
169

C H A P T E R

12
Formats

Formats in the OS/390 Environment 169
Considerations for Using Formats in the OS/390 Environment 169

EBCDIC and Character Data 169

Floating-Point Number Format and Portability 170

Writing Binary Data 170

BESTw. 171
Ew. 172

HEXw. 173

IBw.d 174

PDw.d 175

RBw.d 176

w.d 176
ZDw.d 177

Formats in the OS/390 Environment

In general, formats are completely portable. Only the formats that have aspects
specific to OS/390 are documented in this chapter. All portable formats are described in
SAS Language Reference: Dictionary; that information is not repeated here. Instead,
you are given details on how the format behaves in the OS/390 environment, then you
are referred to SAS Language Reference: Dictionary for further details.

Considerations for Using Formats in the OS/390 Environment

EBCDIC and Character Data

The following character formats produce different results on different computing
platforms, depending on which character-encoding system the platform uses. Because
OS/390 uses the EBCDIC character-encoding system, all of the following formats
convert data from EBCDIC.

These formats are not discussed in detail in this chapter because the EBCDIC
character-encoding system is their only host-specific aspect.

$ASCIIw.
converts EBCDIC character data to ASCII character data.

170 Floating-Point Number Format and Portability 4 Chapter 12

$BINARYw.
converts EBCDIC character data to binary representation, where each character is
represented by eight binary characters.

$EBCDICw.
converts EBCDIC data to character data. Under OS/390, $EBCDICw. and
$CHARw. are equivalent.

$HEXw.
converts EBCDIC character data to hexadecimal representation.

$OCTALw.
converts EBCDIC character data to octal representation.

All the information that you need in order to use these formats under OS/390 is in
SAS Language Reference: Dictionary.

Floating-Point Number Format and Portability
The manner in which OS/390 stores floating-point numbers can affect your data. See

“Representation of Floating-Point Numbers” on page 143 for details.

Writing Binary Data
If a SAS program that writes binary data is run in only one operating environment,

you can use the following native-mode formats:*

IBw.d
writes integer binary (fixed-point) values, including negative values, that are
represented in two’s complement notation.

PDw.d
writes data that are stored in IBM packed decimal format.

PIBw.d
writes positive integer binary (fixed-point) values.

RBw.d
writes real binary (floating-point) data.

If you want to write SAS programs that can be run on multiple machines that use
different byte-storage systems, use the following IBM 370 formats:

S370FFw.d
is used on other computer systems to read EBCDIC data from IBM mainframe
files.

S370FIBw.d
writes integer binary data in IBM mainframe format.

S370FIBUw.d
writes unsigned integer binary data in IBM mainframe format.

S370FPDw.d
writes packed decimal data in IBM mainframe format.

S370FPDUw.d
writes unsigned packed decimal data in IBM mainframe format.

* Native-mode formats use the byte-ordering system that is standard for the operating environment.

Formats 4 BESTw. 171

S370FPIBw.d
writes positive integer binary data in IBM mainframe format.

S370FRBw.d
writes real binary data in IBM mainframe format.

S370FZDw.d
writes zoned decimal data in IBM mainframe format.

S370FZDLw.d
writes zoned decimal leading sign data in IBM mainframe format.

S370FZDSw.d
writes zoned decimal separate leading sign data in IBM mainframe format.

S370FZDTw.d
writes zoned decimal separate trailing sign data in IBM mainframe format.

S370FZDUw.d
writes unsigned zoned decimal data in IBM mainframe format.

These IBM 370 formats enable you to write SAS programs that can be run in any
SAS environment, regardless of the standard for storing numeric data. They also
enhance your ability to port raw data between host operating environments.

For more information about the IBM 370 formats, see SAS Language Reference:
Dictionary.

BESTw.

SAS System chooses the best notation

Numeric

Width range: 1-32 bytes
Default width: 12
Alignment: right
OS/390 specifics: writes output as EBCDIC, minimum and maximum values

Details
Numbers are written using EBCDIC code with one digit per byte. Because the value is
output as EBCDIC text characters, you can print it without further formatting.

The range of the magnitude of numbers is from 5.4 x 10-79 to 7.2 x 1075. Any number
that is outside this range causes an overflow error. All numeric variables that are
represented by the SAS System are within this range.

The following examples illustrate the use of BESTw. under OS/390:

172 Ew. 4 Chapter 12

Value Format Results Notes

1234 best6. bb1234

-1234 best6. b-1234

12.34 best6. b12.34

12345678 best8. 1.2346E8 truncated and
rounded

Note: In these examples, the Value column represents the value of the SAS numeric
variable. The Results column shows what the numeric output looks like when viewed
from a text editor. The b characters in the Results column indicate blank spaces. See
Table 9.2 on page 146 for a table of commonly used EBCDIC characters. 4

See Also

� Format: BESTw. in SAS Language Reference: Dictionary

Ew.

Writes numeric values in scientific notation

Numeric

Width range: 7- 32 bytes
Default width: 12
Alignment: right
OS/390 specifics: writes output as EBCDIC, minimum and maximum values

Details
Numbers are represented using the EBCDIC code, with one digit per byte. Because the
values are stored in EBCDIC, they can be printed without further formatting.

