
459

A P P E N D I X

1
Using the INFILE/FILE User Exit
Facility

Introduction 459
Writing a User Exit Module 459

Function Request Control Block 460

User Exit BAG Control Block 461

Function Descriptions 463

Initialization Function 463
Parse Options Function 464

Open Function 465

Read Function 466

Concatenation Function 466

Write Function 467

Close Function 468
SAS Service Routines 468

Building Your User Exit Module 470

Activating an INFILE/FILE User Exit 470

Sample Program 471

Introduction
The INFILE/FILE User Exit Facility provides an interface for accessing user exit

modules during the processing of external files in a SAS DATA step. A user exit module
(or user exit) consists of several functions that you write in order to perform special
processing on external files. For example, you can write user exits that inspect, modify,
delete, or insert records. Here are some more specific examples of how user exits may
be used:

� encrypting and decrypting data
� compressing and decompressing data
� translating data from one character-encoding system to another.

If a user exit is active, SAS invokes it at various points during the processing of an
external file.

Writing a User Exit Module
You can write a user exit module in any language that meets the following criteria:
� the language runs in 31-bit addressing mode
� the language supports standard OS linkage.

460 Function Request Control Block 4 Appendix 1

Examples of such languages are IBM assembly language and C. See “Sample
Program” on page 471 for an example of an exit that is written in assembly language.

Note: In all the figures in this appendix, the field names that are shown in
parentheses (for example, EXITIDB in Figure A1.2 on page 461) are those that were
used in the Sample Program. 4

In your user exit module, you should include code for all seven of the functions that
are described in “Function Descriptions” on page 463. At the beginning of your user exit
module, examine the function code that was passed to you in the Function Request
Control Block (described in the next section) and branch to the routine or function that
is being requested.

When you write the user exit module, you must follow IBM conventions for
assembler linkage, and you must set R15 to a return code value that indicates whether
the user exit was successful. Any nonzero return code causes execution to stop. If you
want to write an error message to the SAS log, use the SAS LOG service routine. (See
“LOG” in “SAS Service Routines” on page 468.)

If the user exit terminates with a nonzero return code value, you must put the
address of a user-defined message string that ends in a null (00x) character in the
Pointer to User Error Message (ERRMSG) field of the User Exit BAG Control Block.
(See “User Exit BAG Control Block” on page 461.) This message is printed in the SAS
log.

Return code values that apply to particular function requests are listed with the
descriptions of those functions in later sections of this appendix.

Be sure to take advantage of the SAS service routines when you write your user exit
functions. See “SAS Service Routines” on page 468 for details.

Function Request Control Block
The Function Request Control Block (FRCB) provides a means of communication

between SAS and your user exit functions. Each time SAS invokes the user exit
module, R1 points to a Function Request Control Block (FRCB) that contains, at a
minimum, the fields shown in Figure A1.1 on page 460.

Figure A1.1 Function Request Control Block Fields

UEBCB

+0

+4

Function Code

Pointer to User Exit
BAG Control Block

R1

The 4-byte Function Code communicates the current user exit phase to the user exit.
It contains one of the following values:

0 indicates the Initialization function.

4 indicates the Parse Options function.

8 indicates the Open function.

12 indicates the Read function.

16 indicates the Concatenation function.

20 indicates the Write function.

Using the INFILE/FILE User Exit Facility 4 User Exit BAG Control Block 461

24 indicates the Close function.

These functions are described in “Function Descriptions” on page 463. Each time
SAS calls the user exit, the user exit should branch to the appropriate exit routine, as
determined by the Function code.

User Exit BAG Control Block
In Figure A1.1 on page 460, the UEBCB (User Exit BAG Control Block) serves as a

common anchor point for work areas that SAS has obtained on behalf of the user exit.
SAS reserves a user word in the UEBCB for the user exit to use. You can use this word
to store a pointer to memory that you allocate for use by all your exit routines. SAS does
not modify this word during the lifespan of the user exit. The lifespan is defined as the
time period between the Initialization function request and the Close function request.

Figure A1.2 on page 461 and Figure A1.3 on page 462 illustrate the structure of the
UEBCB and its relationship to other data areas:

Figure A1.2 UEBCB Structure, Part 1 of 2

+0

+4

+8

+C

+10

+14

+18

+1C

+24

+28

+2C

+2D

Used by the SAS System

Used by the SAS System

Size specified by user

Work Area

Size specified by user

Work Area

Available to user

Specified in INFILE or FILE statement

VARRTN
Routine

String

*

*

*

Exit IDB
 (EXITIDB)

Exit Entry Point
(EXITEP)

Size of the Work Area
above the 16M line
(MEMALEN)

Pointer to the Work Area
above the 16M line
(MEMABV)

Size of the Work Area
below the 16M line
(MEMBLEN)

Pointer to the Work Area
below the 16M line
(MEMBEL)

User Word that can be
set by the user exit
(USERWORD)

Logical Name of the
file (DDname)
(EDDNAME)

Pointer to routine that
creates SAS variables

Pointer to User Error
NULL-terminated string
(ERRMSG)

Flag Byte 1

Reserved

* The user exit can update this field.

continued next page

462 User Exit BAG Control Block 4 Appendix 1

Figure A1.3 UEBCB Structure, Part 2 of 2

+2E

+2F

+30

+34

+38

+3C

ALLOC
Routine

FREE
Routine

Used by the SAS System

Used by the SAS System

Reserved

Reserved

Pointer to
Allocate Routine

Pointer to
Free Routine

PIDA

+40

+44

+48

+4C

+50

+54

ALLOC1
Routine

FREE1
Routine

VARRTN1
Routine

LOG
Routine

LOG1
Routine

Pointer to Allocate
Routine with
environment switch

Pointer to Free
Routine with
environment switch

Pointer to routine to
create variable with
environment switch

Reserved

Pointer to routine to
write message
to the SAS log

Pointer to routine to
write to SAS log
with switch

The Flag Byte 1 field can have one of several values. The following list gives the
values and their meanings:

’80’x EX_NEXT
prompt the exit for the next record.

