
153

C H A P T E R

9
Using Unnamed and Named
Pipes

Overview of Pipes 153
Using Unnamed Pipes 154

Unnamed Pipe Syntax 154

Using Redirection Sequences 155

Unnamed Pipe Example 155

Using Named Pipes 155
Named Pipe Syntax 156

Using the CALL RECONNECT Routine 157

Using Named Pipes in SCL 157

Named Pipe Examples 158

Simple Named Pipes: One Client Connected to One Server 158

One Server Connected to Several Clients 159
The NOBLOCK Option 161

The CALL RECONNECT Routine 163

Overview of Pipes
A pipe is a channel of communication between two processes. For example, with the

SAS System and OS/2, you can use a specialized OS/2 application to provide
information to your SAS session or vice versa.

Pipes can be one-way or two-way. With a one-way pipe, one application writes data to
the pipe, and the other application reads from it. With a two-way pipe, both
applications can read and write data. Pipes can be either unnamed or named:

unnamed pipe
Also called an anonymous pipe (or simply a pipe), this type of pipe is always one
way. It is typically used to communicate between a parent process and a child
process. Within SAS, the SAS System is the parent process that invokes (and
reads data from) a child process.

named pipe
This type of pipe can handle one-way or two-way communication between two
unrelated processes. That is, one process is not started by the other. In fact, it is
possible to have two applications communicate over a pipe on a network. You can
use named pipes within SAS to communicate with other applications or even with
another SAS session.

154 Using Unnamed Pipes 4 Chapter 9

Using Unnamed Pipes

Unnamed pipes enable you to run a program outside the SAS System and redirect
the program’s input, output, and error messages to the SAS System. This capability
enables you to capture data from a program that is external to the SAS System without
creating an intermediate data file.

For unnamed pipes to work with OS/2 applications that are external to the SAS
System, the application program must read data from standard input (STDIN), write
output to standard output (STDOUT), and write errors to standard error (STDERR).
These files have numeric file handles associated with them, as follows:

File File Handle

STDIN 0

STDOUT 1

STDERR 2

When the SAS System captures STDERR from another application, the error
messages are routed by default to the SAS log. If you want to write to STDIN in
another application, you can use a PUT statement in a SAS DATA step. Because the
SAS System can write to STDIN and capture from STDOUT in the same application,
unnamed pipes can be used to send data to an external program, as well as to capture
the output and error messages of the same program. You can use redirection sequences
to redirect STDIN, STDOUT, and STDERR. For more information, see “Using
Redirection Sequences” on page 155 or your OS/2 documentation.

Unnamed Pipe Syntax
To use an unnamed pipe, issue a FILENAME statement with the following syntax:

FILENAME fileref PIPE ’program-name’ option-list

You can use the following arguments with this form of the FILENAME statement:

fileref
is any valid fileref, as described in “Referencing External Files” on page 82.

PIPE
is the device-type keyword that tells the SAS System that you want to use an
unnamed pipe.

program-name
specifies the external OS/2 application program. This argument must fully specify
the pathname to the program, or the path to the directory containing the program
must be contained in the OS/2 PATH environment variable. This argument can
also contain program options. For example, you can specify the following
argument to indicate that you want to run the STOCKMKT program on all stocks:

’stockmkt.exe -all’

option-list
can be any of the options that are valid in the FILENAME statement, such as the
LRECL= or RECFM= options. For a complete list of options that are available for
the FILENAME statement under OS/2, see “FILENAME” on page 292.

