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Overview
This appendix provides a brief description of some of the statistical concepts

necessary for you to interpret the output of base SAS procedures for elementary
statistics. In addition, this appendix lists statistical notation, formulas, and standard
keywords used for common statistics in base SAS procedures. Brief examples illustrate
the statistical concepts.
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Table A1.1 on page 1459 lists the most common statistics and the procedures that
compute them.

Keywords and Formulas
The base SAS procedures use a standardized set of keywords to refer to statistics.

You specify these keywords in SAS statements to request the statistics to be displayed
or stored in an output data set.

In the following notation, summation is over observations that contain nonmissing
values of the analyzed variable and, except where shown, over nonmissing weights and
frequencies of one or more:

xi

is the nonmissing value of the analyzed variable for observation i.

fi

is the frequency that is associated with xi if you use a FREQ statement. If you
omit the FREQ statement, then fi = 1 for all i.

wi

is the weight that is associated with xi if you use a WEIGHT statement. The base
procedures automatically exclude the values of xi with missing weights from the
analysis.

By default, the base procedures treat a negative weight as if it is equal to zero.
However, if you use the EXCLNPWGT option in the PROC statement, the
procedure also excludes those values of xi with nonpositive weights. Note that
most SAS/STAT procedures, such as PROC TTEST and PROC GLM, exclude
values with nonpositive weights by default.

If you omit the WEIGHT statement, then wi = 1 for all i.

n
is the number of nonmissing value of xi,

P
fi. If you use the EXCLNPWGT

option and the WEIGHT statement, then n is the number of nonmissing values
with positive weights.

�x
is the mean

X
wixi=

X
wi

s2

is the variance

1

d

X
wi (xi � �x)

2
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where d is the variance divisor (the VARDEF= option) that you specify in the
PROC statement. Valid values are as follows:

When VARDEF= d equals . . .

N n

DF n� 1

WEIGHT
P

wi

WDF
P

wi � 1

The default is DF.

zi

is the standardized variable

(xi � �x) =s

The standard keywords and formulas for each statistic follow. Some formulas use
keywords to designate the corresponding statistic.

Table A1.1 The Most Common Simple Statistics

Statistic

PROC
MEANS and
SUMMARY

PROC
UNIVARIATE

PROC
TABULATE

PROC
REPORT

PROC
CORR

PROC
SQL

Number of missing values X X X X X

Number of nonmissing
values

X X X X X X

Number of observations X X X

Sum of weights X X X X X X

Mean X X X X X X

Sum X X X X X X

Extreme values X X

Minimum X X X X X X

Maximum X X X X X X

Range X X X X X

Uncorrected sum of
squares

X X X X X X

Corrected sum of squares X X X X X X

Variance X X X X X X

Covariance X

Standard deviation X X X X X X

Standard error of the
mean

X X X X X
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Statistic

PROC
MEANS and
SUMMARY

PROC
UNIVARIATE

PROC
TABULATE

PROC
REPORT

PROC
CORR

PROC
SQL

Coefficient of variation X X X X X

Skewness X X X

Kurtosis X X X

Confidence Limits

of the mean X X

of the variance X

of quantiles X

Median X X X X

Mode X

Percentiles/Deciles/
Quartiles

X X X

t test

for mean=0 X X X X X

for mean=�0 X

Nonparametric tests for
location

X

Tests for normality X

Correlation coefficients X

Cronbach’s alpha X

Descriptive Statistics
The keywords for descriptive statistics are

CSS
is the sum of squares corrected for the mean, computed as

X
wi (xi � �x)2

CV
is the percent coefficient of variation, computed as

(100s) =�x

KURTOSIS | KURT
is the kurtosis, which measures heaviness of tails. When VARDEF=DF, the
kurtosis is computed as

c4n
X

z4
i
�

3 (n� 1)

(n� 2) (n� 3)
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where c4n is n(n+1)
(n�1)(n�2)(n�3) . The weighted kurtosis is computed as

= c4
n

X
((xi � x) =�̂i)

4
�

3 (n� 1)

(n� 2) (n� 3)

= c4n
X

w2
i ((xi � x) =�̂)4 �

3 (n � 1)

(n� 2) (n � 3)

When VARDEF=N, the kurtosis is computed as

=
1

n

X
z4i � 3

and the weighted kurtosis is computed as

=
1

n

X
((xi � x) =�̂i)

4
� 3

=
1

n

X
w2
i ((xi � x) =�̂)4 � 3

where �2
i

is �2=wi. The formula is invariant under the transformation
w�
i
= zwi; z > 0. When you use VARDEF=WDF or VARDEF=WEIGHT, the

kurtosisis set to missing.

Note: PROC MEANS and PROC TABULATE do not compute weighted
kurtosis. 4

MAX
is the maximum value of xi.

MEAN
is the arithmetic mean x.

MIN
is the minimum value of xi.

MODE
is the most frequent value of xi.

N
is the number of xi values that are not missing. Observations with fi less than
one and wi equal to missing or wi � 0 (when you use the EXCLNPWGT option)
are excluded from the analysis and are not included in the calculation of N.

NMISS
is the number of xi values that are missing. Observations with fi less than one
and wi equal to missing or wi � 0 (when you use the EXCLNPWGT option) are
excluded from the analysis and are not included in the calculation of NMISS.

NOBS
is the total number of observations and is calculated as the sum of N and NMISS.
However, if you use the WEIGHT statement, then NOBS is calculated as the sum
of N, NMISS, and the number of observations excluded because of missing or
nonpositive weights.
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RANGE
is the range and is calculated as the difference between maximum value and
minimum value.

SKEWNESS | SKEW
is skewness, which measures the tendency of the deviations to be larger in one
direction than in the other. When VARDEF=DF, the skewness is computed as

c3n
X

z3i

where c3n is n
(n�1)(n�2)

. The weighted skewness is computed as

= c3n
X

((xi � x) =�̂j)
3

= c3n
X

w
3=2
i ((xi � x) =�̂)3

When VARDEF=N, the skewness is computed as

=
1

n

X
z3i

and the weighted skewness is computed as

=
1

n

X
((xi � x) =�̂j)

3

=
1

n

X
w

3=2
i ((xi � x) =�̂)

3

The formula is invariant under the transformation w�i = zwi; z > 0. When you
use VARDEF=WDF or VARDEF=WEIGHT, the skewnessis set to missing.