’40’x EX_DEL
ignore the current record.

Using the INFILE/FILE User Exit Facility 4 Initialization Function 463

’20’x EX_EOF
end-of-file has been reached.

’10’x EX_EOFC
this exit supports read/write calls after end-of-file has been reached.

’08’x EX_ALC
this exit uses the ALLOC/FREE routines.

’04’x EX_STOR
this exit supports stored programs and views.

Function Descriptions
The following sections provide the information that you need in order to write the

functions that are part of the user exit module.

Initialization Function
SAS calls the Initialization function before it calls any of the other functions. In the

Initialization function, you specify the amount of virtual memory that your routine will
need above and below the 16-megabyte address line. You store the length of the work
area that you need above the line in the fullword that is pointed to by the INITMALN
field of the Initialization FRCB. You store the length of the work area that you need
below the line in the fullword that is pointed to by the INITMBLN field of the
Initialization FRCB. All pointers in the Initialization FRCB point to valid data areas.

In the amount of storage that you request, you should include space for a Local
Register Save Area (LRSA) of 72 bytes, plus any other work areas that your Parse
Options function and Open function will need.

SAS allocates the memory that you request when it returns from this function, and it
stores pointers to the allocated memory in the UEBCB. The pointer to the memory that
was allocated above the line is stored in the MEMABV field of the UEBCB. The pointer
to the memory that was allocated below the line is stored in the MEMBEL field.

Figure A1.4 on page 463 illustrates the Initialization FRCB structure and its
relationship with other control blocks:

Figure A1.4 Initialization FRCB

UEBCB

Fullword

Fullword

+0

+4

+8

+12

R1

*

* The user exit can update this field.

*

Initialization
function (INITFUNC): 0

Pointer to User Exit
BAG Control Block
(INITEXIT)

Pointer to the amount of
storage below the 16M line
(INITMBLN)

Pointer to the amount of
storage above the 16M line
(INITMALN)

464 Parse Options Function 4 Appendix 1

Parse Options Function
In the Parse Options function, you validate both the name of the user exit and any

INFILE or FILE statement options that SAS does not recognize. SAS calls this function
once to process the user exit module name. SAS then calls the function for each
statement option that it does not recognize so that the function can process each option
and value string.

You can use two kinds of statement options in your user exit:

� options that take a value, such as name=value. For example:

myopt=ABC

Note that quotes are considered part of the value; if you want them to be
stripped off, you must provide the code to do so.

� options that do not take a value.

The first time the Parse Options function is invoked, it should do the following:

� verify that the virtual storage that was requested during the Initialization
function has been allocated

� initialize both the allocated virtual storage and the two data areas in the UEBCB
(User Word and Pointer to User Error Message).

Figure A1.5 on page 464 illustrates the Parse Options FRCB structure and its
relationship to other control blocks.

Figure A1.5 Parse Options FRCB

UEBCB

String

String

+0

+4

+8

+12

+16

+20

Parse Options
function (PARSFUNC): 4

Pointer to User Exit
BAG Control Block
(PARSEXIT)

R1

Length of the
Option Name String
(PARSOPTL)

Pointer to the
Option Name
(PARSOPTN)

Length of the
Option Value String
(PARSVALL)

Pointer to the
Option Value
(PARSVAL)

When the Parse Options function receives control, PARSOPTL is set to the length of
the option name, and the address of the option name is stored in PARSOPTN. For
options that take a value, PARSVALL is set to the length of the value, and the address
of the option value is stored in PARSVAL. For options that do not take a value, both
PARSVALL and PARSVAL are set to 0.

If an invalid option name or option value is detected, R15 should be set to a return
code value of 8.

Using the INFILE/FILE User Exit Facility 4 Open Function 465

Open Function
SAS invokes the Open function after INFILE or FILE statement processing opens

the associated data set. Figure A1.6 on page 465 illustrates the Open FRCB and its
relationship to other control blocks:

Figure A1.6 Open FRCB

UEBCB

Fullword

+0

+4

+8

+12

+16

+20

+24

Open
function (OPENFUNC): 8

Pointer to User Exit
BAG Control Block
(OPENEXIT)

R1

Open Mode: Read,
Write, Append, or Update
(OPENMODE)

Pointer to User
Maximum Data Size
(OPENZLEN)

Data Set Block Size
(OPENBLKL)

Data Set Record Size
(OPENRECL)

Data Set Record Format
(OPENRECF)

*

* The user exit can update this field.

The OPENMODE field can be one of the following values:

1 the data set is opened for input mode.

2 the data set is opened for output mode.

4 the data set is opened for append mode.

8 the data set is opened for update mode (read and write).

When this function receives control, the Pointer to User Maximum Data Size field
(OPENZLEN) points to a fullword that contains the Data Set Record Size. In this
function, set the pointer so that it points to a fullword that you initialize. The fullword
should contain the size of the largest record that you expect to process with the Read
function. If it contains a lesser value, then truncated records may be passed to the
Read function.

The Data Set Record Format field (OPENRECF) can be any combination of the
following values:

’C0’x indicates Undefined format.

’80’x indicates Fixed format.

’40’x indicates Variable format.

’10’x indicates Blocked format.

’08’x indicates Spanned format.

466 Read Function 4 Appendix 1

’04’x indicates ASA Control Characters format.

The Open function should activate any subprocesses or exits and should solicit from
them any virtual storage requirements.

