
179

C H A P T E R

13
Functions and CALL Routines

Functions and CALL Routines in the OS/390 Environment 179
Dictionary 180

DINFO 182

DOPEN 186

DOPTNAME 186

DOPTNUM 187
FCLOSE 188

FDELETE 188

FEXIST 189

FILEEXIST 189

FILENAME 190

FILEREF 191
FINFO 191

FOPEN 196

FOPTNAME 197

FOPTNUM 198

HOSTHELP 199
KTRANSLATE 199

LIBNAME 199

MOPEN 200

PATHNAME 201

SYSGET 201
SYSTEM 202

TRANSLATE 203

TSO 204

Functions and CALL Routines in the OS/390 Environment
Portable functions are documented in SAS Language Reference: Dictionary. This

chapter includes detailed information about the SAS functions and CALL routines that
are specific to OS/390 or that have aspects specific to OS/390.

180 Dictionary 4 Chapter 13

Dictionary

CALL SLEEP

Suspends execution of a SAS DATA step for a specified amount of time

OS/390 specifics: host call

Syntax
CALL SLEEP(time);

time
specifies the amount of time, in milliseconds (1/1,000 of a second), that you wish to
suspend execution of a DATA step and the SAS process that is running that DATA
step.

Details
CALL SLEEP puts the DATA step in which it is invoked into a nonactive wait state,
using no CPU time and performing no input or output. If you are running multiple SAS
processes, each process can execute CALL SLEEP independently without affecting the
other processes.

In this example, the DATA step invokes CALL REPORT every hour:

data _null_;
while (1);

call report(a,b,c,d);
call sleep(3600000);

end;
run;

Note: In batch mode, extended sleep periods can trigger automatic host session
termination based on timeout values set at your site. Contact your host system
administrator as necessary to determine the timeout values used at your site. 4

CALL SYSTEM

Issues an operating environment command during a SAS session

OS/390 specifics: all

Syntax
CALL SYSTEM(command);

Functions and CALL Routines 4 CALL TSO 181

command
can be a system command enclosed in quotes, an expression whose value is a system
command, or the name of a character variable whose value is a system command.
Under OS/390, "system command" includes TSO commands, CLISTs, and REXX
execs.

Details
The CALL SYSTEM routine is similar to the X (or TSO) statement, the X (or TSO)
command, the SYSTEM (or TSO) function, and the %SYSEXEC (or %TSO) macro
statement.

In most cases, the X statement, the X command, or the %SYSEXEC macro statement
are preferable because they require less overhead. However, the CALL SYSTEM
routine can be useful in certain situations because it is executable and because it
accepts expressions as arguments. For example, the following DATA step executes one
of three CLISTs depending on the value of a variable named ACTION that is stored in
an external file named USERID.TRANS.PROG:

data _null_;
infile ’userid.trans.prog’;

/* action is assumed to have a value of */
/* 1, 2, or 3 */
/* create and initialize a 3-element array */
input action;
array programs{3} $ 11 c1-c3

("exec clist1" "exec clist2" "exec clist3");
call system(programs{action});

run;

In this example, the array elements are initialized with character strings that consist
of TSO commands for executing the three CLISTs. In the CALL SYSTEM statement,
an expression is used to pass one of these character strings to the CALL SYSTEM
routine. For example, if ACTION equals 2, then PROGRAMS{2}, which contains the
EXEC CLIST2 command, is passed to the CALL SYSTEM routine.

Under OS/390, CALL TSO is an alias for the CALL SYSTEM routine.

See Also

� Statements: “TSO” on page 321 and “X” on page 323

� Functions: “SYSTEM” on page 202 and “TSO” on page 204

� Commands: “TSO” on page 449 and “X” on page 451

� “Macro Statements” on page 217

CALL TSO

Issues a TSO command or invokes a CLIST or a REXX exec during a SAS session

OS/390 specifics: all

182 DINFO 4 Chapter 13

Syntax
CALL TSO(command);

Details
The TSO and SYSTEM CALL routines are identical, with one exception: under an
operating environment other than OS/390, the TSO CALL routine has no effect,
whereas the SYSTEM CALL routine is always processed. See “CALL SYSTEM” on page
180 for more information.

