CHAPTER

Overview 86
Simple Schedule Calendar — 7-Day Default Calendar 87
Advanced Schedule Calendar 88

More Advanced Scheduling and Project Management Tasks 89
Simple Summary Calendar
Procedure Syntax 91

The CALENDAR Procedure

90

PROC CALENDAR Statement 92

BY Statement

CALID Statement
DUR Statement
FIN Statement
HOLIDUR Statement
HOLIFIN Statement

100

102
103

HOLISTART Statement 103

HOLIVAR Statement
MEAN Statement
OUTDUR Statement
OUTFIN Statement

104

105

105

106

OUTSTART Statement 106

START Statement

SUM Statement

VAR Statement

Concepts 109

Type of Calendars

Schedule Calendar
Definition

107

109
109

Required Statements 109

Examples
Summary Calendar
Definition

110

Required Statements 110
Multiple Events on a Single Day 110

Examples
The Default Calendars
Description

110

When You Unexpectedly Produce a Default Calendar 111

Examples

Calendars and Multiple Calendars 111

Definitions

Why Create Multiple Calendars 111
How to Identify Multiple Calendars 112

85

86 Overview A Chapter 5

Using Holidays or Calendar Data Sets with Multiple Calendars 112
Types of Reports That Contain Multiple Calendars 112
Houw to Identify Calendars with the CALID Statement and the Special Variable _CAL_
When You Use Holidays or Calendar Data Sets 113
Examples 113

Input Data Sets 113

Activities Data Set 114
Purpose 114
Requirements and Restrictions 114
Structure 114
Multiple Activities per Day in Summary Calendars 115
Examples 115

Holidays Data Set 115
Purpose 115
Structure 115
No Sorting Needed 115
Using SAS Date Versus SAS Datetime Values 115
Create a Generic Holidays Data Set 116
Examples 116

Calendar Data Set 116
Purpose 116
Structure 116
Using Default Workshifts Instead of a Workdays Data Set 117
Examples 117

Workdays Data Set 117
Purpose 117
Use Default Work Shifts or Create Your Own? 117
Structure 118
How Missing Values Are Treated 118
Examples 118

Missing Values in Input Data Sets 118

Results 119

What Affects the Quantity of PROC CALENDAR Output 119
How Size Affects the Format of PROC CALENDAR Output 120
What Affects the Lines that Show Activity Duration 120
Customizing the Calendar Appearance 120

Examples 120

Example 1: Schedule Calendar with Holidays — 5-Day Default 120

Example 2: Schedule Calendar Containing Multiple Calendars 123

Example 3: Multiple Schedule Calendars with Atypical Workshifts (Separated Output) 128

Example 4: Multiple Schedule Calendars with Atypical Workshifts (Combined and Mixed
Output) 132

Example 5: Schedule Calendar, Blank or with Holidays 137

Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks 140

Example 7: Summary Calendar with MEAN Values By Observation 146

Example 8: Multiple Summary Calendars with Atypical Workshifts (Separated Output) 150

113

Overview

The CALENDAR procedure displays data from a SAS data set in a monthly calendar
format. You can produce a schedule calendar, which schedules events around holidays
and nonwork periods. Or you can produce a summary calendar, which summarizes data

The CALENDAR Procedure /A Simple Schedule Calendar — 7-Day Default Calendar 87

and displays only one-day events and holidays. When you use PROC CALENDAR you
can

0 schedule work around holidays and other nonwork periods

o display holidays

O process data about multiple calendars in a single step and print them in a
separate, mixed, or combined format

o apply different holidays, weekly work schedules, and daily work shifts to multiple
calendars in a single PROC step

O produce a mean and a sum for variables based on either the number of days in a
month or the number of observations.

PROC CALENDAR also contains features specifically designed to work with PROC
CPM in SAS/OR software, a project management scheduling tool.

Simple Schedule Calendar — 7-Day Default Calendar

Output 5.1 on page 87 illustrates the simplest kind of schedule calendar that you can
produce. This calendar output displays activities planned by a banking executive. The
following statements produce Output 5.1 on page 87.

options nodate pageno=1 linesize=132 pagesize=60;
proc calendar data=allacty;
start date;

dur long;

run;

For the activities data set shown in this calendar, see Example 1 on page 120.

88

Output 5.1

Advanced Schedule Calendar

Simple Schedule Calendar

A Chapter 5

This calendar uses one of the two default calendars, the 24-hour-day, 7-day-week calendar.

The SAS System

July 1996
Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday

+ + + + + +
| 1 | 2 | 3 | 4 | 5 | 6
		+=Interview/Jw==+		
+Dist. Mtg./All=+	+====Mgrs. Meeting/District 6=====+		+VIP Banquet/Jw=+	
+ + + + + +

7 | 8 | 9 | 10 | 11 | 12 | 13
			+Planning Counci+	+=Seminar/White=+
+ Trade Show/Kno: +	+ grs. Meeting/District 7=====+			
+ Sales Drive/District +				
+ + + + + +

14 | 15 | 16 | 17 | 18 | 19 | 20
			+NewsLetter Dead+	+Co. Picnic/All=+
	+==Dentist/JW===+	+Bank Meeting/ls+	+Planning Counci+	+=Seminar/White=+
+ Sales Drive/District 7 +				
+ + + + + +

21 | 22 | 23 | 24 | 25 | 26 | 27
			I	
		+=Birthday/Mary=+	+======Close Sale/WYGIX Co.=======+	
==Inventors Show/Melvin== +	+Planning Counci+			
+ + + + + +

28 | 29 30 31
| |
| |
| |
| |
| |
I I

Advanced Schedule Calendar

Output 5.2 on page 89 is an advanced schedule calendar produced by PROC
CALENDAR. The statements that create this calendar

schedule activities around holidays

I R I R B B |

identify separate calendars

print multiple calendars in the same report

apply different holidays to different calendars

The CALENDAR Procedure /A More Advanced Scheduling and Project Management Tasks 89
o apply different work patterns to different calendars.
For an explanation of the program that produces this calendar, see Example 4 on
page 132.
Output 5.2 Advanced Schedule Calendar
Well Drilling Work Schedule: Combined Calendars 1

|

| July 1996

|

|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday

+ + + + + + +
| | | | | 2 | 3 | 4 | 5 | 6
[EEEEETEE e oo eeeeee oo oo oo e
car1					**Independence**	+Assemble Tank/>
						+Lay Power Line>
		+==============Drill Well/$1,000.00==============>		<Drill well/$1,+		
[EEEEEEEE Jeeee eeeei [eeeee oo eeeei ool e						
car2				+ cavate/$3,500.00 >		
+ + + + + + +						
	7	8	9	10	11	12
[EEEEEREE [eeeee [eeeee [eeeee oo ool ool oo						
caL1		+ uild Pump House/$2,000.00 +				
		< Assemble Tank/$1,000.00 v				
		<===Lay Power Line/$2,000.00====+		+===Pour Foundation/$1,500.00===>		
[EEEEEEEE [eeee eeee [eeeee eeeee eeeeeel ool oo						
caL2		<Excavate/$3,50>	****Vacation****	<Excavate/$3,50+		
+ + + + + + +						
	14	15	16	17	18	19
[EEEEETEE PN oo eeeee eeeee eeeeee ool oo						
caL1		+ Install Pump/$500.00 +				
		<===========Pour Foundation/$1,500.00============+		+Install Pipe/$>		
I I	I					
+ + + + + + +						
I I 21 I 22 I 23 I 24 I 25 I 26 I 27						
[EEEEEREE e oo oo eeeee ool oo oo						
caL1		+ rect Tower/$2,500.00 >				
		<====Install Pipe/$1,000.00=====+				
I I		I	I			
+ + + + + + +						
	28	29	30	31		
[EEEEEREE oo [eeeee [eeeee eeeee oo oo [P

CAL1 | |<Erect Tower/$2+| | | |

| | | | | | |

| | | | | | |

| | | | | | |

I I | I I I I

More Advanced Scheduling and Project Management Tasks

For more complex scheduling tasks, consider using the CPM procedure in SAS/OR
software. PROC CALENDAR requires that you specify the starting date of each
activity. When the beginning of one task depends on the completion of others and a
date slips in a schedule, recalculating the schedule can be time-consuming. Instead of
manually recalculating dates, you can use PROC CPM to calculate dates for project

90

Simple Summary Calendar A Chapter 5

activities based on an initial starting date, activity durations, and which tasks are
identified as successors to others. For an example, see Example 6 on page 140.

Simple Summary Calendar

Output 5.3 on page 90 shows a simple summary calendar that displays the number
of meals served daily in a hospital cafeteria:

options nodate pageno=1 linesize=132 pagesize=60;

proc calendar data=meals;
start date;
sum brkfst lunch dinner;
mean brkfst lunch dinner;

run;

In a summary calendar, each piece of information for a given day is the value of a
variable for that day. The variables can be either numeric or character, and you can
format them as necessary. You can use the SUM and MEAN options to calculate sums
and means for any numeric variables. These statistics appear in a box below the
calendar, as shown in Output 5.3 on page 90. The data set shown in this calendar is
created in Example 7 on page 146.

The CALENDAR Procedure /A Procedure Syntax 91

Qutput 5.3 Simple Summary Calendar

The SAS System 1
| |
| December 1996 |
| |
| |
| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | saturday |
| + + + + + + |
1	2	3	4	5	6	7
	123	188	123	200	176	
	234	188	183	267	165	
	238	198	176	243	177	
+ + + + + +						
8	9	10	11	12	13	14
	178	165	187	176	187	
	198	176	176	187	187	
	187	187	231	222	123	
+ + + + + +						
15	16	17	18	19	20	21
	176	156	198	178	165	
	165	.	143	198	176	
	177	167	167	187	187	
+ + + + + +						
22	23	24	25	26	27	28
	187					
	187					
	123					
+ + + + + +						
29	30	31				

	Sum	Mean
Brkfst	2763	172.688
Lunch	2830	188.667
Dinner	2990	186.875

Procedure Syntax
Required: You must use a START statement.

Required: For schedule calendars, you must also use a DUR or a FIN statement.

Tip: If you use a DUR or FIN statement, PROC CALENDAR produces a schedule
calendar.

Tip: Supports the Output Delivery System (see Chapter 2, “Fundamental Concepts for
Using Base SAS Procedures”)

Reminder: You can use the FORMAT, LABEL, and WHERE statements as well as any
global statements.

92 PROC CALENDAR Statement A Chapter 5

PROC CALENDAR <option(s)>;
START variable;

BY <DESCENDING> variable-1
<...<DESCENDING> variable-n>

<NOTSORTED>;
CALID variable

</ OUTPUT=COMBINE | MIX | SEPARATE >;

DUR variable;
FIN variable;

HOLISTART variable;
HOLIDUR variable;
HOLIFIN variable;
HOLIVAR variable;

MEAN variable(s) </ FORMAT=format-name>;

OUTSTART day-of-week;
OUTDUR number-of-days;
OUTFIN day-of-week;

SUM variable(s) </ FORMAT=format-name>;

VAR variable(s);

The following table lists the statements and options available in the CALENDAR

procedure according to function.

To do this

Use this statement

Create summary calendar

Create schedule calendar
Create multiple calendars

Specify holidays

Control display

Specify grouping

MEAN
SUM

DUR or FIN
CALID

HOLISTART
HOLIDUR
HOLIFIN
HOLIVAR

OUTSTART
OUTDUR
OUTFIN

BY
CALID

PROC CALENDAR Statement

PROC CALENDAR <option(s)>;

The CALENDAR Procedure /A PROC CALENDAR Statement

93

To do this

Use this option

Specify data sets containing
weekly work schedules
activities
holidays
unique shift patterns
Control printing
display all months, even if no activities exist
define characters used for outlines, dividers, and so on
specify the type of heading for months
specify how to show missing values
suppress the display of Saturdays and Sundays
Specify time or duration
specify that START and FIN variables are in DATETIME format
specify the number of hours in a standard work day
specify the units of the DUR and HOLIDUR variables
Control summary information
identify variables in the calendar

specify the type of mean to calculate

CALEDATA=
DATA=
HOLIDATA=
WORKDATA=

FILL
FORMCHAR=
HEADER=
MISSING
WEEKDAYS

DATETIME
DAYLENGTH=
INTERVAL=

LEGEND
MEANTYPE=

Options

CALEDATA=SAS-data-set

specifies the calendar data set, a SAS data set that contains weekly work schedules

for multiple calendars.

Default: If you omit the CALEDATA= option, PROC CALENDAR uses a default

work schedule, as described in “The Default Calendars” on page 110.
Tip: A calendar data set is useful if you are using multiple calendars or a

nonstandard work schedule.
See also: “Calendar Data Set” on page 116
Featured in: Example 3 on page 128

DATA=SAS-data-set

specifies the activities data set, a SAS data set that contains starting dates for all

activities and variables to display for each activity. Activities must be sorted or

indexed by starting date.

