
119

C H A P T E R

8
SAS Interfaces to ISPF and REXX

SAS Interface to ISPF 120
Software Requirements 120

Enabling the Interface 120

Invoking ISPF Services 121

Using the ISPEXEC CALL Routine 121

Using the ISPLINK CALL Routine 122
Testing ISPEXEC and ISPLINK Return Codes 122

Using ISPF Dialog Development Models 122

Using Special SAS System Options with the Interface 123

Changing the Status of ISPF Interface Options during Execution of a DATA Step 123

Using the ISPF Editor from Your SAS Session 124

Copying ISPF EDIT Models to Your SAS Session 124
Using Special Facilities for Passing Parameters to ISPF 125

Variable-Naming Conventions 125

Specifying Fixed Binary Parameters 125

Passing Parameters That Are Longer Than 200 Bytes 126

Bypassing Parameter Processing 126
Accessing SAS Variables from ISPF 126

VDEFINE, VDELETE, and VRESET Services 127

Handling of SAS Variables 127

Numeric Variables 127

Character Variables 128
Examples 128

Tips and Common Problems 129

Checking for Invalid Values in SAS Variables 129

Checking for Null Values in ISPF Variables 129

Truncated Values for Numeric Variables 129

Uninitialized Variables 129
Character Values Passed for Numeric Variables 130

Testing ISPF Applications 130

Sample Application 130

Employee Records Application 130

Contents of Member SASEMPLA in ISPPLIB 131
First Employee Record Application Panel 133

Contents of Member SASEMPLB in ISPPLIB 133

Second Employee Record Application Panel 135

Contents of Member SASX21 in ISPMLIB 135

SAS Interface to REXX 136
Enabling the Interface 136

Invoking a REXX Exec 136

Interacting with the SAS Session from a REXX Exec 137

120 SAS Interface to ISPF 4 Chapter 8

Routing Messages from REXX Execs to the SAS Log 137
The GETEXEC DATA Step Function 138

The PUTEXEC DATA Step Routine 138

Checking Return Codes in REXX Execs 138

Changing the Host Command Environment 139

Comparing the REXX Interface to the X Statement 139
Comparing SAS REXX Execs to ISPF Edit Macros 139

Examples of REXX Execs 140

A Simple REXX Exec 140

Using the GETEXEC DATA Step Function 140

Using the PUTEXEC DATA Step Routine 141

Checking the SAS Return Code in a REXX Exec 142

SAS Interface to ISPF

The SAS interface to ISPF consists of CALL routines, system options, and other
facilities that enable you to write interactive ISPF applications in the SAS language or
in a combination of the SAS language and other languages that are supported by ISPF.
This interface replaces the Version 5 product, SAS/DMI. It provides access to ISPF both
from the windowing environment and from SAS Control Language (SCL).

Using this interface, you can implement interactive applications that can be used
even by novice users. Users need only know how to log on to a 3270 or 3290 terminal.
All other information can be supplied as part of the application itself.

For SAS programmers, using this interface is often preferable to using other
languages to implement interactive ISPF applications because existing SAS data files
and applications can be exploited. The interface also reduces the need for the SAS
programmer to learn another language.

For detailed information about ISPF, see the IBM documents ISPF Dialog
Developer’s Guide and Reference and ISPF Reference Summary.

Software Requirements

The following table summarizes the software requirements for using the interface.

Table 8.1 Software Requirements for Using the SAS Interface to ISPF

Software Version Required

Base SAS Software SAS System Release 6.08 or later

Operating Environment OS/390/SP Version 2 or later TSO/E Version 2 or later

ISPF ISPF Version 2 or later

Enabling the Interface

The interface is available to you whenever you invoke SAS in the OS/390
environment under ISPF. There is no separate procedure for enabling the interface.

SAS Interfaces to ISPF and REXX 4 Invoking ISPF Services 121

Invoking ISPF Services
The interface provides CALL routines that enable you to use ISPF services from a

SAS DATA step. The ISPF services facilitate many other tasks. For example, they
provide an efficient way to convert SAS files to ISPF tables and ISPF tables to SAS
files. They also enable display input to be validated by the ISPF panel processing
section and/or by the SAS DATA step, giving cross-variable-checking capability.

The IBM documents ISPF Dialog Developer’s Guide and Reference and ISPF
Reference Summary describe the ISPF services and their syntax conventions. To invoke
these services, you can use either the ISPLINK CALL routine or the ISPEXEC CALL
routine. However, ISPEXEC has the following limitations:

� The following ISPF services cannot be invoked from ISPEXEC:

GRERROR

GRINIT

GRTERM

VCOPY

VDEFINE

VDELETE

VREPLACE

VRESET

� The SAS services described in “Changing the Status of ISPF Interface Options
during Execution of a DATA Step” on page 123 cannot be invoked from ISPEXEC.

� You cannot use abbreviated variable lists (described in “Variable-Naming
Conventions” on page 125) with ISPEXEC.

Remember that ISPF restricts a name list to 254 names.

Using the ISPEXEC CALL Routine
To invoke ISPEXEC from a SAS DATA step, use a CALL statement with one of

these formats:

call ispexec(value1,value2);

call ispexec(,value2);

call ispexec(value2);

where value1 and value2 are variables, literals, or expressions to be passed as
parameters to ISPF. Use the same parameters that you would use with an ISPF
ISPEXEC. Value1, if specified, is the length of value2. If you use the second or third
form of the call, the ISPF interface provides this value. Value2 is a character string
that contains the service name and parameters, specified as they would be in a CLIST.
Parameters can be specified as symbolic ISPF variables that will be replaced with the
ISPF variable values at run time. Only one scan for symbolic variables is done, and the
resulting service request must not exceed 512 bytes in length.

122 Invoking ISPF Services 4 Chapter 8

Note: If you use symbolic ISPF variables, remember that both SAS and ISPF use
ampersands to define symbolic variables. Enclose the ISPF symbolic variable
specifications in single quotes to prevent them from being replaced by SAS. 4

Using the ISPLINK CALL Routine
To invoke ISPLINK from a SAS DATA step, use a CALL statement with this format:

call isplink(value1,...,value15);

where value1,...,value15 are variables, literals, or expressions to be passed as
parameters to ISPF. You use the same parameters that you would use with an ISPF
ISPLINK. See “Using Special Facilities for Passing Parameters to ISPF” on page 125
for a description of special parameter considerations.

