Overview

This appendix provides a brief description of some of the statistical concepts necessary for you to interpret the output of base SAS procedures for elementary statistics. In addition, this appendix lists statistical notation, formulas, and standard keywords used for common statistics in base SAS procedures. Brief examples illustrate the statistical concepts.
Table A1.1 on page 1459 lists the most common statistics and the procedures that compute them.

Keywords and Formulas

The base SAS procedures use a standardized set of keywords to refer to statistics. You specify these keywords in SAS statements to request the statistics to be displayed or stored in an output data set.

In the following notation, summation is over observations that contain nonmissing values of the analyzed variable and, except where shown, over nonmissing weights and frequencies of one or more:

- \(x_i \) is the nonmissing value of the analyzed variable for observation \(i \).
- \(f_i \) is the frequency that is associated with \(x_i \) if you use a FREQ statement. If you omit the FREQ statement, then \(f_i = 1 \) for all \(i \).
- \(w_i \) is the weight that is associated with \(x_i \) if you use a WEIGHT statement. The base procedures automatically exclude the values of \(x_i \) with missing weights from the analysis.

By default, the base procedures treat a negative weight as if it is equal to zero. However, if you use the EXCLNPWGT option in the PROC statement, the procedure also excludes those values of \(x_i \) with nonpositive weights. Note that most SAS/STAT procedures, such as PROC TTEST and PROC GLM, exclude values with nonpositive weights by default.

If you omit the WEIGHT statement, then \(w_i = 1 \) for all \(i \).

- \(n \) is the number of nonmissing value of \(x_i \), \(\sum f_i \). If you use the EXCLNPWGT option and the WEIGHT statement, then \(n \) is the number of nonmissing values with positive weights.

- \(\bar{x} \) is the mean

\[
\bar{x} = \frac{\sum w_i x_i}{\sum w_i}
\]

- \(s^2 \) is the variance

\[
s^2 = \frac{1}{d} \sum w_i (x_i - \bar{x})^2
\]
where d is the variance divisor (the VARDEF= option) that you specify in the PROC statement. Valid values are as follows:

<table>
<thead>
<tr>
<th>When VARDEF=</th>
<th>d equals . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>n</td>
</tr>
<tr>
<td>DF</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>$\sum w_i$</td>
</tr>
<tr>
<td>WDF</td>
<td>$\sum w_i - 1$</td>
</tr>
</tbody>
</table>

The default is DF.

z_i is the standardized variable

$\frac{(x_i - \bar{x})}{s}$

The standard keywords and formulas for each statistic follow. Some formulas use keywords to designate the corresponding statistic.

<table>
<thead>
<tr>
<th>Table A1.1</th>
<th>The Most Common Simple Statistics</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Statistic</th>
<th>PROC MEANS and SUMMARY</th>
<th>PROC UNIVARIATE</th>
<th>PROC TABULATE</th>
<th>PROC REPORT</th>
<th>PROC CORR</th>
<th>PROC SQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of missing values</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Number of nonmissing values</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Number of observations</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sum of weights</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mean</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sum</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Extreme values</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Maximum</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Range</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Uncorrected sum of squares</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Corrected sum of squares</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Variance</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Covariance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Standard error of the mean</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Descriptive Statistics

The keywords for descriptive statistics are

CSS

is the sum of squares corrected for the mean, computed as

$$\sum w_i (x_i - \bar{x})^2$$

CV

is the percent coefficient of variation, computed as

$$\left(\frac{100s}{\bar{x}} \right)$$

KURTOSIS | KURT

is the kurtosis, which measures heaviness of tails. When VARDEF=DF, the kurtosis is computed as

$$c_4 \sum z_i^4 - \frac{3(n-1)}{(n-2)(n-3)}$$

<table>
<thead>
<tr>
<th>Statistic</th>
<th>PROC MEANS and SUMMARY</th>
<th>PROC UNIVARIATE</th>
<th>PROC TABULATE</th>
<th>PROC REPORT</th>
<th>PROC CORR</th>
<th>PROC SQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient of variation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Skewness</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kurtosis</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confidence Limits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of the mean</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of the variance</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of quantiles</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentiles/Deciles/Quartiles</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for mean=0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>for mean=μ_0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonparametric tests for location</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tests for normality</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation coefficients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cronbach's alpha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
where \(c_{4n} \) is \(\frac{n(n+1)}{(n-1)(n-2)(n-3)} \). The weighted kurtosis is computed as

\[
= c_{4n} \sum \left(\frac{(x_i - \bar{x})}{\hat{\sigma}_i} \right)^4 - \frac{3(n-1)}{(n-2)(n-3)} \\
= c_{4n} \sum w_i^2 \left(\frac{(x_i - \bar{x})}{\hat{\sigma}} \right)^4 - \frac{3(n-1)}{(n-2)(n-3)}
\]

When VARDEF=N, the kurtosis is computed as

\[
= \frac{1}{n} \sum z_i^4 - 3
\]

and the weighted kurtosis is computed as

\[
= \frac{1}{n} \sum \left(\frac{(x_i - \bar{x})}{\hat{\sigma}_i} \right)^4 - 3 \\
= \frac{1}{n} \sum w_i^2 \left(\frac{(x_i - \bar{x})}{\hat{\sigma}} \right)^4 - 3
\]

where \(\sigma_i^2 \) is \(\sigma^2 / w_i \). The formula is invariant under the transformation \(w_i^* = zw_i, \ z > 0 \). When you use VARDEF=WDF or VARDEF=WEIGHT, the kurtosis is set to missing.

Note: PROC MEANS and PROC TABULATE do not compute weighted kurtosis.

MAX
- is the maximum value of \(x_i \).

MEAN
- is the arithmetic mean \(\bar{x} \).

MIN
- is the minimum value of \(x_i \).

MODE
- is the most frequent value of \(x_i \).

N
- is the number of \(x_i \) values that are not missing. Observations with \(f_i < 1 \) and \(w_i \) equal to missing or \(w_i \leq 0 \) (when you use the EXCLNPWGT option) are excluded from the analysis and are not included in the calculation of N.

NMISS
- is the number of \(x_i \) values that are missing. Observations with \(f_i < 1 \) and \(w_i \) equal to missing or \(w_i \leq 0 \) (when you use the EXCLNPWGT option) are excluded from the analysis and are not included in the calculation of NMISS.

NOBS
- is the total number of observations and is calculated as the sum of N and NMISS. However, if you use the WEIGHT statement, then NOBS is calculated as the sum of N, NMISS, and the number of observations excluded because of missing or nonpositive weights.
RANGE
is the range and is calculated as the difference between maximum value and minimum value.