Using Pipes 4 Using Named Pipes 155

Using Redirection Sequences
Any OS/2 application that accommodates standard input, output, and error

messages can use the unnamed pipe feature. Because many OS/2 system commands
use standard input, output, and error messages, you can use these commands with
unnamed pipes within SAS. Unless you specify otherwise, an unnamed pipe directs
STDOUT and STDERR to two different files. To combine the STDOUT and STDERR
into the same file, use redirection sequences. The following is an example that redirects
STDERR to STDOUT for the OS/2 DIR command:

filename listing pipe ’dir *.sas 2>&1’;

In this example, if any errors occur in executing this command, STDERR (2) is
redirected to the same file as STDOUT (1). This is an example of the SAS System’s
ability to capitalize on operating environment capabilities. This feature of redirecting
file handles is a function of the OS/2 operating environment rather than of the SAS
System.

Unnamed Pipe Example
In the following example, you use unnamed pipes to produce financial reports. This

example assumes that you have a stand-alone program that updates stock market
information from a financial news bureau. You need the SAS System to run a stock
market report with the most recently created data from the stock market program.
Here is how you create and use the pipe within your SAS session:

filename stocks pipe ’stockmkt.exe -all’;
data report;

infile stocks;
input stock $ open close change;

run;
proc print;

var stock open close change;
sum change;
title ’Stock Market Report’;

run;

In this example, the PIPE device-type keyword in the FILENAME statement
indicates that the fileref STOCKS is an unnamed pipe. The STOCKMKT.EXE reference
is the name of the stand-alone program that generates the stock market data. The
INFILE statement causes the SAS System to execute the STOCKMKT.EXE program
and read the data in the pipe from it. The STOCKMKT.EXE program is executed
without your being aware that it is running. Because the fileref STOCKS has already
been defined as an unnamed pipe, the standard output from STOCKMKT.EXE is
redirected to the SAS System and captured through the INFILE statement. The SAS
program reads in the variables and uses the PRINT procedure to generate a printed
report. Any error messages that are generated by STOCKMKT.EXE appear in the SAS
log.

Using Named Pipes
The named pipes capability is one of the most powerful tools available in the SAS

System under OS/2 for communicating with other applications. The named pipes

156 Named Pipe Syntax 4 Chapter 9

feature enables bidirectional data or message exchange between applications that are
on the same machine or applications that are on separate machines across a network.
Figure 9.1 on page 156 illustrates these two basic methods of communication.

Figure 9.1 Communication Using Named Pipes

First
Application

Second
Application

Network

Machine 1

First
Application

Machine 2

Second
Application

Multiple Workstations
across a NetworkSingle Workstation

The applications can be SAS sessions or other OS/2 applications. For example, using
a named pipe you can use the PRINTTO procedure to direct the results from SAS
procedures to another OS/2 application. Therefore, you can have either multiple SAS
sessions that communicate with each other or one SAS session that communicates with
another OS/2 application.

Whether you are communicating between multiple SAS sessions or between a SAS
session and another OS/2 application that supports named pipes, the pipes are defined
in a client/server relationship. One process is defined as the server, while one or more
other processes are defined as clients. In this configuration, you can have multiple
clients send data to the server or the server send data to the various clients. Named
pipes enable you to coordinate processing between the server and clients by using
various options.

Named Pipe Syntax
You can use a named pipe anywhere that you use a fileref in the SAS System. To

use a named pipe, issue a FILENAME statement with the following syntax:

FILENAME fileref NAMEPIPE ’pipe-specification’ <named-pipe-options>;

You can use the following arguments with this form of the FILENAME statement:

fileref
is any valid fileref as described in “Referencing External Files” on page 82.

NAMEPIPE
is the device-type keyword that tells the SAS System that you want to use a
named pipe.

pipe-specification
is the name of the pipe.

This argument has two mutually exclusive forms:

\\.\PIPE\pipe-name
indicates that you are establishing a pipe on a single PC or defining a server
pipe across a network. The pipe-name argument specifies the name of the
pipe.

\\server-name\PIPE\pipe-name
indicates that you are establishing a client pipe over a network named-pipe
server. Remember to include the double backslash (\\) in this situation. The
pipe-name argument specifies the name of the client pipe. The server-name
argument specifies the name of the named-pipe server.