Trailing blanks are sometimes used by ISPF to determine the end of a parameter;
they are optional because the interface supplies them. If more than 15 positional
parameters are required (for example, TBSTATS can have up to 17 parameters),
parameters 15 through 20 can be specified in value15. The values must be separated by
commas. The interface will parse value15 into parameters 15 through 20.

Testing ISPEXEC and ISPLINK Return Codes
Each ISPEXEC or ISPLINK CALL subroutine results in a return code that is

described in IBM’s ISPF Dialog Developer’s Guide and Reference manual. You can test
the return code with the SAS numeric variable ISP_RC. Because this variable is set by
ISPEXEC or ISPLINK, the SAS compiler produces a Note: Variable varname is
uninitialized message. To avoid receiving this message, specify the following SAS
statement in your program:

retain isp_rc 0;

Using ISPF Dialog Development Models
A standard ISPF function called Dialog Development Models uses the ISPF EDIT

facility to simplify the development of programs. (See the chapter on "Using Edit
Models" in the IBM manual ISPF Edit and Edit Macros. See also “Using the ISPF
Editor from Your SAS Session” on page 124 and “Copying ISPF EDIT Models to Your
SAS Session” on page 124.)

If you specify PL/I as the model class, the statements that the model facility produces
will be in the proper SAS form. To simplify the use of the Dialog Development Models,
the PL/I return code variable, PLIRETV, is recognized and used by the interface in the
same way as ISP_RC. The following examples could have been created using the
SELECT Edit model:

data _null_;
call ispexec(’SELECT PANEL(ISR@PRIM)’);
if pliretv = 0 then put pliretv=;

run;

data _null_;
call isplink(’SELECT’,’ ’,’PANEL(ISR@PRIM)’);
if pliretv = 0 then put pliretv=;

run;

SAS Interfaces to ISPF and REXX 4 Using Special SAS System Options with the Interface 123

Using Special SAS System Options with the Interface
The SAS interface to ISPF includes the following SAS system options. These options

are useful in developing and debugging ISPF applications. Most of them are used in
conjunction with the ISPF VDEFINE service, which is described in “VDEFINE,
VDELETE, and VRESET Services” on page 127.

ISPCAPS
ISPCHARF
ISPCSR=
ISPEXECV=
ISPMISS=
ISPMSG=
ISPNOTES
ISPNZTRC
ISPPT
ISPTRACE
ISPVDEFA
ISPVDLT
ISPVDTRC
ISPVIMSG=
ISPVRMSG=
ISPVTMSG=
ISPVTNAM=
ISPVTPNL=
ISPVTRAP
ISPVTVARS=

To determine which of these options are in effect for your SAS session, submit the
following statements from the PROGRAM EDITOR window and view the output in the
LOG window.

proc options group=isp;
run;

You specify these options as you would specify any other SAS system option. See
“Specifying or Changing System Option Settings” on page 11. For detailed information
about these options, see “System Options in the OS/390 Environment” on page 328.

Changing the Status of ISPF Interface Options during Execution of a DATA
Step

You can use the interface’s SAS service in conjunction with the ISPLINK CALL
routine to change the status of some of the SAS system options that relate to the ISPF
interface. For example, the following ISPLINK CALL specifies the ISPNZTRC system
option:

call isplink (’SAS’,’ISPNZTRC’);

The system options whose status can be changed in this manner are listed in Table
8.2 on page 124. See “System Options in the OS/390 Environment” on page 328 for
detailed descriptions of these options.

124 Using the ISPF Editor from Your SAS Session 4 Chapter 8

Note: For compatibility with SAS/DMI, you can use the DMI service to change the
status of the corresponding system option. 4

Table 8.2 SAS Services and Their SAS/DMI Equivalents

SAS Service Equivalent DMI Service

(’SAS’,’ISPCAPS’) (’DMI’,’CAPS’)

(’SAS’,’NOISPCAPS’) (’DMI’,’NOCAPS’)

(’SAS’,’ISPCHARF’) (’DMI’,’CHARFORMATTED’)

(’SAS’,’NOISPCHARF’) (’DMI’,’NOCHARFORMATTED’)

(’SAS’,’ISPNOTES’) (’DMI’,’NOTES’)

(’SAS’,’NOISPNOTES’) (’DMI’,’NONOTES’)

(’SAS’,’ISPNZTRC’) (’DMI’,’NZRCTRACE’)

(’SAS’,’NOISPNZTRC’) (’DMI’,’NONZRCTRACE’)

(’SAS’,’ISPPT’) (’DMI’,’PT’)

(’SAS’,’NOISPPT’) (’DMI’,’NOPT’)

(’SAS’,’ISPTRACE’) (’DMI’,’TRACE’)

(’SAS’,’NOISPTRACE’) (’DMI’,’NOTRACE’)

(’SAS’,’ISPVDTRC’) (’DMI’,’VDEFTRACE’)

(’SAS’,’NOISPVDTRC’) (’DMI’,’NOVDEFTRACE’)

(’SAS’,’ISPVDLT’) (’DMI’,’VDELVDEF’)

(’SAS’,’NOISPVDLT’) (’DMI’,’NOVDELVDEF’)

(’SAS’,’ISPVTRAP’) (’DMI’,’VTRAP’)

(’SAS’,’NOISPVTRAP’) (’DMI’,’NOVTRAP’)

Using the ISPF Editor from Your SAS Session
If you prefer to use the ISPF editor rather than the SAS editor, or if you need to use

the ISPF editor in order to use edit models (see the next section, “Copying ISPF EDIT
Models to Your SAS Session” on page 124), you can use the SAS HOSTEDIT command.
Under OS/390, the HOSTEDIT command temporarily suspends the current SAS session
and initiates a session of the ISPF editor or browser. See “HOSTEDIT” on page 446 for
details.

Copying ISPF EDIT Models to Your SAS Session
A major advantage of being able to access the ISPF editor with the HOSTEDIT

command is that it enables you to access ISPF EDIT models, modify them as necessary,
and then copy them to your SAS PROGRAM EDITOR window.

