
273

C H A P T E R

12
The CORR Procedure

Overview 273
Procedure Syntax 277

PROC CORR Statement 278

BY Statement 283

FREQ Statement 283

PARTIAL Statement 284
VAR Statement 284

WEIGHT Statement 285

WITH Statement 286

Concepts 286

Interpreting Correlation Coefficients 286

Determining Computer Resources 287
Statistical Computations 289

Pearson Product-Moment Correlation 289

Spearman Rank-Order Correlation 290

Kendall’s tau-b 290

Hoeffding’s Measure of Dependence, D 291
Partial Correlation 291

Cronbach’s Coefficient Alpha 293

Probability Values 295

Results 297

Missing Values 297
Procedure Output 297

Output Data Sets 298

Examples 300

Example 1: Computing Pearson Correlations and Other Measures of Association 300

Example 2: Computing Rectangular Correlation Statistics with Missing Data 303

Example 3: Computing Cronbach’s Coefficient Alpha 306
Example 4: Storing Partial Correlations in an Output Data Set 309

References 312

Overview

The CORR procedure is a statistical procedure for numeric random variables that
computes Pearson correlation coefficients, three nonparametric measures of association,
and the probabilities associated with these statistics. The correlation statistics include

� Pearson product-moment and weighted product-moment correlation

� Spearman rank-order correlation

� Kendall’s tau-b
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� Hoeffding’s measure of dependence, D
� Pearson, Spearman, and Kendall partial correlation.

PROC CORR also computes Cronbach’s coefficient alpha for estimating reliability.
The default correlation analysis includes descriptive statistics, Pearson correlation

statistics, and probabilities for each analysis variable. You can save the correlation
statistics in a SAS data set for use with other statistical and reporting procedures.

Output 12.1 on page 274 is the simplest form of PROC CORR output. Pearson
correlation statistics are computed for all numeric variables from a study investigating
the effect of exercise on physical fitness. The statements that produce the output follow:

options pagesize=60;
proc corr data=fitness;
run;

Output 12.1 Simple Correlation Analysis for a Fitness Study Using PROC CORR

The SAS System 1

The CORR Procedure

4 Variables: Age Weight Runtime Oxygen

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

Age 30 47.56667 5.26330 1427 38.00000 57.00000
Weight 30 77.70500 8.34152 2331 59.08000 91.63000
Runtime 29 10.61448 1.41655 307.82000 8.17000 14.03000
Oxygen 29 47.06445 5.32129 1365 37.38800 60.05500

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Age Weight Runtime Oxygen

Age 1.00000 -0.21777 0.19528 -0.32899
0.2477 0.3100 0.0814

30 30 29 29

Weight -0.21777 1.00000 0.15155 -0.19900
0.2477 0.4326 0.3007

30 30 29 29

Runtime 0.19528 0.15155 1.00000 -0.78346
0.3100 0.4326 <.0001

29 29 29 28

Oxygen -0.32899 -0.19900 -0.78346 1.00000
0.0814 0.3007 <.0001

29 29 28 29

Output 12.2 on page 275 and Output 12.3 on page 276 illustrate the use of PROC
CORR to calculate partial correlation statistics for the fitness study and to store the
results in an output data set. The statements that produce the analysis also

� suppress the descriptive statistics
� select and label analysis variables
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� exclude all observations with missing values
� calculate the partial covariance matrix
� calculate three types of partial correlation coefficients
� generate an output data set that contains Pearson correlation statistics and print

the output data set.

For an explanation of the program that produces the following output, see Example 4
on page 309.
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Output 12.2 Customized Correlation Analysis with Partial Covariances and Correlation Statistics