In this function, if you turn on the EX_NEXT flag in the UEBCB, SAS calls the Read
function for the first record before it reads any records from the file itself.

If you use any SAS service routines (such as the ALLOC and FREE routines) in this
function, then you must set the EX_ALC flag in the UEBCB.

Read Function
SAS invokes the Read function during execution of the INPUT statement to obtain

the next input record. Figure A1.7 on page 466 illustrates the Read FRCB structure
and its relationship to other control blocks:

Figure A1.7 Read FRCB

UEBCB

+0

+4

+8

+12

Read function
(READFUNC): 12

Pointer to User Exit
BAG Control Block
(READEXIT)

Pointer to User
Record Area Address
(READRECA)

Pointer to
Record Size
(READRECL)

R1

*

* The user exit can update this field.

* Record
Address

Fullword

Record

When the Read function receives control, the READRECA field (or Pointer to User
Record Area Address) points to the address of the current record from the file. The
READRECL field points to a fullword that contains the length of the record that is in
the Record Area.

In this function you can change the Record Address so that it points to a record that
was defined by your user exit. If you do this, then SAS passes your record to the
INPUT statement, rather than passing the record that was read from the file. However,
in this case you must also update the fullword that the Pointer to Record Size points to:
it must equal the actual size of the record that the Record Address points to.

As long as the EX_NEXT flag is on, SAS invokes the Read function to obtain the next
record. SAS reads no records from the file itself until you turn off the EX_NEXT flag.

If you set the EX_DEL flag, then SAS ignores the current record, and processing
continues to the next record.

Concatenation Function
SAS invokes the Concatenation function whenever a data set in a concatenation of

data sets has reached an end-of-file condition and the next data set has been opened.
Figure A1.8 on page 467 illustrates the Concatenation FRCB structure and its
relationship to other control blocks:

Using the INFILE/FILE User Exit Facility 4 Write Function 467

Figure A1.8 Concatenation FRCB

UEBCB

Fullword

+0

+4

+8

+12

+16

+20

Concatenation
function
(CONCFUNC): 16

Pointer to User Exit
BAG Control Block
(CONCEXIT)

R1

*

* The user exit can update this field.

Next Data Set
Record Size
(CONCRECL)

Next Data Set
Record Format
(CONCRECF)

Pointer to User
Maximum Data Size
(CONCZLEN)

Next Data Set
Block Size
(CONCBLKL)

In this function you can modify the maximum data size for the next data set by
changing the Pointer to User Maximum Data Size so that it points to a fullword that
you initialize.

Write Function
SAS invokes the Write function during the execution of the PUT statement

whenever a new record must be written to the file. Figure A1.9 on page 467 illustrates
the Write FRCB and its relationship to other control blocks.

Figure A1.9 Write FRCB

UEBCB

+0

+4

+8

+12

Write function
(WRITFUNC): 14

Pointer to User Exit
BAG Control Block
(WRITEXIT)

Pointer to User
Record Area Address
(WRITRECA)

Pointer to
Record Size
(WRITRECL)

R1

*

* The user exit can update this field.

*

Fullword

Record
Address Record

468 Close Function 4 Appendix 1

When the Write function receives control, the WRITRECA field (or Pointer to User
Record Area Address) points to a Record Address. The Record buffer is allocated by
SAS and contains the record that was created by the PUT statement.

In this function you can change the Record Address so that it points to a record that
is defined by your user exit. If you do this, then SAS writes your record to the file,
instead of writing the record that was created by the PUT statement. However, in this
case you must also update the fullword that the Pointer to Record Size points to: it
must equal the actual size of the record that the Pointer to Record Area points to.

In the Write function, you may also change the setting of flags in the UEBCB. As
long as the EX_NEXT bit in the UEBCB is on, SAS calls the Write function to write the
next output record. The DATA step is not prompted for any new records to output until
the EX_NEXT flag has been set. At any time, if the EX_DEL bit in the UEBCB is on,
SAS ignores the current record, and processing continues to the next record.

Close Function
SAS invokes the Close function after it closes the associated data set. In this

function, you should close any files that you opened, free any resources that you
obtained, and terminate all subprocesses or exits that your user exit initiated.

Figure A1.10 on page 468 illustrates the Close FRCB structure and its relationship
to other control blocks.

Figure A1.10 Close FRCB

UEBCB

+0

+4

Close function
(CLOSFUNC): 18

Pointer to User Exit
BAG Control Block
(CLOSEXIT)

R1

SAS Service Routines

SAS provides four service routines that you can use when writing INFILE/FILE
user exits. These service routines allocate memory, free memory, access DATA step
variables, or write a message to the SAS log. Whenever possible, use the SAS service
routines instead of the routines that are supplied with OS/390. For example, use the
ALLOC SAS service routine instead of GETMAIN. When you use the ALLOC routine,
SAS frees memory when you are finished with it. By contrast, if you use the GETMAIN
routine, cleaning up memory is your responsibility, so you also have to use the
FREEMAIN routine.

The following list describes the four SAS service routines. You invoke one of these
routines by loading its address from the appropriate field in the UEBCB and then
branching to it. All of these routines are used in the “Sample Program” on page 471.

ALLOC routine
allocates an area of memory from within the SAS memory pool. This memory is
automatically freed when the Close function is processed. The ALLOC routine
takes the following parameters:

Using the INFILE/FILE User Exit Facility 4 SAS Service Routines 469

ALCEXIT
a pointer to the UEBCB.

ALCPTR
a pointer to a fullword in which the allocated area address will be stored.

ALCLEN
the amount of memory required.

ALCFLG
a flag byte that controls whether the memory is allocated above or below the
16M line. It has the following values:

1 allocates the memory below the 16M line.

0 allocates the memory above the 16M line.