To access an ISPF EDIT model, do the following:
1 Invoke SAS from ISPF and enter HOSTEDIT on the command line of the

PROGRAM EDITOR window.
2 Enter MODEL CLASS PLI on the ISPF editor command line.

SAS Interfaces to ISPF and REXX 4 Using Special Facilities for Passing Parameters to ISPF 125

3 Enter MODEL plus the model name to include a particular model (for example,
MODEL TBDISPL), or enter MODEL alone and specify a model from the list of EDIT
models that appears.

You can then modify the model as necessary and use the END command to save it
back to your PROGRAM EDITOR window.

For more information about the ISPF EDIT facility and EDIT models, refer to the
IBM manual ISPF Edit and Edit Macros.

Using Special Facilities for Passing Parameters to ISPF
The interface provides special facilities and services that simplify the coding and

processing of parameters for ISPF services. These facilities include:
� variable-naming conventions that simplify the specification of variables to ISPF
� methods for specifying fixed binary parameters
� a way to pass parameters that are longer than the usual 200-byte limit
� a way to bypass parameter processing.

Variable-Naming Conventions
To simplify the specification of variables to ISPF, the interface recognizes _ALL_ or

an asterisk (*) to reference all variable names. Variable names can also be selected by
their prefixes. When a name ends in a colon, all variables that begin with the specified
name are referenced.

You can also use other types of SAS variable lists, including numbered range lists
(for example, x1-xn) and name range lists (x-numeric-a), as described in the chapter on
"Rules of the SAS Language" in SAS Language Reference: Dictionary.

When a variable list is passed to the VDEFINE service (see “VDEFINE, VDELETE,
and VRESET Services” on page 127), the special naming conventions refer to all
variables in the current DATA step that are legal ISPF variable names. (Note: A name
that contains an underscore is not a legal ISPF variable name.) SAS arrays, temporary
DATA step variables such as FIRST.variable and LAST.variable, and the variable
PLIRETV are not considered candidates for VDEFINE. The special naming conventions
for services other than VDEFINE refer only to the list of currently defined variables
and not to all of the variables in the DATA step.

Specifically, the special variable-naming conventions can be used in the following
places:

� in the second parameter for the VCOPY, VDEFINE, VDELETE, VERASE, VGET,
VMASK, VPUT, and VREPLACE services

� in the third parameter for the TBADD, TBCREATE, TBMOD, TBPUT, TBSARG,
and TBSCAN services

� in the fourth parameter for the TBCREATE service.

Specifying Fixed Binary Parameters
The interface supports the use of simple numeric constants or variables in ISPF

service parameters for services that require numeric parameters. However, for
compatibility with SAS/DMI, the following two ways of creating full-word fixed binary
parameters in SAS DATA steps are also supported:

length fixed10 $4;
retain fixed10;
if _n_=1 then fixed10=put(10,pib4.);

126 Accessing SAS Variables from ISPF 4 Chapter 8

or

retain fixed10 ’0000000a’x;

In addition, you can specify a hexadecimal value as a literal parameter by enclosing
the value in single or double quotes and entering the letter X after the closing quote.

Some of the services that have numeric parameters are CONTROL, TBDISPL,
TBCREATE, TBQUERY, TBSKIP, VDEFINE, and VCOPY.

Note: Never use a blank or null value for a numeric parameter. 4

The ISPF SELECT service has a special parameter list because it requires a
full-word fixed binary parameter that specifies the length of the buffer. The SAS
interface to ISPF provides this length parameter, but if you use the ISPLINK CALL
routine to invoke the SELECT service, then you must reserve the parameter’s place in
the parameter list. Use either a comma or two single quotes with a blank between them
(’ ’)to represent the parameter, as in the following example:

isplink(’SELECT’, ,’CMD(%MYDIALOG)’);

If you use the ISPEXEC CALL routine to invoke the SELECT service, then you do
not need to reserve the parameter’s place:

ispexec(’SELECT CMD(%MYDIALOG)’);

Passing Parameters That Are Longer Than 200 Bytes
Previous releases of SAS limit the length of a CALL routine parameter to 200 bytes,

but it is sometimes necessary to pass more than 200 bytes as an ISPF service request
parameter. For this reason, the interface has a special parameter form that allows
parameters up to 65,535 bytes long for both ISPLINK and ISPEXEC calls.

When a parameter longer than 200 bytes is required, use the following form in place
of the parameter:

=varname=length

where varname is the name of a SAS character variable in the current DATA step, and
length is the length of varname, expressed as a two-byte binary value. Blanks are not
permitted before or after the equal signs.

Using this parameter form does not change ISPF parameter restrictions. For
example, ISPEXEC allows a maximum of 512 bytes in its second parameter regardless
of how you specify the parameter.

Bypassing Parameter Processing
There may be times when parameters must be passed to ISPF without modification.

If the interface encounters a parameter whose first position contains a PL/I "not"
symbol (), then the parameter that follows the "not" symbol is passed to ISPF
unchanged. This facility prevents the parameter from being translated to uppercase
and prevents names from being replaced within the parameter.

Accessing SAS Variables from ISPF
This section describes how the SAS interface to ISPF processes three ISPF

services—VDEFINE, VDELETE, and VRESET. These services are used to grant and
revoke ISPF access to variables in the SAS DATA step. This section also provides an
explanation of how SAS numeric and character variables are handled by VDEFINE,
and it includes examples of how VDEFINE and VDELETE are used.

SAS Interfaces to ISPF and REXX 4 Accessing SAS Variables from ISPF 127

VDEFINE, VDELETE, and VRESET Services
The ISPF VDEFINE service is used to give ISPF access to variables in the SAS

DATA step. When you call the VDEFINE service, the interface adds the SAS variables
that you specify to its list of defined variables.

The ISPF VDEFINE service allows you to specify seven parameters. The form is

’VDEFINE’, namelist, variable, format,
length, optionlist, userdata

The interface provides the values for variable, format, length, and userdata. You need
only specify namelist.

The optionlist parameter is optional and can be used when you are defining either
SAS character variables or SAS numeric variables. The two VDEFINE options that you
can specify are COPY and NOBSCAN. The LIST option is not supported. COPY allows
the value of the variable that is being defined to be initialized to the value of a dialog
variable that has the same name in the function pool, shared pool, or profile pool. The
NOBSCAN option prevents ISPF from stripping trailing blanks from variables.

