
235

C H A P T E R

13
Formats

SAS Formats under OS/2 235
Writing Binary Data 235

Converting User-Written Formats from Earlier Releases to Version 8 236

Converting Version 6 User-Written Formats 236

Converting Version 5 User-Written Formats 237

HEXw. 237
$HEXw. 238

IBw.d 238

PDw.d 239

PIBw.d 240

RBw.d 241

ZDw.d 242

SAS Formats under OS/2
A SAS format is an instruction or template that the SAS System uses to write data

values. Most SAS formats are described completely in SAS Language Reference:
Dictionary. The formats that are described here have behavior that is specific to the
SAS System under OS/2.

Many of the SAS formats that have details specific to the OS/2 operating
environment are used to write binary data. In using these formats, it is important that
you understand the concepts that are presented in “Writing Binary Data” on page 235.

If you have formats that you created for use in earlier releases of the SAS System,
see “Converting User-Written Formats from Earlier Releases to Version 8” on page 236
for information about how to convert those formats for use with Version 8.

Writing Binary Data
Different computers store numeric binary data in different forms. IBM 370,

Hewlett-Packard 9000, Data General ECLIPSE, and Prime computers store bytes in
one order. Microcomputers that are compatible with IBM and some computers
manufactured by Digital Equipment Corporation store bytes in a different order called
byte-reversed.

Binary data stored in one order cannot be read by a computer that stores binary data
in the other order. When you are designing SAS applications, try to anticipate how your
data will be read and choose your formats and informats accordingly.

The SAS System provides two sets of informats for reading binary data and
corresponding formats for writing binary data.

236 Converting User-Written Formats from Earlier Releases to Version 8 4 Chapter 13

� The IBw.d, PDw.d, PIBw.d, and RBw.d informats and formats read and write in
native mode, that is, using the byte-ordering system that is standard for the
machine.

� The S370FIBw.d, S370FPDw.d, S370FRBw.d, and S370FPIBw.d informats and
formats read and write according to the IBM 370 standard, regardless of the
native mode of the machine. These informats and formats allow you to write SAS
programs that can be run in any SAS environment, regardless of how numeric
data are stored.

If a SAS program that reads and writes binary data runs on only one type of
machine, you can use the native mode informats and formats. However, if you want to
write SAS programs that can be run on multiple machines using different byte-storage
systems, use the IBM 370 formats and informats. The purpose of the IBM 370
informats and formats is to enable you to write SAS programs that can be run in any
SAS environment, no matter what standard you use for storing numeric data.

For example, suppose you have a program that writes data with the PIBw.d format.
You execute the program on a microcomputer so that the data are stored in
byte-reversed mode. Then on the microcomputer you run another SAS program that
uses the PIBw.d informat to read the data. The data are read correctly because both of
the programs are run on the microcomputer using byte-reversed mode. However, you
cannot upload the data to a Hewlett-Packard 9000-series machine and read the data
correctly because they are stored in a form native to the microcomputer but foreign to
the Hewlett-Packard 9000. To avoid this problem, use the S370FPIBw.d format to write
the data; even on the microcomputer, this causes the data to be stored in IBM 370
mode. Then read the data using the S370FPIBw.d informat. Regardless of what type of
machine you use when reading the data, they are read correctly.

Converting User-Written Formats from Earlier Releases to Version 8
You must convert Release 6.04, Release 6.06, and Release 6.08 user-written formats

to their Version 8 counterparts before you can use them in a Version 8 SAS program.
The only exception to this rule is user-written informats and formats created by Release
6.08 or later under OS/2; these informats and formats can be read directly from your
OS/2 SAS session. *

Converting Version 6 User-Written Formats
You can convert Release 6.04, 6.06, and 6.08 SAS catalogs that contain user-written

informats and formats using one of the following methods:

Converting Release 6.04 catalogs
use the CNTLOUT= option in the PROC FORMAT statement in Release 6.04 to
create an output data set, and then use the CNTLIN= option in the PROC
FORMAT statement in Version 8 to create the Version 8 informats or formats. You
must use the V604 engine in your Version 8 SAS session to read the data set. This
method also works for converting from Release 6.06 or 6.08.