DINFO

Returns information about a directory

OS/390 specifics: info-item

Syntax
DINFO (directory-id, info-item)

directory-id
specifies the identifier that was assigned when the directory was opened (generally
by the DOPEN function).

info-item
specifies the name of the information item that is to be returned by the function.

Details
Directories opened with the DOPEN function are identified by a directory-id and have a
number of associated information items. The DINFO, DOPTNAME, and DOPTNUM
functions support the following directory information items under OS/390.

Table 13.1 Directory Information Items for UNIX System Services Directories

Item Item Identifier Definition

1 File Name Directory name

2 Access Permission Read, write, and execute permissions for owner, group,
and other

3 Number of Links Number of links in the directory

4 Owner Name User ID of the owner

Functions and CALL Routines 4 DINFO 183

Item Item Identifier Definition

5 Group Name Name of the owner’s access group

6 Last Modified Date contents last modified

Table 13.2 Directory Information Items for PDSs

Item Item Identifier Definition

1 Dsname PDS name

2 Unit Disk type

3 Volume Volume on which data set resides

4 Disp Disposition

5 Blksize Block size

6 Lrecl Record length

7 Recfm Record format

Table 13.3 Directory Information Items for PDSEs

Item Item Identifier Definition

1 Dsname PDSE name

2 Dsntype Directory type

3 Unit Disk type

4 Volume Volume on which data set resides

5 Disp Disposition

6 Blksize Block size

7 Lrecl Record length

8 Recfm Record format

Example 1: UNIX System Services Directory Information

This first example generates output that includes information item names and values
for a UNIX System Services directory:

data _null_;
length opt $100 optval $100;

/* Allocate directory */
rc=FILENAME(’mydir’, ’/u/userid’);

/* Open directory */
dirid=DOPEN(’mydir’);

/* Get number of information items */
infocnt=DOPTNUM(dirid);

184 DINFO 4 Chapter 13

/* Retrieve information items and */
/* print to log */
put @1 ’Information for a UNIX

System Services Directory:’;
do j=1 to infocnt;

opt=DOPTNAME(dirid,j);
optval=DINFO(dirid,upcase(opt));
put @1 opt @20 optval;

end;

/* Close the directory */
rc=DCLOSE(dirid);

/* Deallocate the directory */
rc=FILENAME(’mydir’);

run;

Output 13.1 Example 1 Output: UNIX System Services Directory Information

Information for a UNIX System
Services Directory:

File Name /u/userid
Access Permission drwxr-xr-x
Number of Links 17
Owner Name MYUSER
Group Name GRP
Last Modified Apr 26 07:18

NOTE: The DATA statement used 0.09
CPU seconds and 5203K.

Example 2: PDS Directory Information

This second example generates directory information for a PDSE:

data _null_;
length opt $100 optval $100;

/* Allocate directory */
rc=FILENAME(’mydir’, ’userid.pdse.src’);

/* Open directory */
dirid=DOPEN(’mydir’);

/* Get number of information items */
infocnt=DOPTNUM(dirid);

/* Retrieve information items and */
/* print to log */
put @1 ’Information for a PDSE:’;
do j=1 to infocnt;

opt=DOPTNAME(dirid,j);
optval=DINFO(dirid,upcase(opt));
put @1 opt @20 optval;

end;

Functions and CALL Routines 4 DINFO 185

/* Close the directory */
rc=DCLOSE(dirid);

/* Deallocate the directory */
rc=FILENAME(’mydir’);

run;

Output 13.2 Example 2 Output: PDSE Directory Information

Information for a PDSE:
Dsname USERID.PDSE.SRC
Dsntype PDSE
Unit 3380
Volume ABC002
Disp SHR
Blksize 260
Lrecl 254
Recfm VB

NOTE: The DATA statement used 0.08
CPU seconds and 5203K.