FREE routine
frees an area of memory that was previously allocated by a call to the ALLOC
routine. The FREE routine takes the following parameters:

FREEXIT
a pointer to the UEBCB.

FREPTR
a pointer to the area to be freed.

FREFLG
a flag byte that indicates whether the memory that is to be freed is above or
below the 16M line. It has the following values:

1 the memory is below the 16M line.

0 the memory is above the 16M line.

LOG routine
prints a message to the SAS log. The LOG routine takes the following parameter:

LOGSTR
a pointer to a character string that ends with a null (x’00’).

VARRTN routine
defines or gets access to a SAS DATA step variable. The VARRTN routine takes
the following parameters:

VARNAME
a pointer to the name of the variable.

VARNAMEL
the length of the variable name.

VARTYPE
the type of variable that is being defined. It takes the following values:

1 the variable is numeric (double precision).

2 the variable is character.

VARSIZE
the size of the variable, if the variable type is character.

VARFLAG
a flag byte that controls whether the variable is considered internal or
external. It takes the following values:

X’01’ the variable is an internal variable; it will not appear in
any output data set.

470 Building Your User Exit Module 4 Appendix 1

X’02’ the variable is an external variable; it will appear in the
output data set.

VARADDR
a pointer to a fullword into which SAS places the address at which the
current value of the variable will be stored. For numeric variables, the value
is stored as a double precision value. For character variables, the stored
value consists of three components:

MAXLEN is 2 bytes and represents the maximum length of the
character variable.

CURLEN is 2 bytes and represents the current length of the
character variable.

ADDR is 4 bytes and is a pointer to the character variable string
data.

Here are the return codes for the VARRTN routine:

0 the routine was successful (the variable was created or
accessed).

1 the variable already exists as a different type.

2 the variable already exists as a character variable, but with a
shorter length.

3 the variable already exists

Building Your User Exit Module
After you have coded your user exit module, you must assemble or compile it and

then link it into a load library. The name that you choose for your load module must
consist of a four-character prefix, followed by the letters IFUE. Do not use a prefix that
is the same as the name of a FILE or INFILE statement option.

After your load module is built, use the LOAD parameter of the SAS CLIST or
cataloged procedure when you invoke SAS to tell SAS the name of the load library that
contains your user exit module.

Activating an INFILE/FILE User Exit
To activate an INFILE/FILE user exit, you generally specify the first four characters

of the name of the user exit module following the DDname or data set name in an
INFILE or FILE statement. For example:

infile inputdd abcd;

Only the first 4 characters of the user exit module name in the INFILE or FILE
statement are significant; SAS forms the load module name by adding the constant
IFUE to these characters. Therefore, in the previous example, SAS loads a module
named ABCDIFUE.

You can also specify the name of the user exit module by using the ENGINE= option
in the FILENAME statement or FILENAME function.

Note: If you use an INFILE/FILE user exit with a DATA step view, specify the name
of the exit in the FILENAME statement or FILENAME function that you use to allocate

Using the INFILE/FILE User Exit Facility 4 Sample Program 471

the file, instead of in the INFILE or FILE statement. (If you specify the exit name in an
INFILE or FILE statement, the exit is ignored when the view is executed.) For example:

filename inputdd ’my.user.exit’ abcd;

4

Sample Program

The following sample program illustrates the process of writing an INFILE/FILE
user exit. Notice that this is not a trivial program. Writing user exits requires a firm
understanding of register manipulation and other fairly advanced programming
techniques.

The example uses OS/390 services to compress data. The data is compressed on
output and decompressed on input.*

The example consists of several assembly macros, followed by the assembly language
program itself. The macros define how the parameter lists are to be interpreted. Each
macro begins with a MACRO statement and ends with a MEND statement. The actual
program begins on the line that reads SASCSRC START. Here is the example:

TITLE ’INFILE/FILE USER EXIT TO COMPRESS DATA USING ESA SERVICES’

*--

* COPYRIGHT (C) 1991 BY SAS INSTITUTE INC., CARY, NC 27513 USA

*

* NAME: ==> SASCSRC

* TYPE: ==> EXTERNAL FILE USER EXIT

* LANGUAGE: ==> ASM

* PURPOSE: ==> TO COMPRESS/DECOMPRESS DATA USING CSRCESRV SERVICES

* USAGE: ==> DATA;INFILE MYFILE CSRC;INPUT;RUN;

*--

* - - - - - - - - - -

MACRO

*---

* COPYRIGHT (C) 1991 BY SAS INSTITUTE INC., CARY, NC 27513 USA

*

* NAME ==> VXEXIT

* PURPOSE ==> DSECT MAPPING OF INFILE EXIT TABLE

*---

VXEXIT

*--

* MAP OF USER EXIT HOST BAG

*--

VXEXIT DSECT

SPACE 1

*--

* THE FOLLOWING FIELDS MUST NOT BE CHANGED BY THE EXIT ROUTINE

* EXCEPT USERWORD

*--

EXITIDB DS A

* This code is actually implemented in SAS, to support the CSRC option in the INFILE and FILE statements. The CSRC is
described in “Standard Host Options for the FILE Statement under OS/390” on page 290 and in “Standard Options for the
INFILE Statement under OS/390” on page 311.

