables correspond-
ing to the firstn� nact parameters.

� JACOBIAN ( then if the PJAC or OUTJAC option is specified) them observa-
tions contain them rows of them � n Jacobian matrix The–RHS– variable
contains the row numberl, l = 1; : : : ;m.

� HESSIAN then the firstn observations contain then rows of the (symmetric)
Hessian matrix. The–RHS– variable contains the row numberj, j = 1; : : : ; n,
and the–NAME– variable contains the corresponding parameter name.

� PROJHESS then the firstn � nact observations contain then � nact rows of
the projected Hessian matrixZTGZ. The–RHS– variable contains the row
numberj, j = 1; : : : ; n� nact, and the–NAME– variable is blank.

� CRPJAC then the firstn observations contain then rows of the (symmetric)
crossproduct Jacobian matrix at the solution. The–RHS– variable contains
the row numberj, j = 1; : : : ; n, and the–NAME– variable contains the cor-
responding parameter name.

� PROJCRPJ then the firstn � nact observations contain then � nact rows of
the projected crossproduct Jacobian matrixZT (JTJ)Z. The–RHS– variable
contains the row numberj, j = 1; : : : ; n� nact, and the–NAME– variable is
blank.

� COV1, COV2, COV3, COV4, COV5, or COV6 then (depending on the COV=
option) the firstn observations contain then rows of the (symmetric) covari-
ance matrix of the parameter estimates. The–RHS– variable contains the row
numberj, j = 1; : : : ; n, and the–NAME– variable contains the corresponding
parameter name.

� DETERMIN then contains the determinantdet = a�10b of the matrix specified
by the value of the–NAME– variable where the value of the first variable in
the PARMS statement andb is in –RHS–.

� NEIGPOS, NEIGNEG, or NEIGZER then the–RHS– variable contains the
number of positive, negative, and zero eigenvalues of the matrix specified by
the value of the–NAME– variable.

� COVRANK then the–RHS– variable contains the rank of the covariance ma-
trix.

SAS OnlineDoc: Version 8



462 � Chapter 5. The NLP Procedure

� SIGSQ then the–RHS– variable contains the scalar factor of the covariance
matrix.

� –TIME– then (if the OUTITER option is specified) the–RHS– variable con-
tains the number of seconds passed since the start of the optimization.

� TERMINAT then if optimization terminated at a point satisfying one of the
termination criteria, an abbreviation of the corresponding criteria is given to
the–NAME– variable. Otherwise–NAME–=’PROBLEMS’.

If for some reason the procedure does not terminate successfully (for example, no
feasible initial values can be computed or the function value or derivatives at the
starting point cannot be computed), the OUTEST= data set may contain only part of
the observations (usually only the PARMS and GRAD observation).

Note: Generally you can use an OUTEST= or OUTVAR= data set as an INEST= or
INVAR= data set in a further run of PROC NLP. However, be aware that the OUT-
EST= or OUTVAR= data set also contains the boundary and general linear constraints
specified in the former run of PROC NLP. When you are using this OUTEST= data
set without changes as an INEST= data set, PROC NLP adds the constraints from the
data set to the constraints specified by a BOUNDS or LINCON statement. Although
PROC NLP automatically eliminates multiple identical constraints you should avoid
specifying the same constraint a second time.

Output of Profiles
The following observations are written to the OUTEST= data set only when the PRO-
FILE statement or CLPARM option is specified

–TYPE– –NAME – –RHS– Meaning of Observation
PLC–LOW parname y value coordinates of lower CL for�
PLC–UPP parname y value coordinates of upper CL for�

WALD–CL LOWER y value lower Wald CL for� in –ALPHA–
WALD–CL UPPER y value upper Wald CL for� in –ALPHA–

PL–CL LOWER y value lower PL CL for� in –ALPHA–
PL–CL UPPER y value upper PL CL for� in –ALPHA–

PROFILE L(THETA) missing y value corresponding tox
in following –NAME–=THETA

PROFILE THETA missing x value corresponding toy
in previous–NAME–=L(THETA)

Assume that the PROFILE statement specifiesnp parameters andn� confidence lev-
els. For CLPARM,np = n andn� = 4.

� –TYPE–=PLC–LOW and–TYPE–=PLC–UPP:
If CLPARM= option or the PROFILE statement with the OUTTABLE option
is specified, then the complete set� of parameter estimates (rather than only
the confidence limitx = �j) is written to the OUTEST= data set for each side
of the confidence interval. This output may be helpful for further analyses on
how small changes inx = �j affect the changes in the other�i; i 6= j. The
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–ALPHA– variable contains the corresponding value of�. There should be
no more than2n�np observations. If the confidence limit cannot be computed,
the corresponding observation is not available.

� –TYPE–=WALD–CL:
If CLPARM=WALD, CLPARM=BOTH, or the PROFILE statement with�
values is specified, then the Wald confidence limits are written to the OUT-
EST= data set for each of the default or specified values of�. The–ALPHA–
variable contains the corresponding value of�. There should be2n� observa-
tions.

� –TYPE–=PL–CL:
If CLPARM=PL, CLPARM=BOTH, or the PROFILE statement with� values
is specified, then the PL confidence limits are written to the OUTEST= data
set for each of the default or specified value of�. The –ALPHA– variable
contains the corresponding values of�. There should be2n� observations;
some observations may have missing values.

� –TYPE–=PROFILE:
If CLPARM=PL, CLPARM=BOTH, or the PROFILE statement with or with-
out� values is specified, then a set of(x; y) point coordinates in two adjacent
observations with–NAME–=L(THETA) (y value) and–NAME–=THETA (x
value) is written to the OUTEST= data set. The–RHS– and–ALPHA– vari-
ables are not used (are set to missing). The number of observations depends on
the difficulty of the optimization problems.

OUTMODEL= Output Data Set
The program statements for objective functions, nonlinear constraints, and derivatives
can be saved into an OUTMODEL= output data set. This data set can be used in an
INCLUDE program statement or as a MODEL= input data set in subsequent calls
of PROC NLP. The OUTMODEL= option is similar to the option used in PROC
MODEL in SAS/ETS software.

Storing Programs in Model Files
Models can be saved to and recalled from SAS catalog files. SAS catalogs are special
files which can store many kinds of data structures as separate units in one SAS file.
Each separate unit is called an entry, and each entry has an entry type that identifies
its structure to the SAS system.

In general, to save a model, use the OUTMODEL=nameoption in the PROC NLP
statement, wherenameis specified aslibref.catalog.entry, libref.entry, or entry. The
libref, catalog, andentrynames must be valid SAS names no more than 8 characters
long. Thecatalogname is restricted to 7 characters on the CMS operating system. If
not given, thecatalogname defaults to MODELS, and thelibref defaults to WORK.
The entry type is always MODEL. Thus, OUTMODEL=X writes the model to the
file WORK.MODELS.X.MODEL.

The MODEL= option is used to read in a model. A list of model files can be specified
in the MODEL= option, and a range of names with numeric suffixes can be given, as
in MODEL=(MODEL1-MODEL10). When more than one model file is given, the
list must be placed in parentheses, as in MODEL=(A B C), except in the case of a
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single name. If more than one model file is specified, the files are combined in the
order listed in the MODEL= option.

When the MODEL= option is specified in the PROC NLP statement and model defi-
nition statements are also given later in the PROC NLP step, the model files are read
in first, in the order listed, and the model program specified in the PROC NLP step is
appended after the model program read from the MODEL= files.

The INCLUDE statement can be used to append model code to the current model
code. The contents of the model files are inserted into the current model at the posi-
tion where the INCLUDE statement appears.

Note that the following statements are not part of the program code that is written to
an OUTMODEL= data set: MIN, MAX, LSQ, MINQUAD, MAXQUAD, PARMS,
BOUNDS, BY, CRPJAC, GRADIENT, HESSIAN, JACNLC, JACOBIAN, LABEL,
LINCON, MATRIX, NLINCON.

Displayed Output

Procedure Initialization
After the procedure has processed the problem, it displays summary information
about the problem and the options that you have selected. It may also display a
list of linearly dependent constraints and other information about the constraints and
parameters.

Optimization Start
At the start of optimization the procedure displays

� the number of constraints that are active at the starting point, or more precisely,
the number of constraints that are currently members of the working set. If
this number is followed by a plus sign, there are more active constraints, of
which at least one is temporarily released from the working set due to negative
Lagrange multipliers

� the value of the objective function at the starting point

� if the (projected) gradient is available, the value of the largest absolute (pro-
jected) gradient element

� for the TRUREG and LEVMAR subroutines, the initial radius of the trust re-
gion around the starting point

Iteration History
In general, the iteration history consists of one line of output containing the most im-
portant information for each iteration. The iteration-extensive Nelder-Mead simplex
method, however, displays only one line for several internal iterations. This technique
skips the output for some iterations because

� some of the termination tests (size and standard deviation) are rather time-
consuming compared to the simplex operations and are only done every five
simplex operation.
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� the resulting history output is smaller

The –LIST– variable (refer to the “Program Statements” section) also enables you
to display the parameter estimatesx(k) and the gradientg(k) in all or some selected
iterationsk.

The iteration history always includes the following (the words in parentheses indicate
the column header output):

� the iteration number (iter)

� the number of iteration restarts (nrest)

� the number of function calls (nfun)

� the number of active constraints (act)

� the value of the optimization criterion (optcrit)

� the difference between adjacent function values (difcrit)

� the maximum of the absolute (projected) gradient components (maxgrad)

An apostrophe trailing the number of active constraints indicates that at least one of
the active constraints was released from the active set due to a significant Lagrange
multiplier.

The optimization history is displayed by default because it is important to check for
possible convergence problems.

Optimization Termination
The output of the optimization history ends with a short output of information con-
cerning the optimization result:

� the number of constraints that are active at the final point, or more precisely,
the number of constraints that are currently members of the working set When
this number is followed by a plus sign, it indicates that there are more active
constraints of which at least one is temporarily released from the working set
due to negative Lagrange multipliers.

