
245

C H A P T E R

14
Functions and CALL Routines

SAS Functions under OS/2 245
SAS CALL Routines under OS/2 245

BYTE 245

COLLATE 249

DMYTECHC 250

DMYTECWD 251
DMYTERVC 252

MCIPISLP 253

MCIPISTR 254

MODULExy 255

PEEK 257

RANK 258
SLEEP 258

TRANSLATE 259

WAKEUP 260

SAS Functions under OS/2
SAS functions and Call routines return a value from a computation or system

operation. Most functions and Call routines use arguments that are supplied by the
user as input.

Most SAS functions are completely described in the SAS functions and CALL routines
portion of SAS Language Reference: Dictionary. The functions that are described here
have syntax or behavior that is specific to the OS/2 operating environment.

SAS CALL Routines under OS/2
SAS System CALL routines are used to alter variable values or perform other

system functions. Most CALL routines are completely described in the functions and
CALL routines portion of SAS Language Reference: Dictionary. The CALL routines that
are described here have syntax or behavior specific to the OS/2 operating environment.

BYTE
Returns one character in the ASCII collating sequence

246 CALL DMYTECKS 4 Chapter 14

OS/2 specifics: Uses the ASCII code sequence

Syntax
BYTE(n)

n
is an integer that specifies which character in the ASCII collating sequence to return.
The value of n can range from 0 to 255.

Details Because OS/2 is an ASCII system, the BYTE function returns the nth
character in the ASCII collating sequence. The value of n can range from 0 to 255.

Any programs using the BYTE function with characters above ASCII 127 (the
hexadecimal notation is ’7F’x) may return a different value when used on a PC from
another country as characters above ASCII 127 are national characters and they vary
from country to country.

See Also

� BYTE function in SAS Language Reference: Dictionary

CALL DMYTECKS

Calculates the checksum (exclusive OR) of all the characters in a DataMyte packet, excluding the
checksum itself

OS/2 specifics all

Syntax
DMYTECKS (string, initial-cks, calculated-cks)

string
is the string for which the checksum is calculated. This argument can be a character
variable, a character literal enclosed in quotation marks, or another character
expression. A DataMyte can transmit a string of up to 256 characters.

initial-cks
is the initial checksum value. This value is ’’00’x if the string is under 200 characters.

calculated-cks
is the calculated checksum for string. This value is a 2–byte hexadecimal number.

Details
The CALL DMYTECKS routine calculates the checksum for a packet. The checksum is
the exclusive OR (XOR) of all the characters in the packet (including the start-of-text

Functions and CALL Routines 4 CALL SOUND 247

character, the character count, and end-of-transmission character), excluding the
checksum itself. Because the length of SAS character variables is limited to 200, if you
want to calculate the checksum for a packet that is longer than 200 characters, you
have to call the CALL DYMTECKS routine twice. Call it once for the first 200
characters of the packet. Then pass the remaining characters to the CALL DYMTECKS
routine using the calculated checksum from the first call as the initial checksum value
for the second call.

Example

In the following example, the final checksum is stored in CALC_CS2.

data _null_;
length string1 string2 $200 checksm1 checksm2 calc_cs1 calc_cs2;

/* The string received from the DataMyte is longer than 200 */
/* characters, so it is split into two string, STRING1 and */
/* STRING2. However, you must calculate the checksum for the */
/* entire string (STRING1||STRING2). SAS statements reading in */
/* data from DataMyte until EOT is found. */
/* Initialize the first checksum. */

checksm1=’00’x;
call dmytecks(string1,ckecksm1,calc_cs1);
checksm2=calc_cs1;
call dmytecks(string2,checksm2,calc_cs2);

run;

See Also

� “Reading Data Using DataMyte Processing” on page 100

CALL SOUND
Generates a sound with a specific frequency and duration

OS/2 specifics: all

Syntax
CALL SOUND(frequency,duration)

frequency
specifies the sound frequency in terms of cycles per second. The frequency must be at
least 20 and no greater than 20,000.

duration
specifies the sound duration in 1/80ths of a second.

Example

Example 1: Producing a Tone The following statement produces a tone of frequency
523 cycles per second (middle C) lasting 2 seconds:

248 CALL SYSTEM 4 Chapter 14

data _null_;
call sound(523,160);

run;

CALL SYSTEM

Issues operating environment commands

OS/2 specifics: command must be a valid OS/2 command

Syntax
CALL SYSTEM(command)

command
can be any of the following:

� an operating environment command enclosed in quotes or the name of a OS/2
application that is enclosed in quotes

� an expression whose value is an operating environment command or the name
of a OS/2 application

� the name of a character variable whose value is an operating environment
command or the name of a OS/2 application.