Partial Correlations for a Fitness and Exercise Study 1

The CORR Procedure

1 Partial Variables: Age

3 Variables: Weight Oxygen Runtime

Partial Covariance Matrix, DF = 26

Weight Oxygen Runtime

Weight Wt in kg 72.43742055 -12.75113194 2.06766763

Oxygen O2 use -12.75113194 27.01654904 -5.59370556

Runtime 1.5 mi in minutes 2.06766763 -5.59370556 1.94512451

Pearson Partial Correlation Coefficients, N = 28

Prob > |r| under H0: Partial Rho=0

Weight Oxygen Runtime

Weight 1.00000 -0.28824 0.17419

Wt in kg 0.1448 0.3849

Oxygen -0.28824 1.00000 -0.77163

O2 use 0.1448 <.0001

Runtime 0.17419 -0.77163 1.00000

1.5 mi in minutes 0.3849 <.0001

Spearman Partial Correlation Coefficients, N = 28

Prob > |r| under H0: Partial Rho=0

Weight Oxygen Runtime

Weight 1.00000 -0.16407 0.08708

Wt in kg 0.4135 0.6658

Oxygen -0.16407 1.00000 -0.67112

O2 use 0.4135 0.0001

Runtime 0.08708 -0.67112 1.00000

1.5 mi in minutes 0.6658 0.0001

Kendall Partial Tau b Correlation Coefficients, N = 28

Weight Oxygen Runtime

Weight 1.00000 -0.09021 0.02854

Wt in kg

Oxygen -0.09021 1.00000 -0.52158

O2 use

Runtime 0.02854 -0.52158 1.00000

1.5 mi in minutes
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Output 12.3 Output Data Set with Pearson Partial Correlation Statistics

Pearson Correlation Statistics Using the PARTIAL Statement 2
Output Data Set from PROC CORR

_TYPE_ _NAME_ Weight Oxygen Runtime

COV Weight 72.4374 -12.7511 2.0677
COV Oxygen -12.7511 27.0165 -5.5937
COV Runtime 2.0677 -5.5937 1.9451
MEAN 0.0000 0.0000 0.0000
STD 8.5110 5.1977 1.3947
N 28.0000 28.0000 28.0000
CORR Weight 1.0000 -0.2882 0.1742
CORR Oxygen -0.2882 1.0000 -0.7716
CORR Runtime 0.1742 -0.7716 1.0000

Procedure Syntax
Tip: Supports the Output Delivery System, see “Output Delivery System” on page 19
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, "Statements with the Same Function in Multiple Procedures," for details.
You can also use any global statements as well. See Chapter 2, "Fundamental Concepts
for Using Base SAS Procedures," for a list.

PROC CORR <option(s)>;
BY <DESCENDING> variable-1<…<DESCENDING> variable-n>

<NOTSORTED>;
FREQ frequency-variable;
PARTIAL variable(s);
VAR variable(s);
WEIGHT weight-variable;
WITH variable(s);

To do this Use this statement

Produce separate correlation analyses for each BY group BY

Identify a variable whose values represent the frequency of each
observation

FREQ

Identify controlling variables to compute Pearson, Spearman, or
Kendall partial correlation coefficients

PARTIAL

Identify variables to correlate and their order in the correlation
matrix

VAR
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To do this Use this statement

Identify a variable whose values weight each observation to compute
Pearson weight product-moment correlation

WEIGHT

Compute correlations for specific combinations of variables WITH

PROC CORR Statement

PROC CORR <option(s)>;

To do this Use this option

Specify the input data set DATA=

Create output data sets

Specify an output data set to contain Hoeffding’s D statistics OUTH=

Specify an output data set to contain Kendall correlations OUTK=

Specify an output data set to contain Pearson correlations OUTP=

Specify an output data set to contain Spearman correlations OUTS=

Control statistical analysis

Exclude observations with nonpositive weight values from the
analysis

EXCLNPWGT

Request Hoeffding’s measure of dependence, D HOEFFDING

Request Kendall’s tau-b KENDALL

Request Pearson product-moment correlation PEARSON

Request Spearman rank-order correlation SPEARMAN

Control Pearson correlation statistics

Compute Cronbach’s coefficient alpha ALPHA

Compute covariances COV

Compute corrected sums of squares and crossproducts CSSCP

Exclude missing values NOMISS

Specify singularity criterion SINGULAR=

Compute sums of squares and crossproducts SSCP

Specify the divisor for variance calculations VARDEF=

Control printed output

Specify the number and order of correlation coefficients BEST=

Suppress Pearson correlations NOCORR

Suppress all printed output NOPRINT

Suppress significance probabilities NOPROB
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To do this Use this option

Suppress descriptive statistics NOSIMPLE

Change the order of correlation coefficients RANK

Options

ALPHA
calculates and prints Cronbach’s coefficient alpha. PROC CORR computes separate
coefficients using raw and standardized values (scaling the variables to a unit
variance of 1). For each VAR statement variable, PROC CORR computes the
correlation between the variable and the total of the remaining variables. It also
computes Cronbach’s coefficient alpha using only the remaining variables.
Main discussion: “Cronbach’s Coefficient Alpha” on page 293
Restriction: If you use a WITH statement, ALPHA is invalid.
Interaction: ALPHA invokes PEARSON.
Interaction: If you specify OUTP=, the output data set also contains six

observations with Cronbach’s coefficient alpha.
Interaction: When you use the PARTIAL statement, PROC CORR calculates