SKEWNESS | SKEW
is skewness, which measures the tendency of the deviations to be larger in one direction than in the other. When VARDEF=DF, the skewness is computed as

\[c_3n \sum z_i^3 \]

where \(c_3n \) is \(\frac{n}{(n-1)(n-2)} \). The weighted skewness is computed as

\[= c_3n \sum \left(\frac{x_i - \bar{x}}{\hat{\sigma}_j} \right)^3 \]
\[= c_3n \sum \frac{w_i^{3/2}}{(x_i - \bar{x})^3} \]

When VARDEF=N, the skewness is computed as

\[= \frac{1}{n} \sum z_i^3 \]

and the weighted skewness is computed as

\[= \frac{1}{n} \sum \left(\frac{x_i - \bar{x}}{\hat{\sigma}_j} \right)^3 \]
\[= \frac{1}{n} \sum \frac{w_i^{3/2}}{(x_i - \bar{x})^3} \]

The formula is invariant under the transformation \(w_i^z = zw_i, z > 0 \). When you use VARDEF=WDF or VARDEF=WEIGHT, the skewness is set to missing.

Note: PROC MEANS and PROC TABULATE do not compute weighted skewness.

STDDEV | STD
is the standard deviation \(s \) and is computed as the square root of the variance, \(s^2 \).

STDERR | STDMEAN
is the standard error of the mean, computed as

\[s/\sqrt{\sum w_i} \]

when VARDEF=DF, which is the default. Otherwise, STDERR is set to missing.

SUM
is the sum, computed as

\[\sum w_i x_i \]
SUMWGT
is the sum of the weights, W, computed as
\[\sum w_i \]

USS
is the uncorrected sum of squares, computed as
\[\sum w_i x_i^2 \]

VAR
is the variance s^2.

Percentile and Related Statistics

The keywords for percentiles and related statistics are

MEDIAN
is the middle value.

P1
is the 1^{st} percentile.

P5
is the 5^{th} percentile.

P10
is the 10^{th} percentile.

P90
is the 90^{th} percentile.

P95
is the 95^{th} percentile.

P99
is the 99^{th} percentile.

Q1
is the lower quartile (25^{th} percentile).

Q3
is the upper quartile (75^{th} percentile).

QRANGE
is interquartile range and is calculated as
\[Q_3 - Q_1 \]

You use the PCTLDEF= option to specify the method that the procedure uses to compute percentiles. Let n be the number of nonmissing values for a variable, and let x_1, x_2, \ldots, x_n represent the ordered values of the variable such that x_1 is the smallest value, x_2 is next smallest value, and x_n is the largest value. For the t^{th} percentile between 0 and 1, let $p = t/100$. Then define j as the integer part of np and g as the fractional part of np or $(n + 1) p$, so that
Here, \texttt{PCTLDEF=} specifies the method that the procedure uses to compute the tth percentile, as shown in the table that follows.

When you use the \texttt{WEIGHT} statement, the tth percentile is computed as

$$y = \begin{cases} \frac{1}{2} (x_i + x_{i+1}) & \text{if } \sum_{j=1}^{i} w_j = pW \\ x_{i+1} & \text{if } \sum_{j=1}^{i} w_j < pW < \sum_{j=1}^{i+1} w_j \end{cases}$$

where w_j is the weight associated with x_i and $W = \sum_{i=1}^{n} w_i$ is the sum of the weights.

When the observations have identical weights, the weighted percentiles where the same as the unweighted percentiles with \texttt{PCTLDEF=}5.

<table>
<thead>
<tr>
<th>\texttt{PCTLDEF=}</th>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>weighted average at x_{np}</td>
<td>$y = (1 - g) x_j + g x_{j+1}$ where x_o is taken to be x_1</td>
</tr>
</tbody>
</table>
| 2 | observation numbered closest to np | $y = x_i$ if $g \neq \frac{1}{2}$
$y = x_j$ if $g = \frac{1}{2}$ and j is even
$y = x_{j+1}$ if $g = \frac{1}{2}$ and j is odd |
| 3 | empirical distribution function | $y = x_j$ if $g = 0$
$y = x_{j+1}$ if $g > 0$ |
| 4 | weighted average aimed at $x_{(n+1)p}$ | $y = (1 - g) x_j + g x_{j+1}$ where x_{n+1} is taken to be x_n |
| 5 | empirical distribution function with averaging | $y = \frac{1}{2} (x_j + x_{j+1})$ if $g = 0$
$y = x_{j+1}$ if $g > 0$ |

Hypothesis Testing Statistics

The keywords for hypothesis testing statistics are

$$np = j + g \quad \text{when } \texttt{PCTLDEF} = 1, 2, 3, \text{or } 5$$

$$(n + 1) p = j + g \quad \text{when } \texttt{PCTLDEF} = 4$$
The Student’s t statistic to test the null hypothesis that the population mean is equal to μ_0 and is calculated as

$$\frac{\bar{x} - \mu_0}{s/\sqrt{\sum w_i}}$$

By default, μ_0 is equal to zero. You can use the MU0= option in the PROC UNIVARIATE statement to specify μ_0. You must use VARDEF=DF, which is the default variance divisor, otherwise T is set to missing.

By default, when you use a WEIGHT statement, the procedure counts the x_i values with nonpositive weights in the degrees of freedom. Use the EXCLNPWGT option in the PROC statement to exclude values with nonpositive weights. Most SAS/STAT procedures, such as PROC TTEST and PROC GLM automatically exclude values with nonpositive weights.

PROBT

is the two-tailed p-value for Student’s t statistic, T, with $n - 1$ degrees of freedom. This is the probability under the null hypothesis of obtaining a more extreme value of T than is observed in this sample.

Confidence Limits for the Mean

The keywords for confidence limits are

- **CLM**
 - is the two-sided confidence limit for the mean. A two-sided 100 $(1 - \alpha)$ percent confidence interval for the mean has upper and lower limits

$$\bar{x} \pm t_{(1-\alpha/2; n-1)} \frac{s}{\sqrt{\sum w_i}}$$

where s is $\sqrt{\frac{1}{n-1} \sum (x_i - \bar{x})^2}$, $t_{(1-\alpha/2; n-1)}$ is the $(1 - \alpha/2)$ critical value of the Student’s t statistics with $n - 1$ degrees of freedom, and α is the value of the ALPHA= option which by default is 0.05. Unless you use VARDEF=DF, which is the default variance divisor, CLM is set to missing.