Default: If you omit the DATA= option, the most recently created SAS data set is

used.
See also: “Activities Data Set” on page 114
Featured in: All examples. See “Examples” on page 120

DATETIME

specifies that START and FIN variables contain values in DATETIME. format.

Default: If you omit the DATETIME option, PROC CALENDAR assumes that the

START and FIN values are in the DATE. format.

94 PROC CALENDAR Statement A Chapter 5

Featured in: Example 3 on page 128

DAYLENGTH=hours
gives the number of hours in a standard working day. The hour value must be a SAS
TIME value.

Default: 24 if INTERVAL=DAY (the default), 8 if INTERVAL=WORKDAY.
Restriction: DAYLENGTH= applies only to schedule calendars.

Interaction: If you specify the DAYLENGTH= option and the calendar data set
contains a D_ LENGTH variable, PROC CALENDAR uses the DAYLENGTH=
value only when the D_LENGTH value is missing.

Interaction: When INTERVAL=DAY and you have no CALEDATA= data set,
specifying a DAYLENGTH= value has no effect.

Tip: The DAYLENGTH= option is useful when you use the DUR statement and
your work schedule contains days of varying lengths, for example, a 5
1/2-day work week. In a work week with varying day lengths, you need to set a
standard day length to use in calculating duration times. For example, an activity
with a duration of 3.0 workdays lasts 24 hours if DAYLENGTH=8:00 or 30 hours if
DAYLENGTH=10:00.

Tip: Instead of specifying the DAYLENGTH= option, you can specify the length of
the working day by using a D_LENGTH variable in the CALEDATA= data set. If
you use this method, you can specify different standard day lengths for different
calendars.

See also: “Calendar Data Set” on page 116 for more information on setting the
length of the standard workday

FILL
displays all months between the first and last activity, start and finish dates
inclusive, including months that contain no activities.
Default: If you do not specify FILL, PROC CALENDAR prints only months that
contain activities. (Months that contain only holidays are not printed.)

Featured in: Example 5 on page 137

FORMCHAR <(position(s))>="formatting-character(s)’
defines the characters to use for constructing the outlines and dividers for the cells in
the calendar as well as all identifying markers (such as asterisks and arrows) used to
indicate holidays or continuation of activities in PROC CALENDAR output.

position(s)
identifies the position of one or more characters in the SAS formatting-character
string. A space or a comma separates the positions.

Default: Omitting (position(s)) is the same as specifying all 20 possible system
formatting characters, in order.

Range: PROC CALENDAR uses 17 of the 20 formatting characters that SAS
provides. Table 5.1 on page 95 shows the formatting characters that PROC
CALENDAR uses. Figure 5.1 on page 96 illustrates their use in PROC
CALENDAR output.

formatting-character(s)
lists the characters to use for the specified positions. PROC CALENDAR assigns
characters in formatting-character(s) to position(s), in the order that they are listed.
For instance, the following option assigns an asterisk (¥) to the twelfth position,
assigns a single dash (-) to the thirteenth, and does not alter remaining characters:

formchar (12 13)="*-"

These new settings change the activity line from this:

The CALENDAR Procedure /A PROC CALENDAR Statement 95

t ACTIVITY t

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The SAS system option defines the entire string of formatting
characters. The FORMCHAR= option in a procedure can redefine selected
characters.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, you must put an x after the closing
quote. For instance, the following option assigns the hexadecimal character 2D to
the third formatting character, the hexadecimal character 7C to the seventh
character, and does not alter the remaining characters:

formchar(3,7)='2D7C’'x

See also: For information on which hexadecimal codes to use for which characters,
consult the documentation for your hardware.

Table 5.1 Formatting Characters Used by PROC CALENDAR

Position Default Used to draw

1 | vertical bar

2 - horizontal bar

3 - cell: upper left corner

4 - cell: upper middle intersection
5 - cell: upper right corner

6 | cell: middle left cell side

7 + cell: middle middle intersection
8 | cell: middle right cell side

9 - cell: lower left corner

10 - cell: lower middle intersection
11 - cell: lower right corner

12 + activity start and finish

13 = activity line

16 / activity separator

18 < activity continuation from

19 > activity continuation to

20 * holiday marker

96 PROC CALENDAR Statement A Chapter 5

Figure 5.1 Formatting Characters in PROC CALENDAR Output

2

3\? = -5
| July, 1996 |
1‘6 % A 4 4 st
D S , o s]
6 Monday | Tuesday | Wednesday | Thursday | Friday | 8
+. O+ +. o O\ -
N A < ‘ +° 7 |
[F*Independence* e xs /acation s k|
| |
12 | |
| | 20
terview/JW | |
€X===Dist. Mtg./All /grs. Meeting/District 6=============4]
+ T + +
[o,/ | 10 T | 12
Vacstion Vacation | | | 16
| |
| |
|+Planning Council/Group +|+=====Seminar/White=== ==+|
13 Trade Show/Kno ==4| 19
Sales Drive/District 6: ==S)—
====VIP Banquet/JW: | /grs. Meeting/District 7=========== ==+
+ + +. +. -
15 | 16 | 17 | 18 | 19
Dentist/JW\ | [+NewsLetter Deadline/All+|+====Co. Picnic/All=== ==+
Sales Drive/District 7 ==+
1 8—@============Sales Drive/District 6==============+|+=Bank Meeting/1st Natl=+|+Planning Council/Group +|+=====Seminar/White=== ==4|
+ + +. +. -
22 | 23 | 24 | 25 | 26
+=====Birthday/Mary=====+|+==============Close Sale/WYGIX Co.============= ==+|
wentors Show/Melvir |+Planning Council/Group +| |
+ + +. +. -
29 | 30 | 31 | |
o 3 3 ;i 3 o

HEADER=SMALL | MEDIUM | LARGE
specifies the type of heading to use in printing the name of the month.

SMALL
prints the month and year on one line.

MEDIUM
prints the month and year in a box four lines high.

LARGE
prints the month seven lines high using asterisks (*). The year is included if space
is available.

Default: MEDIUM

HOLIDATA=SAS-data-set
specifies the holidays data set, a SAS data set containing the holidays you want to
display in the output. One variable must contain the holiday names and another

must contain the starting dates for each holiday. PROC CALENDAR marks holidays
in the calendar output with asterisks (*) when space permits.

Interaction: Displaying holidays on a calendar requires a holidays data set and a
HOLISTART statement. A HOLIVAR statement is recommended for naming
holidays. HOLIDUR is required if any holiday lasts longer than one day.

Tip: The holidays data set does not require sorting.
See also: “Holidays Data Set” on page 115
Featured in: All examples. See “Examples” on page 120

The CALENDAR Procedure /A PROC CALENDAR Statement 97

INTERVAL=DAY | WORKDAY
specifies the units of the DUR and HOLIDUR variables to one of two default
daylengths:

DAY
specifies the values of the DUR and HOLIDUR variables in units of 24-hour days
and specifies the default 7-day calendar. For instance, a DUR value of 3.0 is
treated as 72 hours. The default calendar work schedule consists of seven working
days, all starting at 00:00 with a length of 24:00.

WORKDAY
specifies the values of the DUR and HOLIDUR variables in units of 8-hour days
and specifies that the default calendar contains five days a week, Monday through
Friday, all starting at 09:00 with a length of 08:00. When WORKDAY is specified,
PROC CALENDAR treats the values of the DUR and HOLIDUR variables in units
of working days, as defined in the DAYLENGTH= option, the CALEDATA= data
set, or the default calendar. For example, if the working day is 8 hours long, a
DUR value of 3.0 is treated as 24 hours.

Default: DAY

Interaction: In the absence of a CALEDATA= data set, PROC CALENDAR uses
the work schedule defined in a default calendar.

Interaction: The WEEKDAYS option automatically sets the INTERVAL= value to
WORKDAY.

See also: “Calendars and Multiple Calendars” on page 111 and “Calendar Data Set”
on page 116 for more information on the INTERVAL= option and the specification
of working days; “The Default Calendars” on page 110

Featured in: Example 5 on page 137

LEGEND

prints the names of the variables whose values appear in the calendar. This

identifying text, or legend box, appears at the bottom of the page for each month if

space permits; otherwise, it is printed on the following page. PROC CALENDAR
identifies each variable by name or by label if one exists. The order of variables in
the legend matches their order in the calendar.

Restriction: LEGEND applies only to summary calendars.

Interaction: If you use the SUM and MEAN statements, the legend box also
contains SUM and MEAN values.

Featured in: Example 8 on page 150

MEANTYPE=NOBS | NDAYS
specifies the type of mean to calculate for each month.

NOBS
calculates the mean over the number of observations displayed in the month.

NDAYS

calculates the mean over the number of days displayed in the month.
Default: NOBS
Restriction: MEANTYPE= applies only to summary calendars.

Interaction: Normally, PROC CALENDAR displays all days for each month.
However, it may omit some days if you use the OUTSTART statement with the
OUTDUR or OUTFIN statement.

Featured in: Example 7 on page 146

MISSING
determines how missing values are treated, based on the type of calendar.

98 PROC CALENDAR Statement A Chapter 5

Summary Calendar
If there is a day without an activity scheduled, PROC CALENDAR prints the
values of variables for that day using the SAS or user-defined format specified for
missing values.

Default: If you omit MISSING, days without activities contain no values.

Schedule Calendar
variables with missing values appear in the label of an activity, using the format
specified for missing values.
Default: If you do not specify MISSING, PROC CALENDAR ignores missing
values in labeling activities.
See also: “Missing Values in Input Data Sets” on page 118 for more information on
missing values

WEEKDAYS
suppresses the display of Saturdays and Sundays in the output. It also specifies that
the value of the INTERVAL= option is WORKDAY.

Default: If you omit WEEKDAYS, the calendar displays all seven days.

Tip: The WEEKDAYS option is an alternative to using the combination of
INTERVAL=WORKDAY and the OUTSTART and OUTFIN statements, as shown

here:

Example Code 5.1 lllustration of Formatting Characters in PROC CALENDAR Output

proc calendar weekdays;
start date;

run;

proc calendar interval=workday;
start date;
outstart monday;
outfin friday;

run;
Featured in: Example 1 on page 120

WORKDATA=SAS-data-set
specifies the workdays data set, a SAS data set that defines the work pattern during
a standard working day. Each numeric variable in the workdays data set denotes a
unique workshift pattern during one working day.

Tip: The workdays data set is useful in conjunction with the calendar data set.
See also: “Workdays Data Set” on page 117 and “Calendar Data Set” on page 116
Featured in: Example 3 on page 128

The CALENDAR Procedure /A BY Statement 99

BY Statement
Processes activities separately for each BY group, producing a separate calendar for each value of
the BY variable.
Calendar: both

Main discussion: “BY” on page 68
See also: “CALID Statement” on page 100

BY <DESCENDING> variable-1
<...<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable, but the observations in the data set must be sorted by all the
variables that you specify or have an appropriate index. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

Showing Multiple Calendars in Related Groups

When you use the CALID statement, you can process activities that apply to
different calendars, indicated by the value of the CALID variable. Because you can
specify only one CALID variable, however, you can create only one level of grouping.
For example, if you want a calendar report to show the activities of several departments
within a company, you can identify each department with the value of the CALID
variable and produce calendar output that shows the calendars for all departments.

When you use a BY statement, however, you can further divide activities into related
groups. For example, you can print calendar output that groups departmental
calendars by division. The observations for activities must contain a variable that
identifies which department an activity belongs to and a variable that identifies the
division that a department resides in. Specify the variable that identifies the
department with the CALID statement. Specify the variable that identifies the division
with the BY statement.

100 CALID Statement A Chapter 5

CALID Statement

Processes activities in groups defined by the values of a calendar identifier variable.

Calendar: both

Tip: Useful for producing multiple schedule calendars and for use with SAS/OR
software.

See also: “Calendar Data Set” on page 116
Featured in: Example 2 on page 123, Example 3 on page 128, and Example 6 on page 140

CALID variable
</ OUTPUT=COMBINE | MIX | SEPARATE>;

Required Arguments

variable
a character or numeric variable that identifies which calendar an observation
contains data for.

Requirement: If you specify the CALID variable, both the activities and holidays
datasets must contain this variable. If either of them does not contain it, a default
calendar is used.

Interaction: SAS/OR software uses this variable to identify which calendar an
observation contains data for.

Tip: You do not need to use a CALID statement to create this variable. You can
include the default variable _CALID_ in the input data sets.

See also: “Calendar Data Set” on page 116

Options

OUTPUT=COMBINE | MIX | SEPARATE
controls the amount of space required to display output for multiple calendars.