472 Sample Program 4 Appendix 1

EXITEP DS A

MEMALEN DS F LENGTH OF WORK AREA ABOVE 16M LINE

MEMABV DS A POINTER TO WORK AREA ABOVE 16M LINE

MEMBLEN DS F LENGTH OF WORK AREA BELOW 16M LINE

MEMBEL DS A POINTER TO WORK AREA BELOW 16M LINE

USERWORD DS A (USER UPD) WORD AVAILABLE TO EXIT

EDDNAME DS CL8 LOGICAL NAME OF THE FILE

VARRTN DS A SAS VARIABLE CREATING ROUTINE ADDRESS

ERRMSG DS A (USER UPD) NULL TERMINATED ERROR MESSAGE POINTER

EFLAG1 DS XL1 (USER UPD) FLAG BYTE-1

EX_NEXT EQU X’80’ GET NEXT RECORD FROM EXIT

EX_DEL EQU X’40’ DELETE THIS RECORD

EX_EOF EQU X’20’ EOF OF DATASET REACHED

EX_EOFC EQU X’10’ CALL USER EXIT AFTER EOF

EX_ALC EQU X’08’ WILL USE ALLOC/FREE ROUTINES

EX_STOR EQU X’04’ WILL SUPPORT STORED PROGRAMS

EX_TERM EQU X’02’ WILL NEED A TERMINAL CALL

EFLAG2 DS XL1 FLAG BYTE-2

EFLAG3 DS XL1 FLAG BYTE-3

EFLAG4 DS XL1 FLAG BYTE-4

ALLOC DS A ALLOC ROUTINE

FREE DS A FREE ROUTINE

PIDA DS F PID ABOVE

PIDB DS F PID BELOW

ALLOC1 DS A ALLOCATE ROUTINE WITH SWITCH

FREE1 DS A FREE ROUTINE WITH SWITCH

VARRTN1 DS A SAS VARIABLE CREATING ROUTINE WITH SWITCH

VXCRAB DS A CRAB ADDRESS

LOG DS A LOG ROUTINE WITHOUT SWITCH

LOG1 DS A LOG ROUTINE WITH SWITCH

SPACE 1

DS 0D

SPACE 1

VXEXITL EQU *-VXEXIT

*--

* MAP OF VARRTN FUNCTION CALL

*--

PARMVAR DSECT

*

VARNAME DS A POINTER TO VARIABLE NAME

VARNAMEL DS F VARIABLE NAME LENGTH

VARTYPE DS F VARIABLE TYPE 1=NUM, 2=CHAR

VARSIZE DS F SIZE OF VARIABLE IF CHAR

VARFLAG DS F FLAGS , X’01’ - INTERNAL

* X’02’ - EXTERNAL

VARADDR DS A POINTER TO VAR LOC ADDRESS (RETURNED)