Note: PROC MEANS and PROC TABULATE do not compute weighted
skewness. 4

STDDEV|STD
is the standard deviation s and is computed as the square root of the variance, s2.

STDERR | STDMEAN
is the standard error of the mean, computed as

s=
qX

wi

when VARDEF=DF, which is the default. Otherwise, STDERR is set to missing.

SUM
is the sum, computed as

X
wixi
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SUMWGT
is the sum of the weights, W , computed as

X
wi

USS
is the uncorrected sum of squares, computed as

X
wix

2

i

VAR
is the variance s2.

Percentile and Related Statistics
The keywords for percentiles and related statistics are

MEDIAN
is the middle value.

P1
is the 1st percentile.

P5
is the 5th percentile.

P10
is the 10th percentile.

P90
is the 90th percentile.

P95
is the 95th percentile.

P99
is the 99th percentile.

Q1
is the lower quartile (25th percentile).

Q3
is the upper quartile (75th percentile).

QRANGE
is interquartile range and is calculated as

Q3 �Q1

You use the PCTLDEF= option to specify the method that the procedure uses to
compute percentiles. Let n be the number of nonmissing values for a variable, and let
x1; x2; . . . ; xn represent the ordered values of the variable such that x1 is the smallest
value, x2 is next smallest value, and xn is the largest value. For the tth percentile
between 0 and 1, let p = t=100. Then define j as the integer part of np and g as the
fractional part of np or (n + 1) p, so that
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np = j + g when PCTLDEF = 1; 2; 3; or 5

(n + 1) p = j + g when PCTLDEF = 4

Here, PCTLDEF= specifies the method that the procedure uses to compute the tth
percentile, as shown in the table that follows.

When you use the WEIGHT statement, the tth percentile is computed as

y =

8>>><
>>>:

1

2
(xi + xi+1) if

iP
j=1

wj = pW

xi+1 if
iP

j=1

wj < pW <
i+1P
j=1

wj

where wj is the weight associated with xi and W =
nP

i=1

wi is the sum of the weights.

When the observations have identical weights, the weighted percentiles where the same
as the unweighted percentiles with PCTLDEF=5.

Table A1.2 Methods for Computing Percentile Statistics

PCTLDEF= Description Formula

1 weighted average at xnp y = (1 � g)xj + gxj+1

where xo is taken to be x1

2 observation numbered closest to np y = xi if g 6= 1
2

y = xj if g = 1
2 and j is

even

y = xj+1 if g = 1
2 and j is

odd

where i is the integer part of np+ 1
2

3 empirical distribution function y = xj if g = 0

y = xj+1 if g > 0

4 weighted average aimed at x(n+1)p y = (1 � g)xj + gxj+1

where xn+1 is taken to be xn

5 empirical distribution function with
averaging y = 1

2 (xj + xj+1) if g = 0

y = xj+1 if g > 0

Hypothesis Testing Statistics
The keywords for hypothesis testing statistics are
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T
is the Student’s t statistic to test the null hypothesis that the population mean is
equal to �0 and is calculated as

x� �0

s=
pP

wi

By default, �0 is equal to zero. You can use the MU0= option in the PROC
UNIVARIATE statement to specify �0. You must use VARDEF=DF, which is the
default variance divisor, otherwise T is set to missing.

By default, when you use a WEIGHT statement, the procedure counts the xi

values with nonpositive weights in the degrees of freedom. Use the EXCLNPWGT
option in the PROC statement to exclude values with nonpositive weights. Most
SAS/STAT procedures, such as PROC TTEST and PROC GLM automatically
exclude values with nonpositive weights.

PROBT
is the two-tailed p-value for Student’s t statistic, T, with n � 1 degrees of freedom.
This is the probability under the null hypothesis of obtaining a more extreme
value of T than is observed in this sample.

Confidence Limits for the Mean
fThe keywords for confidence limits are

CLM
is the two-sided confidence limit for the mean. A two-sided 100 (1 � �)percent
confidence interval for the mean has upper and lower limits

x� t(1��=2;n�1)
spP
wi

where s is
q

1
n�1

P
(xi � x)

2, t(1��=2;n�1) is the (1� �=2) critical value of the
Student’s t statistics with n� 1 degrees of freedom, and � is the value of the
ALPHA= option which by default is 0.05. Unless you use VARDEF=DF, which is
the default variance divisor, CLM is set to missing.

LCLM
is the one-sided confidence limit below the mean. The one-sided
100 (1 � �)percent confidence interval for the mean has the lower limit

x� t(1��;n�1)
spP
wi

Unless you use VARDEF=DF, which is the default variance divisor, LCLM is set to
missing.

UCLM
is the one-sided confidence limit above the mean. The one-sided
100 (1 � �)percent confidence interval for the mean has the upper limit



1466 Using Weights 4 Appendix 1

x+ t(1��;n�1)
s

pP
wi

Unless you use VARDEF=DF, which is the default variance divisor, UCLM is set to
missing.

Using Weights
For more information on using weights and an example, see on page 73.

Data Requirements for Summarization Procedures
The following are the minimal data requirements to compute unweighted statistics

and do not describe recommended sample sizes. Statistics are reported as missing if
VARDEF=DF (the default) and these requirements are not met:

� N and NMISS are computed regardless of the number of missing or nonmissing
observations.

� SUM, MEAN, MAX, MIN, RANGE, USS, and CSS require at least one nonmissing
observation.

� VAR, STD, STDERR, CV, T, and PRT require at least two nonmissing observations.
� SKEWNESS requires at least three nonmissing observations.
� KURTOSIS requires at least four nonmissing observations.
� SKEWNESS, KURTOSIS, T, and PROBT require that STD is greater than zero.
� CV requires that MEAN is not equal to zero.
� CLM, LCLM, UCLM, STDERR, T, and PROBT require that VARDEF=DF.

Statistical Background
The rest of this appendix provides text descriptions and SAS code examples that

explain some of the statistical concepts and terminology that you may encounter when
you interpret the output of SAS procedures for elementary statistics. For a more
thorough discussion, consult an introductory statistics textbook such as Mendenhall
and Beaver (1994); Ott and Mendenhall; or Snedecor and Cochran (1989).

Populations and Parameters
Usually, there is a clearly defined set of elements in which you are interested. This

set of elements is called the universe, and a set of values associated with these elements
is called a population of values. The statistical term population has nothing to do with
people per se. A statistical population is a collection of values, not a collection of people.
For example, a universe is all the students at a particular school, and there could be
two populations of interest: one of height values and one of weight values. Or, a
universe is the set of all widgets manufactured by a particular company, while the
population of values could be the length of time each widget is used before it fails.