To define all SAS variables in the current DATA step, use the following statement:

call isplink(’VDEFINE’,’_ALL_’);

For more information about specifying variables, see “Variable-Naming Conventions”
on page 125.

The VDELETE service ends ISPF access to specified variables in the SAS DATA step,
and the interface drops the variables from the list of defined variables that it
maintains. The interface recognizes the end of a SAS DATA step and deletes any
variables that remain on its list of defined variables.

The VRESET service ends ISPF access to all variables that have been passed to the
VDEFINE service. However, in addition to removing all variables that the user has
passed to VDEFINE, VRESET also removes variables that the interface has passed to
VDEFINE. To prevent variables that it is using from being removed, the interface
changes VRESET to (’VDELETE’,’_ALL_’).

Handling of SAS Variables
SAS provides unique services that you can use when defining numeric and character

variables to ISPF with the VDEFINE service.

Numeric Variables
Numeric SAS variables are in double-word floating-point format. You may pass

them to the VDEFINE service with either the FLOAT format or the USER format. If
you use the FLOAT format, you should specify (or let the interface provide) a length of
8, because all SAS numeric variables have a length of 8 during the execution of the SAS
DATA step. *

Note: When the FLOAT format is used, certain features of the SAS interface to
ISPF are unavailable: SAS formats and informats that are associated with the variable
are not used, null values are not changed to the special missing value "._" (period
underscore), and accessing of variables cannot be traced with the ISPVTRAP option. 4

Because earlier releases of ISPF did not support the FLOAT format, SAS (and
previously SAS/DMI) supports the use of the USER format. If you specify the USER

* For numeric variables, the LENGTH statement applies to the length of the variables when they are stored in a SAS data
set, not to the length of the variables in memory while the DATA step is executing.

128 Accessing SAS Variables from ISPF 4 Chapter 8

format, or if you let SAS default to it, then SAS provides a user exit that uses any
format and/or informat associated with the variable. If no format or informat is
associated with the variable, then the default SAS format or informat is used.

Character Variables
In addition to containing strings of printable characters, SAS character variables can

actually contain any data value. Hence, you may use any valid ISPF VDEFINE format
with a SAS character variable. ISPF treats the variable accordingly. Within the SAS
DATA step, the SAS functions INPUT or PUT can be used to perform data conversion
as required. The SAS system option ISPCHARF | NOISPCHARF determines whether
explicit SAS informats and formats are used to convert SAS character variable values
when they are used as ISPF variables. The following list explains how this option
determines whether the SAS variable formats are to be used when a variable is passed
to the VDEFINE service:

� If the system option NOISPCHARF is in effect when a SAS character variable is
passed to the VDEFINE service, the SAS character variable is defined to ISPF
with a format of CHAR, and both ISPF and SAS reference and modify the values
of these variables directly in main storage.

� If the system option ISPCHARF is in effect when a SAS character variable is
passed to the VDEFINE service, and if the SAS variable has an explicit SAS
informat or format, then the SAS character variable is defined to ISPF with a
format of USER, and the interface uses the SAS informat or format in its
conversion routine whenever ISPF references the variable. The interface also
applies the following rules:

� If the variable contains an invalid value for the SAS informat, the variable is
set to the value of the system option MISSING=.

� If the variable contains an invalid value for the SAS format, ISPF receives
the value of the system option MISSING= for the variable.

� If no value is specified for an ISPF character variable, the variable is set to
the value of the ISPMISS= option.

If an application requires an ISPF dialog variable that is longer than the maximum
SAS character variable length of 32,767, then the length parameter of VDEFINE can be
specified and associated with the variables that are being defined to ISPF. In order to
prevent the data from being overwritten, you must do the following:

� Create multiple variables whose total length equals or exceeds the length required.
� Ensure that the SAS compiler assigns storage for the variables contiguously by

using SAS ARRAY statements to arrange the variables as needed. Either all or
none of the variables must be specified in the RETAIN statement.

It is good practice to code the SAS ARRAY and RETAIN statements for these
extra-long variables immediately following the SAS DATA statement.

The following example shows how ISPF dialog variables named LONG1 and LONG2,
each 32,000 bytes long, would be defined.

data _null_;
array anyname1 $32000 long1 long1_c;
array anyname2 $32000 long2 long2_c;
retain long1 long1_c long2 long2_c ’ ’;
call isplink(’VDEFINE’,’(LONG1 LONG2)’,,,64000);

Examples
The following statement defines to ISPF all variables in the current DATA step that

begin with the letters PPR:

SAS Interfaces to ISPF and REXX 4 Tips and Common Problems 129

call isplink(’VDEFINE’,’PPR:’);

The next statement defines the variables SASAPPLN, ZCMD, and ZPREFIX to ISPF.
The variables are to be initialized with the values from variables of the same name that
already exist in the variable pools.

call isplink(’VDEFINE’,
’(SASAPPLN ZCMD ZPREFIX)’,,,,’COPY’);

This next statement removes all previously defined variables from the variable pool,
making them inaccessible to ISPF:

call isplink(’VDELETE’,’_ALL_’);

Tips and Common Problems

Checking for Invalid Values in SAS Variables
If a SAS variable in an ISPF table or display has a specified informat, invalid values

are replaced with missing values. When you create ISPF panels through which a user
can enter or modify SAS values, the values can be checked for validity either with the
action section of the panel or with the SAS DATA step. If missing values are not
appropriate, you can redisplay the panel (along with an appropriate error message) and
prompt the user to re-enter the invalid values correctly.

Checking for Null Values in ISPF Variables
The special missing value of underscore indicates an ISPF variable with a length of

0. (Null values are valid for ISPF values.) The special missing value of underscore
distinguishes between an invalid value from an informat (which will have a missing
value) and a value that was not provided.

Truncated Values for Numeric Variables
To avoid truncating the values of numeric variables, you must either provide a

format whose length does not exceed the size of the display field, or you must increase
the length of the display field itself. If no format is associated with a numeric variable,
the default format width is 12 characters.

