
67

C H A P T E R

3
Statements with the Same
Function in Multiple Procedures

Overview 67
Statements 68

BY 68

FREQ 70

QUIT 72

WEIGHT 73
WHERE 77

Overview

Several statements are available and have the same function in a number of base
SAS procedures. Some of the statements are fully documented in SAS Language
Reference: Dictionary, and others are documented in this section. The following list
shows you where to find more information about each statement:

ATTRIB
affects the procedure output and the output data set. The ATTRIB statement does
not permanently alter the variables in the input data set. The LENGTH= option
has no effect. See SAS Language Reference: Dictionary for complete
documentation.

BY
orders the output according to the BY groups. See “BY” on page 68.

FORMAT
affects the procedure output and the output data set. The FORMAT statement does
not permanently alter the variables in the input data set. The DEFAULT= option
is not valid. See SAS Language Reference: Dictionary for complete documentation.

FREQ
treats observations as if they appear multiple times in the input data set. See
“FREQ” on page 70.

LABEL
affects the procedure output and the output data set. The LABEL statement does
not permanently alter the variables in the input data set except when it is used
with the MODIFY statement in PROC DATASETS. See SAS Language Reference:
Dictionary for complete documentation.

QUIT
executes any statements that have not executed and ends the procedure. See
“QUIT” on page 72.



68 Statements 4 Chapter 3

WEIGHT
specifies weights for analysis variables in the statistical calculations. See
“WEIGHT” on page 73.

WHERE
subsets the input data set by specifying certain conditions that each observation
must meet before it is available for processing. See “WHERE” on page 77.

Statements

BY

Orders the output according to the BY groups.

See also: “Creating Titles That Contain BY-Group Information” on page 54

BY <DESCENDING> variable-1
<… <DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

Note: You cannot use the NOTSORTED option in a PROC SORT step. 4



Statements with the Same Function in Multiple Procedures 4 BY 69

Note: You cannot use the GROUPFORMAT option, which is available in the BY
statement in a DATA step, in a BY statement in any PROC step. 4

BY-Group Processing
Procedures create output for each BY group. For example, the elementary statistics

procedures and the scoring procedures perform separate analyses for each BY group.
The reporting procedures produce a report for each BY group.

Note: All base procedures except PROC PRINT process BY groups completely
independently. PROC PRINT can report the number of observations in each BY group
as well as the number of observations in all BY groups. Similarly, PROC PRINT can
sum numeric variables in each BY group and across all BY groups. 4

You can use only one BY statement in each PROC step. When you use a BY
statement, the procedure expects an input data set that is sorted by the order of the BY
variables or one that has an appropriate index. If your input data set does not meet
these criteria, an error occurs. Either sort it with the SORT procedure or create an
appropriate index on the BY variables.

Depending on the order of your data, you may need to use the NOTSORTED or
DESCENDING option in the BY statement in the PROC step.

For more information on
� the BY statement, see SAS Language Reference: Dictionary.
� PROC SORT, see Chapter 33, “The SORT Procedure,” on page 1005.
� creating indexes, see “INDEX CREATE Statement” on page 363.

Procedures That Support the BY Statement

CALENDAR RANK

CHART REPORT (nonwindowing environment only)

COMPARE SORT (required)

CORR STANDARD

FORMS SUMMARY

FREQ TABULATE

MEANS TIMEPLOT

PLOT TRANSPOSE

PRINT UNIVARIATE

Note: In the SORT procedure, the BY statement specifies how to sort the data. With
the other procedures, the BY statement specifies how the data are currently sorted. 4

Example
This example uses a BY statement in a PROC PRINT step. There is output for each

value of the BY variable, Year. The DEBATE data set is created in “Example:
Temporarily Dissociating a Format from a Variable” on page 63.

options nodate pageno=1 linesize=64
pagesize=40;



70 FREQ 4 Chapter 3

proc print data=debate noobs;
by year;
title ’Printing of Team Members’;
title2 ’by Year’;

run;

Printing of Team Members 1
by Year

------------------------ Year=Freshman -------------------------

Name Gender GPA

Capiccio m 3.598
Tucker m 3.901

------------------------ Year=Sophomore ------------------------

Name Gender GPA

Bagwell f 3.722
Berry m 3.198
Metcalf m 3.342

------------------------- Year=Junior --------------------------

Name Gender GPA

Gold f 3.609
Gray f 3.177
Syme f 3.883

------------------------- Year=Senior --------------------------

Name Gender GPA

Baglione f 4.000
Carr m 3.750
Hall m 3.574
Lewis m 3.421

FREQ

Treats observations as if they appear multiple times in the input data set.