- **LCLM**
 - is the one-sided confidence limit below the mean. The one-sided 100 $(1 - \alpha)$ percent confidence interval for the mean has the lower limit

$$\bar{x} - t_{(1-\alpha; n-1)} \frac{s}{\sqrt{\sum w_i}}$$

Unless you use VARDEF=DF, which is the default variance divisor, LCLM is set to missing.

- **UCLM**
 - is the one-sided confidence limit above the mean. The one-sided 100 $(1 - \alpha)$ percent confidence interval for the mean has the upper limit

$$\bar{x} + t_{(1-\alpha; n-1)} \frac{s}{\sqrt{\sum w_i}}$$
Using Weights

For more information on using weights and an example, see on page 73.

Data Requirements for Summarization Procedures

The following are the minimal data requirements to compute unweighted statistics and do not describe recommended sample sizes. Statistics are reported as missing if VARDEF=DF (the default) and these requirements are not met:

- N and NMISS are computed regardless of the number of missing or nonmissing observations.
- SUM, MEAN, MAX, MIN, RANGE, USS, and CSS require at least one nonmissing observation.
- VAR, STD, STDERR, CV, T, and PRT require at least two nonmissing observations.
- SKEWNESS requires at least three nonmissing observations.
- KURTOSIS requires at least four nonmissing observations.
- SKEWNESS, KURTOSIS, T, and PROBT require that STD is greater than zero.
- CV requires that MEAN is not equal to zero.
- CLM, LCLM, UCLM, STDERR, T, and PROBT require that VARDEF=DF.

Statistical Background

The rest of this appendix provides text descriptions and SAS code examples that explain some of the statistical concepts and terminology that you may encounter when you interpret the output of SAS procedures for elementary statistics. For a more thorough discussion, consult an introductory statistics textbook such as Mendenhall and Beaver (1994); Ott and Mendenhall; or Snedecor and Cochran (1989).

Populations and Parameters

Usually, there is a clearly defined set of elements in which you are interested. This set of elements is called the universe, and a set of values associated with these elements is called a population of values. The statistical term population has nothing to do with people per se. A statistical population is a collection of values, not a collection of people. For example, a universe is all the students at a particular school, and there could be two populations of interest: one of height values and one of weight values. Or, a universe is the set of all widgets manufactured by a particular company, while the population of values could be the length of time each widget is used before it fails.

A population of values can be described in terms of its cumulative distribution function, which gives the proportion of the population less than or equal to each possible value. A discrete population can also be described by a probability function,
which gives the proportion of the population equal to each possible value. A continuous population can often be described by a density function, which is the derivative of the cumulative distribution function. A density function can be approximated by a histogram that gives the proportion of the population lying within each of a series of intervals of values. A probability density function is like a histogram with an infinite number of infinitely small intervals.

In technical literature, when the term distribution is used without qualification, it generally refers to the cumulative distribution function. In informal writing, distribution sometimes means the density function instead. Often the word distribution is used simply to refer to an abstract population of values rather than some concrete population. Thus, the statistical literature refers to many types of abstract distributions, such as normal distributions, exponential distributions, Cauchy distributions, and so on. When a phrase such as normal distribution is used, it frequently does not matter whether the cumulative distribution function or the density function is intended.

It may be expedient to describe a population in terms of a few measures that summarize interesting features of the distribution. One such measure, computed from the population values, is called a parameter. Many different parameters can be defined to measure different aspects of a distribution.

The most commonly used parameter is the (arithmetic) mean. If the population contains a finite number of values, the population mean is computed as the sum of all the values in the population divided by the number of elements in the population. For an infinite population, the concept of the mean is similar but requires more complicated mathematics.

\(\mu(x) \) denotes the mean of a population of values symbolized by \(x \), such as height, where \(\mu \) stands for expected value. You can also consider expected values of derived functions of the original values. For example, if \(x \) represents height, then \(\mu(x^2) \) is the expected value of height squared, that is, the mean value of the population obtained by squaring every value in the population of heights.

Samples and Statistics

It is often impossible to measure all of the values in a population. A collection of measured values is called a sample. A mathematical function of a sample of values is called a statistic. A statistic is to a sample as a parameter is to a population. It is customary to denote statistics by Roman letters and parameters by Greek letters. For example, the population mean is often written as \(\mu \), whereas the sample mean is written as \(\bar{x} \). The field of statistics is largely concerned with the study of the behavior of sample statistics.

Samples can be selected in a variety of ways. Most SAS procedures assume that the data constitute a simple random sample, which means that the sample was selected in such a way that all possible samples were equally likely to be selected.

Statistics from a sample can be used to make inferences, or reasonable guesses, about the parameters of a population. For example, if you take a random sample of 30 students from the high school, the mean height for those 30 students is a reasonable guess, or estimate, of the mean height of all the students in the high school. Other statistics, such as the standard error, can provide information about how good an estimate is likely to be.

For any population parameter, several statistics can estimate it. Often, however, there is one particular statistic that is customarily used to estimate a given parameter. For example, the sample mean is the usual estimator of the population mean. In the case of the mean, the formulas for the parameter and the statistic are the same. In other cases, the formula for a parameter may be different from that of the most commonly used estimator. The most commonly used estimator is not necessarily the best estimator in all applications.
Measures of Location

Measures of location include the mean, the median, and the mode. These measures describe the center of a distribution. In the definitions that follows, notice that if the entire sample changes by adding a fixed amount to each observation, then these measures of location are shifted by the same fixed amount.

The Mean

The population mean $\mu = E(x)$ is usually estimated by the sample mean \bar{x}.

The Median

The population median is the central value, lying above and below half of the population values. The sample median is the middle value when the data are arranged in ascending or descending order. For an even number of observations, the midpoint between the two middle values is usually reported as the median.

The Mode

The mode is the value at which the density of the population is at a maximum. Some densities have more than one local maximum (peak) and are said to be multimodal. The sample mode is the value that occurs most often in the sample. By default, PROC UNIVARIATE reports the lowest such value if there is a tie for the most-often-occurring sample value. PROC UNIVARIATE lists all possible modes when you specify the MODES option in the PROC statement. If the population is continuous, then all sample values occur once, and the sample mode has little use.

Percentiles

Percentiles, including quantiles, quartiles, and the median, are useful for a detailed study of a distribution. For a set of measurements arranged in order of magnitude, the pth percentile is the value that has p percent of the measurements below it and $(100-p)$ percent above it. The median is the 50th percentile. Because it may not be possible to divide your data so that you get exactly the desired percentile, the UNIVARIATE procedure uses a more precise definition.