Uninitialized Variables
When a variable is neither specified with an initial value in a RETAIN statement nor

appears on the left side of the equal sign in an assignment statement, the SAS log shows
the Note: Variable varname is uninitialized message. For example, the following
statements would result in the message NOTE: Variable ZCMD is uninitialized.

data _null_;
length zcmd $200;
call isplink(’VDEFINE’,’ZCMD’);
call isplink(’DISPLAY’,’ISRTSO’);
put zcmd=;
run;

However, in this example the message is misleading because the call to ISPF actually
assigns a value to ZCMD. To prevent the message from being generated, put the
variable in a RETAIN statement with an initial value, or use the variable in an

130 Testing ISPF Applications 4 Chapter 8

assignment statement. For example, the following RETAIN statement assigns an initial
value (a blank) to the variable ZCMD:

retain zcmd ’ ’;

Character Values Passed for Numeric Variables
Under SAS/DMI (the Version 5 predecessor to the SAS interface to ISPF), it was not

possible to pass numeric values directly to ISPF services for which numeric values are
required. Instead, an alternate method was provided (see “Specifying Fixed Binary
Parameters” on page 125). The alternate method is still supported but is not required.
Therefore, if you used SAS/DMI to develop ISPF applications, you may prefer to modify
those applications so that numeric values are passed directly to these ISPF services
instead.

Testing ISPF Applications
When you are testing code that uses ISPF services, there are techniques and

facilities that can greatly simplify the testing process. Chapter 2 of the IBM manual
ISPF Dialog Developer’s Guide and Reference describes the ISPF dialog test modes.
This facility provides aids for testing functions, panels, variables, messages, tables, and
skeletons.

In addition, the SAS provides the MPRINT system option to help you find coding
errors. If you want to see the SAS statements that are generated by SAS macros,
specify MPRINT in a SAS OPTIONS statement. (The MPRINT system option is
documented in SAS Language Reference: Dictionary).

The ISPF parameters are written to the SAS log when the ISPTRACE option is
specified. The tracing can also be turned on and off with the ISPLINK CALL
subroutine, as in the following example, which stops the tracing of ISPF parameters.

call isplink(’SAS’,’NOISPTRACE’);

Sample Application
The IBM manual ISPF Dialog Management Examples provides examples of ISPF

applications written in APL2, COBOL, FORTRAN, PASCAL, PL/I, and as CLISTs.
This section shows how one of those applications would be written in the SAS

language.

Employee Records Application

DATA _NULL_;

LENGTH EMPSER $6 FNAME LNAME $16 ADDR1 ADDR2 ADDR3 ADDR4 $40 PHA $3

PHNUM MSG TYPECHG CHKTYPE $8 I STATE $1;

RETAIN EMPSER FNAME LNAME I ADDR1 ADDR2 ADDR3 ADDR4 PHA PHNUM MSG

TYPECHG CHKTYPE ’ ’ STATE ’1’ PLIRETV 0;

CALL ISPLINK(’VDEFINE’, /* DEFINE VARIABLES */

’(EMPSER FNAME LNAME I ADDR: PHA PHNUM TYPECHG CHKTYPE)’);

MSG=’ ’; /* INITIALIZE MESSAGE */

CALL ISPLINK(’TBCREATE’, /* IF TABLE DOESN’T EXIST*/

’SASEMPTB’,’(EMPSER)’, /* CREATE IT */

’(LNAME FNAME I ADDR: PHA PHNUM)’,

’NOWRITE’); /* DON’T SAVE THE TABLE */

SAS Interfaces to ISPF and REXX 4 Sample Application 131

DO WHILE (STATE^=’4’); /* LOOP UNTIL TERM SET */

CALL ISPLINK(’DISPLAY’,’SASEMPLA’,MSG); /* SELECT EMPLOYEE */

IF PLIRETV=8 THEN STATE=’4’; /* END KEY THEN TERMINATE*/

ELSE DO; /* ENTER KEY PRESSED */

MSG=’ ’; /* RESET MESSAGE */

STATE=’2’; /* PROCESS EMPLOYEE PANEL*/

CALL ISPLINK(’TBGET’,’SASEMPTB’); /* OBTAIN EMPLOYEE DATA */

IF PLIRETV=0 THEN /* IF RECORD EXISTS THEN */

TYPECHG=’U’; /* SET UPDATE FLAG */

ELSE DO; /* RECORD DOES NOT EXIST */

TYPECHG=’N’; /* SET TYPE=NEW */

LNAME=’ ’;FNAME=’ ’;I=’ ’; /* INITIALIZE PANEL VARS */

ADDR1=’ ’;ADDR2=’ ’;ADDR3=’ ’;

ADDR4=’ ’;PHA=’ ’;PHNUM=’ ’;

END;

CHKTYPE=TYPECHG; /* SAVE TYPE OF CHANGE */

CALL ISPLINK(’DISPLAY’,’SASEMPLB’,MSG); /* DISPLAY EMPLOYEE DATA */

IF PLIRETV^=8 THEN DO; /* END KEY NOT PRESSED */

IF TYPECHG=’N’ THEN DO; /* IF NEW EMPLOYEE */

CALL ISPLINK(’TBADD’,’SASEMPTB’); /* ADD TO TABLE */

MSG=’SASX217’; /* */

END; /* */

ELSE DO; /* */

IF TYPECHG=’U’ THEN DO; /* IF UPDATE REQUESTED */

CALL ISPLINK(’TBPUT’,’SASEMPTB’); /* UPDATE TABLE */

MSG=’SASX218’; /* */

END; /* */

ELSE DO; /* */

CALL ISPLINK(’TBDELETE’,’SASEMPTB’); /* DELETED MESSAGE */

MSG=’SASX219’; /* */

END; /* */

END; /* END TABLE MODS */

END; /* END 2ND PANEL PROCESS */

END; /* END 1ST PANEL PROCESS */

IF MSG^=’ ’ THEN CALL ISPLINK(’LOG’,MSG); /* LOG MESSAGE */

END; /* END DO LOOP */

CALL ISPLINK(’TBCLOSE’,’SASEMPTB’); /* CLOSE TABLE */

CALL ISPLINK(’VDELETE’,’_ALL_’); /* DELETE ALL VARIABLES */

RUN;