*

* FOR CHARACTER VARIABLE IT RETURNS A POINTER TO A STRING STRUCTURE

*

* MAXLEN DS H MAX LENGTH OF STRING

* CURLEN DS H CURRENT LENGTH OF STRING

* ADDR DS A ADDRESS OF STRING DATA

PARMVARL EQU *-PARMVAR

*--

Using the INFILE/FILE User Exit Facility 4 Sample Program 473

* MAP OF ALLOC FUNCTION CALL

*--

PARMALC DSECT

*

ALCEXIT DS A POINTER TO THE EXIT BAG

ALCPTR DS A PLACE TO RETURN ALLOCATED ADDRESS

ALCLEN DS F LENGTH OF MEMORY REQUIRED

ALCFLG DS F FLAG BYTE 1=BELOW 16M, 0=ABOVE 16M

PARMALCL EQU *-PARMALC

*--

* MAP OF FREE FUNCTION CALL

*--

PARMFRE DSECT

*

FREEXIT DS A POINTER TO THE EXIT BAG

FREPTR DS A ADDRESS OF FREEMAIN

FREFLG DS F FLAG BYTE 1=BELOW 16M, 0=ABOVE 16M

PARMFREL EQU *-PARMFRE

*--

* MAP OF INIT EXIT CALL

*--

PARMINIT DSECT

*

INITFUNC DS F FUNCTION CODE

INITEXIT DS A USER EXIT BAG ADDRESS

INITMBLN DS A PTR TO AMT OF MEMORY NEEDED BELOW LINE

INITMALN DS A PTR TO AMT OF MEMORY NEEDED ABOVE LINE

PARMINIL EQU *-PARMINIT

*--

* MAP OF PARSE EXIT CALL

*--

PARMPARS DSECT

*

PARSFUNC DS F FUNCTION CODE

PARSEXIT DS A USER EXIT BAG ADDRESS

PARSOPTL DS F OPTION NAME LENGTH

PARSOPTN DS A POINTER TO OPTION NAME

PARSVALL DS F OPTION VALUE LENGTH

PARSVAL DS A OPTION VALUE

PARMPARL EQU *-PARMPARS

*--

* MAP OF OPEN EXIT CALL

*--

PARMOPEN DSECT

*

OPENFUNC DS F FUNCTION CODE

OPENEXIT DS A USER EXIT BAG ADDRESS

OPENMODE DS F OPEN MODE

OPENZLEN DS A POINTER TO DATA LENGTH

OPENBLKL DS F DATA SET BLOCK SIZE

OPENRECL DS F DATA SET RECORD LENGTH

OPENRECF DS F DATA SET RECORD FORMAT

PARMOPEL EQU *-PARMOPEN

*--

474 Sample Program 4 Appendix 1

* MAP OF READ EXIT CALL

*--

PARMREAD DSECT

*

READFUNC DS F FUNCTION CODE

READEXIT DS A USER EXIT BAG ADDRESS

READRECA DS A POINTER TO RECORD AREA ADDRESS

READRECL DS A POINTER TO RECORD LENGTH

PARMREAL EQU *-PARMREAD

*--

* MAP OF WRITE EXIT CALL

*--

PARMWRIT DSECT

*

WRITFUNC DS F FUNCTION CODE

WRITEXIT DS A USER EXIT BAG ADDRESS

WRITRECA DS A POINTER TO RECORD AREA ADDRESS

WRITRECL DS F RECORD LENGTH

PARMWRIL EQU *-PARMWRIT

*--

* MAP OF CLOSE EXIT CALL

*--

PARMCLOS DSECT

*

CLOSFUNC DS F FUNCTION CODE

CLOSEXIT DS A USER EXIT BAG ADDRESS

PARMCLOL EQU *-PARMCLOS

*--

* MAP OF CONCAT EXIT CALL

*--

PARMCONC DSECT

*

CONCFUNC DS F FUNCTION CODE

CONCEXIT DS A USER EXIT BAG ADDRESS

CONCBLKL DS F NEXT DATA SET IN CONCAT BLOCK SIZE

CONCRECL DS F NEXT DATA SET IN CONCAT RECORD LENGTH

CONCRECF DS F NEXT DATA SET IN CONCAT RECORD FORMAT

CONCZLEN DS A POINTER TO DATA LENGTH

PARMCONL EQU *-PARMCONC

*

*--

* MAP OF LOG ROUTINE PARMLIST

*--

PARMLOG DSECT

LOGSTR DS A ADDRESS OF THE NULL-TERMINATED STRING

PARMLOGL EQU *-PARMLOG

*

*--

* EQUATES AND CONSTANTS

*--

EXITPARS EQU 4

EXITOPEN EQU 8

EXITREAD EQU 12

EXITCONC EQU 16

Using the INFILE/FILE User Exit Facility 4 Sample Program 475

EXITWRIT EQU 20

EXITCLOS EQU 24

EXITP2HB EQU 28 NOT SUPPORTED YET

EXITHB2P EQU 32 NOT SUPPORTED YET

*

* EXITMODE VALUES

EXITINP EQU 1

EXITOUT EQU 2

EXITAPP EQU 4

EXITUPD EQU 8

* RECFM VALUES

EXITRECF EQU X’80’

EXITRECV EQU X’40’

EXITRECB EQU X’10’

EXITRECS EQU X’08’

EXITRECA EQU X’04’

EXITRECU EQU X’C0’

&SYSECT CSECT

MEND

DS OD

VXEXITL EQU *-VXEXIT

SPACE 1

MACRO

&LBL VXENTER &DSA=,&WORKAREA=MEMABV,&VXEXIT=R10

DROP

&LBL CSECT

USING &LBL,R11

LR R11,R15 LOAD PROGRAM BASE

USING VXEXIT,&VXEXIT

L &VXEXIT,4(,R1) LOAD -> VXEXIT STRUCTURE

AIF (’&DSA’ EQ ’NO’).NODSA

AIF (’&DSA’ EQ ’’).NODSA

L R15,&WORKAREA LOAD -> DSA FROM VXEXIT

ST R15,8(,R13) SET FORWARD CHAIN

ST R13,4(,R15) SET BACKWARD CHAIN

LR R13,R15 SET NEW DSA

USING &DSA,R13

.NODSA ANOP

MEND

* - - - - - - - - - -

MACRO

&LBL VXRETURN &DSA=

AIF (’&LBL’ EQ ’’).NOLBL

&LBL DS 0H

.NOLBL AIF (’&DSA’ EQ ’NO’).NODSA

L R13,4(,R13) LOAD PREVIOUS DSA

.NODSA ANOP

ST R15,16(,R13) SAVE RETURN CODE

LM R14,R12,12(R13) RELOAD REGS

BR R14 RETURN

LTORG

MEND

* -

* -

476 Sample Program 4 Appendix 1

SASCSRC START

*

* MAIN ENTRY POINT FOR ALL EXITS

*

USING SASCSRC,R15

STM R14,R12,12(R13)

L R2,0(,R1) LOAD FUNCTION CODE

L R15,CSRCFUNC(R2) LOAD FUNCTION ADDRESS

BR R15

*

CSRCFUNC DS 0A CSRC FUNCTIONS

DC A(CSRCINIT) INITIALIZATION

DC A(CSRCPARS) PARSE CSRC OPTIONS

DC A(CSRCOPEN) OPEN EXIT

DC A(CSRCREAD) READ EXIT

DC A(CSRCCNCT) CONCATENATION BOUNDARY EXIT

DC A(CSRCWRIT) WRITE EXIT

DC A(CSRCCLOS) CLOSE EXIT

*

* INITIALIZATION EXIT

*

CSRCINIT VXENTER DSA=NO

SPACE 1

USING PARMINIT,R1

*

* THIS EXIT RUNS ONLY IN ESA AND ABOVE RELEASES

* WHICH SUPPORT DECOMPRESSION.

* THE CODE CHECKS FOR IT FIRST. IF NOT ESA, THE INIT FAILS

*

L R15,16 LOAD CVT POINTER

USING CVT,R15 BASE FOR CVT MAPPING

TM CVTDCB,CVTOSEXT EXTENSION PRESENT

BNO NOTESA FAIL, NOT ESA

TM CVTOSLV0,CVTXAX SUPPORTS ESA

BNO NOTESA NOT AN ESA

DROP R15

L R3,=A(PWALENL) SET WORK AREA LENGTH...