Tip: You can use a WEIGHT statement and a FREQ statement in the same step of any
procedure that supports both statements.

FREQ variable;



Statements with the Same Function in Multiple Procedures 4 FREQ 71

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, the procedure assumes that each observation
represents n observations, where n is the value of variable. If variable is not an
integer, the SAS System truncates it. If variable is less than 1 or is missing, the
procedure does not use that observation to calculate statistics. If a FREQ statement
does not appear, each observation has a default frequency of 1.

The sum of the frequency variable represents the total number of observations.

Procedures That Support the FREQ Statement

� CORR

� FORMS

� MEANS/SUMMARY

� REPORT

� STANDARD

� TABULATE

� UNIVARIATE

Note: PROC FORMS does not calculate statistics. In PROC FORMS, the value of
the frequency variable affects the number of form units that are printed for each
observation. 4

Example
The data in this example represent a ship’s course and the speed (in knots), recorded

every hour. The frequency variable, Hours, represents the number of hours that the
ship maintained the same course and speed. Each of the following PROC MEANS steps
calculates average course and speed. The different results demonstrate the effect of
using Hours as a frequency variable.

The following PROC MEANS step does not use a frequency variable:

options nodate pageno=1 linesize=64 pagesize=40;

data track;
input Course Speed Hours @@;
datalines;

30 4 8 50 7 20
75 10 30 30 8 10
80 9 22 20 8 25
83 11 6 20 6 20
;

proc means data=track maxdec=2 n mean;
var course speed;
title ’Average Course and Speed’;

run;



72 QUIT 4 Chapter 3

Without a frequency variable, each observation has a frequency of 1, and the total
number of observations is 8.

Average Course and Speed 1

The MEANS Procedure

Variable N Mean
-----------------------------
Course 8 48.50
Speed 8 7.88
-----------------------------

The second PROC MEANS step uses Hours as a frequency variable:

proc means data=track maxdec=2 n mean;
var course speed;
freq hours;
title ’Average Course and Speed’;

run;

When you use Hours as a frequency variable, the frequency of each observation is the
value of Hours, and the total number of observations is 141 (the sum of the values of
the frequency variable).

Average Course and Speed 1

The MEANS Procedure

Variable N Mean
----------------------------------------
Course 141 49.28
Speed 141 8.06
----------------------------------------

QUIT

Executes any statements that have not executed and ends the procedure.

QUIT;

Procedures That Support the QUIT Statement

� CATALOG

� DATASETS

� PLOT

� PMENU

� SQL



Statements with the Same Function in Multiple Procedures 4 WEIGHT 73

WEIGHT

Specifies weights for analysis variables in the statistical calculations.

Tip: You can use a WEIGHT statement and a FREQ statement in the same step of any
procedure that supports both statements.

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The values of the variable do not have to be integers. The behavior of the procedure
when it encounters a nonpositive weight variable value is as follows:

Weight value … The procedure …

0 counts the observation in the total number of observations

less than 0 converts the weight value to zero and counts the observation in
the total number of observations

missing excludes the observation from the analysis

Different behavior for nonpositive values is discussed in the WEIGHT statement
syntax under the individual procedure.

Prior to Version 7 of the SAS System, no base procedure excluded the observations
with missing weights from the analysis. Most SAS/STAT procedures, such as PROC
GLM, have always excluded not only missing weights but also negative and zero
weights from the analysis. You can achieve this same behavior in a base procedure
that support the WEIGHT statement by using EXCLNPWGT in the PROC statement.

The procedure substitutes the value of the WEIGHT variable for wi, which
appears in “Keywords and Formulas” on page 1458.

Procedures That Support the WEIGHT Statement

� CORR
� FREQ

� MEANS/SUMMARY

� REPORT
� STANDARD

� TABULATE

� UNIVARIATE

Note: In PROC FREQ, the value of the variable in the WEIGHT statement
represents the frequency of occurrence for each observation. See “WEIGHT Statement”
on page 524 for more information. 4



74 WEIGHT 4 Chapter 3

Calculating Weighted Statistics
The procedures that support the WEIGHT statement also support the VARDEF=

option, which lets you specify a divisor to use in the calculation of the variance and
standard deviation.