COMBINE
produces one page for each month that contains activities and subdivides each day
by the CALID value.

Restriction: The input data must be sorted by or indexed on the START variable.
Featured in: Example 2 on page 123 and Example 4 on page 132
MIX

produces one page for each month that contains activities and does not identify
activities by the CALID value.

Restriction: The input data must be sorted by or indexed on the START variable.
Tip: MIX requires the least space for output.
Featured in: Example 4 on page 132

SEPARATE
produces a separate page for each value of the CALID variable.

The CALENDAR Procedure /A DUR Statement 101

Restriction: The input data must be sorted by the CALID variable and then by the
START variable or must contain an appropriate composite index.

Featured in: Example 3 on page 128 and Example 8 on page 150
Default: COMBINE

DUR Statement

Specifies the variable that contains the duration of each activity.

Alias: DURATION

Calendar: Schedule

Interaction: If you use both a DUR and a FIN statement, DUR is ignored.

Tip: To produce a schedule calendar, you must use either a DUR or FIN statement.

Featured in: All schedule calendars (see “Examples” on page 120)

DUR variable;

Required Arguments

variable
contains the duration of each activity in a schedule calendar.

Range: The duration may be a real or integral value.
Restriction: This variable must be in the activities data set.

See also: For more information on activity durations, see “Activities Data Set” on
page 114 and “Calendar Data Set” on page 116

Duration

0 Duration is measured inclusively from the start of the activity (as given in the
START variable). In the output, any activity lasting part of a day is displayed as
lasting a full day.

0 The INTERVAL= option in a PROC CALENDAR statement automatically sets the
unit of the duration variable, depending on its own value as follows:

If INTERVAL=. . . Then the default length of the duration unitis . . .
DAY (the default) 24 hours
WORKDAY 8 hours

o0 You can override the default length of a duration unit by using
0 the DAYLENGTH= option
o a D_LENGTH variable in the CALEDATA= data set.

102

FIN Statement A Chapter 5

FIN Statement

Specifies the variable in the activities data set that contains the finishing date of each activity.

Alias: FINISH

Calendar: Schedule

Interaction: If you use both a FIN and a DUR statement, FIN is used.

Tip: To produce a schedule calendar, you must use either a FIN or DUR statement.
Featured in: Example 6 on page 140

FIN variable;

Required Arguments

variable
contains the finishing date of each activity.

Restrictions: The values of variable must be either SAS date or datetime values.

Restrictions: If the FIN variable contains datetime values, you must specify the
DATETIME option in the PROC CALENDAR statement.

Restrictions: Both the START and FIN variables must have matching formats. For
example, if one contains datetime values, so must the other.

HOLIDUR Statement

Specifies the variable in the holidays data set that contains the duration of each holiday for a
schedule calendar.

Alias: HOLIDURATION

Calendar: Schedule

Default: If you do not use a HOLIDUR or HOLIFIN statement, all holidays last one day.
Restriction: Cannot use with a HOLIFIN statement.

Featured in: Example 1 on page 120 through Example 5 on page 137

HOLIDUR variable;

Required Arguments

variable
contains the duration of each holiday.

Range: The duration may be a real or integral value.
Restriction: This variable must be in the holidays data set.
Featured in: Example 3 on page 128 and Example 8 on page 150

The CALENDAR Procedure /A HOLISTART Statement 103

Holiday Duration

o If you use both the HOLIFIN and HOLIDUR statement, PROC CALENDAR uses
the HOLIFIN variable value to define each holiday’s duration.

0 Set the unit of the holiday duration variable in the same way that you set the unit
of the duration variable; use either the INTERVAL= and DAYLENGTH-= options
or the CALEDATA= data set.

0 Duration is measured inclusively from the start of the holiday (as given in the
HOLISTART variable). In the output, any holiday lasting at least half a day
appears as lasting a full day.

HOLIFIN Statement

Specifies the variable in the holidays data set containing the finishing date of each holiday.
Alias: HOLIFINISH

Calendar: Schedule
Default: If you do not use a HOLIFIN or HOLIDUR statement, all holidays last one day.

HOLIFIN variable;

Required Arguments

variable
contains the finishing date of each holiday.

Restriction: This variable must be in the holidays data set.
Restriction: Values of variable must be in either SAS date or datetime values.

Restriction: If the HOLIFIN variable contains datetime values, you must specify
the DATETIME option in the PROC CALENDAR statement.

Holiday Duration

If you use both the HOLIFIN and the HOLIDUR statement, PROC CALENDAR uses
only the HOLIFIN variable.

HOLISTART Statement

Specifies a variable in the holidays data set that contains the starting date of each holiday.
Alias: HOLISTA, HOLIDAY

Calendar: both

Requirement: When you use a holidays data set, HOLISTART is required.

Featured in: Example 1 on page 120 through Example 5 on page 137

104

HOLIVAR Statement A Chapter 5

HOLISTART variable;

Required Arguments

variable
contains the starting date of each holiday.

Restriction: Values of variable must be in either SAS date or datetime values.

Restriction: If the HOLISTART variable contains datetime values, specify the
DATETIME option in the PROC CALENDAR statement.

Details

O The holidays data set need not be sorted.
o All holidays last only one day, unless you use a HOLIFIN or HOLIDUR statement.

o If two or more holidays occur on the same day, PROC CALENDAR uses only the
first observation.

HOLIVAR Statement

Specifies a variable in the holidays data set whose values are used to label the holidays.

Alias: HOLIVARIABLE, HOLINAME
Calendar: both

Default: If you do not use a HOLIVAR statement, PROC CALENDAR uses the word
DATE to identify holidays.

Featured in: Example 1 on page 120 through Example 5 on page 137

HOLIVAR variable;

Required Arguments

variable
a variable whose values are used to label the holidays. Typically, this variable
contains the names of the holidays.

Range: character or numeric.
Restriction: This variable must be in the holidays data set.
Tip: You can format the HOLIVAR variable as you like.

The CALENDAR Procedure /A OUTDUR Statement 105

MEAN Statement

Specifies numeric variables in the activities data set for which mean values are to be calculated
for each month.

Calendar: Summary

Tip: You can use multiple MEAN statements.

Featured in: Example 7 on page 146

MEAN variable(s) </ FORMAT=format-name>;

Required Arguments

variable(s)
numeric variable for which mean values are calculated for each month.

Restriction: This variable must be in the activities data set.

Options

FORMAT=format-name
names a SAS or user-defined format to be used in displaying the means requested.

Alias: F=
Default: BEST. format
Featured in: Example 7 on page 146

What Is Displayed and How

0 The means appear at the bottom of the summary calendar page, if there is room,;
otherwise they appear on the following page.

0 The means appear in the LEGEND box if you specify the LEGEND option.

o PROC CALENDAR automatically displays variables named in a MEAN statement
in the calendar output, even if the variables are not named in the VAR statement.

OUTDUR Statement

Specifies in days the length of the week to be displayed.

Alias: OUTDURATION
Requirement: The OUTSTART statement is required.

OUTDUR number-of-days;

106

OUTFIN Statement A Chapter 5

Required Arguments

number-of-days
an integer expressing the length in days of the week to be displayed.

Length of Week

Use either the OUTDUR or OUTFIN statement to supply the procedure with
information about the length of the week to display. If you use both, PROC
CALENDAR ignores the OUTDUR statement.

OUTFIN Statement

Specifies the last day of the week to display in the calendar.

Alias: OUTFINISH
Requirement: The OUTSTART statement is required.
Featured in: Example 3 on page 128 and Example 8 on page 150

OUTFIN day-of-week;

Required Arguments

day-of-week
the name of the last day of the week to display. For example,

outfin friday;

Length of Week

Use either the OUTFIN or OUTDUR statement to supply the procedure with
information about the length of the week to display. If you use both, PROC
CALENDAR uses only the OUTFIN statement.

OUTSTART Statement

Specifies the starting day of the week to display in the calendar.

Alias: OUTSTA
Default: If you do not use OUTSTART, each calendar week begins with Sunday.
Featured in: Example 3 on page 128 and Example 8 on page 150

OUTSTART day-of-week;

The CALENDAR Procedure /A SUM Statement 107

Required Arguments

day-of-week
the name of the starting day of the week for each week in the calendar. For example,

outstart monday;

Interaction with OUTDUR and OUTFIN

By default, a calendar displays all seven days in a week. Use OUTDUR or OUTFIN,
in conjunction with OUTSTART, to control how many days are displayed and which day
starts the week.

START Statement

Specifies the variable in the activities data set that contains the starting date of each activity.

Alias: STA, DATE, ID
Required: START is required for both summary and schedule calendars.
Featured in: All examples

START variable;

Required Arguments

variable
contains the starting date of each activity.

Restriction: This variable must be in the activities data set.
Restriction: Values of variable must be in either SAS date or datetime values.

Restriction: If you use datetime values, specify the DATETIME option in the
PROC CALENDAR statement.

Restriction: Both the START and FIN variables must have matching formats. For
example, if one contains datetime values, so must the other.

SUM Statement

Specifies numeric variables in the activities data set to total for each month.

Calendar: Summary

Tip: To apply different formats to variables being summed, use multiple SUM
statements.

Featured in: Example 7 on page 146 and Example 8 on page 150

108

VAR Statement A Chapter 5

SUM variable(s) </ FORMAT=format-name>;

Required Arguments

variable(s)
specifies one or more numeric variables to total for each month.

Restriction: This variable must be in the activities data set.

Options

FORMAT=format-name
names a SAS or user-defined format to use in displaying the sums requested.

Alias: F=
Default: BEST. format
Featured in: Example 7 on page 146 and Example 8 on page 150

What Is Displayed and How

0 The sum appears at the bottom of the calendar page, if there is room; otherwise, it
appears on the following page.

0 The sum appears in the LEGEND box if you specify the LEGEND option.

0o PROC CALENDAR automatically displays variables named in a SUM statement
in the calendar output, even if the variables are not named in the VAR statement.

VAR Statement

Specifies the variables that you want to display for each activity.
Alias: VARIABLE

VAR variable(s);

Required Arguments

variable(s)
specifies one or more variables that you want to display in the calendar.

Range: The values of variable can be either character or numeric.
Restriction: These variables must be in the activities data set.
Tip: You can apply a format to this variable.

Details
When VAR Is Not Used

If you do not use a VAR statement, the procedure displays all variables in the activities
data set in the order that they occur in the data set, except for the BY, CALID, START,

The CALENDAR Procedure /\ Schedule Calendar 109

DUR, and FIN variables. All variables are not displayed, however, if the LINESIZE=
and PAGESIZE= settings do not allow enough space in the calendar.

Display of Variables
o PROC CALENDAR displays variables in the order that they appear in the VAR
statement. All variables are not displayed, however, if the LINESIZE= and
PAGESIZE= settings do not allow enough space in the calendar.
o PROC CALENDAR also displays any variable named in a SUM or MEAN
statement for each activity in the calendar output, even if you do not name that
variable in a VAR statement.

Concepts

Type of Calendars
PROC CALENDAR can produce two kinds of calendars: schedule and summary.

Use a ... if you want to ... and can accept this
restriction
schedule calendar schedule activities around holidays cannot calculate sums and
and nonwork periods means

schedule activities that last more
than one day

summary calendar calculate sums and means activities can last only one
day

Note: PROC CALENDAR produces a summary calendar if you do not use a DUR or
FIN statement in the PROC step. A

Schedule Calendar

Definition

A report in calendar format that shows when activities and holidays start and end.

Required Statements
You must supply a START statement and either a DUR or FIN statement.

Use this statement . . . to specify a variable whose value indicates the . . .
START starting date of an activity

DUR* duration of an activity

FIN* ending date of an activity

* Choose one of these. If you do not use a DUR or FIN statement CALENDAR assumes you want
to create a summary calendar report.

110 Summary Calendar A Chapter 5

Examples

See “Simple Schedule Calendar — 7-Day Default Calendar” on page 87, “Advanced
Schedule Calendar” on page 88, as well as Example 1 on page 120, Example 2 on page
123, Example 3 on page 128, Example 4 on page 132, Example 5 on page 137, and
Example 6 on page 140

Summary CGalendar

Definition
A report in calendar format that displays activities and holidays that last only one
day and that can provide summary information in the form of sums and means.

Required Statements

You must supply a START statement. This statement identifies the variable in the
activities data set that contains an activity’s starting date.

Multiple Events on a Single Day

A summary calendar report can display only one activity on a given date. If more
than one activity has the same START value, therefore, only the last observation that
was read is used. In such situations, you may find PROC SUMMARY useful in
collapsing your data set to contain one activity per starting date.