Converting Release 6.06 or Release 6.08 catalogs
use the CPORT and CIMPORT procedures to convert the informats and formats.
For more information about the CPORT and CIMPORT procedures, see SAS

* However, it is recommended that you use PROC CPORT and PROC CIMPORT to convert older OS/2 catalogs containing
user-written informats and formats to Version 8 if you no longer need to use them in previous releases.

Formats 4 HEXw. 237

Procedures Guide. This method works for converting from Release 6.06 or Release
6.08 only; it does not work for converting from Release 6.04.

Converting Version 5 User-Written Formats
You must also convert Version 5 user-written formats to their Version 8 counterparts

before you can use them in a Version 8 SAS program. (This implies that you are not
only converting these files, but you are also transferring them from a remote operating
environment to your PC). You can convert them using one of the following methods:

� Use the V5TOV6 procedure on the remote operating environment to convert the
informats and formats to Version 6 format. This implies that the remote operating
environment has access to Version 6 SAS software. Then, transport the converted
informats and formats (as binary files) to your OS/2 operating environment and
use the CIMPORT procedure to complete the conversion. For more information
about the V5TOV6 procedure, see SAS Procedures Guide.

� Use the SUGI supplemental procedure FMTLIB under Version 5 on the remote
operating environment to create an output data set, transport that data set to
your PC, and then use the CNTLIN= option in the PROC FORMAT statement in
Version 8 to create the Version 8 formats.

HEXw.

Converts real binary (floating-point) values to hexadecimal values

Category numeric
Width range: 1–16
Default width: 8
Alignment: left
OS/2 specifics: native floating–point representation

Syntax
HEXw.

w
specifies the width of the output field. When you specify a w value of 1 through 15,
the real binary number is truncated to a fixed-point integer before being converted to
hexadecimal notation. When you specify 16 for the w value, the floating-point value
of the number is used; in other words, the number is not truncated.

238 $HEXw. 4 Chapter 13

See Also

� Formats: HEXw. in SAS Language Reference: Dictionary and “$HEXw.” on page
238

� Informat: “HEXw.” on page 265

$HEXw.

Converts character values to hexadecimal values

Category character

Width range: 1–32767

Default width: 4

Alignment: left

OS/2 specifics: ASCII character–encoding system

Syntax
$HEXw.

w
specifies the width of the output field.

Details The $HEXw. format is like the HEXw. format in that it converts a character
value to hexadecimal notation, with each byte requiring two columns. Under OS/2, the
$HEXw. format produces hexadecimal representations of ASCII codes for characters.

See Also

� Formats: $HEXw. in SAS Language Reference: Dictionary and “HEXw.” on page
237

� Informat: “$HEXw.” on page 266

IBw.d

Writes integer binary (fixed-point) numbers

Category numeric

Width range: 1–8

Default width: 4

Decimal range: 0–10

Alignment: left

OS/2 specifics: native floating-point representation

Formats 4 PDw.d 239

Syntax
IBw.d

w
specifies the width of the output field in bytes (not digits).

d
optionally specifies a scaling factor. When you specify a d value, the IBw.d format
multiplies the number by 10d, and then applies the integer binary format to that
value.

Details The IBw.d format converts a double-precision number and writes it as an
integer binary (fixed-point) value. Integers are stored in integer-binary (fixed-point)
form.

For more information about microcomputer fixed-point values, see Intel Corporation’s
i486 Microprocessor Programmer’s Reference Manual.

Examples

Example 1: Processing a Positive Number If you format 1.0 as the double-precision
number, it is stored as an integer:

01 00 00 00 00 00 00 00

Remember, OS/2 stores binary data in byte-reversed order. The value written
depends on the w value you specify.

If you specify the IB4. format, you receive the following value:

01 00 00 00

If you specify the IB2. format, you receive the following value:

01 00

Example 2: Processing a Negative Number If you format −1 with the IB4. format, you
receive the following value:

FF FF FF FF

If you specify the IB2. format, you receive the following value:

FF FF

See Also

� Format: IBw.d in SAS Language Reference: Dictionary
� Informat: “IBw.d” on page 266
� “Writing Binary Data” on page 235

PDw.d
Writes packed decimal data

240 PIBw.d 4 Chapter 13

Category numeric
Width range: 1–16
Default width: 1
Decimal range: 1–31
Alignment: left
OS/2 specifics: How the values are interpreted as negative or positive

Syntax
PDw.d

w
specifies the width of the output field in bytes (not digits).

d
optionally specifies a scaling factor. When you specify a d value, the PDw.d format
multiplies the number by 10d, and then applies the packed decimal format to that
value.