� the value of the objective function at the final point

� if the (projected) gradient is available, the value of the largest absolute (pro-
jected) gradient element

� other information that is specific for the optimization technique

The NOPRINT option suppresses all output to the list file and only error’s, warning’s,
and note’s are displayed to the log file. The PALL option sets a large group of some
of the commonly used specific displaying options, the PSHORT option suppresses
some, and the PSUM (or PSUMMARY) option suppresses almost all of the default
output. The following table summarizes the correspondence between the general and
the specific print options
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Output Options PALL default PSHORT PSUM
y y y y summary of optimization
y y y n parameter estimates
y y y n gradient of objective func

PHISTORY y y y n iteration history
PINIT y y n n setting of initial values

y y n n listing of constraints
PGRID y n n n results of grid search
PNLCJAC y n n n Jacobian nonlin. constr.
PFUNCTION y n n n values of functions
PEIGVAL y n n n eigenvalue distribution
PCRPJAC y n n n crossproduct Jacobian
PHESSIAN y n n n Hessian matrix
PSTDERR y n n n approx. standard errors
PCOV y n n n covariance matrices
PJACOBI n n n n Jacobian
LIST n n n n model program, variables
LISTCODE n n n n compiled model program

Missing Values

Missing Values in Program Statements
There is one very important reason for using missing values in program statements
specifying the values of the objective functions and derivatives: it may not be pos-
sible to evaluate the program statements for a particular pointx. For example, the
extrapolation formula of one of the line-search algorithms may generate largex val-
ues for which theexp function cannot be evaluated without floating point overflow.
The compiler of the program statements may check for such situations automatically,
but it would be safer if you check the feasibility of your program statements. In some
cases, the specification of boundary or linear constraints for parameters can avoid
such situations. In many other cases, you can indicate thatx is abadpoint simply by
returning a missing value for the objective function. In such cases the optimization
algorithms in PROC NLP shorten the step size� or reduce the trust-region radius so
that the next point will be closer to the point that was already successfully evaluated
at the last iteration. Note that the starting pointx(0) must be a point for which the
program statements can be evaluated.

Missing Values in Input Data Sets
Observations with missing values in the DATA= data set for variables used in the
objective function can lead to a missing value of the objective function implying that
the corresponding BY group of data is not processed. The NOMISS option can be
used to skip those observations of the DATA= data set for which relevant variables
have missing values. Relevant are such variables that are referred to in program
statements.

There can be different reasons to include observations with missing values in the
INEST= data set. The value of the–RHS– variable is not used in some cases and
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can be missing. Missing values for the variables corresponding to parameters in the

–TYPE– = data set are as follows

� PARMS observations cause those parameters to have initial values assigned by
the PARMS statement or by the RANDOM= or INITIAL= option.

� UPPERBD or LOWERBD observations cause those parameters to be uncon-
strained by upper or lower bounds.

� LE, GE, or EQ observations cause those parameters to have zero values in the
constraint.

In general, missing values are treated as zeros.

Computational Resources

Since nonlinear optimization is an iterative process that depends on many factors, it
is difficult to estimate how much computer time is necessary to compute an optimal
solution satisfying one of the termination criteria. The MAXTIME=, MAXITER=,
and MAXFU= options can be used to restrict the amount of CPU time, the number
of iterations, and the number of function calls in a single run of PROC NLP.

In each iterationk, the NRRIDG and LEVMAR techniques use symmetric House-
holder transformations to decompose then�n Hessian (crossproduct Jacobian) ma-
trix G

G = V 0TV ; V : orthogonal; T : tridiagonal

to compute the (Newton) search directions

s(k) = �G(k)�1g(k) ; k = 1; 2; 3; : : : :

The QUADAS, TRUREG, NEWRAP, and HYQUAN techniques use the Cholesky
decomposition to solve the same linear system while computing the search direction.
The QUANEW, DBLDOG, CONGRA, and NMSIMP techniques do not need to in-
vert or decompose a Hessian or crossproduct Jacobian matrix and thus require less
computational resources then the first group of techniques.

The larger the problem, the more time is spent computing function values and deriva-
tives. Therefore, many researchers compare optimization techniques by counting and
comparing the respective numbers of function, gradient, and Hessian (crossproduct
Jacobian) evaluations. You can save computer time and memory by specifying deriva-
tives (using the GRADIENT, JACOBIAN, CRPJAC, or HESSIAN statement) since
you will typically produce a more efficient representation than the internal derivative
compiler.

Finite difference approximations of the derivatives are expensive since they require
additional function or gradient calls.

SAS OnlineDoc: Version 8



468 � Chapter 5. The NLP Procedure

� Forward-difference formulas:

– First-order derivatives:n additional function calls are needed.

– Second-order derivatives based on function calls only: for a dense Hes-
sian,n+ n2=2 additional function calls are needed.

– Second-order derivatives based on gradient calls:n additional gradient
calls are needed.

� Central-difference formulas:

– First-order derivatives:2n additional function calls are needed.

– Second-order derivatives based on function calls only: for a dense Hes-
sian,2n+ 2n2 additional function calls are needed.

– Second-order derivatives based on gradient:2n additional gradient calls
are needed.

Many applications need considerably more time for computing second-order deriva-
tives (Hessian matrix) than for first-order derivatives (gradient). In such cases, a
(dual) quasi-Newton or conjugate gradient technique is recommended, that does not
require second-order derivatives.

The following table shows for each optimization technique which derivatives are
needed (FOD: first-order derivatives; SOD: second-order derivatives), what kind of
constraints are supported (BC: boundary constraints; LIC: linear constraints), and the
minimal memory (number of double floating point numbers) required. For various
reasons, there are additionally about7n+m double floating point numbers needed.

Quadratic Programming FOD SOD BC LIC Memory
LICOMP - - x x 18n+ 3nn

QUADAS - - x x 1n+ 2nn=2

General Optimization FOD SOD BC LIC Memory
TRUREG x x x x 4n+ 2nn=2
NEWRAP x x x x 2n+ 2nn=2
NRRIDG x x x x 6n+ nn=2

QUANEW x - x x 1n+ nn=2
DBLDOG x - x x 7n+ nn=2
CONGRA x - x x 3n
NMSIMP - - x x 4n+ nn

Least-Squares FOD SOD BC LIC Memory
LEVMAR x - x x 6n+ nn=2
HYQUAN x - x x 2n+ nn=2 + 3m

Notes:

� Here,n denotes the number of parameters,nn the squared number of parame-
ters, andnn=2 := n(n+ 1)=2.
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� The value ofm is the product of the number of functions specified in the MIN,
MAX, or LSQ statement and the maximum number of observation in each BY
group of a DATA= input data set. The following table also contains the number
v of variables in the DATA= data set that are used in the program statements.

� For a diagonal Hessian matrix, thenn=2 term in QUADAS, TRUREG,
NEWRAP, and NRRIDG is replaced byn.

� If the TRUREG, NRRIDG, or NEWRAP method is used to minimize a least-
squares problem, the second derivatives are replaced by the crossproduct Jaco-
bian matrix.

� The memory needed by the TECH=NONE specification depends on the output
specifications (typically, it needs3n+nn=2 double floating point numbers and
an additionalmn if the Jacobian matrix is required).

The total amount of memory needed to run an optimization technique consists of the
technique-specific memory listed in the preceeding table, plus additional blocks of
memory as shown in the following table.

double int long 8byte
Basic Requirement 7n+m n 3n n+m

DATA= data set v - - v
JACOBIAN m(n+2) - - -

CRPJAC statement nn/2 - - -
HESSIAN statement nn/2 - - -

COV= statement (2*)nn/2 + n - - -
Scaling vector n - - -

BOUNDS statement 2n n - -
Bounds in INEST= 2n - - -

LINCON and TRUREG c(n+1)+nn+ nn/2+4n 3c - -
LINCON and other c(n+1)+nn+2nn/2+4n 3c - -

Notes:

� For TECH=LICOMP, the total amount of memory needed for the linear or
boundary constrained case is18(n + c) + 3(n + c)(n + c), wherec is the
number of constraints.

� The amount of memory needed to specify derivatives with a GRADIENT, JA-
COBIAN, CRPJAC, or HESSIAN statement (shown in this table) is small com-
pared to that needed for using the internal function compiler to compute the
derivatives. This is especially so for second-order derivatives.

� If the CONGRA technique is used, specifying the GRADCHECK [=DETAIL]
option requires an additionalnn=2 double floating point numbers to store the
finite difference Hessian matrix.
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Examples

Example 5.1. Using the DATA= Option

This example illustrates the use of the DATA= option. The Bard function (refer to
More et al. 1981) is a least-squares problem withn = 3 parameters andm = 15
functionsfk:

f(x) =
1

2

15X
k=1

f2k (x); x = (x1; x2; x3);

where

min fk(x) = yk � (x1 +
uk

vkx2 + wkx3
)

with uk = k, vk = 16� k, wk = min(uk; vk), and

yk = :14; :18; :22; :25; :29; :32; :35; :39; :37; :58; :73; :96; 1:34; 2:10; 4:39

The minimum function valuef(x�) = 4:107e � 3 is at the point(0:08; 1:13; 2:34).
The starting pointx0 = (1; 1; 1) is used.

The following is the naive way of specifying the objective function.

proc nlp tech=levmar;
lsq y1-y15;
parms x1-x3 = 1;
tmp1 = 15 * x2 + min(1,15) * x3;
y1 = 0.14 - (x1 + 1 / tmp1);
tmp1 = 14 * x2 + min(2,14) * x3;
y2 = 0.18 - (x1 + 2 / tmp1);
tmp1 = 13 * x2 + min(3,13) * x3;
y3 = 0.22 - (x1 + 3 / tmp1);
tmp1 = 12 * x2 + min(4,12) * x3;
y4 = 0.25 - (x1 + 4 / tmp1);
tmp1 = 11 * x2 + min(5,11) * x3;
y5 = 0.29 - (x1 + 5 / tmp1);
tmp1 = 10 * x2 + min(6,10) * x3;
y6 = 0.32 - (x1 + 6 / tmp1);
tmp1 = 9 * x2 + min(7,9) * x3;
y7 = 0.35 - (x1 + 7 / tmp1);
tmp1 = 8 * x2 + min(8,8) * x3;
y8 = 0.39 - (x1 + 8 / tmp1);
tmp1 = 7 * x2 + min(9,7) * x3;
y9 = 0.37 - (x1 + 9 / tmp1);
tmp1 = 6 * x2 + min(10,6) * x3;
y10 = 0.58 - (x1 + 10 / tmp1);
tmp1 = 5 * x2 + min(11,5) * x3;
y11 = 0.73 - (x1 + 11 / tmp1);
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tmp1 = 4 * x2 + min(12,4) * x3;
y12 = 0.96 - (x1 + 12 / tmp1);
tmp1 = 3 * x2 + min(13,3) * x3;
y13 = 1.34 - (x1 + 13 / tmp1);
tmp1 = 2 * x2 + min(14,2) * x3;
y14 = 2.10 - (x1 + 14 / tmp1);
tmp1 = 1 * x2 + min(15,1) * x3;
y15 = 4.39 - (x1 + 15 / tmp1);

run;

A more economical way to program this problem uses the DATA= option to input the
16 terms inf(x).

data bard;
input r @@;

w1 = 16. - _n_;
w2 = min(_n_ , 16. - _n_);
datalines;

.14 .18 .22 .25 .29 .32 .35 .39

.37 .58 .73 .96 1.34 2.10 4.39
;
proc nlp data=bard tech=levmar;

lsq y;
parms x1-x3 = 1.;
y = r - (x1 + _obs_ / (w1 * x2 + w2 * x3));

end;