L R2,INITMALN

ST R3,0(,R2) AS ABOVE THE 16M LINE LENGTH

SLR R15,R15 GOOD RC

XC EFLAG1,EFLAG1 CLEAR

OI EFLAG1,EX_ALC WILL USE ALLOC/FREE ROUTINES

B INITX RETURN

NOTESA DS 0H

LA R15,BADOS

ST R15,ERRMSG SAVE ERROR MESSAGE

INITX DS 0H

SPACE 1

VXRETURN DSA=NO

BADOS DC C’THIS SUPPORT IS NOT AVAILABLE IN THIS ENVIRONMENT’

DC XL1’00’

*

* PARSE EXIT

*

Using the INFILE/FILE User Exit Facility 4 Sample Program 477

CSRCPARS VXENTER DSA=PWA

USING PARMPARS,R4

LR R4,R1 R4 IS PARMLIST BASE

SPACE 1

L R6,PARSOPTL R6 = OPTION NAME LENGTH

LTR R6,R6 IF 0

BZ PARSR RETURN OK

LA R15,4 SET BAD OPTION RC

L R7,PARSOPTN R7 -> OPTION NAME

L R8,PARSVALL R8 = OPTION VALUE LENGTH

L R9,PARSVAL R9 -> OPTION VALUE (VAR NAME)

SPACE 1

* OPTION ACCEPTED IS: *

* CSRC RECL= *

C R6,=F’4’ IF LENGTH NOT 4

* BNE PARSX RETURN WITH ERROR

LTR R8,R8 IS IT =

BNZ PARSRECL THEN CHECK FOR RECL=

CLC 0(4,R7),=CL4’CSRC’ IF NOT ’CSRC’

BNE PARSX RETURN WITH ERROR

B PARSR ELSE RETURN OK

* PARSE RECL=NUM *

PARSRECL DS 0H

CLC 0(4,R7),=CL4’RECL’ IF NOT ’RECL’

BNE PARSX RETURN WITH ERROR

CH R8,=H’16’ GREATER THAN 16

BNL PARSX INVALID VALUE

BCTR R8,0 MINUS 1 FOR EXECUTE

XC TEMP,TEMP CLEAR

EX R8,CONNUM CONVERT TO NUMBER

*CONNUM PACK TEMP(0),0(R9)

CVB R0,TEMP CONVERT TO BINARY

ST R0,RECL SAVE RECL

SPACE 1

PARSR SLR R15,R15 RETURN OK

SPACE 1

PARSX VXRETURN DSA=PWA

CONNUM PACK TEMP(8),0(0,R9) *** EXECUTE ****

*

* OPEN EXIT

*

CSRCOPEN VXENTER DSA=PWA

USING PARMOPEN,R1

SPACE 1

LA R15,NOINPUT SET -> NO INPUT ERROR MESSAGE

L R4,RECL LOAD USER RECLEN

LTR R4,R4 HAS IT BEEN SET?

BNZ *+8

LH R4,=Y(32676) SET LRECL=32K BY DEFAULT

SPACE 1

478 Sample Program 4 Appendix 1

LA R15,DLENBIG SET -> DATALENGTH TOO BIG MESSAGE

L R2,OPENZLEN

L R3,0(,R2) R3 = DATA LENGTH OF EACH RECORD

CR R3,R4 IF GREATER THAN CSRC MAXIMUM

BH OPENX RETURN ERROR

SPACE 1

ST R4,0(,R2) RETURN LENGTH TO THE SAS SYSTEM

ST R4,RECL SAVE LENGTH

*

* ALLOCATION OF BUFFER FOR INPUT RECORDS

*

LA R1,PARM POINT TO PARMAREA

XC PARM,PARM CLEAR

USING PARMALC,R1

ST R10,ALCEXIT COPY HOST BAG POINTER

LA R15,MEMADDR

ST R15,ALCPTR PLACE TO RETURN MEM ADDRESS

ST R4,ALCLEN LENGTH OF MEMORY NEEDED

L R15,ALLOC LOAD MEMORY ALLOCATE ROUTINE

BALR R14,R15 ALLOCATION OF MEMORY

LTR R15,R15 WAS MEMORY ALLOCATED?

BNZ OPENMEM IF NOT, OPERATION FAILS

*

* QUERY THE COMPRESS SERVICE

*

LA R0,1 USE RUN LENGTH ENCODING

CSRCESRV SERVICE=QUERY QUERY IT

LTR R15,R15 EVERYTHING OK

BNZ OPENERR IF NOT, FAIL WITH MESSAGE

LTR R1,R1 REQUIRE WORK AREA

BZ OPENX IF NOT, END

LR R0,R1 SAVE R1

LA R1,PARM POINT TO PARMLIST

LA R15,MEMWK ALLOCATE WORK AREA

ST R15,ALCPTR PLACE TO RETURN MEM ADDRESS

ST R0,ALCLEN LENGTH OF MEMORY NEEDED

L R15,ALLOC LOAD MEMORY ALLOCATE ROUTINE

BALR R14,R15 ALLOCATION OF MEMORY

LTR R15,R15 WAS MEMORY ALLOCATED?

BNZ OPENMEM IF NOT, OPERATION FAILS

B OPENX RETURN, OPERATION IS DONE

OPENERR DS 0H

XC TEMP,TEMP CONVERT RC TO DECIMAL

CVD R15,TEMP CONVERT TO DECIMAL

MVC MSG(BADESRVL),BADESRV MOVE IN SKELETON

UNPK MSG+BADESRVL-3(2),TEMP UNPACK

OI MSG+BADESRVL-2,X’F0’ MAKE IT PRINTABLE

LA R15,MSG SET MESSAGE

ST R15,ERRMSG SET -> ERROR MESSAGE, IF ANY

LA R15,8

B OPENX

OPENMEM DS 0H

LA R15,NOMEMORY

SPACE 1

Using the INFILE/FILE User Exit Facility 4 Sample Program 479

OPENX DS 0H

ST R15,ERRMSG SET -> ERROR MESSAGE, IF ANY

* R15 = EITHER 0 OR NONZERO

VXRETURN DSA=PWA

*

NOINPUT DC C’CSRC: DECOMPRESS DOES NOT SUPPORT OUTPUT’

DC XL1’00’

NOFIXED DC C’CSRC: DECOMPRESS DOES NOT SUPPORT FIXED LENGTH RECORDS’

DC XL1’00’

DLENBIG DC C’DATASET DATALENGTH > CSRC MAXIMUM’

DC XL1’00’