By using a WEIGHT statement to compute moments, you assume that the ith
observation has a variance that is equal to �2=wi. When you specify VARDEF=DF (the
default), the computed variance is a weighted least squares estimate of �2. Similarly,
the computed standard deviation is an estimate of �. Note that the computed variance
is not an estimate of the variance of the ith observation, because this variance involves
the observation’s weight which varies from observation to observation.

If the values of your variable are counts that represent the number of occurrences of
each observation, use this variable in the FREQ statement rather than in the WEIGHT
statement. In this case, because the values are counts, they should be integers. (The
FREQ statement truncates any noninteger values.) The variance that is computed with
a FREQ variable is an estimate of the common variance, �2, of the observations.

Note: If your data come from a stratified sample where the weights wi represent
the strata weights, neither the WEIGHT statement nor the FREQ statement provides
appropriate stratified estimates of the mean, variance, or variance of the mean. To
perform the appropriate analysis, consider using PROC SURVEYMEANS which is a
SAS/STAT procedure that is documented in the SAS/STAT User’s Guide. 4

Example
As an example of the WEIGHT statement, suppose 20 people are asked to estimate

the size of a 12–inch-wide object. Each person is placed at a different distance from the
object. As the distance from the object increases, the estimates should become less
precise.

The SAS data set SIZE contains the estimate (ObjectSize) at each distance
(Distance), and the precision (Precision) for each estimate. Notice that the largest
deviation (an overestimate by 8 inches) came at the largest distance (25 feet). As a
measure of precision, 1/Distance gives more weight to estimates that were made closer
to the object and less weight to estimates that were made at greater distances.

The following statements create the data set SIZE:

options nodate pageno=1 linesize=64 pagesize=60;

data size;
input Distance ObjectSize @@;
Precision=1/distance;
datalines;

5 12 5 8 5 12 5 10
10 17 10 13 10 10 10 12
15 10 15 14 15 19 15 13
20 17 20 14 20 9 20 19
25 12 25 10 25 20 25 15
;

The following PROC MEANS step computes the average estimate of the object size
while ignoring the weights. Without a WEIGHT variable, PROC MEANS uses the
default weight of 1 for every observation. Thus, the estimates of object size at all
distances are given equal weight. The average estimate of the object size is
overestimated by 1.3 inches.

proc means data=size maxdec=3 n mean var stddev;
var objectsize;



Statements with the Same Function in Multiple Procedures 4 WEIGHT 75

title1 ’Unweighted Analysis of the SIZE Data Set’;
run;

Unweighted Analysis of the SIZE Data Set 1

The MEANS Procedure

Analysis Variable : ObjectSize

N Mean Variance Std Dev
--------------------------------------------------
20 13.300 12.537 3.541
--------------------------------------------------

The next two PROC MEANS steps use the precision measure (Precision) in the
WEIGHT statement and show the effect of using different values of the VARDEF=
option. The first PROC step creates an output data set that contains the variance and
standard deviation. By down weighting the estimates made at greater distances, the
weighted average estimate of the object size is closer to the actual size.

proc means data=size maxdec=3 n mean var stddev;
weight precision;
var objectsize;
output out=wtstats var=Est_SigmaSq std=Est_Sigma;
title1 ’Weighted Analysis Using Default VARDEF=DF’;

run;

proc means data=size maxdec=3 n mean var std
vardef=weight;

weight precision;
var objectsize;
title1 ’Weighted Analysis Using VARDEF=WEIGHT’;

run;

In the first PROC MEANS step, the variance is an estimate of �2, where the
variance of the ith observation is assumed to be var (xi) = �

2
=wi and wi is the weight

for the ith observation. In the second PROC MEANS step, the computed variance is an
estimate of (n � 1=n) �2=w, where w is the average weight. For large n, this is an
approximate estimate of the variance of an observation with average weight.