Another way you can specify the objective function uses the ARRAY statement and
an explicit do loop, as in the following code.

proc nlp tech=levmar;15] .14 .18 .22 .25 .29 .32 .35 .39 .37 .58
.73 .96 1.34 2.10 4.39 ;15] y1-y15;

lsq y1-y15;
parms x1-x3 = 1.;
do i = 1 to 15;

w1 = 16. - i;
w2 = min(i , w1);
w3 = w1 * x2 + w2 *i] = (x1 + i];

end;
run;

Example 5.2. Using the INQUAD= Option

This example illustrates the INQUAD= option for specifying a quadratic program-
ming problem:

min f(x) =
1

2
xTGx+ gTx+ c; with GT = G;

Suppose thatc = �100, G = diag(:4; 4) and that2 � x1 � 50, �50 � x2 � 50,
and10 � 10x1 � x2.
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You specify the constantc and the HessianG in the data set QUAD1. Notice that
the–TYPE– variable contains the keywords that identify how the procedure should
interpret the observations.

data quad1;
input _type_ $ _name_ $ x1 x2;
datalines;

const . -100 -100
quad x1 0.4 0
quad x2 0 4
;

You specify the QUAD1 data set with the INQUAD= option. Notice that the names
of the variables in the QUAD1 data set and the–NAME– variable match the names
of the parameters in the PARMS statement.

proc nlp inquad=quad1 all;
min ;
parms x1 x2 = -1;
bounds 2 <= x1 <= 50,

-50 <= x2 <= 50;
lincon 10 <= 10 * x1 - x2;

run;

Alternatively, you can use a sparse format for specifying thec andG matrices elimi-
nating the zeros. You use the special variables–ROW–, –COL–, and–VALUE– to
give the nonzero row and column names and value.

data quad2;
input _type_ $ _row_ $ _col_ $ _value_;
datalines;

const . . -100
quad x1 x1 0.4
quad x2 x2 4
;

You can also include the constraints in the QUAD data set. Notice how the–TYPE–
variable contains keywords that identify how the procedure is to interpret the values
in each observation.

data quad3;
input _type_ $ _name_ $ x1 x2 _rhs_;
datalines;

const . -100 -100 .
quad x1 0.02 0 .
quad x2 0.00 2 .
parms . -1 -1 .
lowerbd . 2 -50 .
upperbd . 50 50 .
ge . 10 -1 10
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proc nlp inquad=quad3;
min ;
parms x1 x2;

run;

Example 5.3. Using the INEST=Option

This example illustrates the use of the INEST= option for specifying a starting point
and linear constraints. You name a data set with the INEST= option. The format of
this data set is similar to the format of the QUAD= data set described in the previous
example.

Consider the Hock and Schittkowski (1981) Problem # 24.

min f(x) =
((x1 � 3)2 � 9)x32

27
p
3

subject to:

0 � x1; x2

0 � :57735x1 � x2

0 � x1 + 1:732x2

6 � x1 + 1:732x2

with minimum function valuef(x�) = �1 at x� = (3;
p
3). The feasible starting

point isx0 = (1; :5).

You can specify this model in PROC NLP as follows:

proc nlp tech=trureg outest=res;
min y;
parms x1 = 1,

x2 = .5;
bounds 0 <= x1-x2;
lincon .57735 * x1 - x2 >= 0,

x1 + 1.732 * x2 >= 0,
-x1 - 1.732 * x2 >= -6;

y = (((x1 - 3)**2 - 9.) * x2**3) / (27 * sqrt(3));
run;

Note that none of the data for this model are in a data set. Alternatively, you can
save the starting point(1; :5) and the linear constraints in a data set. Notice that the

–TYPE– variable contains keywords that identify how the procedure is to interpret
each of the observations and that the parameters in the problems X1 and X2 are
variables in the data set. The observation with–TYPE–=LOWERBD gives the lower
bounds on the parameters. The observation with–TYPE–=GE gives the coefficients
for the first constraint. Similarly, the subsequent observations contain specifications
for the other constraints. Also notice that the special variable–RHS– contains the
right-hand-side values.
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data betts1(type=est);
input _type_ $ x1 x2 _rhs_;
datalines;

parms 1 .5 .
lowerbd 0 0 .
ge .57735 -1 .
ge 1 1.732 .
le 1 1.732 6

;

Now you can solve this problem with the following code. Notice that you specify the
objective function and the parameters.

proc nlp inest=betts1 tech=trureg;
min y;
parms x1 x2;
y = (((x1 - 3)**2 - 9) * x2**3) / (27 * sqrt(3));

run;

You can even include any constants used in the program statements in the INEST=
data set. In the following code the variables A, B, C, and D contain some of the
constants used in calculating the objective function Y.

data betts2(type=est);
input _type_ $ x1 x2 _rhs_ a b c d;
datalines;

parms 1 .5 . 3 9 27 3
lowerbd 0 0 . . . . .
ge .57735 -1 0 . . . .
ge 1 1.732 0 . . . .
le 1 1.732 6 . . . .

Notice that in the program statement for calculating Y, the constants are replaced by
the A, B, C, and D variables.

proc nlp inest=betts2 tech=trureg;
min y;
parms x1 x2;
y = (((x1 - a)**2 - b) * x2**3) / (c * sqrt(d));

run;

Example 5.4. Restarting an Optimization

This example shows how you can restart an optimization problem using the OUT-
EST=, INEST=, OUTMODEL=, and MODEL= options and how to save output into
an OUT= data set. The least-squares solution of the Rosenbrock function using the
trust-region method is used.

The following code solves the problem and saves the model in the MODEL data set
and the solution in the EST and in OUT1 data sets.

SAS OnlineDoc: Version 8



Example 5.5. Restarting an Optimization � 475

proc nlp tech=trureg outmodel=model outest=est out=out1;
lsq y1 y2;
parms x1 = -1.2 ,

x2 = 1.;
y1 = 10. * (x2 - x1 * x1);
y2 = 1. - x1;

proc print data=out1;
run;

The final parameter estimatesx� = (1; 1) and the values of the functionsf1 = Y 1
andf2 = Y 2 are written into an OUT= data set. Since OUTDER=0 is the default,
the OUT= data set does not contain the Jacobian matrix.

Output 5.4.1. Solution in an OUT= Data Set

Obs _OBS_ _TYPE_ y1 y2 x2 x1

1 1 0 -2.2204E-16 1 1

Next, the procedure reads the optimal parameter estimates from the INEST=EST
data set and the model from the MODEL data set. It does not do any optimization
(TECH=NONE) but it saves the Jacobian matrix to the OUT=OUT2 data set because
of the option OUTDER=1. It also diplays the Jacobian matrix because of the option
PJAC.

proc nlp tech=none model=model inest=est out=out2 outder=1 pjac;
lsq y1 y2;
parms x1 x2;

run;

proc print data=out2; run;

Output 5.4.2 displays the Jacobian matrix,

Output 5.4.2. Jacobian Matrix Output

PROC NLP: Least Squares Minimization

Jacobian Matrix

x1 x2

-20 10
-1 0

Output 5.4.3 shows the contents of the OUT2 data set, which also contains the Jaco-
bian matrix.
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Output 5.4.3. Jacobian Matrix in an OUT= Data Set

Obs _OBS_ _TYPE_ y1 y2 _WRT_ x2 x1

1 1 0 -0 1 1
2 1 ANALYTIC 10 0 x2 1 1
3 1 ANALYTIC -20 -1 x1 1 1

Example 5.5. Approximate Standard Errors

The NLP procedure provides a variety of ways for estimating parameters in nonlin-
ear statistical models and for obtaining approximate standard errors and covariance
matrices for the estimators. These methods are illustrated by estimating the mean
of a random sample from a normal distribution with mean� and standard deviation
�. The simplicity of the example makes it easy to compare the results of different
methods in NLP with the usual estimator, the sample mean.

The following data is used:

data x; input x @@; datalines;
1 3 4 5 7
;

The standard error of the mean, computed withn� 1 degrees of freedom, is 1. The
usual maximum-likelihood approximation to the standard error of the mean, using a
variance divisor ofn rather thann� 1, is 0.8944272.

The sample mean is a least-squares estimator, so it can be computed using an LSQ
statement. Moreover, since this model is linear, the Hessian matrix and crossprod-
uct Jacobian matrix are identical, and all three versions of the COV= option yield
the same variance and standard error of the mean. Note that COV=j means that the
crossproduct Jacobian is used. This is chosen because it requires the least computa-
tion.

proc nlp data=x cov=j pstderr pshort;
lsq resid;
parms mean=0;
resid=x-mean;

run;

The results are the same as the usual estimates.
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Output 5.5.1. Parameter Estimates

PROC NLP: Least Squares Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 1.000000 4.000000 0.016130

Optimization Results
Parameter Estimates

Gradient
Objective

Function

8.881784E-15

Value of Objective Function = 10

PROC NLP can also compute maximum-likelihood estimates of� and�. In this case
it is convenient to minimize the negative log likelihood. To get correct standard errors
for maximum-likelihood estimators, the SIGSQ=1 option is required. The following
program shows COV=1 but the output that follows has COV=2 and COV=3.

proc nlp data=x cov=1 sigsq=1 pstderr phes pcov pshort;
min nloglik;
parms mean=0, sigma=1;
bounds 1e-12 < sigma;
nloglik=.5*((x-mean)/sigma)**2 + log(sigma);

run;

The variance divisor isn instead ofn � 1, so the standard error of the mean is
0.8944272 instead of 1. The standard error of the mean is the same with all six types
of covariance matrix, but the standard error of the standard deviation varies. The
sampling distribution of the standard deviation depends on the higher moments of
the population distribution, so different methods of estimation can produce markedly
different estimates of the standard error of the standard deviation.