Using Pipes 4 Using Named Pipes in SCL 157

named-pipe-options
can be any of the following. The default value is listed first:

SERVER | CLIENT
indicates the mode of the pipe. SERVER is the default.

BLOCK | NOBLOCK
indicates whether the client or server is to wait for data to be read if no data
are currently available. BLOCK indicates to wait, and it is the default.
NOBLOCK indicates not to wait; control is returned immediately to the
program if no data are available in the pipe. Writing to the pipe always
implies BLOCK.

BYTE | MESSAGE
indicates the type of pipe. BYTE is the default. The difference between a
BYTE pipe and a MESSAGE pipe is that a MESSAGE pipe includes an
encoded record length, whereas a BYTE pipe does not.

RETRY=seconds
indicates the amount of time that the client or server should wait to establish
the pipe. The minimum value for seconds is 10. This is also the default. This
option allows time for synchronization of the client and server.

There are two values for the seconds argument that indicate special cases:

−2 indicates the client should wait the amount of time that is
defined by the server’s RETRY= option. If this option is
used, the SERVER option must always be active or the
pipe connection fails.

−1 indicates the client or server should wait indefinitely for
the pipe connection.

EOFCONNECT
is valid only when you are defining the server, and it indicates that if an
end-of-file (EOF) character is received from a client, the server should try to
connect to the next client.

All of these options are consistent with the terminology that is used in OS/2
programmers’ reference guides.

Using the CALL RECONNECT Routine
There is a special SAS CALL routine that works with named pipes. The CALL

RECONNECT routine enables the server to disconnect the current client and try to
connect to the next available client. Normally, the pipe is terminated when the client
side of the pipe sends an end-of-file character to the server. To break the pipe connection
at any time, the server SAS session can issue a CALL RECONNECT statement. For an
example of this routine, see “The CALL RECONNECT Routine” on page 163.

Using Named Pipes in SCL
To establish named pipes by using SCL code, you must use the FOPEN function to

open a file (or pipe) before you can access it. In doing so, you must specify the
appropriate open mode for both the client and server applications so that the two can
communicate over the pipe. Here is a summary of the different modes that you can use:

158 Named Pipe Examples 4 Chapter 9

If the server accesses the pipe as... then the client must access the pipe as...

I (input) O (output)

O (output) S (sequential)

U (update) O (output) or S (sequential)

Named Pipe Examples
The best way to understand named pipes is to examine several different examples

that illustrate their use. In most of the examples in this section, the named pipe is
established between two SAS sessions. However, named pipes work between the SAS
System and other applications that support named pipes.

Simple Named Pipes: One Client Connected to One Server
The simplest named pipe configuration is one server connected to one client, as

shown in Figure 9.2 on page 158.

Figure 9.2 One Server Connected to One Client

Server
Application

Client
Application

In the following example, a named pipe that is called WOMEN is established
between two SAS sessions. The server SAS session selectively sends data to the client
SAS session. You can start the server or the client first; one waits 30 seconds for the
other to connect.

In the first SAS session, create a named pipe as a server:

/* Creates a pipe called WOMEN, acting */
/* as a server. The server waits 30 */
/* seconds for a client to connect. */

filename women namepipe ’\\.\pipe\women’
server retry=30;

/* This code writes three records into */
/* the named pipe called WOMEN. */

data class;
input name $ sex $ age;
file women;
if upcase(sex)=’F’ then

put name age;
cards;

MOORE M 15
JOHNSON F 16
DALY F 14
ROBERTS M 14
PARKER F 13

Using Pipes 4 Named Pipe Examples 159

;

In the second SAS session, you can use SAS statements to exchange data between
the two SAS sessions. For example, you can submit the following program from the
client session:

/* Creates a pipe called WOMEN, acting */
/* as a client. The client waits 30 */
/* seconds for a server to connect. */

filename in namepipe ’\\.\pipe\women’ client
retry=30;

data female;
infile in;
input name $ age;

proc print;
run;

The following program is another example of a single client and server. This example
illustrates how to use the PRINTTO procedure to direct results from the SUMMARY
procedure to another OS/2 application. The example uses a named pipe called
RESULTS:

filename results namepipe ’\\.\pipe\results’
server retry=60;

proc printto print=results new;
run;
proc summary data=monthly;
run;

One Server Connected to Several Clients
You can choose to have one server connected to several clients. In this case, the

named pipe configuration looks like that shown in Figure 9.3 on page 160.