Details If you are running SAS interactively and the command that you run is an
OS/2-based command or program, the command executes in a command prompt
window. By default, you must type exit to return to your SAS session.

Comparison The CALL SYSTEM routine is similar to the X command. However, the
CALL SYSTEM routine is callable and can therefore be executed conditionally. An
example of using the CALL SYSTEM routine is given in “Executing Operating
Environment Commands Conditionally” on page 21.

The values of the XSYNC and XWAIT system options affect how the CALL SYSTEM
routine works. For more information about these options, see “XSYNC” on page 386
and “XWAIT” on page 387.

Examples

Example 1: Executing Operating System Commands Conditionally If you want to
execute operating environment commands conditionally, use the CALL SYSTEM
routine:

options noxwait;
data _null_;

input flag $ name $8.;
if upcase(flag)=’Y’ then

do;
command=’md c:\’||name;
call system(command);

end;

Functions and CALL Routines 4 COLLATE 249

cards;
Y mydir
Y junk2
N mydir2
Y xyz
;

This example uses the value of the variable FLAG to conditionally create directories.
After the DATA step executes, three directories have been created: C:\MYDIR,
C:\JUNK2, and C:\XYZ. The directory C:\MYDIR2 is not created because the value of
FLAG for that observation is not Y.

The X command is a global SAS statement. Therefore, it is important to realize that
you cannot conditionally execute the X command. For example, if you submit the
following code, the X statement is executed:

data _null_;
answer=’n’;
if upcase(answer)=’y’ then

do;
x ’md c:\extra’;

end;
run;

In this case, the directory C:\EXTRA is created regardless of whether the value of
ANSWER is equal to ’n’ or ’y’.

Example 2: Obtaining a Directory Listing The following is an example of using the
CALL SYSTEM routine to obtain a directory listing:

data _null_;
call system(’dir /w’);

run;

In this example, the /W option for the DIR command instructs OS/2 to print the
directory in the wide format instead of a vertical list format.

See Also

� CALL SYSTEM routine in SAS Language Reference: Dictionary

� Command: “X” on page 232

� System option: “XSYNC” on page 386
� System option: “XWAIT” on page 387

COLLATE

Generates a collating sequence character string

OS/2 specifics: Uses the ASCII code sequence

Syntax
COLLATE (start-position<,end-position>)

250 DMYTECHC 4 Chapter 14

COLLATE(start-position<,,length>)

start-position
specifies the numeric position in the collating sequence of the first character to be
returned.

end-position
specifies the numeric position in the collating sequence of the last character to be
returned.

length
specifies the number of characters you want (the length of the returned string).

Details The COLLATE function returns a string of ASCII characters that range in
value from 0 to 255. The string returned by the COLLATE function begins with the
ASCII character specified by the start-position argument. If the end-position argument
is specified, the string returned by the COLLATE function contains all the ASCII
characters between the start-position and end-position arguments. If the length
argument is specified instead of the end-position argument, then the COLLATE
function returns a string with a length of length. The returned string ends, or
truncates, with the character having the value 255 if you request a string length that
contains characters exceeding this value.

If you assign the return value of the COLLATE function to a variable with a length
less than 256, the ASCII collating sequence string is padded with blanks to a length of
256. If you request a length of more than 256 characters, the returned string is padded
with blanks to a length of length.

Note: Any programs using the COLLATE function with characters above ASCII 127
(the hexadecimal notation is ’7F’x) may return a different value when used on a PC
from another country as characters above ASCII 127 are national characters and they
vary from country to country. 4

See Also

� COLLATE function in SAS Language Reference: Dictionary

DMYTECHC

Calculates the character count for a DataMyte packet

OS/2 specifics: all

Syntax
DMYTECHC (’string’)

string
specifies a text string.

Functions and CALL Routines 4 DMYTECWD 251

Details
The DMYTECHC function accepts a text string as an argument and returns the
character count for that string. This count represents the number of characters in the
packet, excluding the STX (start-of-transmission) character, the character count itself,
and the checksum. The return value is a 2–byte, hexadecimal number.