The upper quartile of a distribution is the value below which 75 percent of the measurements fall (the 75th percentile). Twenty-five percent of the measurements fall below the lower quartile value.

In the following example, SAS artificially generates the data with a pseudorandom number function. The UNIVARIATE procedure computes a variety of quantiles and measures of location, and outputs the values to a SAS data set. A DATA step then uses the SYMPUT routine to assign the values of the statistics to macro variables. The macro %FORMGEN uses these macro variables to produce value labels for the FORMAT procedure. PROC CHART uses the resulting format to display the values of the statistics on a histogram.

```sas
options nodate pageno=1 linesize=64 pagesize=52;

title 'Example of Quantiles and Measures of Location';

data random;
    drop n;
    do n=1 to 1000;
```
X=floor(exp(rannor(314159)*.8+1.8));
output;
end;
run;

proc univariate data=random nextrobs=0;
var x;
output out=location
mean=Mean mode=Mode median=Median
q1=q1 q3=q3 p5=P5 p10=P10 p90=P90 p95=P95
max=Max;
run;

proc print data=location noobs;
run;

data _null_
set location;
call symput('MEAN',round(mean,1));
call symput('MODE',mode);
call symput('MEDIAN',round(median,1));
call symput('Q1',round(q1,1));
call symput('Q3',round(q3,1));
call symput('P5',round(p5,1));
call symput('P10',round(p10,1));
call symput('P90',round(p90,1));
call symput('P95',round(p95,1));
call symput('MAX',min(50,max));
run;

%macro formgen;
%do i=1 %to &max;
%let value=&i;
%if &i=&p5 %then %let value=&value P5;
%if &i=&p10 %then %let value=&value P10;
%if &i=&q1 %then %let value=&value Q1;
%if &i=&mode %then %let value=&value Mode;
%if &i=&median %then %let value=&value Median;
%if &i=&mean %then %let value=&value Mean;
%if &i=&q3 %then %let value=&value Q3;
%if &i=&p90 %then %let value=&value P90;
%if &i=&p95 %then %let value=&value P95;
%if &i=&max %then %let value=>=&value;
%end;
%mend;

%macro formgen;
%do i=1 %to &max;
%let value=&i;
%if &i=&p5 %then %let value=&value P5;
%if &i=&p10 %then %let value=&value P10;
%if &i=&q1 %then %let value=&value Q1;
%if &i=&mode %then %let value=&value Mode;
%if &i=&median %then %let value=&value Median;
%if &i=&mean %then %let value=&value Mean;
%if &i=&q3 %then %let value=&value Q3;
%if &i=&p90 %then %let value=&value P90;
%if &i=&p95 %then %let value=&value P95;
%if &i=&max %then %let value=>=&value;
%end;
%mend;

proc format print;
value stat %formgen;
run;
options pagesize=42 linesize=64;
Example of Quantiles and Measures of Location

The UNIVARIATE Procedure
Variable: X

Moments

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1000</td>
<td>Sum Weights</td>
</tr>
<tr>
<td>Mean</td>
<td>7.605</td>
<td>Sum Observations</td>
</tr>
<tr>
<td>Std Deviation</td>
<td>7.38169794</td>
<td>Variance</td>
</tr>
<tr>
<td>Skewness</td>
<td>2.73038523</td>
<td>Kurtosis</td>
</tr>
<tr>
<td>Uncorrected SS</td>
<td>112271</td>
<td>Corrected SS</td>
</tr>
<tr>
<td>Coeff Variation</td>
<td>97.0637467</td>
<td>Std Error Mean</td>
</tr>
</tbody>
</table>

Basic Statistical Measures

<table>
<thead>
<tr>
<th>Location</th>
<th>Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>7.605000</td>
</tr>
<tr>
<td>Median</td>
<td>5.000000</td>
</tr>
<tr>
<td>Mode</td>
<td>3.000000</td>
</tr>
<tr>
<td>Std Deviation</td>
<td>7.38170</td>
</tr>
<tr>
<td>Variance</td>
<td>54.48946</td>
</tr>
<tr>
<td>Range</td>
<td>62.00000</td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>6.00000</td>
</tr>
</tbody>
</table>

Tests for Location: Mu0=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Statistic</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student's t</td>
<td>t 32.57939</td>
<td>Pr ></td>
</tr>
<tr>
<td>Sign</td>
<td>M 494.5</td>
<td>Pr > M</td>
</tr>
<tr>
<td>Signed Rank</td>
<td>S 244777.5</td>
<td>Pr ></td>
</tr>
</tbody>
</table>

Quantiles (Definition 5)

<table>
<thead>
<tr>
<th>Quantile</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Max</td>
<td>62.0</td>
</tr>
<tr>
<td>99%</td>
<td>37.5</td>
</tr>
<tr>
<td>95%</td>
<td>21.5</td>
</tr>
<tr>
<td>90%</td>
<td>16.0</td>
</tr>
<tr>
<td>75% Q3</td>
<td>9.0</td>
</tr>
<tr>
<td>50% Median</td>
<td>5.0</td>
</tr>
<tr>
<td>25% Q1</td>
<td>3.0</td>
</tr>
<tr>
<td>10%</td>
<td>2.0</td>
</tr>
<tr>
<td>5%</td>
<td>1.0</td>
</tr>
<tr>
<td>1%</td>
<td>0.0</td>
</tr>
<tr>
<td>0% Min</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Another group of statistics is important in studying the distribution of a population. These statistics measure the variability, also called the spread, of values. In the definitions given in the sections that follow, notice that if the entire sample is changed by the addition of a fixed amount to each observation, then the values of these statistics are unchanged. If each observation in the sample is multiplied by a constant, however, the values of these statistics are appropriately rescaled.
The Range

The sample range is the difference between the largest and smallest values in the sample. For many populations, at least in statistical theory, the range is infinite, so the sample range may not tell you much about the population. The sample range tends to increase as the sample size increases. If all sample values are multiplied by a constant, the sample range is multiplied by the same constant.

The Interquartile Range

The interquartile range is the difference between the upper and lower quartiles. If all sample values are multiplied by a constant, the sample interquartile range is multiplied by the same constant.

The Variance

The population variance, usually denoted by σ^2, is the expected value of the squared difference of the values from the population mean:

$$\sigma^2 = E (x - \mu)^2$$

The sample variance is denoted by s^2. The difference between a value and the mean is called a deviation from the mean. Thus, the variance approximates the mean of the squared deviations.

When all the values lie close to the mean, the variance is small but never less than zero. When values are more scattered, the variance is larger. If all sample values are multiplied by a constant, the sample variance is multiplied by the square of the constant.