The range of the magnitude of numbers is from 5.4 x 10-79 to 7.2 x 1075. Any number
that is outside of this range causes an overflow error. All numeric variables that are
represented by the SAS System are within this range.

The following examples illustrate the use of Ew. under OS/390:

Value Format Results Notes

123 e10. b1.230E+02

-123 e10. -1.230E+02

12.3 e10. b1.230E+01

12345678 e10. b1.235E+07 truncated and rounded

Note: In these examples, the Value column represents the value of the SAS numeric
variable. The Results column shows what the numeric value looks like when viewed
from a text editor. The b characters in the Results column indicate blank spaces. See
Table 9.2 on page 146 for a table of commonly used EBCDIC characters. 4

Formats 4 HEXw. 173

See Also

� Format: Ew. in SAS Language Reference: Dictionary

� Informat: “Ew.d” on page 208

HEXw.

Converts real binary (floating-point) values to hexadecimal representation

Numeric

Width range: 1-16 bytes
Default width: 8
Alignment: left
OS/390 specifics: writes output as EBCDIC, IBM floating-point format

Details
Each hexadecimal digit is written using the EBCDIC code, which requires one byte per
digit. See Table 9.2 on page 146 for a table of commonly used EBCDIC characters.

The format of floating-point numbers is host-specific. See “Representation of
Floating-Point Numbers” on page 143 for a description of the IBM floating-point format
that is used under OS/390.

The w value of the HEXw. format determines whether the number is written as a
floating-point number or as an integer. When you specify a width value of 1 through 15,
the real binary numbers are truncated to fixed-point integers before being converted to
hexadecimal representation. When you specify 16 for the width, the floating point
values are used, and the numbers are not truncated.

The following examples illustrate the use of HEXw. under OS/390:

Value Format Results Notes

31.5 hex16. 421F800000000000 floating-point
number

31.5 hex15. 00000000000001F integer

-31.5 hex16. C21F800000000000 floating-point
number

-31.5 hex15. FFFFFFFFFFFFFE1 integer

Note: In these examples, the Value column represents the value of the SAS numeric
variable. The Results column shows what the numeric value looks like when viewed
from a text editor. 4

174 IBw.d 4 Chapter 12

See Also

� Format: HEXw. in SAS Language Reference: Dictionary

� Informat: “HEXw.” on page 208

� “Representation of Numeric Variables” on page 143

IBw.d

Writes numbers in integer binary (fixed-point) format

Numeric

Width range: 1-8 bytes

Default width: 4

Decimal range: 0-10

Alignment:

OS/390 specifics: two’s complement notation

Details

On an IBM mainframe system, integer values are stored in two’s complement notation.
If an overflow occurs, the value written is the largest value that fits into the output

field; the value will be positive, negative, or unsigned, as appropriate. If the format
includes a d value, the number is multiplied by 10d.

Here are some examples of the IBw.d format:

Value Format Results (Hex) Notes

-1234 ib4. FFFFFB2E

12.34 ib4. 0000000C

123456789 ib4. 075BCD15

1234 ib6.2 00000001E208 a d value of 2 causes
the number to be
multipled by 102

-1234 ib6.2 FFFFFFFE1DF8 a d value of 2 causes
the number to be
multipled by 102

1234 ib1. 7F overflow occurred

-1234 ib1. 80 overflow occurred

Note: In these examples, the Value column represents the value of the numeric
variable. The Results column shows a hexadecimal representation of the bit pattern
written by the corresponding format. (You cannot view this data in a text editor, unless
you can view it in hexadecimal representation.) 4

Formats 4 PDw.d 175

See Also

� Formats: IBw.d, S370FIBw.d, and S370FPIBw.d in SAS Language Reference:
Dictionary

� Informat: “IBw.d ”on page 209

PDw.d

Writes values in IBM packed decimal format

Numeric

Width range: 1-16 bytes
Default width: 1
Decimal range: 0-31
Alignment: left
OS/390 specifics: IBM packed decimal format

Details
In packed decimal format, each byte represents two decimal digits. An IBM packed
decimal number consists of a sign and up to 31 digits, thus giving a range of 1031 −1 to
-1031 + 1. The sign is written in the rightmost nibble. (A nibble is four bits or half a
byte.) A hexadecimal C indicates a plus sign, and a hexadecimal D indicates a minus
sign. The rest of the nibbles to the left of the sign nibble represent decimal digits. The
hexadecimal values of these digit nibbles correspond to decimal values; therefore, only
values between ’0’x and ’9’x can be used in the digit p sitions.

If an overflow occurs, the value that is written is the largest value that fits into the
output field; the value will be positive, negative, or unsigned, as appropriate.