Examples

See “Simple Summary Calendar” on page 90, Example 7 on page 146, and Example 8
on page 150

The Default Calendars

Description

PROC CALENDAR provides two default calendars for simple applications. You can
produce calendars without having to specify detailed workshifts and weekly work
patterns if your application can use one of two simple work patterns. Consider using a
default calendar if

O your application uses a 5-day work week with 8-hour days or a 7-day work week
with 24-hour days. See Table 5.2 on page 110.

O you want to print all activities on the same calendar.
O you do not need to identify separate calendars.

Table 5.2 Default Calendar Settings and Examples

If scheduled work days Then set By default So work periods are Shown in
are INTERVAL= DAYLENGTH= Example
7 (M-Sun) DAY 24 24-hour days 2
5 (M-F) WORKDAY 8 8-hour days 1

The CALENDAR Procedure /\ Calendars and Multiple Calendars 1

When You Unexpectedly Produce a Default Calendar

If you want to produce a specialized calendar, but do not provide all the necessary
information, PROC CALENDAR attempts to produce a default calendar. These errors
cause PROC CALENDAR to produce a calendar with default features:

o If the activities data set does not contain a CALID variable, then PROC
CALENDAR produces a default calendar.

0 If both the holidays and calendar data sets do not contain a CALID variable, then
PROC CALENDAR produces a default calendar even if the activities data set
contains a CALID variable.

o If the activities and calendar data sets contain the CALID variable, but the
holidays data set does not, then the default holidays are used.

Examples

See the 7-day default calendar in Output 5.1 on page 87 and the 5-day default
calendar in Example 1 on page 120

Calendars and Multiple Calendars

Definitions

calendar
a logical entity that represents a weekly work pattern, which consists of weekly
work schedules and daily shifts. PROC CALENDAR contains two default work
patterns: 5-day week with an 8-hour day or a 7-day week with a 24-hour day. You
can also define your own work patterns using CALENDAR and WORKDAYS data
sets.

calendar report
a report in calendar format that displays activities, holidays, and nonwork periods.
A calendar report can contain multiple calendars in one of three formats

separate
Each identified calendar prints on separate output pages.

combined
All identified calendars print on the same output pages and each is identified.

mixed
All identified calendars print on the same output pages but are not identified
as belonging to separate calendars.

multiple calendar
a logical entity that represents multiple weekly work patterns.

Why Create Multiple Calendars

Create a multiple calendar if you want to print a calendar report that shows
activities that follow different work schedules or different weekly work patterns. For
example, a construction project report might need to use different work schedules and
weekly work patterns for work crews on different parts of the project.

Another use for multiple calendars is to identify activities so that you can choose to
print them in the same calendar report. For example, if you identify activities as

112

Calendars and Multiple Calendars A Chapter 5

belonging to separate departments within a division, you can choose to print a calendar
report that shows all departmental activities on the same calendar.

And finally, using multiple calendars, you can produce separate calendar reports for
each calendar in a single step. For example, if activities are identified by department,
you can produce a calendar report that prints the activities of each department on
separate pages.

How to Identify Multiple Calendars

Because PROC CALENDAR can process only one data set of each type (activities,
holidays, calendar, workdays) in a single PROC step, you must be able to identify for
PROC CALENDAR which calendar an activity, holiday, or weekly work pattern belongs
to. Use the CALID statement to specify the variable whose values identify the
appropriate calendar. This variable can be numeric or character.

You can use the special variable name _CAL_ or you can use another variable name.
PROC CALENDAR automatically looks for a variable named _CAL_ in the holiday and
calendar data sets, even when the activities data set uses a variable with another name
as the CALID variable. Therefore, if you use the name _CAL_, at least in your holiday
and calendar data sets, you can more easily reuse these data sets for different calendar
applications.

Using Holidays or Calendar Data Sets with Multiple Calendars

When using a holidays or calendar data set with multiple calendars, PROC
CALENDAR treats the variable values in the following way:

0 Every value of the CALID variable that appears in either the holidays or calendar
data sets defines a calendar.

o If a CALID value appears in the HOLIDATA= data set but not in the
CALEDATA= data set, the work schedule of the default calendar is used.

o If a CALID value appears in the CALEDATA= data set but not in the
HOLIDATA= data set, the holidays of the default calendar are used.

o If a CALID value does not appear in either the HOLIDATA= or CALEDATA= data
set, the work schedule and holidays of the default calendar are used.

o If the CALID variable is not found in the holiday or calendar data sets, PROC
CALENDAR looks for the default variable _CAL_ instead. If neither the CALID
variable nor a _CAL_ variable appears in a data set, the observations in that data
set are applied to a default calendar.

Types of Reports That Contain Multiple Calendars

Because you can associate different observations with different calendars, you can
print a calendar report that shows activities that follow different work schedules or
different work shifts or that contain different holidays. You can

O print separate calendars on the same page and identify each one.

O print separate calendars on the same page without identifying them.

O print separate pages for each identified calendar.

As an example, consider a calendar that shows the activities of all departments
within a division. Each department can have its own calendar identification value and,
if necessary, can have individual weekly work patterns, daily work shifts, and holidays.

If you place activities associated with different calendars in the same activities data
sets, you use PROC CALENDAR to produce calendar reports that print

0 the schedule and events for each department on a separate pages (separate output)

The CALENDAR Procedure /A Input Data Sets 113

0 the schedule and events for the entire division, each identified by department
(combined output)

O the schedule and events for the entire division, but not identified by department
(mixed output).

The multiple-calendar feature was added specifically to enable PROC CALENDAR to
process the output of PROC CPM in SAS/OR software, a project management tool. See
Example 6 on page 140.

How to Identify Calendars with the CALID Statement and the Special
Variable _CAL_

To identify multiple calendars, you must use the CALID statement to specify the
variable whose values identify which calendar an event belongs with. This variable can
be numeric or character.

You can use the special variable name _CAL_ or you can use another variable name.
PROC CALENDAR automatically looks for a variable named _CAL_ in the holiday and
calendar data sets, even when the activities data set uses a variable with another name
as the CALID variable. Therefore, if you use the name _CAL_, at least in your holiday
and calendar data sets, you can more easily reuse these data sets for different calendar
applications.

When You Use Holidays or Calendar Data Sets

When you use a holidays or calendar data set with multiple calendars, PROC
CALENDAR treats the variable values in the following way:

0 Every value of the CALID variable that appears in either the holidays or calendar
data sets defines a calendar.

o If a CALID value appears in the HOLIDATA= data set but not in the
CALEDATA= data set, the work schedule of the default calendar is used.

o If a CALID value appears in the CALEDATA= data set but not in the
HOLIDATA= data set, the holidays of the default calendar are used.

o If a CALID value does not appear in either the HOLIDATA= or CALEDATA= data
set, the work schedule and holidays of the default calendar are used.

o If the CALID variable is not found in the holiday or calendar data sets, PROC
CALENDAR looks for the default variable _CAL_ instead. If neither the CALID
variable nor a _CAL_ variable appear in a data set, the observations in that data
set are applied to a default calendar.

Examples

Example 2 on page 123, Example 3 on page 128, Example 4 on page 132, and
Example 8 on page 150

Input Data Sets

You may need several data sets to produce a calendar, depending on the complexity
of your application. PROC CALENDAR can process one of each of four data sets. See
Table 5.3 on page 114.

114 Activities Data Set A Chapter 5

Table 5.3 Four Possible Input Data Sets for PROC CALENDAR

Data Set

Description

Specify with the . . .

activities

holidays

calendar

workdays

Each observation contains information
about a single activity.

Each observation contains information
about a holiday

Each observation defines one weekly
work schedule.

Each variable represents one daily
schedule of alternating work and
nonwork periods.

DATA-= option

HOLIDATA= option

CALEDATA= option

WORKDATA-= option

Activities Data Set

Purpose

The activities data set, specified with the DATA= option, contains information about
the activities to be scheduled by PROC CALENDAR. Each observation describes a

single activity.

Requirements and Restrictions

O An activities data set is required. (If you do not specify one with the DATA=
option, PROC CALENDAR uses the _LAST_ data set.)

O Only one activities data set is allowed.

0 The activities data set must always be sorted or indexed by the START variable.

0 If you use a CALID (calendar identifier) variable and want to produce output that
shows multiple calendars on separate pages, the activities data set must be sorted
by or indexed on the CALID variable and then by the START variable.

o If you use a BY statement, the activities data set must be sorted by or indexed on
the BY variables.

Structure

Each observation in the activities data set contains information about one activity.
One variable must contain the starting date. If you are producing a schedule calendar,
another variable must contain either the activity duration or finishing date. Other
variables can contain additional information about an activity.

The CALENDAR Procedure /A Holidays Data Set 115

If a variable contains an activity’s For this type of
Specify it with the . . . calendar. . .
starting date START statement Schedule
Summary
duration DUR statement Schedule
finishing date FIN statement Schedule

Multiple Activities per Day in Summary Calendars

A summary calendar can display only one activity on a given date. If more than one
activity has the same START value, therefore, only the last observation read is used. In
such situations, you may find PROC SUMMARY useful to collapse your data set to
contain one activity per starting date.

Examples

Every example in the Examples section uses an activities data set.

Holidays Data Set

Purpose

You can use a holidays data set, specified with the HOLIDATA= option, to
O identify holidays on your calendar output

0 identify days that are not available for scheduling work. (In a schedule calendar,
PROC CALENDAR does not schedule activities on these days.)

Structure

Each observation in the holidays data set must contain at least the holiday starting
date. A holiday lasts only one day unless a duration or finishing date is specified.
Supplying a holiday name is recommended, though not required. If you do not specify
which variable contains the holiday name, PROC CALENDAR uses the word DATE to
identify each holiday.

If a variable contains a Then specify it with this statement . . .
holiday’s . . .

starting date HOLISTART

name HOLIVAR

duration HOLIDUR

finishing date HOLIFIN

No Sorting Needed

You do not need to sort or index the holidays data set.

Using SAS Date Versus SAS Datetime Values

PROC CALENDAR calculates time using SAS datetime values. Even when your data
are in DATE. format, the procedure automatically calculates time in minutes and

116 Calendar Data Set A Chapter 5

seconds. If you specify only date values, therefore, PROC CALENDAR prints messages
similar to the following ones to the SAS log:

NOTE: All holidays are assumed to start at the time/date specified for the holiday varie
WARNING: The units of calculation are SAS datetime values while all the holiday varie

Create a Generic Holidays Data Set

If you have many applications that require PROC CALENDAR output, consider
creating a generic holidays data set that contains standard holidays. You can begin
with the generic holidays and add observations that contain holidays or nonwork events
specific to an application.

CAUTION:
Do not schedule holidays during nonwork periods. Holidays defined in the HOLIDATA=
data set cannot occur during nonwork periods defined in the work schedule. For
example, you cannot schedule Sunday as a vacation day if the work week is defined
as Monday through Friday. When such a conflict occurs, the holiday is rescheduled to
the next available working period following the nonwork day. A

Examples

Every example in the Examples section uses a holidays data set.

Calendar Data Set

Purpose

You can use a calendar data set, specified with the CALEDATA= option, to specify
work schedules for different calendars.

Structure

Each observation in the calendar data set defines one weekly work schedule. The
data set created in the DATA step shown below defines weekly work schedules for two
calendars, CALONE and CALTWO.

data cale;

input sun_ $ mon_$ tue_$ wed $ _thu_ $ /
fri §$ sat$ _cal_ $ d_length timeé6.;

datalines;

holiday workday workday workday workday

workday holiday calone 8:00

holiday shiftl shiftl shiftl shiftl

shift2 holiday caltwo 9:00

The variables in this calendar data set consist of
SUN through _SAT_

the name of each day of the week that appears in the calendar. The values of
these variables contain the name of workshifts. Valid values for workshifts are

O WORKDAY (the default workshift)
O HOLIDAY (a nonwork period)

O names of variables in the WORKDATA= data set (in this example, SHIFT1
and SHIFT2).

The CALENDAR Procedure /A Workdays Data Set 117

CAL

the CALID (calendar identifier) variable. The values of this variable identify
different calendars. If this variable is not present, the first observation in this
data set defines the work schedule that is applied to all calendars in the activities
data set.

If the CALID variable contains a missing value, the character or numeric value
for the default calendar (DEFAULT or 0) is used. See “The Default Calendars” on
page 110 for further details.

D_LENGTH

the daylength identifier variable. Values of D_LENGTH indicate the length of the
standard workday to be used in calendar calculations. You can set the workday
length either by placing this variable in your calendar data set or by using the
DAYLENGTH= option.

Missing values for this variable default to the number of hours specified in the
DAYLENGTH-= option; if the DAYLENGTH-= option is not used, the day length
defaults to 24 hours if INTERVAL=DAY, or 8 hours if INTERVAL=WORKDAY.