A population of values can be described in terms of its cumulative distribution
function, which gives the proportion of the population less than or equal to each
possible value. A discrete population can also be described by a probability function,
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which gives the proportion of the population equal to each possible value. A continuous
population can often be described by a density function, which is the derivative of the
cumulative distribution function. A density function can be approximated by a
histogram that gives the proportion of the population lying within each of a series of
intervals of values. A probability density function is like a histogram with an infinite
number of infinitely small intervals.

In technical literature, when the term distribution is used without qualification, it
generally refers to the cumulative distribution function. In informal writing,
distribution sometimes means the density function instead. Often the word distribution
is used simply to refer to an abstract population of values rather than some concrete
population. Thus, the statistical literature refers to many types of abstract distributions,
such as normal distributions, exponential distributions, Cauchy distributions, and so
on. When a phrase such as normal distribution is used, it frequently does not matter
whether the cumulative distribution function or the density function is intended.

It may be expedient to describe a population in terms of a few measures that
summarize interesting features of the distribution. One such measure, computed from
the population values, is called a parameter. Many different parameters can be defined
to measure different aspects of a distribution.

The most commonly used parameter is the (arithmetic) mean. If the population
contains a finite number of values, the population mean is computed as the sum of all
the values in the population divided by the number of elements in the population. For
an infinite population, the concept of the mean is similar but requires more complicated
mathematics.

E(x) denotes the mean of a population of values symbolized by x, such as height,
where E stands for expected value. You can also consider expected values of derived
functions of the original values. For example, if x represents height, then E

�
x
2
�

is the
expected value of height squared, that is, the mean value of the population obtained by
squaring every value in the population of heights.

Samples and Statistics
It is often impossible to measure all of the values in a population. A collection of

measured values is called a sample. A mathematical function of a sample of values is
called a statistic. A statistic is to a sample as a parameter is to a population. It is
customary to denote statistics by Roman letters and parameters by Greek letters. For
example, the population mean is often written as �, whereas the sample mean is
written as �x. The field of statistics is largely concerned with the study of the behavior of
sample statistics.

Samples can be selected in a variety of ways. Most SAS procedures assume that the
data constitute a simple random sample, which means that the sample was selected in
such a way that all possible samples were equally likely to be selected.

Statistics from a sample can be used to make inferences, or reasonable guesses,
about the parameters of a population. For example, if you take a random sample of 30
students from the high school, the mean height for those 30 students is a reasonable
guess, or estimate, of the mean height of all the students in the high school. Other
statistics, such as the standard error, can provide information about how good an
estimate is likely to be.

For any population parameter, several statistics can estimate it. Often, however,
there is one particular statistic that is customarily used to estimate a given parameter.
For example, the sample mean is the usual estimator of the population mean. In the
case of the mean, the formulas for the parameter and the statistic are the same. In
other cases, the formula for a parameter may be different from that of the most
commonly used estimator. The most commonly used estimator is not necessarily the
best estimator in all applications.
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Measures of Location
Measures of location include the mean, the median, and the mode. These measures

describe the center of a distribution. In the definitions that follows, notice that if the
entire sample changes by adding a fixed amount to each observation, then these
measures of location are shifted by the same fixed amount.

The Mean
The population mean � = E(x ) is usually estimated by the sample mean �x.

The Median
The population median is the central value, lying above and below half of the

population values. The sample median is the middle value when the data are arranged
in ascending or descending order. For an even number of observations, the midpoint
between the two middle values is usually reported as the median.

The Mode
The mode is the value at which the density of the population is at a maximum. Some

densities have more than one local maximum (peak) and are said to be multimodal.
The sample mode is the value that occurs most often in the sample. By default, PROC
UNIVARIATE reports the lowest such value if there is a tie for the most-often-occurring
sample value. PROC UNIVARIATE lists all possible modes when you specify the
MODES option in the PROC statement. If the population is continuous, then all sample
values occur once, and the sample mode has little use.

Percentiles
Percentiles, including quantiles, quartiles, and the median, are useful for a detailed

study of a distribution. For a set of measurements arranged in order of magnitude, the
pth percentile is the value that has p percent of the measurements below it and (100−p)
percent above it. The median is the 50th percentile. Because it may not be possible to
divide your data so that you get exactly the desired percentile, the UNIVARIATE
procedure uses a more precise definition.

The upper quartile of a distribution is the value below which 75 percent of the
measurements fall (the 75th percentile). Twenty-five percent of the measurements fall
below the lower quartile value.

In the following example, SAS artificially generates the data with a pseudorandom
number function. The UNIVARIATE procedure computes a variety of quantiles and
measures of location, and outputs the values to a SAS data set. A DATA step then uses
the SYMPUT routine to assign the values of the statistics to macro variables. The
macro %FORMGEN uses these macro variables to produce value labels for the
FORMAT procedure. PROC CHART uses the resulting format to display the values of
the statistics on a histogram.

options nodate pageno=1 linesize=64 pagesize=52;

title ’Example of Quantiles and Measures of Location’;

data random;
drop n;
do n=1 to 1000;
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X=floor(exp(rannor(314159)*.8+1.8));
output;

end;
run;

proc univariate data=random nextrobs=0;
var x;
output out=location

mean=Mean mode=Mode median=Median
q1=Q1 q3=Q3 p5=P5 p10=P10 p90=P90 p95=P95
max=Max;

run;

proc print data=location noobs;
run;

data _null_;
set location;
call symput(’MEAN’,round(mean,1));
call symput(’MODE’,mode);
call symput(’MEDIAN’,round(median,1));
call symput(’Q1’,round(q1,1));
call symput(’Q3’,round(q3,1));
call symput(’P5’,round(p5,1));
call symput(’P10’,round(p10,1));
call symput(’P90’,round(p90,1));
call symput(’P95’,round(p95,1));
call symput(’MAX’,min(50,max));

run;

%macro formgen;
%do i=1 %to &max;

%let value=&i;
%if &i=&p5 %then %let value=&value P5;
%if &i=&p10 %then %let value=&value P10;
%if &i=&q1 %then %let value=&value Q1;
%if &i=&mode %then %let value=&value Mode;
%if &i=&median %then %let value=&value Median;
%if &i=&mean %then %let value=&value Mean;
%if &i=&q3 %then %let value=&value Q3;
%if &i=&p90 %then %let value=&value P90;
%if &i=&p95 %then %let value=&value P95;
%if &i=&max %then %let value=>=&value;
&i="&value"