Example 3: PDS Directory Information

This example generates information item names and values for a PDS:

data _null_;
length opt $100 optval $100;

/* Allocate directory */
rc=FILENAME(’mydir’, ’userid.mail.text’);

/* Open directory */
dirid=DOPEN(’mydir’);

/* Get number of information items */
infocnt=DOPTNUM(dirid);

/* Retrieve information items and */
/* print to log */
put @1 ’Information for a PDS:’;
do j=1 to infocnt;

opt=DOPTNAME(dirid,j);
optval=DINFO(dirid,upcase(opt));
put @1 opt @20 optval;

end;

/* Close the directory */
rc=DCLOSE(dirid);

/* Deallocate the directory */
rc=FILENAME(’mydir’);

run;

186 DOPEN 4 Chapter 13

Output 13.3 Example 3 Output: PDS Directory Information

Information for a PDS:
Dsname USERID.MAIL.TEXT
Unit 3380
Volume ABC005
Disp SHR
Blksize 6160
Lrecl 80
Recfm FB

NOTE: The DATA statement used 0.07
CPU seconds and 5211K.

See Also

� “DOPEN” on page 186
� “DOPTNAME” on page 186
� “DOPTNUM” on page 187
� SAS Language Reference: Dictionary

DOPEN
Opens a directory and returns a directory identifier value

OS/390 specifics: file systems

Syntax
DOPEN (fileref)

fileref
specifies the directory to be opened.

Details
DOPEN applies to directory structures, which are available in partitioned data sets
(PDS, PDSE) and in UNIX System Services. For code examples, see “DINFO” on page
182.

See Also

� “DOPTNAME” on page 186
� “DOPTNUM” on page 187
� SAS Language Reference: Dictionary

DOPTNAME
Returns the name of a directory information item

Functions and CALL Routines 4 DOPTNUM 187

OS/390 specifics: info-item

Syntax
DOPTNAME (directory-id,info-item)

directory-id
specifies the identifier that was assigned when the directory was opened (generally
by the DOPEN function).

info-item
specifies the number of a directory information item. For definitions of information
item numbers and code examples, see“DINFO” on page 182.

Details
The DOPTNAME function returns the name of the specified information item number
for a file that was previously opened with the DOPEN function.

See “DINFO” on page 182 for information item numbers and definitions and code
examples.

See Also

� “DOPEN” on page 186

� “DOPTNUM” on page 187

� SAS Language Reference: Dictionary

DOPTNUM

Returns the number of information items available for a directory

OS/390 specifics: return value

Syntax
DOPTNUM (directory-id)

directory-id
specifies the identifier that was assigned when the directory was opened.

Details
Currently, the number of information items available for a PDS directory is 7, for a
PDSE directory is 8, and for a UNIX System Services directory is 7.

For code examples, see “DINFO” on page 182.

188 FCLOSE 4 Chapter 13

See Also

� “DOPEN” on page 186
� “DOPTNAME” on page 186
� SAS Language Reference: Dictionary

FCLOSE

Closes an external file, a directory, or a directory member

OS/390 specifics: file close is strongly recommended

Syntax
FCLOSE (file-id)

file-id
is the file-identifier that was assigned when the file was opened.

Details
Files opened with the FOPEN function are not closed automatically after processing.
All files opened with FOPEN should be closed with FCLOSE. For code examples, see
“FINFO” on page 191

See Also

� “FOPEN” on page 196

FDELETE

Deletes an external file

OS/390 specifics: fileref

Syntax
FDELETE (fileref)

fileref
identifies an external file. The fileref must have been previously associated with a
sequential file, a PDS, a PDSE, or a UNIX System Services file using a FILENAME
statement or FILENAME function. The fileref cannot represent a concatenation of
multiple files.

Functions and CALL Routines 4 FILEEXIST 189

Details
If the fileref specified with FDELETE is associated with a UNIX System Services
directory, PDS, or PDSE, then that directory, PDS, or PDSE must be empty. The user
that calls FDELETE must also have appropriate privilege to delete the directory or file.

Example

filename delfile ’myfile.test’;
data _null_;
rc=fdelete(’delfile’);
run;

See Also

� SAS Language Reference: Dictionary

FEXIST

Verifies the existence of an external file associated with a fileref and returns a value

OS/390 specifics: fileref

Syntax
FEXIST(fileref)

fileref
identifies an external file. Under OS/390, it can be a fileref or any valid DDname
that has been previously associated with an external file using either a TSO
ALLOCATE command or a JCL DD statement.