Using Default Workshifts Instead of a Workdays Data Set

You can use a calendar data set with or without a workdays data set. Without a
workdays data set, WORKDAY in the calendar data set is equal to one of two standard
workdays, depending on the setting of the INTERVAL= option:

If INTERVAL= Then the work-shift begins at . . And the day length is . . .
DAY 00:00 24 hours
WORKDAY 9:00 8 hours

You can reset the length of the standard workday with the DAYLENGTH= option or
a D_LENGTH variable in the calendar data set. You can define other work shifts in a
workdays data set.

Examples

Example 3 on page 128, Example 4 on page 132, and Example 7 on page 146 feature
a calendar data set.

Workdays Data Set

Purpose
You can use a workdays data set, specified with the WORKDATA= option, to define
the daily workshifts named in a CALEDATA= data set.

Use Default Work Shifts or Create Your Own?

You do not need a workdays data set if your application can use one of two default
work shifts:

118 Missing Values in Input Data Sets A Chapter 5

If INTERVAL= Then the work-shift begins at . . And the day length is. . .
DAY 00:00 24 hours
WORKDAY 9:00 8 hours

See the INTERVAL= option on page 97.

Structure

Each variable in the workdays data set contains one daily schedule of alternating
work and nonwork periods. For example, this DATA step creates a data set that
contains specifications for two work shifts:

data work;
input shiftl time6. shift2 timeé6.;
datalines;

7:00 7:00

12:00 11:00

13:00

17:00

The variable SHIFT1 specifies a 10-hour workday, with one nonwork period (a lunch
hour); the variable SHIFT2 specifies a 4-hour workday with no nonwork periods.
How Missing Values Are Treated

The missing values default to 00:00 in the first observation and to 24:00 in all other
observations. Two consecutive values of 24:00 define a zero-length time period, which is
ignored.
Examples

See Example 3 on page 128

Missing Values in Input Data Sets

Table 5.4 on page 118 summarizes the treatment of missing values for variables in
the data sets used by PROC CALENDAR.

Table 5.4 Treatment of Missing Values in PROC CALENDAR

Data set Variable Treatment of missing values
Activities (DATA=) CALID default calendar value is used
START observation is not used
DUR 1.0 is used

FIN START value + daylength is used

The CALENDAR Procedure

A What Affects the Quantity of PROC CALENDAR Output

119

Data set Variable Treatment of missing values
VAR if a summary calendar or the MISSING
option is specified, the missing value is
used; otherwise, no value is used
SUM, MEAN 0
Calendar (CALEDATA=) CALID default calendar value is used
SUN through _SAT_ corresponding shift for default calendar
is used
D_LENGTH if available, DAYLENGTH= value is
used; otherwise, if INTERVAL=DAY,
24:00 is used; otherwise 8:00 is used
SUM, MEAN 0
Holiday (HOLIDATA=) CALID all holidays apply to all calendars
HOLISTART observation is not used
HOLIDUR if available, HOLIFIN value is used
instead of HOLIDUR value; otherwise
1.0 is used
HOLIFIN if available, HOLIDUR value is used
instead of HOLIFIN value; otherwise,
HOLISTART value + day length is used
HOLIVAR no value is used
Workdays (WORKDATA=) any for the first observation, 00:00 is used;
otherwise, 24:00 is used
Results

What Affects the Quantity of PROC CALENDAR Output

The quantity of printed calendar output depends on

O the range of dates in the activities data set

0 whether the FILL option is specified

O the BY statement
o the CALID statement.

PROC CALENDAR always prints one calendar for every month that contains any
activities. If you specify the FILL option, the procedure prints every month between the
first and last activities, including months that contain no activities. Using the BY
statement prints one set of output for each BY value. Using the CALID statement with
OUTPUT=SEPARATE prints one set of output for each value of the CALID variable.

120

How Size Affects the Format of PROC CALENDAR Output A Chapter 5

How Size Affects the Format of PROC CALENDAR Output

PROC CALENDAR always attempts to fit the calendar within a single page, as
defined by the SAS system options PAGESIZE= and LINESIZE=. If the PAGESIZE=
and LINESIZE= values do not allow sufficient room, PROC CALENDAR may print the
legend box on a separate page. If necessary, PROC CALENDAR truncates or omits
values to make the output fit the page and prints messages to that effect in the SAS log.

What Affects the Lines that Show Activity Duration

In a schedule calendar, the duration of an activity is shown by a continuous line
through each day of the activity. Values of variables for each activity are printed on the
same line, separated by slashes (/). Each activity begins and ends with a plus sign (+).
If an activity continues from one week to another, PROC CALENDAR displays arrows
(< >) at the points of continuation.

The length of the activity lines depends on the amount of horizontal space available.
You can increase this by specifying

O a larger linesize with the LINESIZE= option in the OPTIONS statement

0 the WEEKDAYS option to suppress the printing of Saturday and Sunday, which
provides more space for Monday through Friday.

Customizing the Calendar Appearance

PROC CALENDAR uses 17 of the 20 SAS formatting characters to construct the
outline of the calendar and to print activity lines and to indicate holidays. You can use
the FORMCHAR= option to customize the appearance of your PROC CALENDAR
output by substituting your own characters for the default. See Table 5.1 on page 95
and Figure 5.1 on page 96.

If your printer supports an extended character set (one that includes graphics
characters in addition to the regular alphanumeric characters), you can greatly improve
the appearance of your output by using the FORMCHAR= option to redefine formatting
characters with hexadecimal characters. For information on which hexadecimal codes
to use for which characters, consult the documentation for your hardware. For an
example of assigning hex values, see FORMCHAR= on page 95.

Examples

Example 1: Schedule Calendar with Holidays — 5-Day Default

Procedure features:
PROC CALENDAR statement options:

DATA=
HOLIDATA=
WEEKDAYS

DUR statement
HOLISTART statement

HOLIVAR statement
HOLIDUR statement

START statement

Other features:
PROC SORT statement

BY statement
5-day default calendar

This example

O

O
O
O

creates a schedule calendar

The CALENDAR Procedure

uses one of the two default work patterns: 8-hour day, 5-day week

schedules activities around holidays

displays a 5-day week

Program

Create the activities data set. ALLACTY contains both personal and business activities

information for a bank president.

data allacty;

input date : date7. event $ 9-36 who $ 37-48 long;
datalines;
01JUL96 Dist. Mtg. All 1
17JUL96 Bank Meeting lst Natl 1
02JUL96 Mgrs. Meeting District 6 2
11JUL96 Mgrs. Meeting District 7 2
03JUL96 Interview JwW 1
08JUL96 Sales Drive District 6 5
15JUL96 Sales Drive District 7 5
08JUL96 Trade Show Knox 3
22JUL96 Inventors Show Melvin 3
11JUL96 Planning Council Group II 1
18JUL96 Planning Council Group III 1
25JUL96 Planning Council Group IV 1
12JUL96 Seminar White 1
19JUL96 Seminar White 1
18JUL96 NewsLetter Deadline All 1
05JUL96 VIP Banquet JwW 1
19JUL96 Co. Picnic All 1
16JUL96 Dentist JW 1
24JUL96 Birthday Mary 1
25JUL96 Close Sale WYGIX Co. 2

r

Create the holidays data set.

data hol;

input date :

date7. holiday $ 11-25 holilong @27;

A Program

121

122

Output

A Chapter 5

datalines;
05jul9e Vacation 3
04julge6 Independence 1

r

Sort the activities data set by the variable containing the starting date. You are not
required to sort the holidays data set.

proc sort data=allacty;
by date;

run;

Set LINESIZE= appropriately. If the linesize is not long enough to print the variable values,
PROC CALENDAR either truncates the values or produces no calendar output.

options nodate pageno=1 linesize=132 pagesize=60;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA= identifies
the holidays data set. WEEKDAYS specifies that a week consists of five eight-hour work days.

proc calendar data=allacty holidata=hol weekdays;

The START statement specifies the variable in the activities data set that contains the starting
date of the activities; DUR specifies the variable that contains the duration of each activity.
Creating a schedule calendar requires START and DUR.

start date;
dur long;

The HOLISTART, HOLIVAR, and HOLIDUR statements specify the variables in the holidays
data set that contain the start date, name, and duration of each holiday, respectively. When you
use a holidays data set, HOLISTART is required. Because at least one holiday lasts more than
one day, HOLIDUR is required.

holistart date;

holivar holiday;

holidur holilong;

titlel ‘Summer Planning Calendar: Julia Cho'’;
title2 'President, Community Bank’;

run;

Output

The CALENDAR Procedure /A Example 2: Schedule Calendar Containing Multiple Calendars 123

Output 5.4 Schedule Calendar: 5-Day Week with Holidays

Summer Planning Calendar: Julia Cho 1
President, Community Bank

| |
| July 1996 |
| |
| |
| Monday | Tuesday | Wednesday | Thursday | Friday

| + + + +

| 1 | 2 | 3 | 4 | 5 |
I I I |******Independence*******|********Vacation*********|
		+=====Interview/JW======+		

| +====Dist. Mtg./All +| 4+ grs. Meeting/District 6=============+| |

| + + + +

I 8 I 9 I 10 I 11 I 12 I
|********Vacation*********|********Vacation*********| I I I
| | | | | |
| | | | | |
| | | |+Planning Council/Group +|+=====Seminar/Whit t
| | |+ Trade Show/Kno +
| | |+ Sales Drive/District >|
| | | +====VIP Banquet/J +]+ grs. Meeting/District 7=============+|
| + + + +

I 15 I 16 I 17 I 18 I 19 I
	+======Dentist/JW=======+		+NewsLetter Deadline/All+	+====Co. Picnic/All=====+
+ Sales Drive/District 7 +				
<=============Sales Drive/District 6==============+	+=Bank Meeting/lst Natl=+	+Planning Council/Group +	+=====Seminar/Whit +	
+ + + +				

I 22 I 23 I 24 I 25 I 26 I
			I	
		+=====Birthday/Mary +	+ lose Sale/WYGIX Co.===============+	
+ Inventors Show/Melvir +	+Planning Council/Group +			

| + + + +

29	30	31		
I I | I I I

Example 2: Schedule Calendar Containing Multiple Calendars

Procedure features:
CALID statement:

CAL variable

124 Example 2: Schedule Calendar Containing Multiple Calendars A Chapter 5

OUTPUT=COMBINE option
DUR statement
24-hour day, 7-day week

This example builds on Example 1 by identifying activities as belonging to one of two
calendars, business or personal. This example

O produces a schedule calendar report

prints two calendars on the same output page

schedules activities around holidays

uses one of the two default work patterns: 24-hour day, 7-day week

O o o o

identifies activities and holidays by calendar name.

Program

The CALENDAR Procedure

A Program

125

Create the activities data set and identify separate calendars. ALLACTY2 contains both

personal and business activities for a bank president. The _CAL_ variable identifies which

calendar an

event belongs to.

data allacty2;
input date:date7. happen $ 10-34 who $ 35-47 _CAL_ $ long;

datalines;
01JUL96 Dist. Mtg.
02JUL96 Mgrs. Meeting
03JUL96 Interview
05JUL96 VIP Banquet
06JUL96 Beach trip
08JUL96 Sales Drive
08JUL96 Trade Show
09JUL96 Orthodontist
11JUL96 Mgrs. Meeting
11JUL96 Planning Council
12JUL96 Seminar
14JUL96 Co. Picnic
14JUL96 Business trip
15JUL96 Sales Drive
16JUL96 Dentist
17JUL96 Bank Meeting
17JUL96 Real estate agent
18JUL96 NewsLetter Deadline
18JUL96 Planning Council
19JUL96 Seminar
22JUL96 Inventors Show
24JUL96 Birthday
25JUL96 Planning Council
25JUL96 Close Sale
27JUL96 Ballgame

r

All
District
JW

JW
family
District
Knox
Meagan
District
Group II
White
All

Fred
District
JW

1st Natl
Family
All
Group III
White
Melvin
Mary
Group IV
WYGIX Co.
Family

CAL1
6 CAL1
CAL1
CAL1
CAL2
6 CAL1
CAL1
CAL2
7 CAL1
CAL1
CAL1l
CAL1
CAL2
7 CAL1
CAL1
CAL1
CAL2
CAL1
CAL1
CAL1
CAL1
CAL1
CAL1
CAL1
CAL2

RPN R R WR R R R B RPRO0ON0RFRRFRRNDNEREOOONDR RN R

Create the holidays data set and identify which calendar a holiday affects. The _CAL_
variable identifies which calendar a holiday belongs to.

data vac;
input

hdate:date7.

datalines;

29JUL96
04JUL96

r

vacation
Independence

CAL2
CAL1

holiday $ 11-25 _CAL_ $;

Sort the activities data set by the variable containing the starting date. When creating
a calendar with combined output, you sort only by the activity starting date, not by the CALID
variable. You are not required to sort the holidays data set.