NOMEMORY DC C’CSRC: UNABLE TO OBTAIN MEMORY’

DC XL1’00’

BADESRV DC C’CSRC: NON ZERO RETURN CODE FROM QUERY, RC = ’

BADESRVN DC H’0’

DC XL1’00’

BADESRVL EQU *-BADESRV

*---

* READ EXIT

*

* THIS EXIT DECOMPRESSES EACH RECORD

*---

CSRCREAD VXENTER DSA=PWA

USING PARMREAD,R1

SPACE 1

L R8,READRECL R8 -> RECORD LENGTH

L R9,READRECA R9 -> RECORD ADDRESS

L R3,0(,R8) R3 = RECORD LENGTH

L R2,0(,R9) R2 = RECORD ADDRESS

L R1,MEMWK LOAD WORK AREA ADDRESS

L R4,MEMADDR R4 = OUTPUT BUFFER

L R5,RECL R5 = OUTPUT BUFFER LENGTH

CSRCESRV SERVICE=EXPAND

LTR R15,R15 EVERYTHING OK

BNZ READERR IF NOT, SET ERROR AND RETURN

L R15,MEMADDR START OF BUFFER

SR R4,R15 MINUS LAST BYTE USED

ST R4,0(,R8) LENGTH OF UNCOMPRESSED RECORD

ST R15,0(,R9) SAVE UNCOMPRESSED REC ADDRESS

SLR R15,R15 SET GOOD RC

B READX RETURN TO USER

READERR DS 0H

XC TEMP,TEMP CONVERT RC TO DECIMAL

CVD R15,TEMP CONVERT TO DECIMAL

MVC MSG(EXPERRL),EXPERR MOVE IN SKELETON

UNPK MSG+EXPERRL-3(2),TEMP UNPACK

OI MSG+EXPERRL-2,X’F0’ MAKE IT PRINTABLE

LA R15,MSG SET MESSAGE

ST R15,ERRMSG SET -> ERROR MESSAGE, IF ANY

LA R15,8

*

SPACE 1

READX DS 0H

VXRETURN DSA=PWA

480 Sample Program 4 Appendix 1

SPACE ,

EXPERR DC C’CSRC NON ZERO RETURN CODE FROM EXPAND, RC = ’

EXPERRN DC H’0’

DC XL1’00’

EXPERRL EQU *-EXPERR

*

*

* CONCATENATION EXIT

*

CSRCCNCT VXENTER DSA=PWA

SPACE 1

SLR R15,R15

VXRETURN DSA=PWA

*---

* WRITE EXIT

*

* THIS EXIT COMPRESSES EACH RECORD

*---

CSRCWRIT VXENTER DSA=PWA

USING PARMWRIT,R1

L R8,WRITRECL R8 -> RECORD LENGTH

L R9,WRITRECA R9 -> RECORD ADDRESS

L R3,0(,R8) R3 = RECORD LENGTH

L R2,0(,R9) R2 = RECORD ADDRESS

L R1,MEMWK LOAD WORK AREA ADDRESS

L R4,MEMADDR R4 = OUTPUT BUFFER

L R5,RECL R5 = OUTPUT BUFFER LENGTH

CSRCESRV SERVICE=COMPRESS

LTR R15,R15 EVERYTHING OK

BNZ WRITERR IF NOT, SET ERROR AND RETURN

L R15,MEMADDR START OF BUFFER

SR R4,R15 MINUS LAST BYTE USED

ST R4,0(,R8) LENGTH OF RECORD

ST R15,0(,R9) SAVE NEW RECORD ADDRESS

SLR R15,R15 SET GOOD RC

B WRITEX RETURN TO USER

WRITERR DS 0H

XC TEMP,TEMP CONVERT RC TO DECIMAL

CVD R15,TEMP CONVERT TO DECIMAL

MVC MSG(WRTERRL),WRTERR MOVE IN SKELETON

UNPK MSG+WRTERRL-3(2),TEMP UNPACK

OI MSG+WRTERRL-2,X’F0’ MAKE IT PRINTABLE

LA R15,MSG SET MESSAGE

ST R15,ERRMSG SET -> ERROR MESSAGE, IF ANY

LA R15,8

SPACE 1

SPACE 1

WRITEX DS 0H

VXRETURN DSA=PWA

WRTERR DC C’CSRC: NON ZERO RETURN CODE FROM COMPRESS, RC = ’

WRTERRN DC H’0’

DC XL1’00’

WRTERRL EQU *-WRTERR

LTORG

Using the INFILE/FILE User Exit Facility 4 Sample Program 481

*

* CLOSE EXIT

*

CSRCCLOS VXENTER DSA=PWA

SLR R15,R15

LA R1,PARM

XC PARM,PARM

USING PARMFRE,R1

ST R10,FREEXIT

L R15,MEMADDR

ST R15,FREPTR

L R15,FREE

BALR R14,R15

VXRETURN DSA=PWA

*

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

*

VXEXIT ,

*

PWA DSECT PROGRAM WORK AREA

PWASAVE DS 32F SAVE AREA

TEMP DS D

RECL DS F

SAVE DS 32F

PARM DS CL(PARMALCL)

MEMADDR DS F

MEMWK DS F

MSG DS CL200

PWALENL EQU *-PWA LENGTH OF CSRC WORK AREA

CVT DSECT=YES

*

END

482 Sample Program 4 Appendix 1

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS ® Companion for the OS/390 Environment, Version 8, Cary, NC: SAS Institute Inc.,
1999.

SAS® Companion for the OS/390® Environment, Verison 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1–58025–523–X
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
DB2®, IBM®, and OS/2® are registered trademarks or trademarks of International
Business Machines Corporation. ORACLE® is a registered trademark or trademark of
Oracle Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