Details The PDw.d format writes double-precision numbers in packed decimal
format. In packed decimal data, each byte contains two digits. The w value represents
the number of bytes, not the number of digits. The value’s sign is in the uppermost bit
of the first byte (although the entire first byte is used for the sign).

Examples

Example 1: Processing a Positive Number If you format 1143.0 using the PD2.
format, you receive the following value:

00 43

If you specify PD4., you receive the following value:

00 00 11 43

Example 2: Processing a Negative Number If you format −1143.0 using the PD2.
format, you receive the following value:

80 43

If you specify the PD4. format, you receive the following value:

80 00 11 43

See Also

� Format: PDw.d in SAS Language Reference: Dictionary
� Informat: “PDw.d” on page 267
� “Writing Binary Data” on page 235

PIBw.d
Writes positive integer binary data

Formats 4 RBw.d 241

Category numeric
Width range: 1–8
Default width: 1
Decimal range: 0–10
Alignment: left
OS/2 specifics: native byte-swapped integers

Syntax
PIBw.d

w
specifies the width of the output field in bytes (not digits).

d
optionally specifies a scaling factor. When you specify a d value, the PIBw.d format
multiplies the number by 10d, and then applies the positive integer binary format to
that value.

Details The PIBw.d format converts a fixed-point value to an integer binary value. If
the fixed-point value is negative, the PIBw.d format writes the integer representation
for −1.

For more information about microcomputer fixed-point values, see Intel Corporation’s
i486 Microprocessor Programmer’s Reference Manual.

See Also

� Format: PIBw.d in SAS Language Reference: Dictionary
� Informat: “PIBw.d” on page 268
� “Writing Binary Data” on page 235

RBw.d

Writes real binary (floating-point) data

Category numeric
Width range: 2–8
Default width: 4
Decimal range: 0–10
Alignment: left
OS/2 specifics: native floating-point representation

Syntax
RBw.d

242 ZDw.d 4 Chapter 13

w
specifies the width of the output field.

d
optionally specifies a scaling factor. When you specify a d value, the RBw.d format
multiplies the number by 10d, and then applies the real binary format to that value.

Details The RBw.d format writes numeric data in real binary (floating-point)
notation. Numeric data for scientific calculations are commonly represented in
floating-point notation. (The SAS System stores all numeric values in floating-point
notation.) A floating-point value consists of two parts: a mantissa that gives the value
and an exponent that gives the value’s magnitude.

Real binary is the most efficient format for representing numeric values because the
SAS System already represents numbers this way and no conversion is needed.

For more information about OS/2 floating-point notation, see Intel Corporation’s i486
Microprocessor Programmer’s Reference Manual.

See Also

� Format: RBw.d in SAS Language Reference: Dictionary

� Informat: “RBw.d” on page 269

� “Writing Binary Data” on page 235

ZDw.d

Writes zoned decimal data

Category numeric

Width range: 1–32

Default width: 1

Decimal range: 1–10

Alignment: left

OS/2 specifics: Last byte includes the sign

Syntax
ZDw.d

w
specifies the number of bytes (not digits).

d
optionally specifies the number of digits to the right of the decimal point in the
numeric value.

Formats 4 ZDw.d 243

Details The ZDw.d format writes zoned decimal data. This is also known as an
overprint trailing numeric format. In the OS/2 operating environment, the last byte of
the field contains the sign information of the number. The following table gives the
conversion for the last byte:

Digit

ASCII

Character Digit

ASCII

Character

0 { −0 }

1 A −1 J

2 B −2 K

3 C −3 L

4 D −4 M

5 E −5 N

6 F −6 O

7 G −7 P

8 H −8 Q

9 I −9 R

See Also

� Format: ZDw.d in SAS Language Reference: Dictionary

� Informat: “ZDw.d” on page 270

244 ZDw.d 4 Chapter 13

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Companion for the OS/2 ® Environment, Version 8, Cary, NC: SAS Institute Inc., 1999.
448 pp.

SAS® Companion for the OS/2® Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-521-3
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and OS/2® are registered trademarks or trademarks of International Business
Machines Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