Sometimes values other than $n - 1$ are used in the denominator. The VARDEF= option controls what divisor the procedure uses.

The Standard Deviation

The standard deviation is the square root of the variance, or root-mean-square deviation from the mean, in either a population or a sample. The usual symbols are σ for the population and s for a sample. The standard deviation is expressed in the same units as the observations, rather than in squared units. If all sample values are multiplied by a constant, the sample standard deviation is multiplied by the same constant.

Coefficient of Variation

The coefficient of variation is a unitless measure of relative variability. It is defined as the ratio of the standard deviation to the mean expressed as a percentage. The coefficient of variation is meaningful only if the variable is measured on a ratio scale. If all sample values are multiplied by a constant, the sample coefficient of variation remains unchanged.
Skewness

The variance is a measure of the overall size of the deviations from the mean. Since the formula for the variance squares the deviations, both positive and negative deviations contribute to the variance in the same way. In many distributions, positive deviations may tend to be larger in magnitude than negative deviations, or vice versa. *Skewness* is a measure of the tendency of the deviations to be larger in one direction than in the other. For example, the data in the last example are skewed to the right.

Population skewness is defined as

\[\frac{E(x - \mu)^3}{\sigma^3} \]

Because the deviations are cubed rather than squared, the signs of the deviations are maintained. Cubing the deviations also emphasizes the effects of large deviations. The formula includes a divisor of \(\sigma^3 \) to remove the effect of scale, so multiplying all values by a constant does not change the skewness. Skewness can thus be interpreted as a tendency for one tail of the population to be heavier than the other. Skewness can be positive or negative and is unbounded.

Kurtosis

The heaviness of the tails of a distribution affects the behavior of many statistics. Hence it is useful to have a measure of tail heaviness. One such measure is *kurtosis*. The population kurtosis is usually defined as

\[\frac{E(x - \mu)^4}{\sigma^4} - 3 \]

Note: Some statisticians omit the subtraction of 3.

Because the deviations are raised to the fourth power, positive and negative deviations make the same contribution, while large deviations are strongly emphasized. Because of the divisor \(\sigma^4 \), multiplying each value by a constant has no effect on kurtosis.

Population kurtosis must lie between \(-2\) and \(+\infty\), inclusive. If \(M_3 \) represents population skewness and \(M_4 \) represents population kurtosis, then

\[M_4 > (M_3)^2 - 2 \]

Statistical literature sometimes reports that kurtosis measures the *peakedness* of a density. However, heavy tails have much more influence on kurtosis than does the shape of the distribution near the mean (Kaplansky 1945; Ali 1974; Johnson, et al. 1980).

Sample skewness and kurtosis are rather unreliable estimators of the corresponding parameters in small samples. They are better estimators when your sample is very large. However, large values of skewness or kurtosis may merit attention even in small samples because such values indicate that statistical methods that are based on normality assumptions may be inappropriate.
The Normal Distribution

One especially important family of theoretical distributions is the *normal* or *Gaussian* distribution. A normal distribution is a smooth symmetric function often referred to as "bell-shaped." Its skewness and kurtosis are both zero. A normal distribution can be completely specified by only two parameters: the mean and the standard deviation. Approximately 68 percent of the values in a normal population are within one standard deviation of the population mean; approximately 95 percent of the values are within two standard deviations of the mean; and about 99.7 percent are within three standard deviations. Use of the term *normal* to describe this particular kind of distribution does not imply that other kinds of distributions are necessarily abnormal or pathological.

Many statistical methods are designed under the assumption that the population being sampled is normally distributed. Nevertheless, most real-life populations do not have normal distributions. Before using any statistical method based on normality assumptions, you should consult the statistical literature to find out how sensitive the method is to nonnormality and, if necessary, check your sample for evidence of nonnormality.

In the following example, SAS generates a sample from a normal distribution with a mean of 50 and a standard deviation of 10. The UNIVARIATE procedure performs tests for location and normality. Because the data are from a normal distribution, all p-values from the tests for normality are greater than 0.15. The CHART procedure displays a histogram of the observations. The shape of the histogram is a belllike, normal density.

```sas
options nodate pageno=1 linesize=64 pagesize=52;

title '10000 Obs Sample from a Normal Distribution';
title2 'with Mean=50 and Standard Deviation=10';

data normaldat;
  drop n;
  do n=1 to 10000;
    X=10*rannor(53124)+50;
    output;
  end;
run;

proc univariate data=normaldat nextrobs=0 normal
  mu0=50 loccount;
  var x;
run;

proc format;
  picture msd
    20='20 3*Std' (noedit)
    30='30 2*Std' (noedit)
    40='40 1*Std' (noedit)
    50='50 Mean ' (noedit)
    60='60 1*Std' (noedit)
    70='70 2*Std' (noedit)
    80='80 3*Std' (noedit)
    other=' ';
run;

options linesize=64 pagesize=42;
```
The Normal Distribution

10000 Obs Sample from a Normal Distribution with Mean=50 and Standard Deviation=10

The UNIVARIATE Procedure
Variable: X

Moments

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>10000</td>
</tr>
<tr>
<td>Mean</td>
<td>50.0323744</td>
</tr>
<tr>
<td>Std Deviation</td>
<td>9.92013874</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.019929</td>
</tr>
<tr>
<td>Uncorrected SS</td>
<td>26016378</td>
</tr>
<tr>
<td>Corrected SS</td>
<td>983993.116</td>
</tr>
<tr>
<td>Coeff Variation</td>
<td>19.8274395</td>
</tr>
</tbody>
</table>

Basic Statistical Measures

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>50.03237</td>
</tr>
<tr>
<td>Median</td>
<td>50.06492</td>
</tr>
<tr>
<td>Mode</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>76.51343</td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>13.28179</td>
</tr>
</tbody>
</table>

Tests for Location: Mu0=50

<table>
<thead>
<tr>
<th>Test</th>
<th>Statistic</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student’s t</td>
<td>t</td>
<td>0.32635</td>
</tr>
<tr>
<td>Sign</td>
<td>M</td>
<td>26</td>
</tr>
<tr>
<td>Signed Rank</td>
<td>S</td>
<td>174063</td>
</tr>
</tbody>
</table>

Location Counts: Mu0=50.00

<table>
<thead>
<tr>
<th>Count</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num Obs > Mu0</td>
<td>5026</td>
</tr>
<tr>
<td>Num Obs ^= Mu0</td>
<td>10000</td>
</tr>
<tr>
<td>Num Obs < Mu0</td>
<td>4974</td>
</tr>
</tbody>
</table>

Tests for Normality

<table>
<thead>
<tr>
<th>Test</th>
<th>Statistic</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolmogorov-Smirnov</td>
<td>D</td>
<td>0.006595</td>
</tr>
<tr>
<td>Cramer-von Mises</td>
<td>W-Sq</td>
<td>0.049963</td>
</tr>
<tr>
<td>Anderson-Darling</td>
<td>A-Sq</td>
<td>0.371151</td>
</tr>
</tbody>
</table>
If you repeatedly draw samples of size n from a population and compute the mean of each sample, then the sample means themselves have a distribution. Consider a new population consisting of the means of all the samples that could possibly be drawn from
the original population. The distribution of this new population is called a sampling distribution.