Cronbach’s coefficient alpha for partialled variables.
See also: OUTP= option
Featured in: Example 3 on page 306

BEST=n
prints n correlation coefficients for each variable. Correlations are ordered from
highest to lowest in absolute value. Otherwise, PROC CORR prints correlations in a
rectangular table using the variable names as row and column labels.
Interaction: When you specify HOEFFDING, PROC CORR prints the D statistics

in order from highest to lowest.
Range: 1 to the maximum number of variables

COV
calculates and prints covariances.
Interaction: COV invokes PEARSON.
Interaction: If you specify OUTP=, the output data set contains the covariance

matrix and the _TYPE_ variable value is COV.
Interaction: When you use the PARTIAL statement, PROC CORR computes a

partial covariance matrix.
See also: OUTP= option
Featured in: Example 2 on page 303 and Example 4 on page 309

CSSCP
prints the corrected sums of squares and crossproducts.
Interaction: CSSCP invokes PEARSON.
Interaction: If you specify OUTP=, the output data set contains a CSSCP matrix

and the _TYPE_ variable value is CSSCP. If you use a PARTIAL statement, the
output data set contains a partial CSSCP matrix.

Interaction: When you use a PARTIAL statement, PROC CORR prints both an
unpartial and a partial CSSCP matrix.

See also: OUTP= option
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DATA=SAS-data-set
specifies the input SAS data set.
Main discussion: “Input Data Sets” on page 18

EXCLNPWGT
excludes observations with nonpositive weight values (zero or negative) from the
analysis. By default, PROC CORR treats observations with negative weights like
those with zero weights and counts them in the total number of observations.
Requirement: You must use a WEIGHT statement.
See also: “WEIGHT Statement” on page 285

HOEFFDING
calculates and prints Hoeffding’s D statistics. This D statistic is 30 times larger than
the usual definition and scales the range between -0.5 and 1 so that only large
positive values indicate dependence.
Main discussion: “Hoeffding’s Measure of Dependence, D” on page 291
Restriction: When you use a WEIGHT or PARTIAL statement, HOEFFDING is

invalid.
Featured in: Example 1 on page 300

KENDALL
calculates and prints Kendall tau-b coefficients based on the number of concordant
and discordant pairs of observations. Kendall’s tau-b ranges from -1 to 1.
Main discussion: “Kendall’s tau-b” on page 290
Restriction: When you use a WEIGHT statement, KENDALL is invalid.
Interactions: When you use a PARTIAL statement, probability values for Kendall’s

partial tau-b are not available.
Featured in: Example 4 on page 309

NOCORR
suppresses calculating and printing of Pearson correlations.
Interaction: If you specify OUTP=, the data set type remains CORR. To change the

data set type to COV, CSSCP, or SSCP, use the TYPE= data set option.
See also: “Output Data Sets” on page 298
Featured in: Example 3 on page 306

NOMISS
excludes observations with missing values from the analysis. Otherwise, PROC
CORR computes correlation statistics using all the nonmissing pairs of variables.
Main discussion: “Missing Values” on page 297
Tip: Using NOMISS is computationally more efficient.
Featured in: Example 3 on page 306

NOPRINT
suppresses all printed output.
Tip: Use NOPRINT when you want to create an output data set only.

NOPROB
suppresses printing the probabilities associated with each correlation coefficient.

NOSIMPLE
suppresses printing simple descriptive statistics for each variable. However, if you
request an output data set, the output data set still contains simple descriptive
statistics for the variables.
Featured in: Example 2 on page 303
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OUTH=output-data-set
creates an output data set containing Hoeffding’s D statistics. The contents of the
output data set are similar to the OUTP= data set.
Main discussion: “Output Data Sets” on page 298
Interaction: OUTH= invokes HOEFFDING.

OUTK=output-data-set
creates an output data set containing Kendall correlation statistics. The contents of
the output data set are similar to the OUTP= data set.
Main discussion: “Output Data Sets” on page 298
Interaction: OUTK= option invokes KENDALL.