See Also

� SAS Language Reference: Dictionary

FILEEXIST

Verifies the existence of an external file by its physical name and returns a value

OS/390 specifics: file-name

Syntax
FILEEXIST(filename)

190 FILENAME 4 Chapter 13

filename
is a fully qualified operating environment data set name or a fully qualified path (for
UNIX System Services files).

See Also

� SAS Language Reference: Dictionary

FILENAME

Assigns or deassigns a fileref for an external file, a directory, or an output device and returns a
value

OS/390 specifics: host options, devices

Syntax
FILENAME (fileref,filename<,device <,host-options>>)

fileref
specifies the fileref to assign to an external file.

filename
specifies the external file. Specifying a blank file-name deassigns one that was
previously assigned.

device
specifies the type of device if the fileref points to an output device rather than to a
physical file:

DUMMY
output to the file is discarded

PIPE
an unnamed pipe

PLOTTER
an unbuffered graphics output device

PRINTER
a printer or printer spool file

TERMINAL
the user’s terminal

TAPE
a tape driver

Functions and CALL Routines 4 FINFO 191

host-options
are host-specific options that may be specified in the FILENAME statement. These
options can be categorized into several groups. For details, see the following sections:

� “FILENAME” on page 294

� “DCB Attribute Options” on page 300

� “SYSOUT Data Set Options for the FILENAME Statement” on page 304

� “Subsystem Options for the FILENAME Statement” on page 306

� “Options That Specify SMS Keywords” on page 303

� “Host-Specific Options for UNIX System Services Files” on page 96 .
You can specify host options in any order following the file specification and the

optional device specification. When specifying more than one option, use a blank
space to separate each option. Values for options may be specified with or without
quotes. However, if a value contains one of the supported national characters ($, #, or
@), the quotes are required.

See Also

� FILENAME statement, see “FILENAME” on page 294

� SAS Language Reference: Dictionary

FILEREF

Verifies that a fileref has been assigned for the current SAS session and returns a value

OS/390 specifics: fileref

Syntax
FILEREF (fileref)

fileref
specifies the fileref to be validated. Under OS/390, fileref can be a DDname that was
assigned using the TSO ALLOCATE command or JCL DD statement.

See Also

� SAS Language Reference: Dictionary

FINFO

Returns the value of a file information item

OS/390 specifics: info-item

192 FINFO 4 Chapter 13

Syntax
FINFO (file-id,info-item)

file-id
specifies the identifier that was assigned when the file was opened (generally by the
FOPEN function).

info-item
specifies the number of the information item that is to be retrieved.

Functions and CALL Routines 4 FINFO 193

Details

The FINFO function returns the value of a specified information item for an external
file that was previously opened and assigned a file-id by the FOPEN function.

The FINFO, FOPTNAME, and FOPTNUM functions support the following
information items.

Table 13.4 Information Items for Unix System Services Files

Item Item Identifier Definition

1 File Name File name

2 Access Permission Read, write, and execute permissions for owner, group,
and other

3 Number of Links Number of links in the file

4 Owner Name User ID of the owner

5 Group Name Name of the owner’s access group

6 File Size File size

7 Last Modified Date file last modified

Table 13.5 Information Items for Sequential Files and members of PDSs and
PDSEs

Item Item Identifier Definition

1 Dsname File name

2 Unit Disk type

3 Volume Volume on which data setresides

4 Disp Disposition

5 Blksize Block size

6 Lrecl Record length

7 Recfm Record format

Example 1: Sequential File Information

The following example generates output that shows the information items available
for a sequential data set:

data _null_;
length opt $100 optval $100;

/* Allocate file */
rc=FILENAME(’myfile’,

’userid.test.example’);

194 FINFO 4 Chapter 13

/* Open file */
fid=FOPEN(’myfile’);

/* Get number of information
items */

infocnt=FOPTNUM(fid);

/* Retrieve information items
and print to log */

put @1 ’Information for a
Sequential File:’;

do j=1 to infocnt;
opt=FOPTNAME(fid,j);
optval=FINFO(fid,upcase(opt));
put @1 opt @20 optval;

end;

/* Close the file */
rc=FCLOSE(fid);

/* Deallocate the file */
rc=FILENAME(’myfile’);

run;

Output 13.4 Example 1 Output: Sequential File Information

Information for a Sequential File:
Dsname USERID.TEST.EXAMPLE
Unit 3380
Volume ABC010
Disp SHR
Blksize 23392
Lrecl 136
Recfm FB

NOTE: The DATA statement used 0.10
CPU seconds and 5194K.