Weighted Analysis Using Default VARDEF=DF 1

The MEANS Procedure

Analysis Variable : ObjectSize

N Mean Variance Std Dev
--------------------------------------------------
20 12.352 0.951 0.975
--------------------------------------------------



76 WEIGHT 4 Chapter 3

Weighted Analysis Using VARDEF=WEIGHT 2

The MEANS Procedure

Analysis Variable : ObjectSize

N Mean Variance Std Dev
--------------------------------------------------
20 12.352 9.892 3.145
--------------------------------------------------

The following statements create and print a data set with the weighted variance and
weighted standard deviation of each observation. The DATA step combines the output
data set that contains the variance and the standard deviation from the weighted
analysis with the original data set. The variance of each observation is computed by
dividing Est_SigmaSq, the estimate of �2 from the weighted analysis when
VARDEF=DF, by each observation’s weight (Precision). The standard deviation of each
observation is computed by dividing Est_Sigma, the estimate of � from the weighted
analysis when VARDEF=DF, by the square root of each observation’s weight (Precision).

data wtsize(drop=_freq_ _type_);
set size;
if _n_=1 then set wtstats;
Est_VarObs=est_sigmasq/precision;
Est_StdObs=est_sigma/sqrt(precision);

proc print data=wtsize noobs;
title ’Weighted Statistics’;
by distance;
format est_varobs est_stdobs

est_sigmasq est_sigma precision 6.3;



Statements with the Same Function in Multiple Procedures 4 WHERE 77

run;

Weighted Statistics 4

-------------------------- Distance=5 --------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

12 0.200 0.951 0.975 4.755 2.181
8 0.200 0.951 0.975 4.755 2.181

12 0.200 0.951 0.975 4.755 2.181
10 0.200 0.951 0.975 4.755 2.181

------------------------- Distance=10 --------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

17 0.100 0.951 0.975 9.511 3.084
13 0.100 0.951 0.975 9.511 3.084
10 0.100 0.951 0.975 9.511 3.084
12 0.100 0.951 0.975 9.511 3.084

------------------------- Distance=15 --------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

10 0.067 0.951 0.975 14.266 3.777
14 0.067 0.951 0.975 14.266 3.777
19 0.067 0.951 0.975 14.266 3.777
13 0.067 0.951 0.975 14.266 3.777

------------------------- Distance=20 --------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

17 0.050 0.951 0.975 19.021 4.361
14 0.050 0.951 0.975 19.021 4.361
9 0.050 0.951 0.975 19.021 4.361

19 0.050 0.951 0.975 19.021 4.361

------------------------- Distance=25 --------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

12 0.040 0.951 0.975 23.776 4.876
10 0.040 0.951 0.975 23.776 4.876
20 0.040 0.951 0.975 23.776 4.876
15 0.040 0.951 0.975 23.776 4.876

WHERE
Subsets the input data set by specifying certain conditions that each observation must meet before
it is available for processing.

WHERE where-expression;



78 WHERE 4 Chapter 3

Required Arguments

where-expression
is a valid arithmetic or logical expression that generally consists of a sequence of
operands and operators. See SAS Language Reference: Dictionary for more
information on where processing.

Procedures That Support the WHERE Statement
You can use the WHERE statement with any of the following base SAS procedures

that read a SAS data set:

CALENDAR RANK

CHART REPORT

COMPARE SORT

CORR SQL

DATASETS (APPEND statement) STANDARD

FORMS TABULATE

FREQ TIMEPLOT

MEANS/SUMMARY TRANSPOSE

PLOT UNIVARIATE

PRINT

Details

� The CALENDAR and COMPARE procedures and the APPEND statement in
PROC DATASETS accept more than one input data set. See the documentation for
the specific procedure for more information.

� To subset the output data set, use the WHERE= data set option:

proc report data=debate nowd
out=onlyfr(where=(year=’1’));

run;

For more information on WHERE=, see SAS Language Reference: Dictionary.

Example
In this example, PROC PRINT prints only those observations that meet the condition

of the WHERE expression. The DEBATE data set is created in “Example: Temporarily
Dissociating a Format from a Variable” on page 63.

options nodate pageno=1 linesize=64
pagesize=40;

proc print data=debate noobs;
where gpa>3.5;
title ’Team Members with a GPA’;
title2 ’Greater than 3.5’;



Statements with the Same Function in Multiple Procedures 4 WHERE 79

run;

Team Members with a GPA 1
Greater than 3.5

Name Gender Year GPA

Capiccio m Freshman 3.598
Tucker m Freshman 3.901
Bagwell f Sophomore 3.722
Gold f Junior 3.609
Syme f Junior 3.883
Baglione f Senior 4.000
Carr m Senior 3.750
Hall m Senior 3.574



80 WHERE 4 Chapter 3