The following example of using the DMYTECHC function also uses the DMYTECKS
CALL routine, which is described later in this chapter.

data dmyte1;
length cs calccs $2;
cs=’00’x;
/* This is the start-of-transmission character */
stx=’02’x;
/* This is the end-of-transmission character */
eot=’04’x;
/* The character count includes the text */
/* string and the EOT. */
cmd=’?SETUP’||eot;
cc=dmytechc(cmd);
put cc=;
str=stx||cc||cmd;
/* Call DMYTECKS to determine the checksum */
/* (CALCCS) for the packet. */
call dmytecks(str,cs,calccs);
put calccs=;
dmytecmd=str||calccs;

run;

Next, you would send the value of the DMYTECMD variable to the DataMyte
machine via the communications port.

See Also

� “Reading Data Using DataMyte Processing” on page 100

DMYTECWD
Determines the total number of words in a DataMyte packet

OS/2 specifics: all

Syntax
DMYTECWD (first-string, second-string)

first-string
represents a fewer-than-200 character portion of the packet.

second-string
represents the balance of the packet. If the packet is 200 or fewer characters long,
specify second-string as a null string (’’).

252 DMYTERVC 4 Chapter 14

Details
The DMYTECWD function return the number of tokens, or words, in a packet. Because
data packets sent from DataMyte can be up to 256 characters long, but the SAS System
can only process strings up to 200 characters long, you may have to break the packet up
into two strings. Always break up the packet at a token delimiter, which is a semicolon
(;). Both the first-string and second-string arguments can be a character variable, a
character literal enclosed in quotes, or another character expression.

The following example counts words in the two character variables, FIRSTSTR and
STR.

data dmyte2;
length firststr str $ 200;
firststr=’07/16/83,14:00;M. Jones;Press 1;000;2.43;2.91’;
str=’2.83;2.80;’;
count=dymtecwd(firststr,str);
/* This sample packet contains 18 words. */
put count=;

run;

See Also
“Reading Data Using DataMyte Processing” on page 100

DMYTERVC
Converts the DataMyte character count to an ASCII number

OS/2 specifics: all

Syntax
DMYTERVC (hex-number)

hex-number
specifies the 2–byte DataMyte character count in hexadecimal that is to be converted
to anASCII number.

Details
The DMYTERVC functions helps you convert a DataMyte character count, which is a
2–byte hexadecimal number, to an ASCII number. This number represents the number
of characters that DataMyte is transmitting. this number does not include the STX
(start-of-transmission) character, the 2–byte character count characters, or the 2–byte
checksum.

In the following example, the DMYTERVC function calculates the character count.
Once the character count is know, it can be used to process the incoming data, such as
separating the data into words and store those words in SAS variables.

Functions and CALL Routines 4 MCIPISLP 253

data dmyte3;
/* this is the start-of-transmission character */
stx=’02’x;
infile ’com1:’ lrecl=1 recfm=f;
input x $char1.;
if x eq stx then

do;
input cc $char2.;
datacnt=dmytervc(cc);

end;
/* The character count tells us how many characters */
/* are in the packet being sent from the data */
/* collector (DATANCT is number of characters */
/* calculated by the DMYTERVC function. */
do i = 1 to datacnt;

index+1;
input x $char1.;
substr(str,index,1)=x;

/* ...more data processing statements */
end;

run;

Some type of data you could expect in the packet include the data and time,
identification information such as the name of the operator, and data values.

See Also
“Reading Data Using DataMyte Processing” on page 100

MCIPISLP

Causes the SAS System to wait for a piece of multimedia equipment to become active

OS/2 specifics: all

Syntax
rc=MCIPISLP(number-of-seconds)

rc
return code.

number-of-seconds
specifies the number of seconds you want the SAS System to wait. This number must
be an integer.

Details The MCIPISLP function is especially useful when you have used the
MCIPISTR function to open a piece of equipment, but you know it is going to take a few
seconds for the equipment to be ready.

The number-of-seconds argument must be an integer and represents how many
seconds you want to wait. The return value is the number of seconds slept.

254 MCIPISTR 4 Chapter 14

The MCIPISLP function can be used in the DATA step and in SCL code.