%end;
%mend;

proc format print;
value stat %formgen;

run;
options pagesize=42 linesize=64;
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proc chart data=random;
vbar x / midpoints=1 to &max by 1;
format x stat.;
footnote ’P5 = 5TH PERCENTILE’;
footnote2 ’P10 = 10TH PERCENTILE’;
footnote3 ’P90 = 90TH PERCENTILE’;
footnote4 ’P95 = 95TH PERCENTILE’;
footnote5 ’Q1 = 1ST QUARTILE ’;
footnote6 ’Q3 = 3RD QUARTILE ’;

run;

Example of Quantiles and Measures of Location 1

The UNIVARIATE Procedure
Variable: X

Moments

N 1000 Sum Weights 1000
Mean 7.605 Sum Observations 7605
Std Deviation 7.38169794 Variance 54.4894645
Skewness 2.73038523 Kurtosis 11.1870588
Uncorrected SS 112271 Corrected SS 54434.975
Coeff Variation 97.0637467 Std Error Mean 0.23342978

Basic Statistical Measures

Location Variability

Mean 7.605000 Std Deviation 7.38170
Median 5.000000 Variance 54.48946
Mode 3.000000 Range 62.00000

Interquartile Range 6.00000

Tests for Location: Mu0=0

Test -Statistic- -----p Value------

Student’s t t 32.57939 Pr > |t| <.0001
Sign M 494.5 Pr >= |M| <.0001
Signed Rank S 244777.5 Pr >= |S| <.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 62.0
99% 37.5
95% 21.5
90% 16.0
75% Q3 9.0
50% Median 5.0
25% Q1 3.0
10% 2.0
5% 1.0
1% 0.0
0% Min 0.0
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Example of Quantiles and Measures of Location 2

Mean Max P95 P90 Q3 Median Q1 P10 P5 Mode

7.605 62 21.5 16 9 5 3 2 1 3

Example of Quantiles and Measures of Location 3

Frequency

120 + *
| *
| **
| ***

90 +*****
|*****
|*******
|*******

60 +*******
|*********
|*********
|*********

30 +************
|************ *
|**************** *
|*********************** * *
---------------------------------------------------

1234567891111111111222222222233333333334444444444>
0123456789012345678901234567890123456789=

5
PPQ M MQ 0
511 e e3 P P

0 d a 9 9
i n 0 5

M a
o n
d
e

X Midpoint

P5 = 5TH PERCENTILE
P10 = 10TH PERCENTILE
P90 = 90TH PERCENTILE
P95 = 95TH PERCENTILE
Q1 = 1ST QUARTILE
Q3 = 3RD QUARTILE

Measures of Variability
Another group of statistics is important in studying the distribution of a population.

These statistics measure the variability, also called the spread, of values. In the
definitions given in the sections that follow, notice that if the entire sample is changed
by the addition of a fixed amount to each observation, then the values of these statistics
are unchanged. If each observation in the sample is multiplied by a constant, however,
the values of these statistics are appropriately rescaled.
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The Range
The sample range is the difference between the largest and smallest values in the

sample. For many populations, at least in statistical theory, the range is infinite, so the
sample range may not tell you much about the population. The sample range tends to
increase as the sample size increases. If all sample values are multiplied by a constant,
the sample range is multiplied by the same constant.

The Interquartile Range
The interquartile range is the difference between the upper and lower quartiles. If

all sample values are multiplied by a constant, the sample interquartile range is
multiplied by the same constant.

The Variance
The population variance, usually denoted by �2, is the expected value of the squared

difference of the values from the population mean:

�
2 = E(x � �)2

The sample variance is denoted by s2. The difference between a value and the mean
is called a deviation from the mean. Thus, the variance approximates the mean of the
squared deviations.

When all the values lie close to the mean, the variance is small but never less than
zero. When values are more scattered, the variance is larger. If all sample values are
multiplied by a constant, the sample variance is multiplied by the square of the
constant.

Sometimes values other than n � 1 are used in the denominator. The VARDEF=
option controls what divisor the procedure uses.

The Standard Deviation
The standard deviation is the square root of the variance, or root-mean-square

deviation from the mean, in either a population or a sample. The usual symbols are �

for the population and s for a sample. The standard deviation is expressed in the same
units as the observations, rather than in squared units. If all sample values are
multiplied by a constant, the sample standard deviation is multiplied by the same
constant.

Coefficient of Variation
The coefficient of variation is a unitless measure of relative variability. It is defined

as the ratio of the standard deviation to the mean expressed as a percentage. The
coefficient of variation is meaningful only if the variable is measured on a ratio scale. If
all sample values are multiplied by a constant, the sample coefficient of variation
remains unchanged.

Measures of Shape
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Skewness
The variance is a measure of the overall size of the deviations from the mean. Since

the formula for the variance squares the deviations, both positive and negative
deviations contribute to the variance in the same way. In many distributions, positive
deviations may tend to be larger in magnitude than negative deviations, or vice versa.
Skewness is a measure of the tendency of the deviations to be larger in one direction
than in the other. For example, the data in the last example are skewed to the right.

Population skewness is defined as

E (x � �)3 =�3

Because the deviations are cubed rather than squared, the signs of the deviations are
maintained. Cubing the deviations also emphasizes the effects of large deviations. The
formula includes a divisor of �3 to remove the effect of scale, so multiplying all values
by a constant does not change the skewness. Skewness can thus be interpreted as a
tendency for one tail of the population to be heavier than the other. Skewness can be
positive or negative and is unbounded.

Kurtosis
The heaviness of the tails of a distribution affects the behavior of many statistics.

Hence it is useful to have a measure of tail heaviness. One such measure is kurtosis.
The population kurtosis is usually defined as

E (x � �)4

�4
� 3

Note: Some statisticians omit the subtraction of 3. 4

Because the deviations are raised to the fourth power, positive and negative
deviations make the same contribution, while large deviations are strongly emphasized.
Because of the divisor �4, multiplying each value by a constant has no effect on kurtosis.