Output 5.5.2 shows the output when COV=1.
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Output 5.5.2. Solution for COV=1

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.894427 4.472136 0.006566
2 sigma 2.000000 0.458258 4.364358 0.007260

Optimization Results
Parameter Estimates

Gradient
Objective

Function

1.331492E-10
-5.606415E-9

Value of Objective Function = 5.9657359028

Hessian Matrix

mean sigma

mean 1.2500000028 -1.33149E-10
sigma -1.33149E-10 2.500000014

Determinant = 3.1250000245

Matrix has Only Positive Eigenvalues

Covariance Matrix 1: M = (NOBS/d)
inv(G) JJ(f) inv(G)

mean sigma

mean 0.8 1.906775E-11
sigma 1.906775E-11 0.2099999991

Factor sigm = 1

Determinant = 0.1679999993

Matrix has Only Positive Eigenvalues

Determinant = 1

Matrix has Only Positive Eigenvalues

Output 5.5.3 shows the output when COV=2.
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Output 5.5.3. Solution for COV=2

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.894427 4.472136 0.006566
2 sigma 2.000000 0.632456 3.162278 0.025031

Optimization Results
Parameter Estimates

Gradient
Objective

Function

1.331492E-10
-5.606415E-9

Value of Objective Function = 5.9657359028

Hessian Matrix

mean sigma

mean 1.2500000028 -1.33149E-10
sigma -1.33149E-10 2.500000014

Determinant = 3.1250000245

Matrix has Only Positive Eigenvalues

Covariance Matrix 2: H = (NOBS/d) inv(G)

mean sigma

mean 0.7999999982 4.260769E-11
sigma 4.260769E-11 0.3999999978

Factor sigm = 1

Determinant = 0.3199999975

Matrix has Only Positive Eigenvalues

Determinant = 1

Matrix has Only Positive Eigenvalues

Output 5.5.4 shows the output when COV=3.
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Output 5.5.4. Solution for COV=3

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.509136 7.856442 0.000537
2 sigma 2.000000 0.419936 4.762634 0.005048

Optimization Results
Parameter Estimates

Gradient
Objective

Function

1.338402E-10
-5.940302E-9

Value of Objective Function = 5.9657359028

Hessian Matrix

mean sigma

mean 1.2500000028 -1.33149E-10
sigma -1.33149E-10 2.500000014

Determinant = 3.1250000245

Matrix has Only Positive Eigenvalues

Covariance Matrix 3: J = (1/d) inv(W)

mean sigma

mean 0.2592197879 1.091093E-11
sigma 1.091093E-11 0.1763460041

Factor sigm = 0.2

Determinant = 0.0457123738

Matrix has Only Positive Eigenvalues

Determinant = 1

Matrix has Only Positive Eigenvalues

Under normality, the maximum-likelihood estimators of� and� are independent,
as indicated by the diagonal Hessian matrix in the previous example. Hence, the
maximum-likelihood estimate of� can be obtained by using any fixed value for
�, such as 1. However, if the fixed value of� differs from the actual maximum-
likelihood estimate (in this case 2), the model is misspecified and the standard er-
rors obtained with COV=2 or COV=3 are incorrect. It is therefore necessary to use
COV=1, that yields consistent estimates of the standard errors under a variety of
forms of misspecification of the error distribution.
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proc nlp data=x cov=1 sigsq=1 pstderr pcov pshort;
min sqresid;
parms mean=0;
sqresid=.5*(x-mean)**2;

run;

This formulation produces the same standard error of the mean, 0.8944272 (see Out-
put 5.5.5).

Output 5.5.5. Solution for FIXED � and COV=1

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.894427 4.472136 0.006566

Optimization Results
Parameter Estimates

Gradient
Objective

Function

0

Value of Objective Function = 10

Covariance Matrix
1: M = (NOBS/d) inv(G)

JJ(f) inv(G)

mean

mean 0.8

Factor sigm = 1

The maximum-likelihood formulation with fixed� is actually a least-squares prob-
lem. The objective function, parameter estimates, and Hessian matrix are the same
as those in the first example in this section using the LSQ statement. However, the
Jacobian matrix is different, each row being multiplied by twice the residual. To treat
this formulation as a least-squares problem, the SIGSQ=1 option can be omitted. But
since the Jacobian is not the same as in the formulation using the LSQ statement, the
COV=1 j M and COV=3j J options, that use the Jacobian, do not yield correct stan-
dard errors. The correct standard error is obtained with COV=2j H, that uses only
the Hessian matrix:

proc nlp data=x cov=2 pstderr pcov pshort;
min sqresid;
parms mean=0;
sqresid=.5*(x-mean)**2;

run;

The results are the same as in the first example.
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Output 5.5.6. Solution for Fixed � and COV=2

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 mean 4.000000 0.500000 8.000000 0.001324

Optimization Results
Parameter Estimates

Gradient
Objective

Function

0

Value of Objective Function = 10

Covariance Matrix 2:
H = (NOBS/d) inv(G)

mean

mean 0.25

Factor sigm = 1.25

In summary, to obtain appropriate standard errors for least-squares estimates, you can
use the LSQ statement with any of the COV= options, or you can use the MIN state-
ment with COV=2. To obtain appropriate standard errors for maximum-likelihood es-
timates, you can use the MIN statement with the negative log likelihood or the MAX
statement with the log likelihood, and in either case you can use any of the COV=
options provided that you specify SIGSQ=1. You can also use a log-likelihood func-
tion with a misspecified scale parameter provided that you use SIGSQ=1 and COV=1.
For nonlinear models, all of these methods yield approximations based on asymptotic
theory, and should therefore be interpreted cautiously.

Example 5.6. Maximum Likelihood Weibull Estimation

Two-Parameter Weibull Estimation
The following data are taken from Lawless (1982, p.193) and represent the num-
ber of days it took rats painted with a carcinogen to develop carcinoma. The last 2
observations are censored data from a group of 19 rats:

title ’Lawless (1982): 2-Parameter Weibull MLE’;
data pike;

input days cens @@;
datalines;

143 0 164 0 188 0 188 0
190 0 192 0 206 0 209 0
213 0 216 0 220 0 227 0
230 0 234 0 246 0 265 0
304 0 216 1 244 1
;
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Suppose that you want to show how to compute the maximum likelihood estimates
of the scale parameter� (� in Lawless), the shape parameterc (� in Lawless), and
the location parameter� (� in Lawless). The observed likelihood function of the
three-parameter Weibull transformation (Lawless 1982, p.191) is

L(�; �; c) =
cm

�m

Y
i2D

(
ti � �

�
)c�1

pY
i=1

exp(�( ti � �

�
)c)

and the log likelihood is

l(�; �; c) = m log c�mc log � + (c� 1)
X
i2D

log(ti � �)�
pX

i=1

(
ti � �

�
)c

The log likelihood function can only be evaluated for� > 0, c > 0, and� < mini ti.
In the estimation process, you must enforce these conditions using lower and upper
boundary constraints. The three-parameter Weibull estimation can be numerically
difficult, and it usually pays off to provide good initial estimates. Therefore, you first
estimate� andc of the two-parameter Weibull distribution for constant� = 0. You
then use the optimal parameters�̂ and ĉ as starting values for the three-parameter
Weibull estimation.

Although the use of an INEST= data set is not really necessary for this simple ex-
ample, it illustrates how it is used to specify starting values and lower boundary con-
straints:

data par1(type=est);
keep _type_ sig c theta;

_type_=’parms’; sig = .5;
c = .5; theta = 0; output;

_type_=’lb’; sig = 1.0e-6;
c = 1.0e-6; theta = .; output;

The following PROC NLP call specifies the maximization of the log likelihood func-
tion for the two-parameter Weibull estimation for constant� = 0:

proc nlp data=pike tech=tr inest=par1 outest=opar1
outmodel=model cov=2 vardef=n pcov phes;

max logf;
parms sig c;
profile sig c / alpha = .9 to .1 by -.1 .09 to .01 by -.01;

x_th = days - theta;
s = - (x_th / sig)**c;
if cens=0 then s + log(c) - c*log(sig) + (c-1)*log(x_th);
logf = s;

run;
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After a few iterations you obtain the following solution.

Output 5.6.1. Optimization Results

PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 sig 234.318611 9.645908 24.292021 9.050475E-16
2 c 6.083147 1.068229 5.694611 0.000017269

Optimization Results
Parameter Estimates

Gradient
Objective

Function

1.3372182E-9
-7.859277E-9

Value of Objective Function = -88.23273515

Since the gradient has only small elements and the Hessian is negative definite (has
only negative eigenvalues), the solution defines an isolated maximum point.

Output 5.6.2. Hessian Matrix at x�

PROC NLP: Nonlinear Maximization

Value of Objective Function = -88.23273515

Hessian Matrix

sig c

sig -0.011457556 0.0257527577
c 0.0257527577 -0.934221388

Determinant = 0.0100406894

Matrix has Only Negative Eigenvalues

The square roots of the diagonal elements of the approximate covariance matrix of
parameter estimates are the approximate standard errors (ASE’s).
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Output 5.6.3. Covariance Matrix

Covariance Matrix 2:
H = (NOBS/d) inv(G)

sig c

sig 93.043549863 2.5648395794
c 2.5648395794 1.141112488

Factor sigm = 1

Determinant = 99.594754608

Matrix has 2 Positive Eigenvalue(s)

The following confidence limits correspond to the� values in the PROFILE state-
ment.
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Output 5.6.4. Confidence Limits

PROC NLP: Nonlinear Maximization

Wald and PL Confidence Limits

Profile Likelihood
N Parameter Estimate Alpha Confidence Limits

1 sig 234.318611 0.900000 233.111324 235.532695
1 sig . 0.800000 231.886549 236.772876
1 sig . 0.700000 230.623280 238.063824
1 sig . 0.600000 229.292797 239.436639
1 sig . 0.500000 227.855829 240.935290
1 sig . 0.400000 226.251597 242.629201
1 sig . 0.300000 224.372260 244.643392
1 sig . 0.200000 221.984557 247.278423
1 sig . 0.100000 218.390824 251.394102
1 sig . 0.090000 217.884162 251.987489
1 sig . 0.080000 217.326988 252.645278
1 sig . 0.070000 216.708814 253.383546
1 sig . 0.060000 216.008815 254.228034
1 sig . 0.050000 215.199301 255.215496
1 sig . 0.040000 214.230116 256.411041
1 sig . 0.030000 213.020874 257.935686
1 sig . 0.020000 211.369067 260.066128
1 sig . 0.010000 208.671091 263.687174
2 c 6.083147 0.900000 5.950029 6.217752
2 c . 0.800000 5.815559 6.355576
2 c . 0.700000 5.677909 6.499187
2 c . 0.600000 5.534275 6.651789
2 c . 0.500000 5.380952 6.817880
2 c . 0.400000 5.212344 7.004485
2 c . 0.300000 5.018784 7.225733
2 c . 0.200000 4.776379 7.506166
2 c . 0.100000 4.431310 7.931669
2 c . 0.090000 4.382687 7.991457
2 c . 0.080000 4.327815 8.056628
2 c . 0.070000 4.270773 8.129238
2 c . 0.060000 4.207130 8.211221
2 c . 0.050000 4.134675 8.306218
2 c . 0.040000 4.049531 8.418782
2 c . 0.030000 3.945037 8.559677
2 c . 0.020000 3.805759 8.749130
2 c . 0.010000 3.588814 9.056751

Three-Parameter Weibull Estimation
You now prepare for the three-parameter Weibull estimation by using PROC UNI-
VARIATE to obtain the smallest data value for the upper boundary constraint for
�. For this small problem, you can do this much more simple by just using a value
slightly smaller than the minimum data value 143.