proc sort data=allacty2;
by date;

126

Output

A Chapter 5

run;

Set LINESIZE= appropriately. If the linesize is not long enough to print the variable values,
PROC CALENDAR either truncates the values or produces no calendar output.

options nodate pageno=1 pagesize=60 linesize=132;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set. By default, the output calendar displays a 7-day week.

proc calendar data=allacty2 holidata=vac;

The CALID statement specifies the variable that identifies which calendar an event belongs to.
OUTPUT=COMBINE places all events and holidays on the same calendar.

calid _CAL_ / output=combine;

The START statement specifies the variable in the activities data set that contains the starting
date of the activities; DUR specifies the variable that contains the duration of each activity.
Creating a schedule calendar requires START and DUR.

start date ;
dur long;

The HOLISTART and HOLIVAR statements specify the variables in the holidays data set that
contain the start date and name of each holiday, respectively. HOLISTART is required when you
use a holidays data set.

holistart hdate;

holivar holiday;

titlel ‘Summer Planning Calendar: Julia Cho’;
title2 ’'President, Community Bank’;

title3 ’‘Work and Home Schedule’;

run;

Output

The CALENDAR Procedure /A QOutput 127

Output 5.5 Schedule Calendar Containing Multiple Calendars

Summer Planning Calendar: Julia Cho 1
President, Community Bank
Work and Home Schedule
| |
| July 1996 |
| |
| |
| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
+ + + + + + +
| | | 1 | 2 | 3 | 4 | 5 | 6 |
[P I I I I I I [|
| caL2 | | | | | | |+Beach trip/fam>|
[P I I I I I I [|
caL1				+=Interview/JwW=+	**Independence**		
		+Dist. Mtg./All+	+===Mgrs. Meeting/District 6====+		+VIP Banquet/Jw+		
+ + + + + + +							
	7	8	9	10	11	12	13
[P I I I I I I [P							
caL2	<Beach trip/fam+		+Orthodontist/M+				
[P I I I I I I [P							
caL1					+Planning Counc+	+Seminar/White=+	
		+================Trade Show/Kno: +	+===Mgrs. Meeting/District 7====+				
		+ Sales Drive/District +					
+ + + + + + +							
+ + + + + + +							
	21	22	23	24	25	26	27
[P I I I I I I [P							
caL2							+Ballgame/Famil+
[P I I I I I I [P							
caL1				+Birthday/Mary=+	+=====Close Sale/WYGIX Co.======+		
		+=============Inventors Show/Melvin==============+	+Planning Counc+				
+ + + + + + +							
	28	29	30	31			
[P I I I I I I [P							
caL2		¥***vacation# x					

128 Example 3: Multiple Schedule Calendars with Atypical Workshifts (Separated Output) A Chapter 5

Example 3: Multiple Schedule Calendars with Atypical Workshifts

(Separated Output)

Procedure features:
PROC CALENDAR statement options:

CALEDATA=
DATETIME
WORKDATA=

CALID statement:

CAL variable
OUTPUT=SEPARATE option

DUR statement
OUTSTART statement
OUTFIN statement

This example

O produces separate output pages for each calendar in a single PROC step

0 schedules activities around holidays
O displays an 8-hour day, 5 1/2-day week

O uses separate work patterns and holidays for each calendar.

Producing Different Output for Multiple Calendars

This example and Example 4 on page 132 use the same input data for multiple
calendars to produce different output. The only differences in these programs are how
the activities data set is sorted and how the OUTPUT= option is set.

To print . . .

Sort the activities And set OUTPUT=to See Example

Separate pages for each
calendar

All activities on the same
page and identify each
calendar

All activities on the same
page and NOT identify
each calendar

data set by . . .

calendar id and SEPARATE 3,8
starting date

starting date COMBINE 4,2
starting date MIX 4

Program

Specify a library so that you can permanently store the activities data set.

libname well ’'SAS-data-library’;

The CALENDAR Procedure /A Program 129

Create the activities data set and identify separate calendars. WELL.ACT is a
permanent SAS data set that contains activities for a well construction project. The _CAL_
variable identifies the calendar that an activity belongs to.

data well.act;
input task & $16. dur
datalines;

Drill Well 3.50
Lay Power Line 3.00
Assemble Tank 4.00
Build Pump House 3.00
Pour Foundation 4.00
Install Pump 4.00
Install Pipe 2.00
Erect Tower 6.00
Deliver Material 2.00
Excavate 4.75

r

5. date :

01JUL96:12:
04JUL96:12:
05JUL96:08:
08JUL96:12:
11JUL96:08:
15JUL96:14:
19JUL96:08:

20JUL96:08

01JUL96:12:
03JUL96:08:

datetimel6.
00:00 CALl
00:00 CALl
00:00 CALl
00:00 CALl
00:00 CALl
00:00 CALl
00:00 CALl
:00:00 CALl
00:00 CAL2
00:00 CAL2

cal $ cost;

1000
2000
1000
2000
1500

500
1000
2500

500
3500

Create the holidays data set. The _CAL_ variable identifies the calendar that a holiday

belongs to.

data well.hol;

input date date. holiday $ 11-25

datalines;
09JUL96 Vacation
04JUL96 Independence

r

CAL2
CAL1

cal

$;

Create the calendar data set. Each observation defines the workshifts for an entire week.
The _CAL_ variable identifies to which calendar the workshifts apply. CAL1 uses the default
8-hour workshifts for Monday through Friday. CAL2 uses a half day on Saturday and the

default 8-hour workshift for Monday through Friday.

data well.cal;

input _sun_ S _sat_ S _mon__ S _tue_ S _wed_ S _thu_ S

fri § _cal_ $;

datalines;

Holiday Holiday Workday Workday Workday Workday Workday CALl
Holiday Halfday Workday Workday Workday Workday Workday CAL2

r

Create the workdays data set. This data set defines the daily workshifts that are named in
the calendar data set. Each variable — not observation — contains one daily schedule of
alternating work and nonwork periods. The HALFDAY workshift lasts 4 hours.

data well.wor;
input halfday time5.;
datalines;

08:00

12:00

130

Program A Chapter 5

Sort the activities data set by the variables containing the calendar identification and
the starting date, respectively. You are not required to sort the holidays data set.

proc sort data=well.act;
by _cal_ date;

run;

Set LINESIZE= appropriately. If the linesize is not long enough to print the variable values,
PROC CALENDAR either truncates the values or produces no calendar output.

options nodate pageno=1 linesize=132 pagesize=60;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set; CALEDATA= identifies the calendar data set; WORKDATA=
identifies the workdays data set. DATETIME specifies that the variable specified with the
START statement contains values in SAS datetime format.

proc calendar data=well.act
holidata=well.hol
caledata=well.cal
workdata=well.wor
datetime;

The CALID statement specifies that the _CAL_ variable identifies calendars.
OUTPUT=SEPARATE prints information for each calendar on separate pages.

calid _cal_/ output=separate;

The START statement specifies the variable in the activities data set that contains the activity
starting date; DUR specifies the variable that contains the activity duration. START and DUR
are required for a schedule calendar.

start date;
dur dur;

HOLISTART and HOLIVAR specify the variables in the holidays data set that contain the start
date and name of each holiday, respectively. HOLISTART is required when you use a holidays
data set.

holistart date;
holivar holiday;

OUTSTART and OUTFIN specify that the calendar display a 6-day week, Monday through
Saturday.

The CALENDAR Procedure /A QOutput 131

outstart Monday;

outfin Saturday;

titlel 'Well Drilling Work Schedule: Separate Calendars’;
format cost dollar9.2;

run;

Output

Output 5.6 Separate Output for Multiple Schedule Calendars

Well Drilling Work Schedule: Separate Calendars 1
.. €Al =CALL .uvvvuvnnnsnnsasnnnsnssssssssssssssssssssssssssssssssssannns
| |
| July 1996 |
| |
| |

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday

| + + + + +

| 1 | 2 | 3 | 4 | 5 | 6 |
| | | | ****Independencex*** | |

				+Assemble Tank/$1,0>	

| | | | |+Lay Power Line/$2,>|

|+ Drill Well/$1,000.00 >| |<Drill Well/$1,000.+| |
| + + + + +

8	9	10	11	12	13
+ uild Pump House/$2,000.00 +					

|< Assemble Tank/$1,000.00 v | |
| <=======Lay Power Line/$2,000.00========+| | +=======Pour Foundation/$1,500.00=======>|

| + + + + +

15	16	17	18	19	20
+ Install Pump/$500.00 +					

| <=================Pour Foundation/$1,500.00==================4| |+Install Pipe/$1,00>| |
| + + + + +

22	23	24	25	26	27
+ rect Tower/$2,500.00 >					

| I | | | |
| + + + + +

29	30	31			
<Erect Tower/$2,500+					

132 Example 4: Multiple Schedule Calendars with Atypical Workshifts (Combined and Mixed Output) A Chapter 5

Well Drilling Work Schedule: Separate Calendars 2
.. B 0 N T
| |
| July 1996 |
| |
| |
| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
| + + + + +
1	2	3	4	5	6
		I			
		+ cavate/$3,500.00 >			
#==================peliver Material/$500.00==================+					
+ + + + +					
8	9	10	11	12	13
	* %% %% ¥Vacation s kx				
<Excavate/$3,500.00>		<Excavate/$3,500.00+]			
+ + + + +					
15	16	17	18	19	20
I I					
+ + + + +					
22	23	24	25	26	27
+ + + + +					
29	30	31			
I | I | | | |

Example 4: Multiple Schedule Calendars with Atypical Workshifts
(Combined and Mixed Output)

Procedure features:
PROC CALENDAR statementoptions:

CALEDATA=
DATETIME
WORKDATA=
CALID statement:
CAL variable

The CALENDAR Procedure /A Program for Combined Calendars 133

OUTPUT=COMBINE option
OUTPUT=MIXED option

DUR statement
OUTSTART statement
OUTFIN statement

Data sets:
There are input data sets on page 129.

This example

produces a schedule calendar

schedules activities around holidays

uses separate work patterns and holidays for each calendar

uses an 8-hour day, 5 1/2-day work week

displays and identifies multiple calendars on each calendar page (combined output)

O o o oo o

displays but does not identify multiple calendars on each calendar page (mixed
output).

Two Programs and Two Pieces of Qutput

This example creates both combined and mixed output. Producing combined or
mixed calendar output requires only one change to a PROC CALENDAR step: the
setting of the OUTPUT= option in the CALID statement. Combined output is produced
first, then mixed output.

Producing Different Output for Multiple Calendars

This example and Example 3 on page 128 use the same input data for multiple
calendars to produce different output. The only differences in these programs are how
the activities data set is sorted and how the OUTPUT= option is set.

To print . . . Sort the activities And set OUTPUT=to See Example
data set by . . .

Separate pages for each calendar id and SEPARATE 3,8

calendar starting date

All activities on the same starting date COMBINE 4,2

page and identify each

calendar

All activities on the same starting date MIX 4

page and NOT identify
each calendar

Program for Combined Calendars

Specify the SAS data library where the activities data set is stored.

libname well ’'SAS-data-library’;

134

Program for Combined Calendars A Chapter 5

Sort the activities data set by the variable containing the starting date. Do not sort by
the CALID variable when producing combined calendar output.

proc sort data=well.act;
by date;

run;

Set PAGESIZE= and LINESIZE= appropriately. When you combine calendars, check the
value of PAGESIZE= to ensure that there is enough room to print the activities from multiple
calendars. If LINESIZE= is too small for the variable values to print, PROC CALENDAR either
truncates the values or produces no calendar output.

options nodate pageno=1 linesize=132 pagesize=60;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set; CALEDATA= identifies the calendar data set; WORKDATA=
identifies the workdays data set. DATETIME specifies that the variable specified with the
START statement contains values in SAS datetime format.

proc calendar data=well.act
holidata=well.hol
caledata=well.cal
workdata=well.wor
datetime;
titlel 'Well Drilling Work Schedule: Combined Calendars’;
format cost dollar9.2;

The CALID statement specifies that the _CAL_ variable identifies the calendars.
OUTPUT=COMBINE prints multiple calendars on the same page and identifies each calendar.

calid _cal_ / output=combine;

The START statement specifies the variable in the activities data set that contains the starting
date of the activities; DUR specifies the variable that contains the duration of each activity.
START and DUR are required for a schedule calendar.

start date;
dur dur;

HOLISTART and HOLIVAR specify the variables in the holidays data set that contain the start
date and name of each holiday, respectively. HOLISTART is required when you use a holidays
data set.

holistart date;
holivar holiday;

run;

The CALENDAR Procedure /A Program for Mixed Calendars 135
-
Output for Combined Calendars
Output 5.7 Multiple Schedule Calendars with Atypical Workshifts (Combined Output)