Example

This example uses both the MCIPISTR and MCIPISLP functions to play a CD and a
video. The PUT statements display the return values of these functions; this allows you
to see in the SAS log whether there was a problem with any of your equipment:

data _null_;
/* Open a CD player. */
msg=mcipistr("open cdaudio alias mytunes");
put msg=;
/* Wait one second for the CD player */
/* to become active. */
slept=mcipislp(1);
/* Begin playing your favorite tunes */
/* from the beginning of the CD. */
msg=mcipistr("play mytunes");
put msg=;
/* Now open a video file. */
msg=mcipistr("open c:\movies\amovie.avs

alias myshow");
put msg=;
/* Begin the show and wait for it to */
/* complete. */
msg=mcipistr("play myshow wait");
put msg=;
/* When the show is complete, */
/* close the instance. */
msg=mcipistr("close myshow");
put msg=;
/* Stop and close the instance of the CD */
/* player. */
msg=mcipistr("stop mytunes");
put msg=;
msg=mcipistr("close mytunes");
put msg=;

run;

See Also

� Function: “MCIPISTR” on page 254

MCIPISTR
Submits an MCI string command to a piece of multimedia equipment

OS/2 specifics: all

Syntax
rc=MCIPISTR(MCI-string-command)

Functions and CALL Routines 4 MODULExy 255

rc
return code.

MCI-string-command
is any valid SAS string; that is, a character variable, a character literal enclosed in
quotes, or other character expression.

Details The MCIPISTR function submits an MCI (Media Control Interface) string
command.

You can use MCI to control many types of multimedia equipment, such as CD players,
mixers, videodisc players, and so on. OS/2 provides MCI support. For more information
about valid MCI string commands, refer to your MCI-compliant device documentation.

The return value is a string that contains return information from the MCI string
command. Examples of return information include "invalid instance" and "1".

Note: Not all MCI commands supply return codes that are usable from the SAS
System 4

The MCIPISTR function can be used in the DATA step and in SCL code.

Example

In this example, to use a CD player you would submit the following statements in
your DATA step:

msg=mcipistr("open cdaudio alias cd");
msg=mcipistr("play cd");
msg=mcipistr("stop cd");
msg=mcipistr("close cd");

See Also

� Function: “MCIPISLP” on page 253

MODULExy

Calls a specific routine or module that resides in an external dynamic link library (DLL)

OS/2 specifics: all

Syntax
CALL MODULE(<cntl>,module,arg-1,arg-2. . . ,arg-n);

num=MODULEN(<cntl>,module,arg-1,arg-2…,arg-n);

char=MODULEC(<cntl>,module,arg-1…,arg-2,arg-n);

Note: The following functions permit vector and matrix arguments; you can use
them within the IML procedure. 4

CALL MODULEI <cntl>,modulearg-1,arg-2. . . ,arg-n);

num=MODULEIN(<cntl>,module,arg-1,arg-2. . .,arg-n)

256 MODULExy 4 Chapter 14

char=MODULEIC(<cntl>,module,arg-1,arg-2. . .,arg-n);

cntl
is an optional control string whose first character must be an asterisk (*), followed by
any combination of the following characters:

I prints the hexadecimal representations of all arguments to the
MODULExy function and to the requested DLL routine before
and after the DLL routine is called. You can use this option to
help diagnose problems that are caused by incorrect arguments or
attribute tables. If you specify the I option, the E option is
implied.

E prints detailed error messages. Without the E option (or the I
option, which supersedes it), the only error message that the
MODULExy function generates is "Invalid argument to function,"
which is usually not enough information to determine the cause of
the error.

Sx uses x as a separator character to separate field definitions. You
can then specify x in the argument list as its own character
argument to serve as a delimiter for a list of arguments that you
want to group together as a single structure. Use this option only
if you do not supply an entry in the SASCBTBL attribute table. If
you do supply an entry for this module in the SASCBTBL
attribute table, you should use the FDSTART option in the ARG
statement in the table to separate structures.

H provides brief help information about the syntax of the
MODULExy routines, the attribute file format, and the suggested
SAS formats and informats.

For example, the control string ’*IS/’ specifies that parameter lists be printed
and that the string ’/’ is to be treated as a separator character in the argument list.

module
is the name of the external module to use, specified as a DLL name and the routine
name or ordinal value, separated by a comma. The module must reside in a dynamic
link library (DLL) and it must be externally callable. For example, the value
’DOSCALLS,230’ specifies to load DOSCALLS.DLL and to invoke the routine
identified by ordinal 230. Note that although the DLL name is not case sensitive, the
routine name is based on the restraints of the routine’s implementation language, so
the routine name is case sensitive.