OUTP=output-data-set
creates an output data set containing Pearson correlation statistics. This data set
also includes means, standard deviations, and the number of observations. The value
of the _TYPE_ variable is CORR.
Main discussion: “Output Data Sets” on page 298
Interaction: OUTP= invokes PEARSON.
Interaction: If you specify ALPHA, the output data set also contains six

observations with Cronbach’s coefficient alpha.
Featured in: Example 4 on page 309

OUTS=SAS-data-set
creates an output data set containing Spearman correlation statistics. The contents
of the output data set are similar to the OUTP= data set.
Main discussion: “Output Data Sets” on page 298
Interaction: OUTS= invokes SPEARMAN.

PEARSON
calculates and prints Pearson product-moment correlations when you use the
HOEFFDING, KENDALL, or SPEARMAN option. If you omit the correlation type,
PROC CORR automatically produces Pearson correlations. The correlations range
from -1 to 1.
Main discussion: “Pearson Product-Moment Correlation” on page 289
Featured in: Example 1 on page 300

RANK
prints the correlation coefficients for each variable. Correlations are ordered from
highest to lowest in absolute value. Otherwise, PROC CORR prints correlations in a
rectangular table using the variable names as row and column labels.
Interaction: If you use HOEFFDING, PROC CORR prints the D statistics in order

from highest to lowest.

SINGULAR=p
specifies the criterion for determining the singularity of a variable when you use a
PARTIAL statement. A variable is considered singular if its corresponding diagonal
element after Cholesky decomposition has a value less than p times the original
unpartialled corrected sum of squares of that variable.
Main discussion: “Partial Correlation” on page 291
Default: 1E-8
Range: between 0 and 1

SPEARMAN
calculates and prints Spearman correlation coefficients based on the ranks of the
variables. The correlations range from -1 to 1.
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Main discussion: “Spearman Rank-Order Correlation” on page 290
Restriction: When you specify a WEIGHT statement, SPEARMAN is invalid.

Example 1 on page 300
Featured in:

SSCP
prints the sums of squares and crossproducts.
Interaction: SSCP invokes PEARSON.
Interaction: When you specify OUTP=, the output data set contains a SSCP matrix

and the _TYPE_ variable value is SSCP. If you use a PARTIAL statement, the
output data set does not contain an SSCP matrix.

Interaction: When you use a PARTIAL statement, PROC CORR prints the
unpartial SSCP matrix.

Featured in: Example 2 on page 303

VARDEF=divisor
specifies the divisor to use in the calculation of variances, standard deviations, and
covariances.

Table 12.1 on page 282 shows the possible values for divisor and associated
divisors where k is the number of PARTIAL statement variables.

Table 12.1 Possible Values for VARDEF=

Value Divisor Formula

DF degrees of freedom n - k - 1

N number of observations n

WDF sum of weights minus one (�i wi) - k - 1

WEIGHT|WGT sum of weights �i wi

The procedure computes the variance as CSS=divisor, where CSS is the corrected
sums of squares and equals

P
(xi � x)

2. When you weight the analysis variables,
CSS equals

P
wi (xi � xw)

2, where xw is the weighted mean.
Default: DF
Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an

estimate of �2, where the variance of the ith observation is var (xi) = �2=wi and
wi is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of �2=w, where w is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.

Main discussion: Weighted statistics “Example” on page 74.
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BY Statement

Calculates separate correlation statistics for each BY group.

Main discussion: “BY” on page 68

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n><NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

FREQ Statement

Treats observations as if they appear multiple times in the input data set.

Tip: The effects of the FREQ and WEIGHT statements are similar except when
calculating degrees of freedom.
See also: For an example that uses the FREQ statement, see “FREQ” on page 70

FREQ variable;

Required Arguments
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variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, the procedure assumes that each observation
represents n observations, where n is the value of variable. If n is not an integer, the
SAS System truncates it. If n is less than 1 or is missing, the procedure does not use
that observation to calculate statistics.

The sum of the frequency variable represents the total number of observations.

PARTIAL Statement

Computes Pearson partial correlation, Spearman partial rank-order correlation, or Kendall’s partial
tau-b.

Restriction: Not valid with the HOEFFDING option.
Interaction: Invokes the NOMISS option to exclude all observations with missing values.

Main discussion: “Partial Correlation” on page 291
Featured in: Example 4 on page 309

PARTIAL variable(s);

Required Arguments

variable(s)
identifies one or more variables to use in the calculation of partial correlation
statistics.

Details

� If you use the PEARSON option, PROC CORR also prints the partial variance and
standard deviation for each VAR or WITH statement variable.

� If you use the KENDALL option, PROC CORR cannot compute probability values
for Kendall’s partial tau-b.