Contents of Member SASEMPLA in ISPPLIB

%------------------------------ EMPLOYEE SERIAL --------------------------------

%COMMAND ====>_ZCMD

+

+ EMPLOYEE SERIAL: &EMPSER

+

+ EMPLOYEE NAME:%===>_TYPECHG + (NEW, UPDATE, OR DELETE)

+ LAST %===>_LNAME +

+ FIRST %===>_FNAME +

+ INITIAL%===>_I+

+

+ HOME ADDRESS:

132 Sample Application 4 Chapter 8

+ LINE 1%===>_ADDR1 +

+ LINE 2%===>_ADDR2 +

+ LINE 3%===>_ADDR3 +

+ LINE 4%===>_ADDR4 +

+

+ HOME PHONE:

+ AREA CODE %===>_PHA+

+ LOCAL NUMBER%===>_PHNUM +

+

)INIT

.CURSOR = TYPECHG

IF (&PHA = ’ ’)

&PHA = 914

&TYPECHG = TRANS(&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROC

&TYPECHG = TRUNC (&TYPECHG,1)

IF (&TYPECHG = N)

IF (&CHKTYPE ^= N)

.MSG = SASX211

IF (&TYPECHG ^= N)

IF (&CHKTYPE = N)

.MSG = SASX212

VER (&LNAME,ALPHA)

VER (&FNAME,ALPHA)

VER (&I,ALPHA)

VER (&PHA,NUM)

VER (&PHNUM,PICT,’NNN-NNNN’)

IF (&TYPECHG = N,U)

VER (&LNAME,NONBLANK,MSG=SASX214)

VER (&FNAME,NONBLANK,MSG=SASX213)

VER (&ADDR1,NONBLANK,MSG=SASX215)

VER (&ADDR2,NONBLANK,MSG=SASX215)

VER (&ADDR3,NONBLANK,MSG=SASX215)

)END

SAS Interfaces to ISPF and REXX 4 Sample Application 133

First Employee Record Application Panel

Display 8.1 First Employee Record Application Panel

Contents of Member SASEMPLB in ISPPLIB

%------------------------------ EMPLOYEE RECORDS -------------------------------

%COMMAND ====>_ZCMD

+

+ EMPLOYEE SERIAL: &EMPSER

+

+ EMPLOYEE NAME:%===>_TYPECHG + (NEW, UPDATE, OR DELETE)

+ LAST %===>_LNAME +

+ FIRST %===>_FNAME +

+ INITIAL%===>_I+

+

+ HOME ADDRESS:

+ LINE 1%===>_ADDR1 +

+ LINE 2%===>_ADDR2 +

+ LINE 3%===>_ADDR3 +

+ LINE 4%===>_ADDR4 +

134 Sample Application 4 Chapter 8

+

+ HOME PHONE:

+ AREA CODE %===>_PHA+

+ LOCAL NUMBER%===>_PHNUM +

+

)INIT

.CURSOR = TYPECHG

IF (&PHA = ’ ’)PHA = 914TYPECHG = TRANS(&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROCTYPECHG = TRUNC (&TYPECHG,1)

IF (&TYPECHG = N)

IF (&CHKTYPE = N)

.MSG = SASX211

IF (&TYPECHG = N)

IF (&CHKTYPE = N)

.MSG = SASX212

VER (&LNAME,ALPHA)

VER (&FNAME,ALPHA)

VER (&I,ALPHA)

VER (&PHA,NUM)

VER (&PHNUM,PICT,’NNN-NNNN’)

IF (&TYPECHG = N,U)

VER (&LNAME,NONBLANK,MSG=SASX214)

VER (&FNAME,NONBLANK,MSG=SASX213)

VER (&ADDR1,NONBLANK,MSG=SASX215)

VER (&ADDR2,NONBLANK,MSG=SASX215)

VER (&ADDR3,NONBLANK,MSG=SASX215)

)END

SAS Interfaces to ISPF and REXX 4 Sample Application 135

Second Employee Record Application Panel

Display 8.2 Second Employee Record Application Panel

Contents of Member SASX21 in ISPMLIB

SASX210 ’INVALID TYPE OF CHANGE’ .ALARM=YES

’TYPE OF CHANGE MUST BE NEW, UPDATE, OR DELETE.’

SASX211 ’TYPE ’’NEW’’ INVALID’ .ALARM=YES

’EMPLOYEE SERIAL &EMPSER ALREADY EXISTS. CANNOT BE SPECIFIED AS NEW.’

SASX212 ’UPDATE OR DELETE INVALID’ .ALARM=YES

’EMPLOYEE SERIAL &EMPSER IS NEW. CANNOT SPECIFY UPDATE OR DELETE.’

SASX213 ’ENTER FIRST NAME’ .ALARM=YES

’EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.’

SASX214 ’ENTER LAST NAME’ .ALARM=YES

136 SAS Interface to REXX 4 Chapter 8

’EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.’

SASX215 ’ENTER HOME ADDRESS’ .ALARM=YES

’HOME ADDRESS MUST BE ENTERED FOR TYPE OF CHANGE = NEW OR UPDATE.’

SASX217 ’&EMPSER ADDED’

’EMPLOYEE &LNAME, &FNAME &I ADDED TO FILE.’

SASX218 ’&EMPSER UPDATED’

’EMPLOYEE &LNAME, &FNAME &I UPDATED.’

SASX219 ’&EMPSER DELETED’

’EMPLOYEE &LNAME, &FNAME &I DELETED.’

SAS Interface to REXX

REXX, the procedure language for computing platforms that conform to the IBM
Systems Application Architecture (SAA), is well known for combining powerful
programming features with ease of use. By enabling SAS users to supplement the SAS
language with REXX, the SAS interface to REXX provides new SAS programming
possibilities in the OS/390 environment.

Enabling the Interface
The SAS system options REXXMAC and REXXLOC control the REXX interface.

� The REXXMAC option enables or disables the REXX interface. If REXXMAC is in
effect, then the REXX interface is enabled. This means that when SAS encounters
an unrecognized statement, it searches for a REXX exec whose name matches the
first word of the unrecognized statement. If the default, NOREXXMAC, is in
effect, then the REXX interface is disabled. This means that when SAS encounters
an unrecognized statement, a "statement is not valid" error occurs. You can specify
this option in the configuration file, when you invoke SAS, or in the OPTIONS
statement.