Note: DOSCALLS.DLL is an internal DLL provided by OS/2; you cannot find it
by searching your disk. However, its routines are available for your use. 4

If the DLL supports ordinal-value naming, you can provide the DLL name followed
by a decimal number, such as ’XYZ,30’.

You do not need to specify the DLL name if you specified the MODULE attribute
for the routine in the SASCBTBL attribute table, as long as the routine name is
unique (that is, no other routines have the same name in the attribute file).

You can specify module as a SAS character expression instead of as a constant;
most often, though, you will pass it as a constant.

arg-1, arg-2, ...arg-n
are the arguments to pass to the requested routine. Use the proper attributes for the
arguments (that is, numeric arguments for numeric attributes and character
arguments for character attributes).

Functions and CALL Routines 4 PEEK 257

CAUTION:
Be sure to use the correct arguments and attributes. If you use incorrect arguments or
attributes for a DLL function, you can cause the SAS environment, and possibly
your operating environment, to fail. 4

Details The MODULE functions execute a routine module that resides in an external
(outside the SAS System) dynamic link library with the specified arguments arg-1
through arg-n.

The MODULE call routine does not return a value, while the MODULEN and
MODULEC functions return a number num or a character char, respectively. Which
routine you use depends on the expected return value of the DLL function you want to
execute.

MODULEI, MODULEIC, and MODULEIN are special versions of the MODULExy
functions that permit vector and matrix arguments. Their return values are still scalar.
You can invoke these functions only from PROC IML.

Other than this name difference, the syntax for all six routines is the same.
The MODULExy function builds a parameter list by using the information in arg-1 to

arg-n and by using a routine description and argument attribute table that you define
in a separate file. Before you invoke the MODULExy routine, you must define the
fileref of SASCBTBL to point to this external file. You can name the file whatever you
want when you create it.

This way, you can use SAS variables and formats as arguments to the MODULExy
function and ensure that these arguments are properly converted before being passed to
the DLL routine.

See Also

� “The SASCBTBL Attribute Table” on page 166

PEEK

Accesses the data stored in a specific location in memory

OS/2 specifics: all

Syntax
data=PEEKC(address,length);

data=PEEK(address,length);

data
is the value that is returned by the function.

address
specifies the name identifying a location (address) in memory.

length
specifies the length of the returned value.

258 RANK 4 Chapter 14

Details

CAUTION:
Use the PEEK functions only to access information returned by one of the MODULExy
functions. The PEEK functions can directly access memory addresses. Improper use of
these functions can cause the SAS System, and your operating environment, to fail. 4

The PEEK function returns to data a value of length length that contains the data
that start at memory address address.

The variations of the PEEK functions are:

PEEKC accesses character strings.

PEEK accesses numeric values.

Usually, when you need to use one of the PEEK functions, you will use PEEKC to
access a character string. The PEEK function is mentioned here for completeness.

RANK

Returns the position of a character in the ASCII collating sequence

OS/2 specifics: Uses the ASCII collating sequence

Syntax
RANK(x)

x
is a character in the ASCII collating sequence.

Details Because OS/2 is an ASCII system, the RANK function returns an integer
that represents the position of a character in the ASCII collating sequence. The x
argument must represent a character in the ASCII collating sequence. If the length of x
is greater than 1, you receive the rank of the first character in the string.

Note: Any program that uses the RANK function with characters above ASCII 127
(the hexadecimal notation is ’7F’x) is not portable because these are national
characters and they vary from country to country. 4

See Also

� RANK function in SAS Language Reference: Dictionary

SLEEP

Suspends execution of a SAS DATA step for a specified number of seconds

OS/2 specifics: all

Functions and CALL Routines 4 TRANSLATE 259

Syntax
SLEEP(num-seconds)

num-seconds
specifies the number of seconds you want to suspend execution of a DATA step. The
num–seconds argument is a numeric constant that must be greater than or equal to
0. Negative or missing values for num–seconds are invalid.

Details The SLEEP function is useful for scheduling tasks, such as collecting data
from the communications port.

The return value of the num–seconds argument is the number of seconds slept. The
maximum sleep period for the SLEEP function is approximately 46 days.

When you submit a program that calls the SLEEP function, a pop-up window
appears telling you how long the SAS System is going to sleep. Your SAS session
remains inactive until the sleep period is over. If you want to cancel the call to the
SLEEP function, use the CTRL+BREAK attention sequence.