160 Named Pipe Examples 4 Chapter 9

Figure 9.3 One Server Connected to Several Clients

Server
Application

•
•
•

Client
Application

1

Client
Application

2

Client
Application

3

Client
n

In this configuration, the data connection is initially between the server and the first
client. When this connection is terminated, the server connects to the second client, and
so on. The connection can return to the first client after the last client’s connection is
broken if your program is set up to do so.

You must use the EOFCONNECT option to cause the connection to move properly
from one client to the next. The following is an example of using the EOFCONNECT
option with one server SAS session and two clients. The clients can be on the same PC
or on a PC that is connected across a network.

In the first SAS session, submit the following statements:

/* Creates a pipe called SALES, acting */
/* as a server. The server waits 30 */
/* seconds for a client to connect. */
/* After the client has disconnected, */
/* this server SAS session tries to */
/* connect to the next available client */

filename daily namepipe ’\\.\pipe\sales’
server eofconnect retry=30;

/* This program reads in the daily */
/* sales figures sent from each client.*/

data totsales;
infile daily;
input dept $ item $ total;

run;

In the second SAS session, submit the following statements:

Using Pipes 4 Named Pipe Examples 161

/* Creates a pipe called SALES, acting */
/* as a client. The client waits forever */
/* for a server to connect. After the */
/* first client has disconnected, the */
/* second client connects with the server.*/
/* The first client is the TOYS dept. */

filename dept1 namepipe ’\\.\pipe\sales’
client retry=-1;

data toys;
input item $ total;
dept=’TOYS’;
file dept1;
put dept item total;
cards;

DOLLS 100
MARBLES 10
BLOCKS 50
GAMES 60
CARS 40
;

/* The second client is the SPORTS dept.*/
/* These data could come from a separate */
/* SAS session. */

filename dept2 namepipe ’\\.\pipe\sales’
client retry=-1;

data sports;
input item $ total;
dept=’SPORTS’;
file dept2;
put dept item total;
cards;

BALLS 30
BATS 65
GLOVES 15
RACKETS 75
FISHING 20
TENTS 115
HELMETS 45
;

The NOBLOCK Option

The following example uses the NOBLOCK option to specify that the program
should continue to execute if no data are available when the pipe is read. If the default
value of BLOCK had been used, then the pipe would wait indefinitely until data were
found in the pipe. The EOFCONNECT option is also used to tell the server that when a
client sends an end-of-file (EOF) character, the server should try to connect with a new
client. The RETRY= option tells the server to look for any new clients for 20 seconds
while the client waits indefinitely on a server. The clients can be on the same PC or on
a PC that is connected across a network. A server connects to one client at a time, and
the clients queue in a serial order waiting to connect to the server.

First, submit the following statements in the SAS server session:

/* Defines a named pipe called LINE. */
/* Use the NOBLOCK option to specify */

162 Named Pipe Examples 4 Chapter 9

/* that if no data are available when */
/* the read is performed, then continue.*/
/* Use the EOFCONNECT option to tell */
/* the server to try to connect with a */
/* new client if an end-of-file is */
/* encountered. Use the RETRY= option */
/* to tell the server to look for any */
/* new clients for 20 seconds. */

filename data namepipe ’\\.\pipe\line’ server
noblock eofconnect retry=20;