It can be proven mathematically that if the original population has mean μ and standard deviation σ, then the sampling distribution of the mean also has mean μ, but its standard deviation is σ / \sqrt{n}. The standard deviation of the sampling distribution of the mean is called the standard error of the mean. The standard error of the mean provides an indication of the accuracy of a sample mean as an estimator of the population mean.

If the original population has a normal distribution, then the sampling distribution of the mean is also normal. If the original distribution is not normal but does not have excessively long tails, then the sampling distribution of the mean can be approximated by a normal distribution for large sample sizes.

The following example consists of three separate programs that show how the sampling distribution of the mean can be approximated by a normal distribution as the sample size increases. The first DATA step uses the RANEXP function to create a sample of 1000 observations from an exponential distribution. The theoretical population mean is 1.00, while the sample mean is 1.01, to two decimal places. The population standard deviation is 1.00; the sample standard deviation is 1.04.

This is an example of a nonnormal distribution. The population skewness is 2.00, which is close to the sample skewness of 1.97. The population kurtosis is 6.00, but the sample kurtosis is only 4.80.

```sas
options nodate pageno=1 linesize=64 pagesize=42;

title '1000 Observation Sample';
title2 'from an Exponential Distribution';

data expodat;
  drop n;
  do n=1 to 1000;
    X=ranexp(18746363);
    output;
  end;
run;
proc format;
  value axisfmt
    .05='0.05'
    .55='0.55'
    1.05='1.05'
    1.55='1.55'
    2.05='2.05'
    2.55='2.55'
    3.05='3.05'
    3.55='3.55'
    4.05='4.05'
    4.55='4.55'
    5.05='5.05'
    5.55='5.55'
    other=' ';
run;

proc chart data=expodat ;
  vbar x / axis=300
    midpoints=0.05 to 5.55 by .1;
  format x axisfmt.;
```
options pagesize=64;

proc univariate data=expodat noextrobs=0 normal
 mu0=1;
 var x;
run;
run;

1000 Observation Sample
from an Exponential Distribution

Frequency

300	+
250	+
200	+
150	+
100	*** *
50	********* *

| 0 0 1 1 2 2 3 4 4 5 5 |
| 0 5 0 5 0 5 0 5 0 5 5 |
| 5 5 5 5 5 5 5 5 5 5 5 |

X Midpoint
The UNIVARIATE Procedure
Variable: X

Moments

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1000</td>
</tr>
<tr>
<td>Sum Weights</td>
<td>1000</td>
</tr>
<tr>
<td>Mean</td>
<td>1.011762</td>
</tr>
<tr>
<td>Sum Observations</td>
<td>1011.7621</td>
</tr>
<tr>
<td>Std Deviation</td>
<td>1.043711</td>
</tr>
<tr>
<td>Variance</td>
<td>1.089335</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.969631</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>4.801506</td>
</tr>
<tr>
<td>Uncorrected SS</td>
<td>2111.9077</td>
</tr>
<tr>
<td>Corrected SS</td>
<td>1088.2451</td>
</tr>
<tr>
<td>Coeff Variation</td>
<td>103.1578</td>
</tr>
<tr>
<td>Std Error Mean</td>
<td>0.033005</td>
</tr>
</tbody>
</table>

Basic Statistical Measures

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Variability</td>
</tr>
<tr>
<td>Mean</td>
<td>1.011762</td>
</tr>
<tr>
<td>Std Deviation</td>
<td>1.043711</td>
</tr>
<tr>
<td>Median</td>
<td>0.689502</td>
</tr>
<tr>
<td>Variance</td>
<td>1.089335</td>
</tr>
<tr>
<td>Mode</td>
<td>.</td>
</tr>
<tr>
<td>Range</td>
<td>6.63851</td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>1.06252</td>
</tr>
</tbody>
</table>

Tests for Location: Mu0=1

<table>
<thead>
<tr>
<th>Test</th>
<th>Statistic</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student’s t</td>
<td>t 0.356374</td>
<td>Pr ></td>
</tr>
<tr>
<td>Sign</td>
<td>M -140</td>
<td>Pr >=</td>
</tr>
<tr>
<td>Signed Rank</td>
<td>S -50781</td>
<td>Pr >=</td>
</tr>
</tbody>
</table>

Tests for Normality

<table>
<thead>
<tr>
<th>Test</th>
<th>Statistic</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shapiro-Wilk</td>
<td>W 0.801498</td>
<td>Pr < W <0.0001</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov</td>
<td>D 0.166108</td>
<td>Pr > D <0.0100</td>
</tr>
<tr>
<td>Cramer-von Mises</td>
<td>W-Sq 9.507975</td>
<td>Pr > W-Sq <0.0050</td>
</tr>
<tr>
<td>Anderson-Darling</td>
<td>A-Sq 54.5478</td>
<td>Pr > A-Sq <0.0050</td>
</tr>
</tbody>
</table>

Quantiles (Definition 5)

<table>
<thead>
<tr>
<th>Quantile</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Max</td>
<td>6.63906758</td>
</tr>
<tr>
<td>99%</td>
<td>5.04491651</td>
</tr>
<tr>
<td>95%</td>
<td>3.13482318</td>
</tr>
<tr>
<td>90%</td>
<td>2.37803632</td>
</tr>
<tr>
<td>75% Q3</td>
<td>1.35733401</td>
</tr>
<tr>
<td>50% Median</td>
<td>0.68950221</td>
</tr>
<tr>
<td>25% Q1</td>
<td>0.29481436</td>
</tr>
<tr>
<td>10%</td>
<td>0.10219011</td>
</tr>
<tr>
<td>5%</td>
<td>0.05192799</td>
</tr>
<tr>
<td>1%</td>
<td>0.01195590</td>
</tr>
<tr>
<td>0% Min</td>
<td>0.000055441</td>
</tr>
</tbody>
</table>