/* Calculate upper bound for theta parameter */
proc univariate data=pike noprint;

var days;
output out=stats n=nobs min=minx range=range;

data stats;
set stats;
keep _type_ theta;

/* 1. write parms observation */
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theta = minx - .1 * range;
if theta < 0 then theat = 0
_type_ = ’parms’; output;

/* 2. write ub observation */
theta = minx * (1 - 1e-4);
_type_ = ’ub’; output;

The data set PAR2 specifies the starting values and the lower and upper bounds for
the three-parameter Weibull problem:

proc sort data=opar1;
by _type_;

data par2(type=est);
merge opar1(drop=theta) stats;
by _type_;
keep _type_ sig c theta;
if _type_ in (’parms’ ’lowerbd’ ’ub’);

The following PROC NLP call uses the MODEL= input data set containing the log
likelihood function that was saved during the two-parameter Weibull estimation:

proc nlp data=pike tech=tr inest=par2 outest=opar2
model=model cov=2 vardef=n pcov phes;
max logf;

parms sig c theta;
profile sig c theta / alpha = .5 .1 .05 .01;

run;

After a few iterations, you obtain the following solution.

Output 5.6.5. Optimization Results

PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Approx Approx
N Parameter Estimate Std Err t Value Pr > |t|

1 sig 108.382670 32.573286 3.327348 0.003540
2 c 2.711475 1.058756 2.561000 0.019108
3 theta 122.026001 28.692328 4.252914 0.000430

Optimization Results
Parameter Estimates

Gradient
Objective

Function

-4.598334E-9
-0.000000714
-9.916609E-8

Value of Objective Function = -87.32424712
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From inspecting the first- and second-order derivatives at the optimal solution, you
can verify that you obtained an isolated maximum point.

Output 5.6.6. Hessian Matrix

PROC NLP: Nonlinear Maximization

Value of Objective Function = -87.32424712

Hessian Matrix

sig c theta

sig -0.010639974 0.0453887849 -0.010033749
c 0.0453887849 -4.078687936 -0.083026332
theta -0.010033749 -0.083026332 -0.014752091

Determinant = 0.0000502116

Matrix has Only Negative Eigenvalues

The square roots of the diagonal elements of the approximate covariance matrix of
parameter estimates are the approximate standard errors.

Output 5.6.7. Covariance Matrix

Covariance Matrix 2: H = (NOBS/d) inv(G)

sig c theta

sig 1061.0122895 29.925873264 -890.0802845
c 29.925873264 1.1209598699 -26.66315923
theta -890.0802845 -26.66315923 823.24374725

Factor sigm = 1

Determinant = 19915.386855

Matrix has 3 Positive Eigenvalue(s)

The difference between the Wald and profile CL’s for parameter PHI2 are remarkable,
especially for the upper 95% and 99% limits.
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Output 5.6.8. Confidence Limits

PROC NLP: Nonlinear Maximization

Wald and PL Confidence Limits

Profile Likelihood
N Parameter Estimate Alpha Confidence Limits

1 sig 108.382730 0.500000 91.811562 141.564605
1 sig . 0.100000 76.502373 .
1 sig . 0.050000 72.215845 .
1 sig . 0.010000 64.262384 .
2 c 2.711477 0.500000 2.139297 3.704052
2 c . 0.100000 1.574162 9.250072
2 c . 0.050000 1.424853 19.516224
2 c . 0.010000 1.163096 19.540738
3 theta 122.025944 0.500000 91.027145 135.095454
3 theta . 0.100000 . 141.833769
3 theta . 0.050000 . 142.512603
3 theta . 0.010000 . 142.967407

Wald and PL Confidence Limits

Wald Confidence Limits

86.412311 130.353149
54.804268 161.961192
44.540054 172.225405
24.479232 192.286228

1.997355 3.425599
0.969973 4.452981
0.636347 4.786607

-0.015706 5.438660
102.673191 141.378698

74.831088 142.985700
65.789804 142.985700
48.119128 142.985700

Example 5.7. Simple Pooling Problem

The following optimization problem is discussed in Haverly (1978) and in Liebman
et al. (1986, pp.127-128). Two liquid chemicals,X andY , are produced by the
pooling and blending of three input liquid chemicals,A, B, andC. You know the
sulfur impurity amounts of the input chemicals, and you have to respect upper limits
of the sulfur impurity amounts of the output chemicals. The sulfur concentrations
and the prices of the input and output chemicals are

� ChemicalA: Concentration = 3%, Price= $ 6

� ChemicalB: Concentration = 1%, Price= $ 16

� ChemicalC: Concentration = 2%, Price= $ 10

� ChemicalX: Concentration� 2.5%, Price= $ 9

� ChemicalY : Concentration� 1.5%, Price= $ 15

The problem is complicated by the fact that the two input chemicalsA andB are
available only as a mixture (they are either shipped together or stored together). Be-
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cause the amounts ofA andB are unknown, the sulfur concentration of the mixture
is also unknown.

C

B

A -3% S
for $ 6

-1% S
for $ 16

Pool Blend X -� 2.5 % S
for $ 9
X � 100

-Pool to X

Pool to Y

-

Blend Y -� 1.5 % S
for $ 15
Y � 200-2% S

for $ 10
-C to Y

-
C to X

Figure 13: Pooling of Liquid Chemicals

You know which customers will buy no more than 100 units of X and 200 units of Y.
The problem is determining how to operate the pooling and blending of the chemicals
to maximize the profit. The objective function for the profit is

profit = cost(x) � amount(x) + cost(y) � amount(y)
� cost(a) � amount(a)� cost(b) � amount(b)� cost(c) � amount(c)

There are three groups of constraints:

1. The first group of constraint functions is the mass balance restrictions illus-
trated by the graph. These are four linear equality constraints:

� amount(a) + amount(b) = pool–to–x+ pool–to–y

� pool–to–x+ c–to–x = amount(x)

� pool–to–y + c–to–y = amount(y)

� amount(c) = c–to–x+ c–to–y

2. You introduce a new variable,pool–s, that represents the sulfur concentration
of the pool. Usingpool–s and the sulfur concentration ofC (2%), you obtain
two nonlinear inequality constraints for the sulfur concentrations ofX and
Y , one linear equality constraint for the sulfur balance, and lower and upper
boundary restrictions forpool–s:

� pool–s � pool–to–x+ 2 � c–to–x � 2:5 � amount(x)
� pool–s � pool–to–y + 2 � c–to–y � 1:5 � amount(y)
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� 3�amount(a)+1�amount(b) = pool–s� (amount(a)+amount(b))

� 1 � pool–s � 3

3. The last group assembles the remaining boundary constraints. First, you do
not want to produce more than you can sell; and finally, all variables must be
nonnegative:

� amount(x) � 100, amount(y) � 200

� amount(a); amount(b); amount(c); amount(x); amount(y) � 0

� pool–to–x; pool–to–y; c–to–x; c–to–y � 0

There exist several local optima to this problem that can be found by specifying dif-
ferent starting points. Using the starting pointamount(a), amount(b), amount(c),
amount(x), amount(y), pool–to–x, pool–to–y, c–to–x, c–to–y, pool–s, PROC
NLP finds a solution withprofit = 400:

proc nlp all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools = 1;
bounds 0 <= amountx amounty amounta amountb amountc,

amountx <= 100,
amounty <= 200,

0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;

lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

max f;
costa = 6; costb = 16; costc = 10;
costx = 9; costy = 15;
f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;
nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

run;

The specified starting point was not feasible with respect to the linear equality con-
straints; therefore, a starting point is generated that satisfies linear and boundary con-
straints.
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Output 5.7.1. Starting Estimates

PROC NLP: Nonlinear Maximization

Optimization Start
Parameter Estimates

Gradient Gradient Lower
Objective Lagrange Bound

N Parameter Estimate Function Function Constraint

1 amountx 1.363636 9.000000 -0.843698 0
2 amounty 1.363636 15.000000 -0.111882 0
3 amounta 0.818182 -6.000000 -0.430733 0
4 amountb 0.818182 -16.000000 -0.542615 0
5 amountc 1.090909 -10.000000 0.017768 0
6 pooltox 0.818182 0 -0.669628 0
7 pooltoy 0.818182 0 -0.303720 0
8 ctox 0.545455 0 -0.174070 0
9 ctoy 0.545455 0 0.191838 0

10 pools 2.000000 0 0.068372 1.000000

Optimization Start
Parameter Estimates

Upper
Bound

Constraint

100.000000
200.000000

.

.

.

.

.

.

.
3.000000

Value of Objective Function = 3.8181818182

Value of Lagrange Function = -2.866739915

The starting point satisfies the four equality constraints.

Output 5.7.2. Linear Constraints

PROC NLP: Nonlinear Maximization

Linear Constraints

1 -3.331E-16 : ACT 0 == + 1.0000 * amounta + 1.0000 * amountb
- 1.0000 * pooltox - 1.0000 * pooltoy

2 1.1102E-16 : ACT 0 == - 1.0000 * amountx + 1.0000 * pooltox
+ 1.0000 * ctox

3 1.1102E-16 : ACT 0 == - 1.0000 * amounty + 1.0000 * pooltoy
+ 1.0000 * ctoy

4 1.1102E-16 : ACT 0 == - 1.0000 * amountc + 1.0000 * ctox
+ 1.0000 * ctoy
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Output 5.7.3. Nonlinear Constraints

PROC NLP: Nonlinear Maximization

Values of Nonlinear Constraints

Lagrange
Constraint Value Residual Multiplier

[ 5 ] nlc3 0 0 4.9441 Active NLEC
[ 6 ] nlc1_G 0.6818 0.6818 .
[ 7 ] nlc2_G -0.6818 -0.6818 -9.8046 Violat. NLIC

This following table shows the settings of some important PROC NLP options.

Output 5.7.4. Options

PROC NLP: Nonlinear Maximization

Minimum Iterations 0
Maximum Iterations 200
Maximum Function Calls 500
Iterations Reducing Constraint Violation 20
ABSGCONV Gradient Criterion 0.00001
GCONV Gradient Criterion 1E-8
ABSFCONV Function Criterion 0
FCONV Function Criterion 2.220446E-16
FCONV2 Function Criterion 1E-6
FSIZE Parameter 0
ABSXCONV Parameter Change Criterion 0
XCONV Parameter Change Criterion 0
XSIZE Parameter 0
ABSCONV Function Criterion 1.340781E154
Line Search Method 2
Starting Alpha for Line Search 1
Line Search Precision LSPRECISION 0.4
DAMPSTEP Parameter for Line Search .
FD Derivatives: Accurate Digits in Obj.F 15.653559775
FD Derivatives: Accurate Digits in NLCon 15.653559775
Singularity Tolerance (SINGULAR) 1E-8
Constraint Precision (LCEPS) 1E-8
Linearly Dependent Constraints (LCSING) 1E-8
Releasing Active Constraints (LCDEACT) .