Population kurtosis must lie between �2 and +1, inclusive. If M3 represents
population skewness and M4 represents population kurtosis, then

M4 > (M3)
2
� 2

Statistical literature sometimes reports that kurtosis measures the peakedness of a
density. However, heavy tails have much more influence on kurtosis than does the shape
of the distribution near the mean (Kaplansky 1945; Ali 1974; Johnson, et al. 1980).

Sample skewness and kurtosis are rather unreliable estimators of the corresponding
parameters in small samples. They are better estimators when your sample is very
large. However, large values of skewness or kurtosis may merit attention even in small
samples because such values indicate that statistical methods that are based on
normality assumptions may be inappropriate.
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The Normal Distribution

One especially important family of theoretical distributions is the normal or Gaussian
distribution. A normal distribution is a smooth symmetric function often referred to as
"bell-shaped." Its skewness and kurtosis are both zero. A normal distribution can be
completely specified by only two parameters: the mean and the standard deviation.
Approximately 68 percent of the values in a normal population are within one standard
deviation of the population mean; approximately 95 percent of the values are within
two standard deviations of the mean; and about 99.7 percent are within three standard
deviations. Use of the term normal to describe this particular kind of distribution does
not imply that other kinds of distributions are necessarily abnormal or pathological.

Many statistical methods are designed under the assumption that the population
being sampled is normally distributed. Nevertheless, most real-life populations do not
have normal distributions. Before using any statistical method based on normality
assumptions, you should consult the statistical literature to find out how sensitive the
method is to nonnormality and, if necessary, check your sample for evidence of
nonnormality.

In the following example, SAS generates a sample from a normal distribution with a
mean of 50 and a standard deviation of 10. The UNIVARIATE procedure performs tests
for location and normality. Because the data are from a normal distribution, all p-values
from the tests for normality are greater than 0.15. The CHART procedure displays a
histogram of the observations. The shape of the histogram is a belllike, normal density.

options nodate pageno=1 linesize=64 pagesize=52;

title ’10000 Obs Sample from a Normal Distribution’;
title2 ’with Mean=50 and Standard Deviation=10’;

data normaldat;
drop n;
do n=1 to 10000;

X=10*rannor(53124)+50;
output;

end;
run;

proc univariate data=normaldat nextrobs=0 normal
mu0=50 loccount;

var x;
run;

proc format;
picture msd

20=’20 3*Std’ (noedit)
30=’30 2*Std’ (noedit)
40=’40 1*Std’ (noedit)
50=’50 Mean ’ (noedit)
60=’60 1*Std’ (noedit)
70=’70 2*Std’ (noedit)
80=’80 3*Std’ (noedit)

other=’ ’;
run;
options linesize=64 pagesize=42;
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proc chart;
vbar x / midpoints=20 to 80 by 2;
format x msd.;

run;

10000 Obs Sample from a Normal Distribution 1
with Mean=50 and Standard Deviation=10

The UNIVARIATE Procedure
Variable: X

Moments

N 10000 Sum Weights 10000
Mean 50.0323744 Sum Observations 500323.744
Std Deviation 9.92013874 Variance 98.4091525
Skewness -0.019929 Kurtosis -0.0163755
Uncorrected SS 26016378 Corrected SS 983993.116
Coeff Variation 19.8274395 Std Error Mean 0.09920139

Basic Statistical Measures

Location Variability

Mean 50.03237 Std Deviation 9.92014
Median 50.06492 Variance 98.40915
Mode . Range 76.51343

Interquartile Range 13.28179

Tests for Location: Mu0=50

Test -Statistic- -----p Value------

Student’s t t 0.32635 Pr > |t| 0.7442
Sign M 26 Pr >= |M| 0.6101
Signed Rank S 174063 Pr >= |S| 0.5466

Location Counts: Mu0=50.00

Count Value

Num Obs > Mu0 5026
Num Obs ^= Mu0 10000
Num Obs < Mu0 4974

Tests for Normality

Test --Statistic--- -----p Value------

Kolmogorov-Smirnov D 0.006595 Pr > D >0.1500
Cramer-von Mises W-Sq 0.049963 Pr > W-Sq >0.2500
Anderson-Darling A-Sq 0.371151 Pr > A-Sq >0.2500
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10000 Obs Sample from a Normal Distribution 2
with Mean=50 and Standard Deviation=10

The UNIVARIATE Procedure
Variable: X

Quantiles (Definition 5)

Quantile Estimate

100% Max 90.2105
99% 72.6780
95% 66.2221
90% 62.6678
75% Q3 56.7280
50% Median 50.0649
25% Q1 43.4462
10% 37.1139
5% 33.5454
1% 26.9189
0% Min 13.6971

10000 Obs Sample from a Normal Distribution 3
with Mean=50 and Standard Deviation=10

Frequency

| *
800 + ***

| ****
| ******
| *******

600 + *******
| **********
| ***********
| ***********

400 + ************
| *************
| ***************
| *****************

200 + ******************
| *******************
| **********************
| ***************************
--------------------------------

2 3 4 5 6 7 8
0 0 0 0 0 0 0

3 2 1 M 1 2 3
* * * e * * *
S S S a S S S
t t t n t t t
d d d d d d

X Midpoint

Sampling Distribution of the Mean

If you repeatedly draw samples of size n from a population and compute the mean of
each sample, then the sample means themselves have a distribution. Consider a new
population consisting of the means of all the samples that could possibly be drawn from
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the original population. The distribution of this new population is called a sampling
distribution.

It can be proven mathematically that if the original population has mean � and
standard deviation �, then the sampling distribution of the mean also has mean �, but
its standard deviation is �=

p
n. The standard deviation of the sampling distribution of

the mean is called the standard error of the mean. The standard error of the mean
provides an indication of the accuracy of a sample mean as an estimator of the
population mean.

If the original population has a normal distribution, then the sampling distribution of
the mean is also normal. If the original distribution is not normal but does not have
excessively long tails, then the sampling distribution of the mean can be approximated
by a normal distribution for large sample sizes.

The following example consists of three separate programs that show how the
sampling distribution of the mean can be approximated by a normal distribution as the
sample size increases. The first DATA step uses the RANEXP function to create a
sample of 1000 observations from an exponential distribution.The theoretical
population mean is 1.00, while the sample mean is 1.01, to two decimal places. The
population standard deviation is 1.00; the sample standard deviation is 1.04.