Well Drilling Work Schedule: Combined Calendars 1
| |
| July 1996 |
| |
| |
| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
+ + + + + + +

| | | | | 2 | 3 | 4 | 5 | 6 |
[I I I [I I I |
| car1 | | | | | **Independence** | +Assemble Tank/>|

| | | | | | |+Lay Power Line>|

| | | +==============Drill Well/$1,000.00==============>| |<Drill Well/$1,+|

[I I I I I I I |
| caL2 | | | |+ cavate/$3,500.00 >|
| + + + + + + +

| | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
[I I [I I I I |
| caL1 | |+ uild Pump House/$2,000.00 +| |

| | |< Assemble Tank/$1,000.00 f |

| | |<===Lay Power Line/$2,000.00====+| | +===Pour Foundation/$1,500.00===>|

[I I I I I I I |
| caL2 | |<Excavate/$3,50>| ****Vacation****|<Excavate/$3,50+| | |

| + + + + + + +

| | 14 | 15 | 16 | 17 | 18 | 19 | 20
[I I I I I I I |
| caL1 | |+ Install Pump/$500.00 +|

| | |<== ===Pour Foundation/$1,500.00== =+| |+Install Pipe/$>|

I I	I		I				
+ + + + + + +							

| | 21 | 22 | 23 | 24 | 25 | 26 | 27
[I I I I I I I |
| caL1 | |+ rect Tower/$2,500.00 >|

| | |<====Install Pipe/$1,000.00=====+| | | |

I I		I	I				
+ + + + + + +							

| | 28 | 29 | 30 | 31 | | | |
[I I I I [I I |
| caL1 | |<Erect Tower/$2+| | | | |

I I I | I I I I |

Program for Mixed Calendars

To produce mixed output instead of combined, use the same program and change the
setting of the OUTPUT= option to OUTPUT=MIX:

proc calendar data=well.act
holidata=well.hol
caledata=well.cal

workdata=well.wor

136 Output for Mixed Calendars A Chapter 5

datetime;
calid _cal_/ output=mix;
start date;
dur dur;
holistart date;
holivar holiday;
outstart Monday;
outfin Saturday;
titlel 'Well Drilling Work Schedule: Mixed Calendars’;
format cost dollar9.2;

run;

Output for Mixed Calendars

The CALENDAR Procedure /A Example 5: Schedule Calendar, Blank or with Holidays 137

Output 5.8 Multiple Schedule Calendar with Atypical Workshifts (Mixed Output)

Well Drilling Work Schedule: Mixed Calendars 1
| |
| July 1996 |
| |
| |
| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
| + + + + +
1	2	3	4	5	6
				+Assemble Tank/$1,0>	
		+ cavate/$3,500.00 >			
+==================Deliver Material/$500.00==================+	****Independence****	+Lay Power Line/$2,>			
+ Drill Well/$1,000.00 >	****Independence****	<Drill Well/$1,000.+]			
+ + + + +					
8	9	10	11	12	13
I	I				
+ uild Pump House/$2,000.00 +					
< Assemble Tank/$1,000.00 v					
<=======Lay Power Line/$2,000.00========+					

I |
| + + + + +
15	16	17	18	19	20
I I I I					
+ Install Pump/$500.00 +					
00==	+Install Pipe/$1,00>				
+ + + + +					
22	23	24	25	26	27
I I I I					
+ rect Tower/$2,500.00 >					
=Install Pipe/$1,000.00=					
+ +					
29 30 31					
I | I

| | |

+ + +

<Erect Tower/$2,500+

Example 5: Schedule Calendar, Blank or with Holidays

Procedure features:
PROC CALENDAR statement options:

FILL
HOLIDATA=
INTERVAL=WORKDAY

138

Program A Chapter 5

DUR statement
HOLIDUR statement
HOLISTART statement
HOLIVAR statement

This example produces a schedule calendar that displays only holidays. You can use
this same code to produce a set of blank calendars by removing the HOLIDATA= option
and the HOLISTART, HOLIVAR, and HOLIDUR statements from the PROC
CALENDAR step.

Program

Create the activities data set. Specify one activity in the first month and one in the last, each
with a duration of 0. PROC CALENDAR does not print activities with zero durations in the
output.

data acts;
input sta : date7. act $ 11-30 dur;
datalines;
01JAN97 Start 0
31DEC97 Finish

r

Create the holidays data set.

data holidays;
input sta : date7. act $ 11-30 dur;
datalines;
01JAN97 New Year's
28MAR97 Good Friday
30MAY97 Memorial Day
04JUL97 Independence Day
01SEP97 Labor Day
27NOV97 Thanksgiving
25DEC97 Christmas Break

U N R P PP

r

Set PAGESIZE= and LINESIZE= appropriately. To create larger boxes for each day in the
calendar output, increase the value of PAGESIZE=.

options nodate pageno=1 linesize=132 pagesize=30;

Create the calendar. DATA= identifies the activities data set; HOLIDATA= identifies the
holidays data set. FILL displays all months, even those with no activities. By default, only
months with activities appear in the report. INTERVAL=WORKDAY specifies that activities and
holidays are measured in 8-hour days and that PROC CALENDAR schedules activities only
Monday through Friday.

The CALENDAR Procedure /A Output 139

proc calendar data=acts holidata=holidays fill interval=workday;

The START statement specifies the variable in the activities data set that contains the starting
date of the activities; DUR specifies the variable that contains the duration of each activity.
Creating a schedule calendar requires START and DUR.

start sta;
dur dur;

The HOLISTART, HOLIVAR, and HOLIDUR statements specify the variables in the holidays
data set that contain the start date, name, and duration of each holiday, respectively. When you
use a holidays data set, HOLISTART is required. Because at least one holiday lasts more than
one day, HOLIDUR (or HOLIFIN) is required.

holistart sta;

holivar act;

holidur dur;

titlel ’‘Calendar of Holidays Only’';

run;

Output

Output 5.9 Schedule Calendars with Holidays Only (Partial Output).

Without INTERVAL=WORKDAY, the 5-day Christmas break would be scheduled through the weekend.

Calendar of Holidays Only 1

January 1997

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

1

***New Year's**xx

2 3 4

8 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

—_— —— — — — — = — + —

| |
+ +
| |
I |
+ +
| |
| |
+ +
| |
| I
+ +
| |
| |
+ +
| |
| |

—_——t —— + —— + — — + — — + —

140 Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks A Chapter 5

Calendar of Holidays Only

February 1997

| |

| |

| |

| |

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday

| + + + + + +

| | | | | | | 1 |

| I I | | I I |

| + + + + + +

| 2 | 3 | 4 | 5 | 6 | 7 | 8 |

| I I | | I I |

| + + + + + +

| 9 | 10 | 11 | 12 | 13 | 14 | 15

| I I I I I | |

| + + + + + +

| 16 | 17 | 18 | 19 | 20 | 21 | 22

| I I I I | | |

| + + + + + +

| 23 | 24 | 25 | 26 | 27 | 28 | |

I I I I | | | |
Calendar of Holidays Only

| |

| December 1997

| |

| |

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday

| + + + + + +

| | 1 | 2 | 3 | 4 | 5 | 6 |

| I I I I | I |

| + + + + + +

| 7 | 8 | 9 | 10 | 11 | 12 | 13

| I I I | I I |

| + + + + + +

| 14 | 15 | 16 | 17 | 18 | 19 | 20

| I I | | | I |

| + + + + + +

| 21 | 22 | 23 | 24 | 25 | 26 | 27

| | | | | *Christmas Break*|*Christmas Break* |

| + + + + +

| 28 | | |

I | |

"
29 | 30 | 31 | |
| *Christmas Break*|*Christmas Break*|*Christmas Break*|

Example 6: Calculating a Schedule Based on Completion of Predecessor
Tasks

Procedure features:
PROC CALENDAR statement

CALID statement

FIN statement

VAR statement
Other features:

The CALENDAR Procedure /\ Program 4

PROC CPM step
PROC SORT step

Automating Your Scheduling Task with SAS/OR Software

When changes occur to a schedule, you have to adjust the activity starting dates
manually if you use PROC CALENDAR to produce a schedule calendar. Alternatively,
you can use PROC CPM in SAS/OR software to reschedule work when dates change.
Even more important, you can provide only an initial starting date for a project and let
PROC CPM calculate starting dates for activities, based on identified successor tasks,
that is, tasks that cannot begin until their predecessors end.

In order to use PROC CPM, you must

1 create an activities data set that contains activities with durations. (You can
indicate nonwork days, weekly work schedules, and workshifts with holidays,
calendar, and workshift data sets.)

2 indicate which activities are successors to others (precedence relationships).

3 define resource limitations if you want them considered in the schedule.

4 provide an initial starting date.

PROC CPM can process your data to generate a data set that contains the start and
end dates for each activity. PROC CPM schedules the activities, based on the duration
information, weekly work patterns, workshifts, as well as holidays and nonwork days
that interrupt the schedule. You can generate several views of the schedule that is

computed by PROC CPM, from a simple listing of start and finish dates to a calendar, a
Gantt chart, or a network diagram.

Highlights of This Example

This example

O calculates a project schedule containing multiple calendars (PROC CPM)
0 produces a listing of the PROC CPM output data set (PROC PRINT)

O displays the schedule in calendar format (PROC CALENDAR).

This example features PROC CPM’s ability to calculate a schedule that
O is based on an initial starting date

o applies different non-work periods to different calendars, such as personal
vacation days to each employee’s schedule

O includes milestones (activities with a duration of 0).

See Also

This example introduces users of PROC CALENDAR to more advanced SAS
scheduling tools. For an introduction to project management tasks and tools and
several examples, see Project Management Using the SAS System. For more examples,
see SAS/OR Software: Project Management Examples. For complete reference
documentation, see SAS/OR User’s Guide: Project Management, Version 6, First
Edition.

Program

142 Program A Chapter 5

Set appropriate options. If the linesize is not long enough to print the variable values, PROC
CALENDAR either truncates the values or produces no calendar output. A longer linesize also
makes it easier to view a listing of a PROC CPM output data set.

options nodate pageno=1 linesize=132 pagesize=60;

Create the activities data set and identify separate calendars. These data identify two
calendars: the professor’s (the value of _CAL_is Prof.) and the student’s (the value of _CAL_
is Student). The Succl variable identifies which activity cannot begin until the current one
ends. For example Analyze Exp 1 cannot begin until Run Exp 1 is completed. The DAYS
value of 0 for JOBNUM 3, 6, and 8 indicates that these are milestones.

data grant;
input jobnum Task $ 4-22 Days Succl $ 27-45 aldate : date7. altype $
cal $;
format aldate date7.;

datalines;

1 Run Exp 1 1 Analyze Exp 1 . . Student
2 Analyze Exp 1 5 Send Report 1 . . Prof.
3 Send Report 1 0 Run Exp 2 . . Prof.
4 Run Exp 2 1 Analyze Exp 2 . . Student
5 Analyze Exp 2 4 Send Report 2 . . Prof.
6 Send Report 2 0 Write Final Report . . Prof.
7 Write Final Report 4 Send Final Report . . Prof.
8 Send Final Report 0 . . Student
9 Site Visit 1 18jul96 ms Prof.

~e

Create the holidays data set and identify which calendar a nonwork day belongs to.
The two holidays are listed twice, once for the professor’s calendar and once for the student’s.
Because each person is associated with a separate calendar, PROC CPM can apply the personal
vacation days to the appropriate calendars.

data nowork;
format holista date7. holifin date7.;
input holista : date7. holifin : date7. name $ 17-32 _cal_ §;
datalines;

04jul96 04jul96 Independence Day Prof.

02sep96 02sep96 Labor Day Prof.

04jul96 04jul96 Independence Day Student

02sep96 02sep96 Labor Day Student

15jul96 16jul96 PROF Vacation Prof.

15aug96 16aug96 STUDENT Vacation Student

r

Calculate the schedule with PROC CPM. PROC CPM uses information supplied in the
activities and holidays data sets to calculate start and finish dates for each activity. The DATE=
option supplies the starting date of the project. The CALID statement is not required, even
though this example includes two calendars, because the calendar identification variable has the
special name _CAL._.