The iteration history does not show any problems.
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Output 5.7.5. Optimization History

PROC NLP: Nonlinear Maximization

Dual Quasi-Newton Optimization

Modified VMCWD Algorithm of Powell (1978, 1982)
Dual Quasi-Newton Optimization

Modified VMCWD Algorithm of Powell (1978, 1982)

Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS)
Lagrange Multiplier Update of Powell(1982)

Maximum
Gradient

Element
Maximum Predicted of the

Function Objective Constraint Function Step Lagrange
Iter Restarts Calls Function Violation Reduction Size Function

1 0 19 -1.42400 0.00962 6.9131 1.000 0.783
2’ 0 20 2.77026 0.0166 5.3770 1.000 2.629
3 0 21 7.08706 0.1409 7.1965 1.000 9.452
4’ 0 22 11.41264 0.0583 15.5769 1.000 23.390
5’ 0 23 24.84613 8.88E-16 496.1 1.000 147.6
6 0 24 378.22825 147.4 3316.7 1.000 840.4
7’ 0 25 307.56810 50.9339 607.9 1.000 27.143
8’ 0 26 347.24468 1.8329 21.9883 1.000 28.482
9’ 0 27 349.49255 0.00915 7.1833 1.000 28.289

10’ 0 28 356.58341 0.1083 50.2566 1.000 27.479
11’ 0 29 388.70731 2.4280 24.7996 1.000 21.114
12’ 0 30 389.30118 0.0157 10.0475 1.000 18.647
13’ 0 31 399.19240 0.7997 11.1862 1.000 0.416
14’ 0 32 400.00000 0.0128 0.1533 1.000 0.00087
15’ 0 33 400.00000 7.38E-11 2.44E-10 1.000 365E-12

Optimization Results

Iterations 15 Function Calls 34
Gradient Calls 18 Active Constraints 10
Objective Function 400 Maximum Constraint 7.381118E-11

Violation
Maximum Projected Gradient 0 Value Lagrange Function -400
Maximum Gradient of the 1.065814E-14 Slope of Search Direction -2.43574E-10
Lagran Func

FCONV2 convergence criterion satisfied.

The optimal solution shows that to obtain the maximum profit of $ 400, you need
only to produce the maximum 200 units of blendingY and no units of blendingX
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Output 5.7.6. Optimization Solution

Optimization Results
Parameter Estimates

Gradient Gradient Active
Objective Lagrange Bound

N Parameter Estimate Function Function Constraint

1 amountx -1.40474E-11 9.000000 0 Lower BC
2 amounty 200.000000 15.000000 0 Upper BC
3 amounta 1.027701E-16 -6.000000 0 Lower BC
4 amountb 100.000000 -16.000000 -1.77636E-15
5 amountc 100.000000 -10.000000 1.776357E-15
6 pooltox 7.024003E-12 0 0 Lower BC
7 pooltoy 100.000000 0 -1.06581E-14
8 ctox -2.10714E-11 0 5.329071E-15 Lower BC LinDep
9 ctoy 100.000000 0 1.776357E-15

10 pools 1.000000 0 0 Lower BC LinDep

Value of Objective Function = 400

Value of Lagrange Function = 400

Determinant = 0

Matrix has 10 Zero Eigenvalue(s)

The linear and nonlinear constraints are satisfied at the solution.

Output 5.7.7. Linear and Nonlinear Constraints at the Solution

Linear Constraints Evaluated at Solution

1 ACT 0 = 0 + 1.0000 * amounta + 1.0000 * amountb
- 1.0000 * pooltox - 1.0000 * pooltoy

2 ACT -4.481E-17 = 0 - 1.0000 * amountx + 1.0000 * pooltox
+ 1.0000 * ctox

3 ACT 0 = 0 - 1.0000 * amounty + 1.0000 * pooltoy
+ 1.0000 * ctoy

4 ACT 0 = 0 - 1.0000 * amountc + 1.0000 * ctox
+ 1.0000 * ctoy

Values of Nonlinear Constraints

Lagrange
Constraint Value Residual Multiplier

[ 5 ] nlc3 0 0 6.0000 Active NLEC
[ 6 ] nlc1_G 4.04E-16 4.04E-16 . Active NLIC LinDep
[ 7 ] nlc2_G -284E-16 -284E-16 -6.0000 Active NLIC

Linearly Dependent Active Boundary Constraints

Parameter N Kind

ctox 8 Lower BC
pools 10 Lower BC

Linearly Dependent Gradients of Active Nonlinear Constraints

Parameter N

nlc3 6
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The same problem can be specified in many different ways. For example, the follow-
ing specification uses an INEST= data set containing the values of the starting point
and of the constants COST, COSTB, COSTC, COSTX, COSTY, CA, CB, CC, and
CD:

data init1(type=est);
input _type_ $ amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools
_rhs_ costa costb costc costx costy

ca cb cc cd;
datalines;

parms 1 1 1 1 1 1 1 1 1 1
. 6 16 10 9 15 2.5 1.5 2. 3.

;

proc nlp inest=init1 all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools;
bounds 0 <= amountx amounty amounta amountb amountc,

amountx <= 100,
amounty <= 200,

0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;

lincon amounta + amountb = pooltox + pooltoy,
pooltox + ctox = amountx,
pooltoy + ctoy = amounty,
ctox + ctoy = amountc;

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

max f;
f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;
nlc1 = ca * amountx - pools * pooltox - cc * ctox;
nlc2 = cb * amounty - pools * pooltoy - cc * ctoy;
nlc3 = cd * amounta + amountb - pools * (amounta + amountb);

run;

The third specification uses an INEST= data set containing the boundary and linear
constraints in addition to the values of the starting point and of the constants. This
specification also writes the model specification into an OUTMOD= data set:

data init2(type=est);
input _type_ $ amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools
_rhs_ costa costb costc costx costy;

datalines;
parms 1 1 1 1 1 1 1 1 1 1

. 6 16 10 9 15 2.5 1.5 2 3
lowerbd 0 0 0 0 0 0 0 0 0 1

. . . . . . . . . .
upperbd 100 200 . . . . . . . 3

. . . . . . . . . .

SAS OnlineDoc: Version 8



Example 5.8. Chemical Equilibrium � 497

eq . . 1 1 . -1 -1 . . .
0 . . . . . . . . .

eq 1 . . . . -1 . -1 . .
0 . . . . . . . . .

eq . 1 . . . . -1 . -1 .
0 . . . . . . . . .

eq . . . . 1 . . -1 -1 .
0 . . . . . . . . .

;

proc nlp inest=init2 outmod=model all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools;
nlincon nlc1-nlc2 >= 0.,

nlc3 = 0.;
max f;
f = costx * amountx + costy * amounty

- costa * amounta - costb * amountb - costc * amountc;
nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);

run;

The fourth specification not only reads the INEST=INIT2 data set, it also uses the
model specification from the MODEL data set that was generated in the last specifi-
cation. The PROC NLP call now contains only the defining variable statements:

proc nlp inest=init2 model=model all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy pools;
nlincon nlc1-nlc2 >= 0.,

nlc3 = 0.;
max f;

run;

All four specifications start with the same starting pointamount(a), amount(b),
amount(c), amount(x), amount(y), pool–to–x, pool–to–y, c–to–x, c–to–y,
pool–s and generate the same results. However, there exist several local optima to
this problem, as is pointed out in Liebman et al. (1986, p.130).

proc nlp inest=init2 model=model all;
parms amountx amounty amounta amountb amountc

pooltox pooltoy ctox ctoy = 0,
pools = 2;

nlincon nlc1-nlc2 >= 0.,
nlc3 = 0.;

max f;
run;

This starting point is accepted as a local solution withprofit = 0, which, however,
minimizes the profit.
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Example 5.8. Chemical Equilibrium

The following example is used in many test libraries for nonlinear programming and
was taken originally from Bracken and McCormick (1968).

The problem is to determine the composition of a mixture of various chemicals sat-
isfying its chemical equilibrium state. The second law of thermodynamics implies
that a mixture of chemicals satisfies its chemical equilibrium state (at a constant tem-
perature and pressure) when the free energy of the mixture is reduced to a minimum.
Therefore the composition of the chemicals satisfying its chemical equilibrium state
can be found by minimizing the function of the free energy of the mixture.

Notation:

� m number of chemical elements in the mixture

� n number of compounds in the mixture

� xj number of moles for compoundj, j = 1; : : : ; n

� s =
Pn

i=1 xj total number of moles in the mixture

� aij number of atoms of elementi in a molecule of compoundj

� bi the atomic weight of elementi in the mixture

Constraints for the Mixture:

� The number of moles cannot be negative,

xj > 0; j = 1; : : : ; n

� There arem mass balance relationships,

nX
j=1

aijxj = bi; i = 1; : : : ;m

Objective Function: Total Free Energy of Mixture

f(x) =

nX
j=1

xj[cj + ln(
xj
s
)]

with

cj = (
F 0

RT
)j + lnP

where F 0

RT
is the model standard free energy function for thejth compound (that is

found in tables) andP is the total pressure in atmospheres.
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Minimization Problem:

Determine the parametersxj that minimize the objective functionf(x) subject to the
nonnegativity and linear balance constraints.

Numeric Example:

Determine the equilibrium composition of compound1
2N2H4 +

1
2O2 at temperature

T = 3500oK and pressureP = 750psi.

aij
i=1 i=2 i=3

j Compound (F 0=RT )j cj H N O
1 H -10.021 -6.089 1
2 H2 -21.096 -17.164 2
3 H2O -37.986 -34.054 2 1
4 N -9.846 -5.914 1
5 N2 -28.653 -24.721 2
6 NH -18.918 -14.986 1 1
7 NO -28.032 -24.100 1 1
8 O -14.640 -10.708 1
9 O2 -30.594 -26.662 2

10 OH -26.111 -22.179 1 1

Example Specification:

proc nlp tech=tr pall;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
min y;
parms x1-x10 = .1;
bounds 1.e-6 <= x1-x10;
lincon 2. = x1 + 2. * x2 + 2. * x3 + x6 + x10,

1. = x4 + 2. * x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. * x9 + x10;

s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
y = 0.;
do j = 1 to 10;
y = y + x[j] * (c[j] + log(x[j] / s));
end;

run;

Displayed Output:

The iteration history does not show any problems.
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Output 5.8.1. Iteration History

Trust Region Optimization

Without Parameter Scaling

Max Abs Trust
Rest Func Act Objective Obj Fun Gradient Region

Iter arts Calls Con Function Change Element Lambda Radius

1 0 2 3’ -47.33412 2.2790 6.0765 2.456 1.000
2 0 3 3’ -47.70043 0.3663 8.5592 0.908 0.418
3 0 4 3 -47.73074 0.0303 6.4942 0 0.359
4 0 5 3 -47.73275 0.00201 4.7606 0 0.118
5 0 6 3 -47.73554 0.00279 3.2125 0 0.0168
6 0 7 3 -47.74223 0.00669 1.9552 110.6 0.00271
7 0 8 3 -47.75048 0.00825 1.1157 102.9 0.00563
8 0 9 3 -47.75876 0.00828 0.4165 3.787 0.0116
9 0 10 3 -47.76101 0.00224 0.0716 0 0.0121

10 0 11 3 -47.76109 0.000083 0.00238 0 0.0111
11 0 12 3 -47.76109 9.609E-8 2.733E-6 0 0.00248

Optimization Results

Iterations 11 Function Calls 13
Hessian Calls 12 Active Constraints 3
Objective Function -47.76109086 Max Abs Gradient Element 1.8637499E-6
Lambda 0 Actual Over Pred Change 0
Radius 0.0024776027

GCONV convergence criterion satisfied.