The next DATA step generates 1000 different samples from the same exponential distribution. Each sample contains ten observations. The MEANS procedure computes the mean of each sample. In the data set that is created by PROC MEANS, each observation represents the mean of a sample of ten observations from an exponential distribution. Thus, the data set is a sample from the sampling distribution of the mean for an exponential population.
PROC UNIVARIATE displays statistics for this sample of means. Notice that the mean of the sample of means is .99, almost the same as the mean of the original population. Theoretically, the standard deviation of the sampling distribution is $\sigma/\sqrt{n} = 1.00/\sqrt{10} = .32$, whereas the standard deviation of this sample from the sampling distribution is .30. The skewness (.55) and kurtosis (-.006) are closer to zero in the sample from the sampling distribution than in the original sample from the exponential distribution. This is so because the sampling distribution is closer to a normal distribution than is the original exponential distribution. The CHART procedure displays a histogram of the 1000-sample means. The shape of the histogram is much closer to a bell-like, normal density, but it is still distinctly lopsided.

```plaintext
options nodate pageno=1 linesize=64 pagesize=48;

title '1000 Sample Means with 10 Obs per Sample';
title2 'Drawn from an Exponential Distribution';

data samp10;
  drop n;
  do Sample=1 to 1000;
    do n=1 to 10;
      X=ranexp(433879);
      output;
    end;
  end;
run;

proc means data=samp10 noprint;
  output out=mean10 mean=Mean;
  var x;
  by sample;
run;

proc format;
  value axisfmt
    .05='0.05'
    .55='0.55'
    1.05='1.05'
    1.55='1.55'
    2.05='2.05'
    other=' ';
run;

proc chart data=mean10;
  vbar mean/axis=300
    midpoints=0.05 to 2.05 by .1;
  format mean axisfmt.;
run;

options pagesize=64;
proc univariate data=mean10 noextrobs=0 normal
  mu0=1;
  var mean;
run;
```
1000 Sample Means with 10 Obs per Sample
Drawn from an Exponential Distribution

Frequency

<table>
<thead>
<tr>
<th>300</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>*</td>
</tr>
<tr>
<td>100</td>
<td>*</td>
</tr>
<tr>
<td>50</td>
<td>**</td>
</tr>
</tbody>
</table>

Mean Midpoint

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
In the following DATA step, the size of each sample from the exponential distribution is increased to 50. The standard deviation of the sampling distribution is smaller than in the previous example because the size of each sample is larger. Also, the sampling distribution is even closer to a normal distribution, as can be seen from the histogram and the skewness.
options nodate pageno=1 linesize=64 pagesize=48;

title '1000 Sample Means with 50 Obs per Sample';
title2 'Drawn from an Exponential Distribution';

data samp50;
 drop n;
 do sample=1 to 1000;
 do n=1 to 50;
 x=ranexp(72437213);
 output;
 end;
 end;
proc means data=samp50 noprint;
 output out=mean50 mean=mean;
 var x;
 by sample;
run;

proc format;
 value axisfmt
 .05='0.05'
 .55='0.55'
 1.05='1.05'
 1.55='1.55'
 2.05='2.05'
 2.55='2.55'
 other=''
run;

proc chart data=mean50;
 vbar mean / axis=300
 midpoints=0.05 to 2.55 by .1;
 format mean axisfmt.;
run;

options pagesize=64;

proc univariate data=mean50 nextrobs=0 normal
 mu0=1;
 var mean;
run;
1000 Sample Means with 50 Obs per Sample
Drawn from an Exponential Distribution

Frequency

<table>
<thead>
<tr>
<th>300</th>
<th>250</th>
<th>200</th>
<th>150</th>
<th>100</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Mean Midpoint
Testing Hypotheses

The purpose of the statistical methods that have been discussed so far is to estimate a population parameter by means of a sample statistic. Another class of statistical
methods is used for testing hypotheses about population parameters or for measuring
the amount of evidence against a hypothesis.

Consider the universe of students in a college. Let the variable X be the number of
pounds by which a student’s weight deviates from the ideal weight for a person of the
same sex, height, and build. You want to find out whether the population of students is,
on the average, underweight or overweight. To this end, you have taken a random
sample of X values from nine students, with results as given in the following DATA step:

```plaintext
title 'Deviations from Normal Weight';
data x;
    input X @@;
datalines;
-7 -2 1 3 6 10 15 21 30
;
```

You can define several hypotheses of interest. One hypothesis is that, on the average,
the students are of exactly ideal weight. If μ represents the population mean of the X
values, you can write this hypothesis, called the null hypothesis, as $H_0 : \mu = 0$. The
other two hypotheses, called alternative hypotheses, are that the students are
underweight on the average, $H_1 : \mu < 0$, and that the students are overweight on the
average, $H_2 : \mu > 0$.

The null hypothesis is so called because in many situations it corresponds to the
assumption of “no effect” or “no difference.” However, this interpretation is not
appropriate for all testing problems. The null hypothesis is like a straw man that can
be toppled by statistical evidence. You decide between the alternative hypotheses
according to which way the straw man falls.

A naive way to approach this problem would be to look at the sample mean \bar{x} and
decide among the three hypotheses according to the following rule:

- If $\bar{x} < 0$, decide on $H_1 : \mu < 0$.
- If $\bar{x} = 0$, decide on $H_0 : \mu = 0$.
- If $\bar{x} > 0$, decide on $H_2 : \mu > 0$.

The trouble with this approach is that there may be a high probability of making an
incorrect decision. If H_0 is true, you are nearly certain to make a wrong decision
because the chances of \bar{x} being exactly zero are almost nil. If μ is slightly less than
zero, so that H_1 is true, there may be nearly a 50 percent chance that \bar{x} will be greater
than zero in repeated sampling, so the chances of incorrectly choosing H_2 would also be
nearly 50 percent. Thus, you have a high probability of making an error if \bar{x} is near
zero. In such cases, there is not enough evidence to make a confident decision, so the
best response may be to reserve judgment until you can obtain more evidence.

The question is, how far from zero must \bar{x} be for you to be able to make a confident
decision? The answer can be obtained by considering the sampling distribution of \bar{x}. If
X has a roughly normal distribution, then \bar{x} has an approximately normal sampling
distribution. The mean of the sampling distribution of \bar{x} is μ. Assume temporarily that
σ, the standard deviation of X, is known to be 12. Then the standard error of \bar{x} for
samples of nine observations is $\sigma / \sqrt{n} = 12 / \sqrt{9} = 4$.