� When the REXXMAC option is in effect, the REXXLOC= option specifies the
DDname of the REXX exec library to be searched for any SAS REXX execs. The
default is REXXLOC=SASREXX. You can specify this option either in the
configuration file or when you invoke SAS.

Invoking a REXX Exec
SAS REXX execs are REXX programs. They are stored in a library that is allocated

to the SASREXX DDname (or to another DDname, as specified by the SAS system
option REXXLOC=). A REXX exec is submitted as part of a SAS program in the same
way as any other global SAS statement.

To run a REXX exec from within SAS, do the following:

1 Put the REXX exec in a partitioned data set and allocate that PDS to the DDname
SASREXX.

2 Either invoke SAS with the REXXMAC option or specify the REXXMAC option
later in an OPTIONS statement.

3 Code a statement that begins with the name of the REXX exec.

SAS Interfaces to ISPF and REXX 4 Interacting with the SAS Session from a REXX Exec 137

Note: You can invoke a REXX exec from an SCL program, but you should
enclose the statement in a SUBMIT block. Otherwise, the exec will be executed at
compile time rather than at run time. 4

The following example invokes a REXX exec called YOUREXEC, which resides in
YOUR.REXX.LIBRARY. This example works in both batch and TSO environments.

options rexxmac;
filename sasrexx ’your.rexx.library’ disp=shr;
yourexec;

In batch, you can also use a JCL DD statement to allocate the REXX library
externally:

//jobname JOB ...
// EXEC SAS
//SASREXX DD DSN=YOUR.REXX.LIBRARY,DISP=SHR
//SYSIN DD *
options rexxmac;
yourexec;
/*
//

A REXX exec can have zero, one, or multiple arguments. You call the exec by
specifying its name, followed by arguments (if any), followed by a semicolon. You can
place the exec anywhere that a global SAS statement, such as an OPTIONS or TITLE
statement, can be placed.

The exec is invoked when the DATA step is compiled. This means that it is executed
only once, rather than for each observation in the DATA step.

“A Simple REXX Exec” on page 140 provides an example of a REXX exec called
VERIFY that takes as its argument a single data set name. This REXX exec can be
invoked by submitting the following statement from a SAS program:

verify data.set.name;

A SAS REXX exec submits SAS statements through the SAS subcommand
environment by specifying or defaulting to ’SAS’ as its "address". When a REXX exec
receives control, the default subcommand environment for that program is ’SAS’. As
illustrated in this example, any SAS language statement can then be passed to SAS for
execution.

Interacting with the SAS Session from a REXX Exec
One of the main advantages of using the REXX interface is that it provides three

kinds of communication between the REXX exec and the SAS session:

� The REXX exec can route messages to the SAS log.

� You can retrieve and set the value of any variable in the submitting REXX exec by
using the GETEXEC DATA step function and the PUTEXEC DATA step routine.

� You can check the return code from a SAS step in the REXX exec that submits it.

Routing Messages from REXX Execs to the SAS Log
A set of SAS directives enables a REXX exec to print to the SAS log. SAS directives

use a leading ++ sequence to differentiate them from normal SAS language statements
that are submitted to the SAS subcommand environment.

Three directives are available:

138 Interacting with the SAS Session from a REXX Exec 4 Chapter 8

address SAS ’++SASLOG’
causes all subsequent SAS statements to be printed to the SAS log.

address SAS ’++NOLOG’
stops subsequent SAS language statements from being printed to the SAS log.

address SAS ’++SASLOG message-text’
places message-text into the SAS log and causes subsequent submitted statements
to be printed to the SAS log. The message text can include quoted strings or
REXX variables. Strings that are enclosed in single quotes are converted to
uppercase, whereas strings that are enclosed in double quotes are not. For REXX
variables that are not contained in quoted strings, SAS substitutes the values of
those variables.

The GETEXEC DATA Step Function

You can use the GETEXEC function in SAS statements that are submitted to the
SAS subcommand environment to retrieve the value of any variable in the submitting
REXX exec. The syntax of the GETEXEC function is as follows:

value = GETEXEC(REXX-variable)

where REXX-variable is a SAS expression that represents the name of a REXX
variable in uppercase and value receives the value of the specified REXX variable.

See “Using the GETEXEC DATA Step Function” on page 140 for an example of the
GETEXEC function.

The PUTEXEC DATA Step Routine
You can call the PUTEXEC routine in SAS statements that are submitted to the

SAS subcommand environment to assign the value of any variable in the submitting
REXX EXEC. The syntax of the PUTEXEC routine is as follows:

CALL PUTEXEC(REXX-variable, value)

where REXX-variable is a SAS expression that represents the name of a REXX variable
in uppercase and value is a SAS expression representing the value to be assigned to the
specified REXX variable.

See “Using the PUTEXEC DATA Step Routine” on page 141 for an example of the
PUTEXEC routine.

Checking Return Codes in REXX Execs

The REXX special variable RC is always set when any command string is submitted
to an external environment.

SAS REXX execs are slightly different from ordinary execs, however, in the way RC
is set. When an ordinary exec submits OS/390 commands, the RC variable is set to the
command return code when control returns to REXX. The strings that are submitted to
SAS, however, are not necessarily complete execution units. SAS collects SAS language
elements until a RUN statement is encountered, at which point the SAS step is
executed. While partial program fragments are being submitted, the RC is set to 0. The
SAS return code is not assigned to the REXX variable RC until the string that contains
the RUN statement is submitted.

The RC value is set to the value of the &SYSERR macro variable. See “Checking the
SAS Return Code in a REXX Exec” on page 142 for an example of how the REXX
variable RC can be tested after a SAS step has been executed.

SAS Interfaces to ISPF and REXX 4 Comparing SAS REXX Execs to ISPF Edit Macros 139

Changing the Host Command Environment
When a REXX EXEC that is invoked under SAS receives control, the default host

command environment for that program is ’SAS’. You can use the ADDRESS
instruction followed by the name of an environment to change to a different host
command environment:

address tso
address sas
address mvs

See “Using the GETEXEC DATA Step Function” on page 140 for an example of using
the ADDRESS instruction to execute a TSO statement.