Example 2: PDS, PDSE Member Information

This next example shows the information items availabile for PDS and PDSE
members:

data _null_;
length opt $100 optval $100;

/* Allocate file */
rc=FILENAME(’myfile’,

’userid.test.data(oats)’);

/* Open file */
fid=FOPEN(’myfile’);

/* Get number of information
items */

infocnt=FOPTNUM(fid);

Functions and CALL Routines 4 FINFO 195

/* Retrieve information items
and print to log */

put @1 ’Information for a PDS
Member:’;

do j=1 to infocnt;
opt=FOPTNAME(fid,j);
optval=FINFO(fid,upcase(opt));
put @1 opt @20 optval;

end;

/* Close the file */
rc=FCLOSE(fid);

/* Deallocate the file */
rc=FILENAME(’myfile’);

run;

Output 13.5 Example 2 Output: PDS, PDSE Member Information

Information for a PDS Member:
Dsname USERID.TEST.DATA(OATS)
Unit 3380
Volume ABC006
Disp SHR
Blksize 1000
Lrecl 100
Recfm FB

NOTE: The DATA statement used 0.05
CPU seconds and 5194K.

Example 3: UNIX System Services File Information

This final example shows the information items available for UNIX System Services
files:

data _null_;
length opt $100 optval $100;

/* Allocate file */
rc=FILENAME(’myfile’,

’/u/userid/one’);

/* Open file */
fid=FOPEN(’myfile’);

/* Get number of information
items */

infocnt=FOPTNUM(fid);

/* Retrieve information items
and print to log */

put @1 ’Information for a UNIX
System Services File:’;

do j=1 to infocnt;

196 FOPEN 4 Chapter 13

opt=FOPTNAME(fid,j);
optval=FINFO(fid,upcase(opt));
put @1 opt @20 optval;

end;

/* Close the file */
rc=FCLOSE(fid);

/* Deallocate the file */
rc=FILENAME(’myfile’);

run;

Output 13.6 Example 3 Output: UNIX System Services File Information

Information for a UNIX
System Services File:

File Name /u/userid/one
Access Permission ---rw-rw-rw-
Number of Links 1
Owner Name USERID
Group Name GRP
File Size 4
Last Modified Apr 13 13:57

NOTE: The DATA statement used
0.07 CPU seconds and 5227K.

See Also

� “FCLOSE” on page 188
� “FOPEN” on page 196
� “FOPTNAME” on page 197
� “FOPTNUM” on page 198
� SAS Language Reference: Dictionary

FOPEN
Opens an external file and returns a file identifier value

OS/390 specifics: files opened with FOPEN must be explicitly closed with FCLOSE

Syntax
FOPEN (fileref <,open-mode <,record-length <,record-format>>>)

fileref
specifies the fileref assigned to the external file.

open-mode
specifies the type of access to the file:

A APPEND mode allows writing new records after the current end
of the file.

Functions and CALL Routines 4 FOPTNAME 197

I INPUT mode allows reading only (default).

O OUTPUT mode defaults to the OPEN mode specified in the host
option in the FILENAME statement or function. If no host option
is specified, it allows writing new records at the beginning of the
file.

S Sequential input mode is used for pipes and other sequential
devices such as hardware ports.

U UPDATE mode allows both reading and writing.

record-length
specifies the logical record length of the file. To use the existing record length for the
file, specify a length of 0, or do not provide a value here.

record-format
specifies the record format of the file. To use the existing record format, do not
specify a value here. Valid values are as follows:

B data are to be interpreted as binary data.

D use default record format.

E use editable record format.

F file contains fixed length records.

P file contains printer carriage control in host-dependent record
format. For data sets with FBA or VBA record format, specify ‘P’
for the record-format argument.

V file contains variable length records.

Details
Under OS/390, files that have been opened with FOPEN must be closed with FCLOSE
at the end of a DATA step; files are not closed automatically after processing.