The output lists the optimal parameters with the gradient.

Output 5.8.2. Optimization Results

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient
Objective

N Parameter Estimate Function

1 x1 0.040668 -9.785055
2 x2 0.147730 -19.570110
3 x3 0.783153 -34.792170
4 x4 0.001414 -12.968921
5 x5 0.485247 -25.937841
6 x6 0.000693 -22.753976
7 x7 0.027399 -28.190984
8 x8 0.017947 -15.222060
9 x9 0.037314 -30.444120

10 x10 0.096871 -25.007115

Value of Objective Function = -47.76109086

The three equality constraints are satisfied at the solution.
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Output 5.8.3. Linear Constraints at Solution

PROC NLP: Nonlinear Minimization

Linear Constraints Evaluated at Solution

1 ACT -3.608E-16 = 2.0000 - 1.0000 * x1 - 2.0000 * x2 -
2.0000 * x3 - 1.0000 * x6 - 1.0000 * x10

2 ACT 2.2204E-16 = 1.0000 - 1.0000 * x4 - 2.0000 * x5 -
1.0000 * x6 - 1.0000 * x7

3 ACT -1.943E-16 = 1.0000 - 1.0000 * x3 - 1.0000 * x7 -
1.0000 * x8 - 2.0000 * x9 - 1.0000 * x10

The Lagrange multipliers and the projected gradient are displayed also.

Output 5.8.4. Lagrange Multipliers

PROC NLP: Nonlinear Minimization

First Order Lagrange Multipliers

Lagrange
Active Constraint Multiplier

Linear EC [1] 9.785055
Linear EC [2] 12.968921
Linear EC [3] 15.222060

The elements of the projected gradient must be small to satisfy a necessary first-order
optimality condition.

Output 5.8.5. Projected Gradient

PROC NLP: Nonlinear Minimization

Projected Gradient

Free Projected
Dimension Gradient

1 4.5770108E-9
2 6.868355E-10
3 -7.283013E-9
4 -0.000001864
5 -0.000001434
6 -0.000001361
7 -0.000000294

The projected Hessian matrix is positive definite satisfying the second-order optimal-
ity condition.
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Output 5.8.6. Projected Hessian Matrix

Projected Hessian Matrix

X1 X2 X3 X4

X1 20.903196985 -0.122067474 2.6480263467 3.3439156526
X2 -0.122067474 565.97299938 106.54631863 -83.7084843
X3 2.6480263467 106.54631863 1052.3567179 -115.230587
X4 3.3439156526 -83.7084843 -115.230587 37.529977667
X5 -1.373829641 -37.43971036 182.89278895 -4.621642366
X6 -1.491808185 -36.20703737 175.97949593 -4.574152161
X7 1.1462413516 -16.635529 -57.04158208 10.306551561

Projected Hessian Matrix

X5 X6 X7

X1 -1.373829641 -1.491808185 1.1462413516
X2 -37.43971036 -36.20703737 -16.635529
X3 182.89278895 175.97949593 -57.04158208
X4 -4.621642366 -4.574152161 10.306551561
X5 79.326057844 22.960487404 -12.69831637
X6 22.960487404 66.669897023 -8.121228758
X7 -12.69831637 -8.121228758 14.690478023

The following PROC NLP call uses a specified analytical gradient and the Hessian
matrix is computed by finite difference approximations based on the analytic gradi-
ent:

proc nlp tech=tr fdhessian all;
array c[10] -6.089 -17.164 -34.054 -5.914 -24.721

-14.986 -24.100 -10.708 -26.662 -22.179;
array x[10] x1-x10;
array g[10] g1-g10;
min y;
parms x1-x10 = .1;
bounds 1.e-6 <= x1-x10;
lincon 2. = x1 + 2. * x2 + 2. * x3 + x6 + x10,

1. = x4 + 2. * x5 + x6 + x7,
1. = x3 + x7 + x8 + 2. * x9 + x10;

s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
y = 0.;
do j = 1 to 10;

y = y + x[j] * (c[j] + log(x[j] / s));
g[j] = c[j] + log(x[j] / s);

end;
run;

The results are almost identical to those of the former run.
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Example 5.9. Minimize Total Delay in a Network

The following example is taken from the user’s guide of GINO (Liebman et al. 1986).
A simple network of five roads (arcs) can be illustrated by the path diagram:

i1

i2

i3

i4F - �
�
���

@
@
@@R
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�
�
���

@
@
@@R - F

Figure 12: Simple Road Network

The five roads connect four intersections illustrated by numbered nodes. Each minute
F vehicles enter and leave the network.arcij refers to the road from intersectioni to
intersectionj, and the parameterxij refers to the flow fromi to j. The law that traffic
flowing into each intersectionj must also flow out is described by the linear equality
constraint X

i

xij =
X
i

xji ; j = 1; : : : ; n

In general, roads also have an upper capacity, that is the number of vehicles which can
be handled per minute. The upper limitscij can be enforced by boundary constraints

0 � xij � cij ; i; j = 1; : : : ; n

Finding the maximum flow through a network is equivalent to solving a simple linear
optimization problem, and for large problems, PROC LP or PROC NETFLOW can
be used. The objective function is

max f = x24 + x34

and the constraints are
0 � x12; x32; x34 � 10

0 � x13; x24 � 30

x13 = x32 + x34

x12 + x32 = x24

x12 + x13 = x24 + x34
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The three linear equality constraints are linearly dependent. One of them is deleted
automatically by the PROC NLP subroutines. Even though the default technique is
used for this small example any optimization subroutine can be used.

proc nlp all initial=.5;
max y;
parms x12 x13 x32 x24 x34;
bounds x12 <= 10,

x13 <= 30,
x32 <= 10,
x24 <= 30,
x34 <= 10;

/* what flows into an intersection must flow out */
lincon x13 = x32 + x34,

x12 + x32 = x24,
x24 + x34 = x12 + x13;

y = x24 + x34 + 0*x12 + 0*x13 + 0*x32;
run;

The optimal solution follows.

Output 5.9.1. Iteration History

Newton-Raphson Ridge Optimization

Without Parameter Scaling

Actual
Max Abs Over

Rest Func Act Objective Obj Fun Gradient Pred
Iter arts Calls Con Function Change Element Ridge Change

1* 0 2 4 20.25000 19.2500 0.5774 0.0313 0.860
2* 0 3 5 30.00000 9.7500 0 0.0313 1.683

Optimization Results

Iterations 2 Function Calls 4
Hessian Calls 3 Active Constraints 5
Objective Function 30 Max Abs Gradient Element 0
Ridge 0 Actual Over Pred Change 1.6834532374

All parameters are actively constrained. Optimization cannot proceed.
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Output 5.9.2. Optimization Results

PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 x12 10.000000 0 Upper BC
2 x13 20.000000 0
3 x32 10.000000 0 Upper BC
4 x24 20.000000 1.000000
5 x34 10.000000 1.000000 Upper BC

Value of Objective Function = 30

Finding a traffic pattern that minimizes the total delay to moveF vehicles per minute
from node 1 to node 4 introduces nonlinearities that, in turn, demand nonlinear op-
timization techniques. As traffic volume increases, speed decreases. Lettij be the
travel time onarcij and assume that the following formulas describe the travel time
as decreasing functions of the amount of traffic:

t12 = 5 + 0:1x12=(1� x12=10)

t13 = x13=(1 � x13=30)

t32 = 1 + x32=(1� x32=10)

t24 = x24=(1 � x24=30)

t34 = 5 + :1 � x34=(1� x34=10)

These formulas use the road capacities (upper bounds), assumingF = 5 vehicles per
minute have to be moved through the network. The objective function is now

minf = t12x12 + t13x13 + t32x32 + t24x24 + t34x34

and the constraints are.
0 � x12; x32; x34 � 10

0 � x13; x24 � 30

x13 = x32 + x34

x12 + x32 = x24

x24 + x34 = F = 5

Again, just for variety, the default algorithm is used:

proc nlp all initial=.5;
min y;
parms x12 x13 x32 x24 x34;
bounds x12 x13 x32 x24 x34 >= 0;
lincon x13 = x32 + x34, /* flow in = flow out */

x12 + x32 = x24,
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x24 + x34 = 5; /* = f = desired flow */
t12 = 5 + .1 * x12 / (1 - x12 / 10);
t13 = x13 / (1 - x13 / 30);
t32 = 1 + x32 / (1 - x32 / 10);
t24 = x24 / (1 - x24 / 30);
t34 = 5 + .1 * x34 / (1 - x34 / 10);
y = t12*x12 + t13*x13 + t32*x32 + t24*x24 + t34*x34;

run;

The optimal solution follows.

Output 5.9.3. Iteration History

Newton-Raphson Ridge Optimization

Without Parameter Scaling

Actual
Max Abs Over

Rest Func Act Objective Obj Fun Gradient Pred
Iter arts Calls Con Function Change Element Ridge Change

1 0 2 4 40.30303 0.3433 4.44E-16 0 0.508

Optimization Results

Iterations 1 Function Calls 3
Hessian Calls 2 Active Constraints 4
Objective Function 40.303030303 Max Abs Gradient Element 4.440892E-16
Ridge 0 Actual Over Pred Change 0.5083585587

ABSGCONV convergence criterion satisfied.