Here are several examples of packed decimal format:

Value Format Results (Hex) Notes

-1234 pd3. 01234D

1234 pd2. 999C overflow occurred

1234 pd4. 0001234C

1234 pd4.2 0123400C a d value of 2 causes the
number to be multiplied
by 102

Note: In these examples, the Value column represents the value of the data, and the
Results column shows a hexadecimal representation of the bit pattern written by the
corresponding format. (You cannot view this data in a text editor, unless you can view it
in hexadecimal representation.) 4

176 RBw.d 4 Chapter 12

See Also

� Formats: PDw.d and S370FPDw.d in SAS Language Reference: Dictionary
� Informat: “PDw.d” on page 210

RBw.d
Writes numeric data in real binary (floating-point) notation

Numeric

Width range: 2-8 bytes
Default width: 4
Decimal range: 0-10
Alignment: left
OS/390 specifics: IBM floating-point format

Details
The format of floating-point numbers is host-specific. See “Representation of
Floating-Point Numbers” on page 143 for a description of the format that is used to
store floating-point numbers under OS/390.

Here are some examples of how decimal numbers are written as floating-point
numbers using the RBw.d format:

Value Format Results (Hex) Notes

123 rb8.1 434CE00000000000

123 rb8.2 44300C0000000000

-123 rb8. C27B000000000000

1234 rb8. 434D200000000000

1234 rb2. 434D truncation occurred

12.25 rb8. 41C4000000000000

Note: In these examples, the Value column represents the value of the data, and the
Results column shows a hexadecimal representation of the bit pattern written by the
corresponding format. (You cannot view this data in a text editor, unless you can view it
in hexadecimal representation.) 4

See Also

� Formats: RBw.d and S370FRBw.d in SAS Language Reference: Dictionary
� Informat: “RBw.d ”on page 211

w.d
Writes numeric data

Formats 4 ZDw.d 177

Numeric

Width range: 1-32 bytes

Default width: 12

Decimal range: d<w

Alignment: right

OS/390 specifics: writes output as EBCDIC, minimum and maximum values

Details
The w.d format writes numeric values one digit per byte using EBCDIC code. Because
the values are stored in EBCDIC, they can be printed without further formatting.

Numbers written with the w.d format are rounded to the nearest number that can be
represented in the output field. If the number is too large to fit, the BESTw.d format is
used. Under OS/390, the range of the magnitude of numbers that can be written with
the BESTw.d format is from 5.4 x 10-79 to 7.2 x 1075.

The following examples illustrate the use of the w.d format:

Value Format Results

1234 4. 1234

1234 5. b1234

12345 4. 12E3

123.4 6.2 123.40

-1234 6. b-1234

Note: In these examples, the Value column represents the value of the data, and the
Results column shows what the numeric value looks like when viewed from a text
editor. The b characters in the Results column indicate blank spaces. See Table 9.2 on
page 146 for a table of commonly used EBCDIC characters. 4

See Also

� Format: w.d in SAS Language Reference: Dictionary

ZDw.d

Writes zoned decimal data

Numeric

Width range: 1-32 bytes

Default width: 1

Decimal range: 0-32

Alignment: left

OS/390 specifics: IBM zoned decimal format

178 ZDw.d 4 Chapter 12

Details
Like standard format, zoned decimal digits are represented as EBCDIC characters.
Each digit requires one byte. The rightmost byte represents both the least significant
digit and the sign of the number. Digits to the left of the least significant digit are
written as the EBCDIC characters 0 through 9. The character that is written for the
least significant digit depends on the sign of the number. Negative numbers are
represented as the EBCDIC printable hexadecimal characters D0 through D9 in the
least significant digit position, and positive numbers are represented as hexadecimal C0
through C9.

If an overflow occurs, the value that is written is the largest value that fits into the
output field; the value will be positive, negative, or unsigned, as appropriate.

The following examples illustrate the use of the zoned decimal format:

Value Format Results (Hex) Notes

1234 zd8. F0F0F0F0F1F2F3C4

123 zd8.1 F0F0F0F0F1F2F3C0

123 zd8.2 F0F0F0F1F2F3F0C0

-123 zd8. F0F0F0F0F0F1F2D3

0.000123 zd8.6 F0F0F0F0F0F1F2C3

0.00123 zd8.6 F0F0F0F0F1F2F3C0

1E-6 zd8.6 F0F0F0F0F0F0F0C1 overflow occurred

Note: In these examples, the Value column represents the value of the data, and the
Results column shows a hexadecimal representation of the bit pattern that is written by
the corresponding format. (You cannot view this data in a text editor unless you view it
in hexadecimal representation.) See Table 9.2 on page 146 for a table of commonly used
EBCDIC characters. 4

See Also

� Formats: ZDw.d, S370FZDLw.d, S370FZDSw.d, S370FZDTw.d, and S370FZDUw.d
in SAS Language Reference: Dictionary

� Informats: “ZDw.d ”on page 212, “ZDBw.d” on page 213, and “S370FZDw.d” in
SAS Language Reference: Dictionary

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS ® Companion for the OS/390 Environment, Version 8, Cary, NC: SAS Institute Inc.,
1999.

SAS® Companion for the OS/390® Environment, Verison 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1–58025–523–X
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
DB2®, IBM®, and OS/2® are registered trademarks or trademarks of International
Business Machines Corporation. ORACLE® is a registered trademark or trademark of
Oracle Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