You can also use the ADDRESS built-in function to determine which host command
environment is currently active:

hcmdenv = address()

Use the SUBCOM command to determine whether a host command environment is
available before trying to issue commands to that environment. The following example
checks to see whether SAS is available:

/* REXX */
address mvs "subcom sas"
say "subcom sas rc:" rc
if rc = 1

then sas="not "
else sas=""

say "sas environment is "sas"available"

Comparing the REXX Interface to the X Statement
The X statement can be used to invoke a REXX exec. (See “X” on page 323.)

However, compared to the REXX interface, the X statement has the following
limitations:

� With the X statement, the command that you invoke has no way to communicate
information back to the SAS session.

� With the X statement, you have to press Enter to return to SAS.
� The X statement is available only when SAS is running in the TSO environment.

A REXX exec can be invoked from a SAS program running in the batch
environment, though it cannot issue TSO commands in the batch environment.

Comparing SAS REXX Execs to ISPF Edit Macros
In their structure and invocation, SAS REXX execs are analogous to ISPF EDIT

macros.
� SAS REXX execs are REXX programs in a library that is allocated to the

SASREXX DDname (or to another DDname, as specified by the SAS system option
REXXLOC=). They are submitted as part of a SAS program in the same way as
any other global SAS statement. A SAS REXX exec submits SAS statements
through the SAS subcommand environment by specifying or defaulting to ’SAS’ as
its "address".

� ISPF edit macros may be REXX programs in the standard command procedure
library (SYSPROC, SYSEXEC, or other). They are started from an ISPF EDIT

140 Examples of REXX Execs 4 Chapter 8

command line in the same way as any other ISPF EDIT subcommand. An ISPF
EDIT macro submits editor subcommands through the ISREDIT subcommand
environment by specifying or defaulting to ’ISREDIT’ as its "address" (the
destination environment for a command string).

Examples of REXX Execs

A Simple REXX Exec
This REXX exec, called VERIFY, takes as its argument a single data set name. The

REXX exec checks to see whether the data set exists. If so, the REXX exec routes a
message to the SAS log to that effect. If the data set does not exist, the REXX exec
creates the data set and then sends an appropriate message to the SAS log.

/*-------------- REXX exec VERIFY --------------*/
Parse Upper Arg fname .
retcode = Listdsi("’"fname"’")
If retcode = 0 Then Do

Address SAS "++SASLOG" fname "already exists"
End

Else Do
Address TSO "ALLOC FI(#TEMP#) DA(’"fname"’)

RECFM(FB) LRECL(80) BLKSIZE(6160)
DSORG(PS) SPACE(10 5) TRACK NEW"

Address SAS "++SASLOG" fname "created"
Address TSO "FREE FI(#TEMP#)"
End

Exit

Using the GETEXEC DATA Step Function
This REXX exec executes a TSO command that generates a list of all filenames

beginning with a specified prefix, then deletes the files named in the list and places the
names of the deleted files in a SAS data set.

/*------------- REXX exec DELDIR --------------*/
Parse Upper Arg file_prefx .
/*------ Execute the TSO LISTC Command --------*/
x = Outtrap(’list.’)
Address TSO "LISTC LVL(’"FILE_PREFX"’) "

/*--- Process Output from the LISTC Command ---*/
idx = 0
file_del.= ’’

Do line = 1 To list.0 By 1
Parse Var list.line word1 word2 word3
If word1 = ’NONVSAM’ Then Do

fname = word3
Address TSO "DELETE ’"fname"’"
idx = idx + 1
file_del.idx = fname
file_stat.idx = ’DELETED’
End

End

SAS Interfaces to ISPF and REXX 4 Examples of REXX Execs 141

/*--- Pass a DATA step into the SAS System ----*/
Address SAS ’++SASLOG’

"data results (keep = dsname status); "
" total = getexec(’IDX’); "
" put ’Total OS/390 files deleted: ’ total; "
" do i = 1 to total; "
" dsnm = getexec(’FILE_DEL.’ || trim(left(i)));"
" stat = getexec(’FILE_STAT.’ || trim(left(i)));"
" output; "
" end; "
" run; "

/*---------- Execute a SAS Procedure ----------*/
" proc print; "
" run; "

/*---------- Return to the SAS System ---------*/
Exit

Using the PUTEXEC DATA Step Routine

This REXX exec reads a set of high-level qualifiers from a SAS data set and writes
them to REXX stem variables so that they can be processed by the REXX exec. Then
the REXX exec loops through the high-level qualifiers, calling the DELDIR routine for
each one in turn.

/*------------ REXX exec DELMANY -------------*/
/* Accepts as arguments up to 5 high-level */
/* qualifiers
Parse Upper Arg arg1 arg2 arg3 arg4 arg5 .
hlq.=’’
/*-=- Pass a DATA step into the SAS System ---*/
Address SAS ’++SASLOG’
" data prefixes; "
" input prefix $ 1-20; "
" cards; "
""arg1
""arg2
""arg3
""arg4
""arg5
"run; "
" data _null_; "
" set prefixes; "
" rexxvar = ’HLQ.’ || trim(left(_N_)); "
" call putexec(trim(rexxvar),prefix); "
" call putexec(’HLQ.0’, trim(left(_N_))); "
" run; "
/*---------- Call the DELDIR REXX exec -------*/
Do idx = 1 To hlq.0

pre = hlq.idx
Call deldir pre
End

142 Examples of REXX Execs 4 Chapter 8

/*------------ Return to SAS ------------------*/
Exit rc

Checking the SAS Return Code in a REXX Exec
This REXX exec, called SHOWRC, demonstrates how the REXX variable RC can be

tested after a SAS step has run:

/*-------------- REXX exec SHOWRC ------------*/
/* Accepts as argument a SAS data set */
Parse Upper Arg ds_name .
Address SAS ’++SASLOG’
"data newdata; "
" set "ds_name"; "
" run; "
If rc = 0 Then

Say ’SAS DATA step completed successfully’
Else

Say ’SAS DATA step terminated with rc=’ rc
Exit

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS ® Companion for the OS/390 Environment, Version 8, Cary, NC: SAS Institute Inc.,
1999.

SAS® Companion for the OS/390® Environment, Verison 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1–58025–523–X
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
DB2®, IBM®, and OS/2® are registered trademarks or trademarks of International
Business Machines Corporation. ORACLE® is a registered trademark or trademark of
Oracle Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