See “FINFO” on page 191 for code examples.

See Also

� “FCLOSE” on page 188
� “FOPTNAME” on page 197
� “FOPTNUM” on page 198
� SAS Language Reference: Dictionary

FOPTNAME

Returns the name of an item of information about a file

OS/390 specifics: info-item

Syntax
FOPTNAME (file-id,info-item)

198 FOPTNUM 4 Chapter 13

file-id
specifies the identifier that was assigned when the file was opened (generally by the
FOPEN function).

info-item
specifies the information item whose name is to be returned by the function.

Details
FOPTNAME returns the name of a specified information item associated with the
specified file-id. The file-id is assigned when the file is opened with the FOPEN function.

For definitions of information item numbers and code examples, see “FINFO” on page
191.

See Also

� “FCLOSE” on page 188
� “FOPEN” on page 196
� “FOPTNUM” on page 198
� SAS Language Reference: Dictionary

FOPTNUM

Returns the number of information items that are available for a file

OS/390 specifics: return value

Syntax
FOPTNUM (file-id)

file-id
specifies the identifier that was assigned when the file was opened (generally by the
FOPEN function).

Details
Currently, the number of information items available for a sequential file, a PDS
member, and a UNIX System Services file is 7.

For code examples, refer to “FINFO” on page 191.

Functions and CALL Routines 4 LIBNAME 199

See Also

� “FCLOSE” on page 188
� “FOPEN” on page 196
� “FOPTNAME” on page 197

� SAS Language Reference: Dictionary

HOSTHELP

Invokes the native help system to display or close the specified help information

OS/390 specifics: not supported

KTRANSLATE

Replaces specific characters in a character expression

OS/390 specifics: to/from pairs

Syntax
KTRANSLATE(source, to-1, from-1<to-2, from-2...to-n, from-n>)

Details
In the OS/390 environment, KTRANSLATE requires a from argument for each to
argument. Also, there is no practical limit to the number of to/from pairs you can
specifiy.

KTRANSLATE differs from TRANSLATE in that it supports single-byte character set
replacement by double-byte characters, or vice versa.

See Also

� “TRANSLATE” on page 203

� SAS Language Reference: Dictionary

LIBNAME

Assigns or deassigns a libref for a SAS data library and returns a value

OS/390 specifics: libref, SAS-data-library

200 MOPEN 4 Chapter 13

Syntax
LIBNAME (libref, <,SAS-data-library <,engine <,options>>>)

libref
specifies the libref to assign to a SAS data library.

SAS-data-library
specifies the SAS data library.

Details
If no value is provided for SAS-data-library or if SAS-data-library has a value of
’’(with no blank space), LIBNAME dissociates the libref from the data library. If the
operation is successful, the return value is zero.

Under TSO, DDnames (assigned by the TSO ALLOCATE command) can also be used
to refer to SAS data libraries.

Example

rc=libname(’v7dat’,’myapp.demo.v7dat’, ’v7’);

See Also

� LIBNAME statement, see “LIBNAME” on page 313

� SAS Language Reference: Dictionary

MOPEN

Opens a file by directory ID and member name and returns either the file identifier or a zero

OS/390 specifics: file systems

Syntax
MOPEN (directory-id ,member-name<open-mode <,record-length <,record-format>>>)

Details
MOPEN applies to files in directory structures, which are available in partitioned data
sets (PDS, PDSE) and in UNIX System Services.

Under OS/390, MOPEN can open files for output and append.

Functions and CALL Routines 4 SYSGET 201

See Also

� “DOPEN” on page 186
� SAS Language Reference: Dictionary

PATHNAME

Returns the physical name of a SAS data library or of an external file or returns a blank

OS/390 specifics: fileref, libref

Syntax
PATHNAME (fileref | libref)

fileref
specifies the fileref that was assigned to an external file.

libref
specifies the libref assigned to a SAS data library.

Details
When PATHNAME is applied to a concatenation, it returns a list of data set names
encoded in parentheses.

Under OS/390, you can also use any valid DDname previously allocated using a TSO
ALLOCATE command or a JCL DD statement.