/* This DATA step reads in all data */
/* from any clients connected to the */
/* named pipe called LINE. */

data all;
infile data length=len;
input @;

/* If the length of the incoming */
/* record is 0, then no data were */
/* found in the pipe; otherwise, */
/* read the incoming data. */

if len ne 0 then
do;

input machine $ width weight;
output;

end;
run;
proc print;
run;

Each of the following client DATA steps can be executed on several different PCs that
are connected across a network:

/* Defines a named pipe called LINE. */
/* The RETRY= option is set such that */
/* the clients wait forever until a */
/* server is available */
/* (that is, RETRY=-1). */
filename data namepipe ’\\.\pipe\line’

client retry=-1;
/* This is information from the */
/* first machine/client. */

data machine1;
file data;
input width weight;
machine=’LINE_1’;
put machine width weight;
cards;

5.3 18.2
3.2 14.3
4.8 16.9
6.4 20.8
4.3 15.4
6.1 19.5
5.6 18.9
;

Using Pipes 4 Named Pipe Examples 163

/* This is information from the */
/* second machine/client. */

data machine2;
file data;
input width weight;
machine=’LINE_2’;
put machine width weight;
cards;

4.3 17.2
5.2 18.4
6.8 19.9
3.4 14.5
5.3 18.6
4.1 17.1
6.6 19.5
;

The CALL RECONNECT Routine

The following example demonstrates how to set up a named pipe server to establish
a connection with two clients. (For this example, you need three active SAS sessions.)
In this example, the CALL RECONNECT routine reconnects to the next client on the
named pipe if at least 30 seconds have passed since the previous client has sent any
data. Each client is a data entry operator that sends data to the server SAS session.

In the server SAS session, submit the following statements:

filename data namepipe ’\\.\pipe\orders’
server noblock eofconnect retry=30;

data all;
infile data length=len missover;
input @;

/* If the length of the incoming */
/* record is 0, then no data were */
/* found in the pipe; otherwise, */
/* read the incoming data */

if len ne 0 then
do;

input operator $ item $ quantity $;
if item=’’ or quantity=’’ then

delete;
else

output;
put operator= item= quantity=;

end;
/* If no data are being transmitted,*/
/* try reconnecting to the next */
/* available client. */

else
do;

/* Use the named pipe fileref */
/* as the argument of */
/* CALL RECONNECT. */

call reconnect(’data’);
end;

run;

164 Named Pipe Examples 4 Chapter 9

In the second SAS session, which is the first data entry operator, submit the
following statements:

filename data namepipe ’\\.\pipe\orders’
client retry=-1;

data entry1;
if _n_=1 then

do;
window entry_1
#1 @2 ’ENTER STOP WHEN YOU ARE FINISHED’
#3 @5 ’ITEM NUMBER - ’ item $3.
#5 @5 ’QUANTITY - ’ quantity $3.;

end;
do while (upcase(_cmd_) ne ’STOP’);

display entry_1;
file data;
put ’ENTRY_1’ +1 item quantity;
item=’’;
quantity=’’;

end;
stop;

run;

In the third SAS session, which is the second data entry operator, submit the
following statements:

filename data namepipe ’\\.\pipe\orders’
client retry=-1;

data entry2;
if _n_=1 then

do;
window entry_2
#1 @2 ’ENTER STOP WHEN YOU ARE FINISHED’
#3 @5 ’ITEM NUMBER - ’ item $3.
#5 @5 ’QUANTITY - ’ quantity $3.;

end;
do while (upcase(_cmd_) ne ’STOP’);

display entry_2;
file data;
put ’ENTRY_2’ +1 item quantity;
item=’’;
quantity=’’;

end;
stop;

run;

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Companion for the OS/2 ® Environment, Version 8, Cary, NC: SAS Institute Inc., 1999.
448 pp.

SAS® Companion for the OS/2® Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-521-3
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and OS/2® are registered trademarks or trademarks of International Business
Machines Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