This is an example of a nonnormal distribution. The population skewness is 2.00,
which is close to the sample skewness of 1.97. The population kurtosis is 6.00, but the
sample kurtosis is only 4.80.

options nodate pageno=1 linesize=64 pagesize=42;

title ’1000 Observation Sample’;
title2 ’from an Exponential Distribution’;

data expodat;
drop n;
do n=1 to 1000;

X=ranexp(18746363);
output;

end;
run;
proc format;

value axisfmt
.05=’0.05’
.55=’0.55’

1.05=’1.05’
1.55=’1.55’
2.05=’2.05’
2.55=’2.55’
3.05=’3.05’
3.55=’3.55’
4.05=’4.05’
4.55=’4.55’
5.05=’5.05’
5.55=’5.55’
other=’ ’;

run;

proc chart data=expodat ;
vbar x / axis=300

midpoints=0.05 to 5.55 by .1;
format x axisfmt.;
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run;

options pagesize=64;

proc univariate data=expodat noextrobs=0 normal
mu0=1;

var x;
run;

1000 Observation Sample 1
from an Exponential Distribution

Frequency

300 +
|
|
|
|

250 +
|
|
|
|

200 +
|
|
|
|

150 +
|
|
|
|

100 +*
|*
|*** *
|*****
|***** *

50 +********
|***********
|************ *
|*************** ** *
|************************* *** *** * * *
---------------------------------------------------------

0 0 1 1 2 2 3 3 4 4 5 5
. . . . . . . . . . . .
0 5 0 5 0 5 0 5 0 5 0 5
5 5 5 5 5 5 5 5 5 5 5 5

X Midpoint
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1000 Observation Sample 2
from an Exponential Distribution

The UNIVARIATE Procedure
Variable: X

Moments

N 1000 Sum Weights 1000
Mean 1.01176214 Sum Observations 1011.76214
Std Deviation 1.04371187 Variance 1.08933447
Skewness 1.96963112 Kurtosis 4.80150594
Uncorrected SS 2111.90777 Corrected SS 1088.24514
Coeff Variation 103.15783 Std Error Mean 0.03300507

Basic Statistical Measures

Location Variability

Mean 1.011762 Std Deviation 1.04371
Median 0.689502 Variance 1.08933
Mode . Range 6.63851

Interquartile Range 1.06252

Tests for Location: Mu0=1

Test -Statistic- -----p Value------

Student’s t t 0.356374 Pr > |t| 0.7216
Sign M -140 Pr >= |M| <.0001
Signed Rank S -50781 Pr >= |S| <.0001

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.801498 Pr < W <0.0001
Kolmogorov-Smirnov D 0.166308 Pr > D <0.0100
Cramer-von Mises W-Sq 9.507975 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 54.5478 Pr > A-Sq <0.0050

Quantiles (Definition 5)

Quantile Estimate

100% Max 6.63906758
99% 5.04491651
95% 3.13482318
90% 2.37803632
75% Q3 1.35733401
50% Median 0.68950221
25% Q1 0.29481436
10% 0.10219011
5% 0.05192799
1% 0.01195590
0% Min 0.00055441

The next DATA step generates 1000 different samples from the same exponential
distribution. Each sample contains ten observations. The MEANS procedure computes
the mean of each sample. In the data set that is created by PROC MEANS, each
observation represents the mean of a sample of ten observations from an exponential
distribution. Thus, the data set is a sample from the sampling distribution of the mean
for an exponential population.
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PROC UNIVARIATE displays statistics for this sample of means. Notice that the
mean of the sample of means is .99, almost the same as the mean of the original
population. Theoretically, the standard deviation of the sampling distribution is
�=
p
n = 1:00=

p
10 = :32, whereas the standard deviation of this sample from

thesampling distribution is .30. The skewness (.55) and kurtosis (-.006) are closer to
zero in the sample from the sampling distribution than in the original sample from the
exponential distribution. This is so because the sampling distribution is closer to a
normal distribution than is the original exponential distribution. The CHART
procedure displays a histogram of the 1000-sample means. The shape of the histogram
is much closer to a belllike, normal density, but it is still distinctly lopsided.

options nodate pageno=1 linesize=64 pagesize=48;

title ’1000 Sample Means with 10 Obs per Sample’;
title2 ’Drawn from an Exponential Distribution’;

data samp10;
drop n;
do Sample=1 to 1000;

do n=1 to 10;
X=ranexp(433879);
output;

end;
end;

proc means data=samp10 noprint;
output out=mean10 mean=Mean;
var x;
by sample;

run;

proc format;
value axisfmt

.05=’0.05’

.55=’0.55’
1.05=’1.05’
1.55=’1.55’
2.05=’2.05’
other=’ ’;

run;

proc chart data=mean10;
vbar mean/axis=300

midpoints=0.05 to 2.05 by .1;
format mean axisfmt.;

run;

options pagesize=64;
proc univariate data=mean10 noextrobs=0 normal

mu0=1;
var mean;

run;
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1000 Sample Means with 10 Obs per Sample 1
Drawn from an Exponential Distribution

Frequency

300 +
|
|
|
|

250 +
|
|
|
|

200 +
|
|
|
|

150 +
| *
| * * *
| * * * *
| * * * *
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| * * * * * * * *

50 + * * * * * * * * * *
| * * * * * * * * * *
| * * * * * * * * * * *
| * * * * * * * * * * * *
| * * * * * * * * * * * * * * * *
--------------------------------------------

0 0 1 1 2
. . . . .
0 5 0 5 0
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1000 Sample Means with 10 Obs per Sample 2
Drawn from an Exponential Distribution

The UNIVARIATE Procedure
Variable: Mean

Moments

N 1000 Sum Weights 1000
Mean 0.9906857 Sum Observations 990.685697
Std Deviation 0.30732649 Variance 0.09444957
Skewness 0.54575615 Kurtosis -0.0060892
Uncorrected SS 1075.81327 Corrected SS 94.3551193
Coeff Variation 31.0215931 Std Error Mean 0.00971852

Basic Statistical Measures

Location Variability

Mean 0.990686 Std Deviation 0.30733
Median 0.956152 Variance 0.09445
Mode . Range 1.79783

Interquartile Range 0.41703

Tests for Location: Mu0=1

Test -Statistic- -----p Value------

Student’s t t -0.95841 Pr > |t| 0.3381
Sign M -53 Pr >= |M| 0.0009
Signed Rank S -22687 Pr >= |S| 0.0129