The CALENDAR Procedure /A Program 143

proc cpm data=grant

date='01jul96'd
interval=weekday
out=gcpml
holidata=nowork;

activity task;

successor succl;

duration days;

calid _cal_;

id task;

aligndate aldate;

aligntype altype;

holiday holista / holifin=holifin;

run;

Print the output data set created with PROC CPM. This step is not required. PROC PRINT
is a useful way to view the calculations produced by PROC CPM. See Output 5.10 on page 144.

proc print data=gcpml;
title 'Data Set GCPM1l, Created with PROC CPM’;

run;

Sort GCPM1 by the variable that contains the activity start dates before using it with
PROC CALENDAR.

proc sort data=gcpml;
by e_start;

run;

Create the schedule calendar. GCPM1 is the activity data set. PROC CALENDAR uses the
S_START and S_FINISH dates, calculated by PROC CPM, to print the schedule. The VAR
statement selects only the variable TASK to display on the calendar output. See Output 5.11 on
page 144.

proc calendar data=gcpml

holidata=nowork
interval=workday;

start e_start;

fin e _finish;

calid _cal_ / output=combine;

holistart holista;

holifin holifin;

holivar name;

var task;

title ’'Schedule for Experiment X-15';

title2 ’'Professor and Student Schedule’;

run;

144 Output A Chapter 5

Output

Output 5.10 The Data Set GCPM1

PROC PRINT displays the observations in GCPM1, showing the scheduling calculations created by PROC CPM.

Data Set GCPM1, Created with PROC CPM 1
Obs Task Succl Days _cal_ E_START E_FINISH L_START L FINISH T FLOAT F_FLOAT
1 Run Exp 1 Analyze Exp 1 11 Student 01JUL96 16JUL96 01JUL96 16JUL96 0 0
2 Analyze Exp 1 Send Report 1 5 Prof. 17JUL96 23JUL96 17JUL96 23JUL96 0 0
3 Send Report 1 Run Exp 2 0 Prof. 24JUL96 24JUL96 24JUL96 24JUL96 0 0
4 Run Exp 2 Analyze Exp 2 11 Student 24JUL96 07AUG96 24JUL96 07AUG96 0 0
5 Analyze Exp 2 Send Report 2 4 Prof. 08AUG96 13AUG96 08AUG96 13AUG96 0 0
6 Send Report 2 Write Final Report 0 Prof. 14AUG96 14AUG96 14AUGY96 14AUGY96 0 0
7 Write Final Report Send Final Report 4 Prof. 14AUG96 19AUG96 14AUGY96 19AUGY96 0 0
8 Send Final Report 0 Student 20AUGY96 20AUGY96 20AUGY96 20AUGY96 0 0
9 Site Visit 1 Prof. 18JUL96 18JUL96 18JUL96 18JUL96 0 0

The CALENDAR Procedure /A QOutput 145

Output 5.11 Schedule Calendar Based on Output from PROC CPM

PROC CALENDAR created this schedule calendar by using the S_START and S_FINISH dates that were
calculated by PROC CPM. The activities on July 24th and August 14th, because they are milestones, do not
delay the start of a successor activity. Note that Site Visit occurs on July 18, the same day that Analyze Exp 1

occurs. To prevent this overallocation of resources, you can use resource constrained scheduling, available
in SAS/OR software.

Schedule for Experiment X-15 2
Professor and Student Schedule

July 1996

Sunday Wednesday Thursday Friday Saturday

STUDENT

STUDENT

STUDENT

STUDENT

—_—_—— - ———— e ———— Y —— e —— — —

I
+
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
+
|
|
|
|
|
|
I

146 Example 7: Summary Calendar with MEAN Values By Observation A Chapter 5

Schedule for Experiment X-15
Professor and Student Schedule

August 1996

Tuesday Wednesday Saturday

STUDENT

]
b
o
o]

STUDENT

]
b
o
o]

+|+Send Report 2=+

| STUDENT Vacation|STUDENT Vacation

]
b
o
o]

+Send Final Rep+

STUDENT

25 26 27 28 29 30 31

—_—_——— - ———— e —— Y ——— — — — — — —

Example 7: Summary Calendar with MEAN Values By Observation

Procedure features:
CALID statement:

CAL variable
OUTPUT=SEPARATE option

FORMAT statement
LABEL statement

MEAN statement
SUM statement

Other features:

PROC FORMAT:

PICTURE statement

This example

O produces a summary calendar

o displays holidays

o o g

prints a legend and uses variable labels
uses picture formats to display values.

MEAN Values by Number of Days

To produce MEAN values based on the number of days in the calendar month, use
MEANTYPE=NDAYS. By default, MEANTYPE=NOBS, which calculates the MEAN
values according to the number of days for which data exist.

Program

The CALENDAR Procedure /\ Program 147

produces sum and mean values by business day (observation) for three variables

Create the activities data set. MEALS records how many meals were served for breakfast,
lunch, and dinner on the days that the cafeteria was open for business.

data meals;

input date :

datalines;
02Dec96
03Dec96
04Dec96
05Dec96
06Dec96
09Dec96
10Dec96
11Dec96
12Dec96
13Dec96
16Dec96
17Dec96
18Dec96
19Dec96
20Dec96
23Dec96

r

123
188
123
200
176
178
165
187
176
187
176
156
198
178
165
187

date7.

234
188
183
267
165
198
176
176
187
187
165

143
198
176
187

Brkfst Lunch Dinner;

238
198
176
243
177
187
187
231
222
123
177
167
167
187
187
123

Create the holidays data set.

data closed;

input date date. holiday $ 11-25;

148 Program A Chapter 5

datalines;
26DEC96 Repairs
27DEC96 Repairs
30DEC96 Repairs
31DEC96 Repairs
24DEC96 Christmas Eve
25DEC96 Christmas

r

Sort the activities data set by the activity starting date. You are not required to sort the
holidays data set.

proc sort data=meals;
by date;

run;

Create picture formats for the variables that indicate how many meals were served.

proc format;

picture bfmt other = ’000 Brkfst’;

picture lfmt other = ’000 Lunch ’;

picture dfmt other = ’000 Dinner’;
run;

Set PAGESIZE= and LINESIZE= appropriately. The legend box prints on the next page if
PAGESIZE= is not set large enough. LINESIZE= controls the width of the cells in the calendar.

options nodate pageno=1 linesize=132 pagesize=60;

Create the summary calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set. The START statement specifies the variable in the activities
data set that contains the activity starting date; START is required.

proc calendar data=meals holidata=closed;
start date;

The HOLISTART and HOLIVAR statements specify the variables in the holidays data set that
contain the start date and the name of each holiday, respectively. HOLISTART is required when
you use a holidays data set.

holistart date;
holiname holiday;

The SUM and MEAN statements calculate sum and mean values for three variables and print
them with the specified format. The LABEL statement prints a legend and uses labels instead
of variable names. The FORMAT statement associates picture formats with three variables.

The CALENDAR Procedure /A Output 149

sum brkfst lunch dinner / format=4.0;
mean brkfst lunch dinner / format=6.2;

label brkfst = 'Breakfasts Served’
lunch = ' Lunches Served’
dinner = ' Dinners Served'’;
format brkfst bfmt.
lunch 1lfmt.

dinner dfmt.;
title ’'Meals Served in Company Cafeteria’;
title2 ’'Mean Number by Business Day’;

run;

Output

150 Example 8: Multiple Summary Calendars with Atypical Workshifts (Separated Output) A Chapter 5
Qutput 5.12 Summary Calendar with MEAN Values by Observation
Meals Served in Company Cafeteria
Mean Number by Business Day
| |
| December 1996
| |
| |
| sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
| + + + + + +
1	2	3	4	5	6	7
	123 Brkfst	188 Brkfst	123 Brkfst	200 Brkfst	176 Brkfst	
	234 Lunch	188 Lunch	183 Lunch	267 Lunch	165 Lunch	
	238 Dinner	198 Dinner	176 Dinner	243 Dinner	177 Dinner	
+ + + + + +						
I 8 I 9 I 10 I 11 I 12 I 13 I 14 I						
	178 Brkfst	165 Brkfst	187 Brkfst	176 Brkfst	187 Brkfst	
	198 Lunch	176 Lunch	176 Lunch	187 Lunch	187 Lunch	
	187 Dinner	187 Dinner	231 Dinner	222 Dinner	123 Dinner	
+ + + + + +						
15	16	17	18	19	20	21
	176 Brkfst	156 Brkfst	198 Brkfst	178 Brkfst	165 Brkfst	
	165 Lunch		143 Lunch	198 Lunch	176 Lunch	
	177 Dinner	167 Dinner	167 Dinner	187 Dinner	187 Dinner	
+ + + + + +						
I 22 I 23 I 24 I 25 I 26 I 27 I 28 I						
		Christmas Ev	*Christmas**	**Repairs***	**Repairs*	
	187 Brkfst					
	187 Lunch					
	123 Dinner					
+ + + + + +						
29	30	31				
	Repairs*	**Repairs*				
sum Mean						

|
|
| Breakfasts Served | 2763
|
|

Lunches Served |
Dinners Served |

1

2830 | 188.67
2990 | 186.88

|
|
72.69 |
|
|

Example 8: Multiple Summary Calendars with Atypical Workshifts

(Separated Output)

Procedure features:

PROC CALENDAR statementoptions:

DATETIME
LEGEND

CALID statement:
CAL variable

OUTPUT=SEPARATE option

OUTSTART statement
OUTFIN statement

SUM statement
Data sets:

The CALENDAR Procedure /\ Program 151

WELL.ACT on page 129 and WELL.HOL on page 129.

This example

O produces a summary calendar for multiple calendars in a single PROC step

O prints the calendars on separate pages
O displays holidays
O

uses separate work patterns, work shifts, and holidays for each calendar

Producing Different Output for Multiple Calendars

This example produces separate output for multiple calendars. To produce combined
or mixed output for these data, you need to change only two things:

O how the activities data set is sorted
0 how the OUTPUT= option is set.

To print . . .

Sort the activities
data set by . . .

And set OUTPUT=to See Example

Separate pages for each
calendar

All activities on the same
page and identify each
calendar

All activities on the same
page and NOT identify
each calendar

calendar id and
starting date

starting date

starting date

SEPARATE 3,8
COMBINE 4,2
MIX 4

Program

Specify the SAS data library where the activities data set is stored.

libname well ’'SAS-data-library’;

run;

Sort the activities data set by the variables containing the calendar identification and
the starting date, respectively.

proc sort data=well.act;

by _cal_date;

run;

152

Output

A Chapter 5

Set PAGESIZE= and LINESIZE= appropriately. The legend box prints on the next page if
PAGESIZE= is not set large enough. LINESIZE= controls the width of the boxes.

options nodate pageno=1 linesize=132 pagesize=60;

Create the summary calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set; CALDATA= identifies the calendar data set; WORKDATA=
identifies the workdays data set. DATETIME specifies that the variable specified with the
START statement contains a SAS datetime value. LEGEND prints text that identifies the
variables.

proc calendar data=well.act
holidata=well.hol
datetime legend;

The CALID statement specifies that the _CAL_ variable identifies calendars.
OUTPUT=SEPARATE prints information for each calendar on separate pages.

calid _cal_ / output=separate;

The START statement specifies the variable in the activities data set that contains the activity
starting date. The HOLISTART and HOLIVAR statements specify the variables in the holidays
data set that contain the start date and name of each holiday, respectively. These statements
are required when you use a holidays data set.

start date;
holistart date;
holivar holiday;

The SUM statement totals the COST variable for all observations in each calendar.

sum cost / format=dollarl0.2;

OUTSTART and OUTFIN specify that the calendar display a 6-day week, Monday through
Saturday.

outstart Monday;

outfin Saturday;

title 'Well Drilling Cost Summary’;
title2 ’Separate Calendars’;

format cost dollarl0.2;

run;

Output

The CALENDAR Procedure /A Output 153

Output 5.13 Separated Output for Multiple Summary Calendars

Well Drilling Cost Summary 1
Separate Calendars
.. B 6 N T

| |
| July 1996 |
| |
| |
| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
| + + + + +
1	2	3	4	5	6
			***Independencex**		
Drill well			Lay Power Line	Assemble Tank	
3.5			3] 4		
$1,000.00			$2,000.00	$1,000.00	
+ + + + +					
8	9	10	11	12	13
I					
Build Pump House			Pour Foundation		
3]		4]			
$2,000.00			$1,500.00		
+ + + + +					
15	16	17	18	19	20
Install Pump				Install Pipe	Erect Tower
4]			2	6	
$500.00				$1,000.00	$2,500.00
+ + + + +					
22	23	24	25	26	27
I I I I					
+ + + + +					
29	30	31			
I I I I I | I

| Legend | Sum

| | |

| task | |

| dur | |

| cost | $11,500.00 |

A Chapter 5

Output

154

Well Drilling Cost Summary

Separate Calendars

L7 2N 7

cal

1996

July

Friday Saturday

| Tuesday | Wednesday | Thursday

Monday

Excavate

$500.00

13

12

11

10

20

19

18

17

16

15

27

26

25

24

23

22

31

30

29

Sum

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS®
Procedures Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 1729 pp.

SAS® Procedures Guide, Version 8

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.

ISBN 1-58025-482-9

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any

means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, October 1999

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®
indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

The Institute is a private company devoted to the support and further development of its
software and related services.