You should use a null DATA step to call the SLEEP function; follow this DATA step
with the rest of the SAS program. Using the SLEEP function in this manner enables
you to use the CTRL+BREAK attention sequence to interrupt the SLEEP function and
to continue with the execution of the rest of your SAS program.

Example

This example of the SLEEP function tells the SAS System to delay the execution of
the program for 12 hours and 15 minutes:

data _null_;
/* argument to sleep must be expressed in seconds */
slept=sleep((60*60*12)+(60*15));

run;
data monthly;

/*... more data lines */
run;

TRANSLATE

Replaces specific characters in a character expression

OS/2 specifics: Required syntax; pairs of to and from arguments are optional

Syntax
TRANSLATE(source,to-1,from-1 <…to-n,from-n>)

source
specifies the SAS expression containing the original character value.

260 WAKEUP 4 Chapter 14

to
specifies the characters you want TRANSLATE to use as substitutes.

from
specifies the characters you want TRANSLATE to replace.

Details Under OS/2, you do not have to provide pairs of to and from arguments.
However, if you do not use pairs, you must supply a comma as a place holder.

See Also

� TRANSLATE function in SAS Language Reference: Dictionary

WAKEUP

Specifies the time a SAS DATA step begins execution

OS/2 specifics: all

Syntax
WAKEUP(until-when)

until-when
specifies the time when the WAKEUP function will be executed.

Details Use the WAKEUP function to specify the time a DATA step begins to execute.
The return value is the number of seconds slept.

The until-when argument can be a SAS datetime value, a SAS time value, or a
numeric constant, as explained in the following list:

� If until-when is a datetime value, the WAKEUP function sleeps until the specified
date and time. If the specified date and time have already passed, the WAKEUP
function does not sleep, and the return value is 0.

� If until-when is a time value, the WAKEUP function sleeps until the specified
time. If the specified time has already passed in that 24-hour period, the
WAKEUP function sleeps until the specified time occurs again.

� If the value of until-when is a numeric constant, the WAKEUP function sleeps for
that many seconds before or after the next occurring midnight. If the value of
until-when is a positive numeric constant, the WAKEUP function sleeps for
until-when seconds past midnight. If the value of until-when is a negative numeric
constant, the WAKEUP function sleeps until until-when seconds before midnight.

Negative values for the until-when argument are allowed, but missing values are not.
The maximum sleep period for the WAKEUP function is approximately 46 days.

When you submit a program that calls the WAKEUP function, a pop-up window
appears telling you when the SAS System is going to wake up. Your SAS session
remains inactive until the waiting period is over. If you want to cancel the call to the
WAKEUP function, use the CTRL+BREAK attention sequence.

You should use a null DATA step to call the WAKEUP function; follow this DATA
step with the rest of the SAS program. Using the WAKEUP function in this manner

Functions and CALL Routines 4 WAKEUP 261

enables you to use the CTRL+BREAK attention sequence to interrupt the waiting
period and continue with the execution of the rest of your SAS program.

Examples

Example 1: Delaying Program Execution until a Specified Date or Time The following
example tells the SAS System to delay execution of the program until 1:00 p.m. on
January 1, 1999:

data _null_;
slept=wakeup(’01JAN1999:13:00:00’dt);

run;
data compare;

/* ...more data lines */
run;

The following example tells the SAS System to delay execution of the program until
10:00 p.m.:

data _null_;
slept=wakeup("22:00:00"t);

run;
data compare;

/* ...more data lines */
run;

Example 2: Delaying Program Execution until a Specified Time Period after
Midnight This example tells the SAS System to delay execution of the program until
35 seconds after the next occurring midnight:

data _null_;
slept=wakeup(35);

run;
data compare;

/* ...more data lines */
run;

Example 3: Using a Variable as an Argument to the WAKEUP Function This example
illustrates using a variable as the argument of the WAKEUP function:

data _null_;
input x;
slept=wakeup(x);
cards;

1000
;
data compare;

input article1 $ article2 $ rating;
/* ...more data lines */

run;

Because the instream data indicate that the value of X is 1000, the WAKEUP
function sleeps for 1,000 seconds past midnight.

262 WAKEUP 4 Chapter 14

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Companion for the OS/2 ® Environment, Version 8, Cary, NC: SAS Institute Inc., 1999.
448 pp.

SAS® Companion for the OS/2® Environment, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1-58025-521-3
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and OS/2® are registered trademarks or trademarks of International Business
Machines Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