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.9779 Pr < W <0.0001
Kolmogorov-Smirnov D 0.055498 Pr > D <0.0100
Cramer-von Mises W-Sq 0.953926 Pr > W-Sq <0.0050
Anderson-Darling A-Sq 5.945023 Pr > A-Sq <0.0050

Quantiles (Definition 5)

Quantile Estimate

100% Max 2.053899
99% 1.827503
95% 1.557175
90% 1.416611
75% Q3 1.181006
50% Median 0.956152
25% Q1 0.763973
10% 0.621787
5% 0.553568
1% 0.433820
0% Min 0.256069

In the following DATA step, the size of each sample from the exponential distribution
is increased to 50. The standard deviation of the sampling distribution is smaller than
in the previous example because the size of each sample is larger. Also, the sampling
distribution is even closer to a normal distribution, as can be seen from the histogram
and the skewness.
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options nodate pageno=1 linesize=64 pagesize=48;

title ’1000 Sample Means with 50 Obs per Sample’;
title2 ’Drawn from an Exponential Distribution’;

data samp50;
drop n;
do sample=1 to 1000;

do n=1 to 50;
X=ranexp(72437213);
output;

end;
end;

proc means data=samp50 noprint;
output out=mean50 mean=Mean;
var x;
by sample;

run;

proc format;
value axisfmt

.05=’0.05’

.55=’0.55’
1.05=’1.05’
1.55=’1.55’
2.05=’2.05’
2.55=’2.55’
other=’ ’;

run;

proc chart data=mean50;
vbar mean / axis=300

midpoints=0.05 to 2.55 by .1;
format mean axisfmt.;

run;

options pagesize=64;

proc univariate data=mean50 nextrobs=0 normal
mu0=1;

var mean;
run;
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1000 Sample Means with 50 Obs per Sample 1
Drawn from an Exponential Distribution

Frequency

300 +
|
|
| *
| * *

250 + * *
| * *
| * *
| * *
| * *

200 + * *
| * *
| * * *
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150 + * * * *
| * * * *
| * * * *
| * * * *
| * * * *

100 + * * * *
| * * * *
| * * * *
| * * * * *
| * * * * * *

50 + * * * * * *
| * * * * * *
| * * * * * *
| * * * * * * *
| * * * * * * * *
------------------------------------------------------
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. . . . . .
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1000 Sample Means with 50 Obs per Sample 2
Drawn from an Exponential Distribution

The UNIVARIATE Procedure
Variable: Mean

Moments

N 1000 Sum Weights 1000
Mean 0.99679697 Sum Observations 996.796973
Std Deviation 0.13815404 Variance 0.01908654
Skewness 0.19062633 Kurtosis -0.1438604
Uncorrected SS 1012.67166 Corrected SS 19.067451
Coeff Variation 13.8597969 Std Error Mean 0.00436881

Basic Statistical Measures

Location Variability

Mean 0.996797 Std Deviation 0.13815
Median 0.996023 Variance 0.01909
Mode . Range 0.87040

Interquartile Range 0.18956

Tests for Location: Mu0=1

Test -Statistic- -----p Value------

Student’s t t -0.73316 Pr > |t| 0.4636
Sign M -13 Pr >= |M| 0.4292
Signed Rank S -10767 Pr >= |S| 0.2388

Tests for Normality

Test --Statistic--- -----p Value------

Shapiro-Wilk W 0.996493 Pr < W 0.0247
Kolmogorov-Smirnov D 0.023687 Pr > D >0.1500
Cramer-von Mises W-Sq 0.084468 Pr > W-Sq 0.1882
Anderson-Darling A-Sq 0.66039 Pr > A-Sq 0.0877

Quantiles (Definition 5)

Quantile Estimate

100% Max 1.454957
99% 1.337016
95% 1.231508
90% 1.179223
75% Q3 1.086515
50% Median 0.996023
25% Q1 0.896953
10% 0.814906
5% 0.780783
1% 0.706588
0% Min 0.584558

Testing Hypotheses

The purpose of the statistical methods that have been discussed so far is to estimate
a population parameter by means of a sample statistic. Another class of statistical
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methods is used for testing hypotheses about population parameters or for measuring
the amount of evidence against a hypothesis.

Consider the universe of students in a college. Let the variable X be the number of
pounds by which a student’s weight deviates from the ideal weight for a person of the
same sex, height, and build. You want to find out whether the population of students is,
on the average, underweight or overweight. To this end, you have taken a random
sample of X values from nine students, with results as given in the following DATA step:

title ’Deviations from Normal Weight’;

data x;
input X @@;
datalines;

-7 -2 1 3 6 10 15 21 30
;

You can define several hypotheses of interest. One hypothesis is that, on the average,
the students are of exactly ideal weight. If � represents the population mean of the X
values, you can write this hypothesis, called the null hypothesis, as H0 : � = 0. The
other two hypotheses, called alternative hypotheses, are that the students are
underweight on the average, H1 : � < 0, and that the students are overweight on the
average, H2 : � > 0.

The null hypothesis is so called because in many situations it corresponds to the
assumption of “no effect” or “no difference.” However, this interpretation is not
appropriate for all testing problems. The null hypothesis is like a straw man that can
be toppled by statistical evidence. You decide between the alternative hypotheses
according to which way the straw man falls.

A naive way to approach this problem would be to look at the sample mean �x and
decide among the three hypotheses according to the following rule:

� If �x < 0, decide on H1 : � < 0.
� If �x = 0, decide on H0 : � = 0.
� If �x > 0, decide on H2 : � > 0.

The trouble with this approach is that there may be a high probability of making an
incorrect decision. If H0 is true, you are nearly certain to make a wrong decision
because the chances of �x being exactly zero are almost nil. If � is slightly less than
zero, so that H1 is true, there may be nearly a 50 percent chance that �x will be greater
than zero in repeated sampling, so the chances of incorrectly choosing H2 would also be
nearly 50 percent. Thus, you have a high probability of making an error if �x is near
zero. In such cases, there is not enough evidence to make a confident decision, so the
best response may be to reserve judgment until you can obtain more evidence.

The question is, how far from zero must �x be for you to be able to make a confident
decision? The answer can be obtained by considering the sampling distribution of �x. If
X has a roughly normal distribution, then �x has an approximately normal sampling
distribution. The mean of the sampling distribution of �x is �. Assume temporarily that
�, the standard deviation of X, is known to be 12. Then the standard error of �x for
samples of nine observations is �=

p
n = 12=

p
9 = 4.