VAR Statement

Specifies the variables to use to calculate correlation statistics.

Default: If you omit this statement, PROC CORR computes correlations for all numeric
variables not listed in the other statements.
Featured in: Example 1 on page 300 and Example 2 on page 303

VAR variable(s);
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Required Arguments

variable(s)
identifies one or more variables to use in the calculation of correlation coefficients.

WEIGHT Statement

Specifies weights for the analysis variables in the calculation of Pearson weighted
product-moment correlation.

Restriction: Not valid with the HOEFFDING, KENDALL, or SPEARMAN option.
See also: For information on calculating weighted correlations, see “Pearson
Product-Moment Correlation” on page 289.

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable to use to compute weighted product-moment correlation
coefficients. The variable does not have to be an integer. If the value of the weight
variable is

Weight value… PROC CORR…

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the total
number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.
Tip: When you use the WEIGHT statement, consider which value of the VARDEF=

option is appropriate. See the discussion of the VARDEF= option on page 282 for
more information.

Note: Prior to Version 8 of the SAS System, the procedure did not exclude the
observations with missing weights from the count of observations. 4
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WITH Statement

Determines the variables to use in conjunction with the VAR statement variables to calculate
limited combinations of correlation coefficients.

Restriction: Not valid with the ALPHA option.
Featured in: Example 2 on page 303

WITH variable(s);

Required Argument

variable(s)
lists one or more variables to obtain correlations for specific combinations of
variables. The WITH statement variables appear down the side of the correlation
matrix and the VAR statement variables appear across the top of the correlation
matrix. PROC CORR computes the following correlations for the VAR statement
variables A and B and the WITH statement variables X, Y, and Z:

X and A X and B

Y and A Y and B

Z and A Z and B

Concepts

Interpreting Correlation Coefficients
Correlation coefficients contain information on both the strength and direction of a

linear relationship between two numeric random variables. If one variable x is an exact
linear function of another variable y, a positive relationship exists when the correlation
is 1 and an inverse relationship exists when the correlation is -1. If there is no linear
predictability between the two variables, the correlation is 0. If the variables are normal
and correlation is 0, the two variables are independent. However, correlation does not
imply causality because, in some cases, an underlying causal relationship may exist.

The scatterplots in Figure 12.1 on page 287 depict the relationship between two
numeric random variables.
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Figure 12.1 Examining Correlations Using Scatterplots

Positive Correlation Negative Correlation

No Correlation

y y

xx

xx

y y

No Correlation,
  Dependence

When the relationship between two variables is nonlinear or when outliers are
present, the correlation coefficient incorrectly estimates the strength of the relationship.
Plotting the data before computing a correlation coefficient enables you to verify the
linear relationship and to identify the potential outliers.

Determining Computer Resources
The only factor limiting the number of variables that you can analyze is the amount

of available memory. The computer resources that PROC CORR requires depend on
which statements and options you specify. To determine the computer resources that
you need, use

N number of observations in the data set.

C number of correlation types (1 to 4).

V number of VAR statement variables.

W number of WITH statement variables.

P number of PARTIAL statement variables.

so that

T= V+W+P

K= V*W when W>0

V*(V+1)/2 when W=0

L= K when P=0

T*(T+1)/2 when P>0

For small N and large K, the CPU time varies as K for all types of correlations. For
large N, the CPU time depends on the type of correlation. To calculate CPU time use
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K*N with PEARSON (default)

T*N*log N with SPEARMAN

K*N*log N with HOEFFDING or KENDALL

You can reduce CPU time by specifying NOMISS. Without NOMISS, processing is much
faster when most observations do not contain missing values.

The options and statements you use in the procedure require different amounts of
storage to process the data. For Pearson correlations, the amount of temporary storage
in bytes (M) is

40T+16L with NOMISS and NOSIMPLE

40T+16L+56T with NOMISS

40T+16L+56K with NOSIMPLE

40T+16L+56K+56T with no options

Using a PARTIAL statement increases the amount of temporary storage by 12T bytes.
Using the ALPHA option increases the amount of temporary storage by 32V+16 bytes.

The following example uses a PARTIAL statement, which invokes NOMISS.

proc corr;
var x1 x2;
with y1 y2 y3;
partial z1;

Therefore, using 40T+16L+56T+12T, the minimum temporary storage equals 984 bytes
(T=2+3+1 and L=T(T+1)/2).