You know that about 95 percent of the values from a normal distribution are within
two standard deviations of the mean, so about 95 percent of the possible samples of
nine X values have a sample mean \bar{x} between $0 - 2(4)$ and $0 + 2(4)$, or between -8
and 8. Consider the chances of making an error with the following decision rule:

- If $\bar{x} < -8$, decide on $H_1 : \mu < 0$.
- If $-8 \leq \bar{x} \leq 8$, reserve judgment.
- If $\bar{x} > 8$, decide on $H_2 : \mu > 0$.
If H_0 is true, then in about 95 percent of the possible samples \bar{x} will be between the critical values -8 and 8, so you will reserve judgment. In these cases the statistical evidence is not strong enough to fell the straw man. In the other 5 percent of the samples you will make an error; in 2.5 percent of the samples you will incorrectly choose H_1, and in 2.5 percent you will incorrectly choose H_2.

The price you pay for controlling the chances of making an error is the necessity of reserving judgment when there is not sufficient statistical evidence to reject the null hypothesis.

Significance and Power

The probability of rejecting the null hypothesis if it is true is called the *Type I error rate* of the statistical test and is typically denoted as α. In this example, an \bar{x} value less than -8 or greater than 8 is said to be statistically significant at the 5 percent level. You can adjust the type I error rate according to your needs by choosing different critical values. For example, critical values of -4 and 4 would produce a significance level of about 32 percent, while -12 and 12 would give a type I error rate of about 0.3 percent.

The decision rule is a two-tailed test because the alternative hypotheses allow for population means either smaller or larger than the value specified in the null hypothesis. If you were interested only in the possibility of the students being overweight on the average, you could use a one-tailed test:

- If $\bar{x} \leq 8$, reserve judgment.
- If $\bar{x} > 8$, decide on $H_2 : \mu > 0$.

For this one-tailed test, the type I error rate is 2.5 percent, half that of the two-tailed test.

The probability of rejecting the null hypothesis if it is false is called the power of the statistical test and is typically denoted as $1 - \beta$. β is called the *Type II error rate*, which is the probability of not rejecting a false null hypothesis. The power depends on the true value of the parameter. In the example, assume the population mean is 4. The power for detecting H_2 is the probability of getting a sample mean greater than 8. The critical value 8 is one standard error higher than the population mean 4. The chance of getting a value at least one standard deviation greater than the mean from a normal distribution is about 16 percent, so the power for detecting the alternative hypothesis H_2 is about 16 percent. If the population mean were 8, the power for H_2 would be 50 percent, whereas a population mean of 12 would yield a power of about 84 percent.

The smaller the type I error rate is, the less the chance of making an incorrect decision, but the higher the chance of having to reserve judgment. In choosing a type I error rate, you should consider the resulting power for various alternatives of interest.

Student’s t Distribution

In practice, you usually cannot use any decision rule that uses a critical value based on σ because you do not usually know the value of σ. You can, however, use s as an estimate of σ. Consider the following statistic:

$$ t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} $$

This t statistic is the difference between the sample mean and the hypothesized mean μ_0 divided by the estimated standard error of the mean.

If the null hypothesis is true and the population is normally distributed, then the t statistic has what is called a *Student’s t distribution* with $n - 1$ degrees of freedom. This distribution looks very similar to a normal distribution, but the tails of the
Student’s t distribution are heavier. As the sample size gets larger, the sample standard deviation becomes a better estimator of the population standard deviation, and the t distribution gets closer to a normal distribution.

You can base a decision rule on the t statistic:
- If $t < -2.3$, decide on $H_1 : \mu < 0$.
- If $-2.3 \leq t \leq 2.3$, reserve judgment.
- If $t > 2.3$, decide on $H_0 : \mu > 0$.

The value 2.3 was obtained from a table of Student’s t distribution to give a type I error rate of 5 percent for 8 (that is, $9 - 1 = 8$) degrees of freedom. Most common statistics texts contain a table of Student’s t distribution. If you do not have a statistics text handy, you can use the DATA step and the TINV function to print any values from the t distribution.

By default, PROC UNIVARIATE computes a t statistic for the null hypothesis that $\mu_0 = 0$, along with related statistics. Use the MU0= option in the PROC statement to specify another value for the null hypothesis.

This example uses the data on deviations from normal weight, which consist of nine observations. First, PROC MEANS computes the t statistic for the null hypothesis that $\mu = 0$. Then, the TINV function in a DATA step computes the value of Student’s t distribution for a two-tailed test at the 5 percent level of significance and 8 degrees of freedom.

```latex
\begin{verbatim}
data devnorm;
   title 'Deviations from Normal Weight';
   input X @@;
datalines;
-7  -2  1  3  6 10 15 21 30;
;
proc means data=devnorm maxdec=3 n mean
   std stderr t probt;
run;

title 'Student’s t Critical Value';

data _null_; file print;
   t=tinv(.975,8);
   put t 5.3;
run;
\end{verbatim}
```

The MEANS Procedure

Analysis Variable : X

| N | Mean | Std Dev | Std Error | t Value | Pr > |t| |
|---|------|---------|-----------|---------|-------|---|
| 9 | 8.556 | 11.759 | 3.920 | 2.10 | 0.0606 |

Student’s t Critical Value

2.306
In the current example, the value of the t statistic is 2.18, which is less than the critical t value of 2.3 (for a 5 percent significance level and 8 degrees of freedom). Thus, at a 5 percent significance level you must reserve judgment. If you had elected to use a 10 percent significance level, the critical value of the t distribution would have been 1.86 and you could have rejected the null hypothesis. The sample size is so small, however, that the validity of your conclusion depends strongly on how close the distribution of the population is to a normal distribution.

Probability Values

Another way to report the results of a statistical test is to compute a *probability value* or *p-value*. A p-value gives the probability in repeated sampling of obtaining a statistic as far in the direction(s) specified by the alternative hypothesis as is the value actually observed. A two-tailed p-value for a t statistic is the probability of obtaining an absolute t value that is greater than the observed absolute t value. A one-tailed p-value for a t statistic for the alternative hypothesis $\mu > \mu_0$ is the probability of obtaining a t value greater than the observed t value. Once the p-value is computed, you can perform a hypothesis test by comparing the p-value with the desired significance level. If the p-value is less than or equal to the type I error rate of the test, the null hypothesis can be rejected. The two-tailed p-value, labeled $\text{Pr} > |t|$ in the PROC MEANS output, is .0606, so the null hypothesis could be rejected at the 10 percent significance level but not at the 5 percent level.

A p-value is a measure of the strength of the evidence against the null hypothesis. The smaller the p-value, the stronger the evidence for rejecting the null hypothesis.

References