You know that about 95 percent of the values from a normal distribution are within
two standard deviations of the mean, so about 95 percent of the possible samples of
nine X values have a sample mean �x between 0� 2 (4)and 0 + 2 (4), or between −8
and 8. Consider the chances of making an error with the following decision rule:

� If �x < �8, decide on H1 : � < 0.
� If �8 � �x � 8, reserve judgment.
� If �x > 8, decide on H2 : � > 0.
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If H0 is true, then in about 95 percent of the possible samples �x will be between the
critical values �8 and 8, so you will reserve judgment. In these cases the statistical
evidence is not strong enough to fell the straw man. In the other 5 percent of the
samples you will make an error; in 2.5 percent of the samples you will incorrectly
choose H1, and in 2.5 percent you will incorrectly choose H2.

The price you pay for controlling the chances of making an error is the necessity of
reserving judgment when there is not sufficient statistical evidence to reject the null
hypothesis.

Significance and Power
The probability of rejecting the null hypothesis if it is true is called the Type I error

rate of the statistical test and is typically denoted as �. In this example, an �x value less
than �8 or greater than 8 is said to be statistically significant at the 5 percent level.
You can adjust the type I error rate according to your needs by choosing different critical
values. For example, critical values of −4 and 4 would produce a significance level of
about 32 percent, while −12 and 12 would give a type I error rate of about 0.3 percent.

The decision rule is a two-tailed test because the alternative hypotheses allow for
population means either smaller or larger than the value specified in the null
hypothesis. If you were interested only in the possibility of the students being
overweight on the average, you could use a one-tailed test:

� If �x � 8, reserve judgment.
� If �x > 8, decide on H2 : � > 0.

For this one-tailed test, the type I error rate is 2.5 percent, half that of the two-tailed
test.

The probability of rejecting the null hypothesis if it is false is called the power of the
statistical test and is typically denoted as 1� �. � is called the Type II error rate,
which is the probability of not rejecting a false null hypothesis. The power depends on
the true value of the parameter. In the example, assume the population mean is 4. The
power for detecting H2 is the probability of getting a sample mean greater than 8. The
critical value 8 is one standard error higher than the population mean 4. The chance of
getting a value at least one standard deviation greater than the mean from a normal
distribution is about 16 percent, so the power for detecting the alternative hypothesis
H2 is about 16 percent. If the population mean were 8, the power for H2 would be 50
percent, whereas a population mean of 12 would yield a power of about 84 percent.

The smaller the type I error rate is, the less the chance of making an incorrect
decision, but the higher the chance of having to reserve judgment. In choosing a type I
error rate, you should consider the resulting power for various alternatives of interest.

Student’s t Distribution
In practice, you usually cannot use any decision rule that uses a critical value based

on � because you do not usually know the value of �. You can, however, use s as an
estimate of �. Consider the following statistic:

t =
�x� �0
s=
p
n

This t statistic is the difference between the sample mean and the hypothesized
mean �0 divided by the estimated standard error of the mean.

If the null hypothesis is true and the population is normally distributed, then the t
statistic has what is called a Student’s t distribution with n� 1 degrees of freedom.
This distribution looks very similar to a normal distribution, but the tails of the
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Student’s t distribution are heavier. As the sample size gets larger, the sample standard
deviation becomes a better estimator of the population standard deviation, and the t
distribution gets closer to a normal distribution.

You can base a decision rule on the t statistic:
� If t < �2:3, decide on H1 : � < 0.
� If �2:3 � t � 2:3, reserve judgment.
� If t > 2:3, decide on H0 : � > 0.

The value 2.3 was obtained from a table of Student’s t distribution to give a type I
error rate of 5 percent for 8 (that is, 9� 1 = 8) degrees of freedom. Most common
statistics texts contain a table of Student’s t distribution. If you do not have a statistics
text handy, you can use the DATA step and the TINV function to print any values from
the t distribution.

By default, PROC UNIVARIATE computes a t statistic for the null hypothesis that
�0 = 0, along with related statistics. Use the MU0= option in the PROC statement to
specify another value for the null hypothesis.

This example uses the data on deviations from normal weight, which consist of nine
observations. First, PROC MEANS computes the t statistic for the null hypothesis that
� = 0. Then, the TINV function in a DATA step computes the value of Student’s t
distribution for a two-tailed test at the 5 percent level of significance and 8 degrees of
freedom.

data devnorm;
title ’Deviations from Normal Weight’;
input X @@;
datalines;

-7 -2 1 3 6 10 15 21 30
;

proc means data=devnorm maxdec=3 n mean
std stderr t probt;

run;

title ’Student’’s t Critical Value’;

data _null_;
file print;
t=tinv(.975,8);
put t 5.3;

run;

Deviations from Normal Weight 1
The MEANS Procedure

Analysis Variable : X

N Mean Std Dev Std Error t Value Pr > |t|
--------------------------------------------------------------
9 8.556 11.759 3.920 2.18 0.0606
--------------------------------------------------------------

Student’s t Critical Value 2
2.306
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In the current example, the value of the t statistic is 2.18, which is less than the critical
t value of 2.3 (for a 5 percent significance level and 8 degrees of freedom). Thus, at a 5
percent significance level you must reserve judgment. If you had elected to use a 10
percent significance level, the critical value of the t distribution would have been 1.86
and you could have rejected the null hypothesis. The sample size is so small, however,
that the validity of your conclusion depends strongly on how close the distribution of
the population is to a normal distribution.

Probability Values
Another way to report the results of a statistical test is to compute a probability

value or p-value. A p-value gives the probability in repeated sampling of obtaining a
statistic as far in the direction(s) specified by the alternative hypothesis as is the value
actually observed. A two-tailed p-value for a t statistic is the probability of obtaining an
absolute t value that is greater than the observed absolute t value. A one-tailed p-value
for a t statistic for the alternative hypothesis � > �0 is the probability of obtaining a t
value greater than the observed t value. Once the p-value is computed, you can perform
a hypothesis test by comparing the p-value with the desired significance level. If the
p-value is less than or equal to the type I error rate of the test, the null hypothesis can
be rejected. The two-tailed p-value, labeled Pr > |t| in the PROC MEANS output, is
.0606, so the null hypothesis could be rejected at the 10 percent significance level but
not at the 5 percent level.

A p-value is a measure of the strength of the evidence against the null hypothesis.
The smaller the p-value, the stronger the evidence for rejecting the null hypothesis.
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