Output 5.9.4. Opimization Results

PROC NLP: Nonlinear Minimization

Optimization Results
Parameter Estimates

Gradient Active
Objective Bound

N Parameter Estimate Function Constraint

1 x12 2.500000 5.777778
2 x13 2.500000 5.702479
3 x32 2.775558E-17 1.000000 Lower BC
4 x24 2.500000 5.702479
5 x34 2.500000 5.777778

Value of Objective Function = 40.303030303

The active constraints and corresponding Lagrange multiplier estimates (costs) are as
follows.
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Output 5.9.5. Linear Constraints at Solution

PROC NLP: Nonlinear Minimization

Linear Constraints Evaluated at Solution

1 ACT 0 = 0 + 1.0000 * x13 - 1.0000 * x32 -
1.0000 * x34

2 ACT 4.4409E-16 = 0 + 1.0000 * x12 + 1.0000 * x32 -
1.0000 * x24

3 ACT 0 = -5.0000 + 1.0000 * x24 + 1.0000 * x34

Output 5.9.6. Lagrange Multipliers at Solution

First Order Lagrange Multipliers

Lagrange
Active Constraint Multiplier

Lower BC x32 0.924702
Linear EC [1] 5.702479
Linear EC [2] 5.777778
Linear EC [3] 11.480257

The projected gradient is very small, satisfying the first-order optimality criterion.

Output 5.9.7. Projected Gradient at Solution

Projected Gradient

Free Projected
Dimension Gradient

1 4.440892E-16

The projected Hessian matrix is positive definite, satisfying the second-order opti-
mality criterion:

Output 5.9.8. Projected Hessian at Solution

Projected Hessian
Matrix

X1

X1 1.535309013

References

Abramowitz, M. and Stegun, I.A. (1972),Handbook of Mathematical Functions,
New-York: Dover Publications, Inc.

Al-Baali, M. and Fletcher, R. (1985), “Variational Methods for Nonlinear Least-
Squares”J. Oper. Res. Soc., 36, 405-421.

Al-Baali, M. and Fletcher, R. (1986), “An Efficient Line-Search for Nonlinear Least-
Squares”,J. Optimiz. Theory Appl., 48, 359-377.

SAS OnlineDoc: Version 8



508 � Chapter 5. The NLP Procedure

Bard, Y. (1974),Nonlinear Parameter Estimation, New-York: Academic Press.

Beale, E.M.L. (1972), “A Derivation of Conjugate Gradients”, in: F.A. Lootsma (ed.),
Numerical Methods for Nonlinear Optimization, London: Academic Press.

Betts, J. T. (1977), “An Accelerated Multiplier Method for Nonlinear Programming”,
Journal of Optimization Theory and Applications, 21, 137-174.

Bracken, J. and McCormick, G.P. (1968),Selected Applications of Nonlinear Pro-
gramming, New York: John Wiley and Sons, Inc.

Chamberlain, R.M.; Powell, M.J.D.; Lemarechal, C.; and Pedersen, H.C. (1982),
“The Watchdog Technique for Forcing Convergence in Algorithms for Con-
strained Optimization”,Mathematical Programming, 16, 1-17.

Cramer, J. S. (1986),Econometric Applications of Maximum Likelihood Methods,
Cambridge, England: Cambridge University Press.

Dennis, J.E., Gay, D.M. and Welsch, R.E. (1981), “An Adaptive Nonlinear Least-
Squares Algorithm”,ACM Trans. Math. Software, 7, 348-368.

Dennis, J.E. and Mei, H.H.W. (1979), “Two New Unconstrained Optimization Al-
gorithms that use Function and Gradient Values”,J. Optim. Theory Appl., 28,
453-482.

Dennis, J.E. and Schnabel, R.B. (1983),Numerical Methods for Unconstrained Op-
timization and Nonlinear Equations, New Jersey: Prentice-Hall.

Fletcher, R. (1987),Practical Methods of Optimization.second edition, Chichester:
John Wiley and Sons.

Fletcher, R. and Powell, M.J.D. (1963), “A Rapidly Convergent Descent Method for
Minimization”, Comput.J., 6, 163-168.

Fletcher, R. and Xu, C. (1987), “Hybrid Methods for Nonlinear Least-Squares”,J.
Numerical Analysis, 7, 371-389.

Gallant, A.R. (1987),Nonlinear Statistical Models, New York: John Wiley and Sons.

Gay, D.M. (1983), “Subroutines for Unconstrained Minimization”,ACM Trans.
Math. Software, 9, 503-524.

George, J.A. and Liu, J.W. (1981),Computer Solution of Large Sparse Positive Defi-
nite Systems, New Jersey: Prentice-Hall.

Gill, E.P.; Murray, W.; and Wright, M.H. (1981),Practical Optimization, London:
Academic Press.

Gill, E.P.; Murray, W.; Saunders; M.A. and Wright, M.H. (1983), "Computing
Forward-Difference Intervals for Numerical Optimization,"SIAM J. Sci. Stat.
Comput., 4, 310-321.

Gill, E.P.; Murray, W.; Saunders, M.A.; and Wright, M.H. (1984), “Procedures
for Optimization Problems with a Mixture of Bounds and General Linear Con-
straints”,ACM Trans. Math. Software, 10, 282-298.

Goldfeld, S.M.; Quandt, R.E.; and Trotter, H.F. (1966), “Maximisation by Quadratic
Hill-Climbing”, Econometrica, 34, 541-551.

SAS OnlineDoc: Version 8



References � 509

Hambleton, R.K.; Swaminathan, H.; and Rogers, H.J. (1991),Fundamentals of Item
Response Theory, Newbury Park, CA: Sage Publications.

Hartmann, W. (1992),Nonlinear Optimization in IML, Releases 6.08, 6.09, 6.10;
Technical Report, Cary, N.C.: SAS Institute Inc.

Hartmann, W. (1992),Applications of Nonlinear Optimization with PROC NLP and
SAS/IML Software, Technical Report, Cary, N.C.: SAS Institute Inc.

Haverly, C.A. (1978), "Studies of the Behavior of Recursion for the Pooling Prob-
lem," SIGMAP Bulletin, Association for Computing Machinery.

Hock, W. and Schittkowski, K. (1981),s for Nonlinear Programming Codes.Lec-
ture Notes in Economics and Mathematical Systems 187, Berlin-Heidelberg-New
York: Springer Verlag.

Jennrich, R.I. and Sampson, P.F. (1968), “Application of Stepwise Regression to Non-
linear Estimation”,Technometrics, 10, 63-72.

Lawless, J.F. (1982), “Statistical Methods and Methods for Lifetime Data”, New
York: John Wiley and Sons, Inc.

Liebman, J.; Lasdon, L.; Schrage, L.; and Waren, A. (1986),Modeling and Optimiza-
tion with GINO, California: The Scientific Press.

Lindström, P. and Wedin, P.A. (1984), “A New Line-Search Algorithm for Nonlinear
Least-Squares Problems”,Math. Prog., 29, 268-296.

Moré, J.J. (1978), “The Levenberg-Marquardt Algorithm: Implementation and
Theory”, in: G.A. Watson (ed.),Lecture Notes in Mathematics 630, Berlin-
Heidelberg-New York: Springer Verlag, 105-116.

Moré, J.J., Garbow, B.S. and Hillstrom, K.E. (1981), “Testing Unconstrained Opti-
mization Software”,ACM Trans. Math. Software, 7, 17-41.

Moré, J.J. and Sorensen, D.C. (1983), “Computing a Trust-Region Step”,SIAM J.
Sci. Stat. Comput., 4, 553-572.

Moré, J.J. and Sorensen, D.C. (1983), “Computing a Trust-Region Step”,SIAM J.
Sci. Stat. Comput., 4, 553-572.

Moré, J.J. and Wright, S.J. (1993),Optimization Software Guide, Philadelphia:
SIAM.

Murtagh, B.A. and Saunders, M.A. (1983),MINOS 5.0 User’s Guide; Technical Re-
port SOL 83-20, Stanford University.

Nelder, J.A. and Mead, R. (1965), “A Simplex Method for Function Minimization”,
Comput. J., 7, 308-313.

Polak, E. (1971),Computational Methods in Optimization, New York - San Francisco
- London: Academic Press.

Powell, J.M.D. (1977), “Restart Procedures for the Conjugate Gradient Method”,
Math. Prog., 12, 241-254.

SAS OnlineDoc: Version 8



510 � Chapter 5. The NLP Procedure

Powell, J.M.D. (1978a), “A Fast Algorithm for Nonlinearly Constraint Optimization
Calculations”, inNumerical Analysis, Dundee 1977, Lecture Notes in Mathemat-
ics 630, ed. G.A. Watson, Berlin: Springer Verlag, 144-175.

Powell, J.M.D. (1978b), “Algorithms for Nonlinear Constraints that use Lagrangian
Functions”,Mathematical Programming, 14, 224-248.

Powell, M.J.D. (1982a), “Extensions to subroutine VF02AD”, inSystems Modeling
and Optimization, Lecture Notes in Control and Information Sciences38, eds.
R.F. Drenick and F. Kozin, Berlin: Springer Verlag, 529-538.

Powell, J.M.D. (1982b), “VMCWD: A Fortran Subroutine for Constrained Optimiza-
tion”, DAMTP 1982/NA4, Cambridge, England.

Powell, J.M.D. (1992), “A Direct Search Optimization Method that Models the Ob-
jective and Constraint Functions by Linear Interpolation”,DAMTP/NA5, Cam-
bridge, England.

Rosenbrock, H.H. (1960), “An Automatic Method for Finding the Greatest or Least
Value of a Function”,Comput. J., 3, 175-184.

Schittkowski, K. (1980),Nonlinear Programming Codes - Information, Tests, Per-
formanceLecture Notes in Economics and Mathematical Systems 183, Berlin-
Heidelberg-New York: Springer Verlag.

Schittkowski, K. (1987),More s for Nonlinear Programming Codes.Lecture Notes
in Economics and Mathematical Systems 282, Berlin-Heidelberg-New York:
Springer Verlag.

Schittkowski, K. and Stoer, J. (1979), “A Factorization Method for the Solu-
tion of Constrained Linear Least-Squares Problems Allowing Subsequent Data
Changes”,Numer. Math., 31, 431-463.

Stewart, G.W. (1967), “A Modification of Davidon’s Minimization method to Accept
Difference Approximations of Derivatives”,J. Assoc. Comput. Mach.14, 72-83.

Wedin, P.A. and Lindström, P. (1987),Methods and Software for Nonlinear Least-
Squares Problems, University of Umea, Report No. UMINF 133.87.

Whitaker,D.; Triggs; C.M.; and John, J.A. (1990), “Construction of Block Designs
using Mathematical Programming”,J. R. Statist. Soc. B, 52, 497-503.

SAS OnlineDoc: Version 8



The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS/OR® User’s Guide: Mathematical Programming, Version 8, Cary, NC: SAS Institute
Inc., 1999. 566 pp.

SAS/OR® User’s Guide: Mathematical Programming, Version 8
Copyright © 1999 SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–491–8
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, by any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute, Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software by the government is subject to restrictions as set forth in FAR 52.227–19
Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM®, ACF/VTAM®, AIX®, APPN®, MVS/ESA®, OS/2®, OS/390®, VM/ESA®, and VTAM®

are registered trademarks or trademarks of International Business Machines Corporation.
® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