See Also

� SAS Language Reference: Dictionary

SYSGET

Returns the value of a specified host-environment variable

OS/390 specifics: host-variable

Syntax
SYSGET (host-variable)

host-variable
is the name of one of the parameters defined in the CLIST by which SAS was invoked

202 SYSTEM 4 Chapter 13

Details
If the variable specified was not included in the SAS invocation, you receive a “NOTE:
Invalid argument to the function SYSGET” and _ERROR_ is set to 1.

Example

The following example returns the system options specified in the OPTIONS
parameter of the SAS CLIST and prints to the specified log.

data _null_;
opstr=sysget(’OPTIONS’);
if _ERROR_ then put ’no options supplied’;
else put ’options supplied are:’ optstr;

run;

See Also

� SAS Language Reference: Dictionary

SYSTEM

Issues an operating environment command during a SAS session

OS/390 specifics: command, related commands, statements, macros

Syntax
SYSTEM(command)

command
can be a system command enclosed in quotes, an expression whose value is a system
command, or the name of a character variable whose value is a system command.
Under OS/390, the term system command refers to TSO commands, CLISTs, and
REXX execs.

Details
The SYSTEM function is similar to the X (or TSO) statement, the X (or TSO) command,
the CALL SYSTEM (or CALL TSO) routine, and the %SYSEXEC (or %TSO) macro
statement. In most cases, the X statement, the X command, or the %SYSEXEC macro
statement are preferable because they require less overhead.

This function returns the operating environment return code after the command,
CLIST, or REXX exec is executed.

SAS executes the SYSTEM function immediately. Under OS/390, TSO is an alias for
the SYSTEM function. On other operating environments, the TSO function has no
effect, whereas the SYSTEM function is always processed.

You can use the SYSTEM function to issue most TSO commands or to execute
CLISTs or REXX execs. However, you cannot issue the TSO commands LOGON and
LOGOFF, and you cannot execute CLISTs that include the TSO ATTN statement.

Functions and CALL Routines 4 TRANSLATE 203

Example 1

In the following example, the SYSTEM function is used to allocate an external file:

data _null_;
rc=system(’alloc f(study) da(my.library)’);

run;

For a fully qualified data set name, use the following statements:

data _null_;
rc=system("alloc f(study)

da(’userid.my.library’)");
run;

Example 2

In the second example, notice that the command is enclosed in double quotes. When
the TSO command includes quotes, it is best to enclose the command in double quotes
instead of single quotes. If you choose to use single quotes, then double each quote in
the TSO command:

data _null_;
rc=system(’alloc f(study)

da(’’userid.my.library’’)’);
run;

See Also

� Statements: “TSO” on page 321 and “X” on page 323

� CALL routines: “CALL SYSTEM” on page 180 and “CALL TSO” on page 181

� Commands: “TSO” on page 449 and “X” on page 451

� “Macro Statements” on page 217

TRANSLATE

Replaces specific characters in a character expression

OS/390 specifics: to/from pairs required

Syntax
TRANSLATE (source, to-1, from-1, < . . . to-n, from-n>)

Details
In the OS/390 environment, TRANSLATE requires a from argument for each to
argument. Also, there is no practical limit to the number of to/from pairs you can
specifiy.

204 TSO 4 Chapter 13

TRANSLATE handles character replacement for single-byte character sets only. See
KTRANLSATE to replace single-byte characters with double-byte characters, or vice
versa.

See Also

� “KTRANSLATE” on page 199
� SAS Language Reference: Dictionary

TSO

Issues a TSO command or invokes a CLIST or a REXX exec during a SAS session

OS/390 specifics: all

Syntax
TSO(command)

Description
The SYSTEM and TSO functions are identical, with one exception: under an operating
environment other than OS/390, the TSO function has no effect, whereas the SYSTEM
function is always processed. See “SYSTEM” on page 202 for more information.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc.,
SAS ® Companion for the OS/390 Environment, Version 8, Cary, NC: SAS Institute Inc.,
1999.

SAS® Companion for the OS/390® Environment, Verison 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
1–58025–523–X
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, November 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
DB2®, IBM®, and OS/2® are registered trademarks or trademarks of International
Business Machines Corporation. ORACLE® is a registered trademark or trademark of
Oracle Corporation. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