Using the SPEARMAN, KENDALL, or HOEFFDING option requires additional
temporary storage for each observation. For the most time-efficient processing, the
amount of temporary storage in bytes is

40T+8K+8L*C+12T*N+28N+QS+QP+QK

where

QS= 0 with NOSIMPLE

68T otherwise

QP= 56K with PEARSON and without NOMISS

0 otherwise

QK = 32N with KENDALL or HOEFFDING

0 otherwise.

The following example uses KENDALL:

proc corr kendall;
var x1 x2 x3;

Therefore, the minimum temporary storage in bytes is

40*3+8*6+8*6*1+12*3N+28N+3*68+32N = 420+96N

where N is the number of observations.
If M bytes are not available, PROC CORR must process the data multiple times to

compute all the statistics. This reduces the minimum temporary storage you need by
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12(T−2)N bytes. When this occurs, PROC CORR prints a note suggesting a larger
memory region.

Statistical Computations

PROC CORR computes several parametric and nonparametric correlation statistics
as measures of association. The formulas for computing these measures and the
associated probabilities follow.

Pearson Product-Moment Correlation
The Pearson product-moment correlation is a parametric measure of association for

two continuous random variables. The formula for the true Pearson product-moment
correlation, denoted �xy, is

�xy =
cov (x; y)p
var (x) var (y)

=
E ((x� Ex) (y � Ey))q
E (x � Ex)2E (y � Ey)2

The sample correlation, such as a Pearson product-moment correlation or weighted
product-moment correlation, estimates the true correlation. The formula for the
Pearson product-moment correlation is

rxy =

P
(xi � �x) (yi � �y)qP

(xi � �x)2
P

(yi � �y)2

where �x is the sample mean of x and �y is the sample mean of y.
The formula for a weighted Pearson product-moment correlation is

rxy =

P
wi (xi � �xw) (yi � �yw)qP

wi (xi � �xw)
2
P

wi (yi � �yw)
2

where

�xw =
X

wixi=
X

wi

�yw =
X

wiyi=
X

wi

Note that �xw is the weighted mean of x, �yw is the weighted mean of y, and wi is the
weight.
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When one variable is dichotomous (0,1) and the other variable is continuous, a
Pearson correlation is equivalent to a point biserial correlation. When both variables
are dichotomous, a Pearson correlation coefficient is equivalent to the phi coefficient.

Spearman Rank-Order Correlation
Spearman rank-order correlation is a nonparametric measure of association based on

the rank of the data values. The formula is

� =

P �
Ri �

�R
� �

Si �
�S
�

qP�
Ri �

�R
�2P�

Si �
�S
�2

where Ri is the rank of the ith x value, Si is the rank of the ith y value, �R is the
mean of the Ri values, and �S is the mean of the Si values.

PROC CORR computes the Spearman’s correlation by ranking the data and using
the ranks in the Pearson product-moment correlation formula. In case of ties, the
averaged ranks are used.

Kendall’s tau-b
Kendall’s tau-b is a nonparametric measure of association based on the number of

concordances and discordances in paired observations. Concordance occurs when paired
observations vary together, and discordance occurs when paired observations vary
differently. The formula for Kendall’s tau-b is

� =

P
i<j

sgn (xi � xj ) sgn (yi � yj )p
(T0 � T1) (T0 � T2)

where

T0 = n (n � 1) =2

T1 =
X

ti (ti � 1) =2

T2 =
X

ui (ui � 1) =2

and where ti is the number of tied x values in the ith group of tied x values, ui is the
number of tied y values in the ith group of tied y values, f is the number of
observations, and sgn(z) is defined as

sgn (z) =

(
1 if z > 0
0 if z = 0

�1 if z < 0

PROC CORR computes Kendall’s correlation by ranking the data and using a method
similar to Knight (1966). The data are double sorted by ranking observations according
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to values of the first variable and reranking the observations according to values of the
second variable. PROC CORR computes Kendall’s tau-b from the number of
interchanges of the first variable and corrects for tied pairs (pairs of observations with
equal values of X or equal values of Y).

Hoeffding’s Measure of Dependence, D
Hoeffding’s measure of dependence, D, is a nonparametric measure of association

that detects more general departures from independence. The statistic approximates a
weighted sum over observations of chi-square statistics for two-by-two classification
tables (Hoeffding 1948). Each set of (x; y) values are cut points for the classification.
The formula for Hoeffding’s D is

D = 30
(n � 2) (n� 3)D1 +D2 � 2 (n � 2) D3

n (n � 1) (n � 2) (n � 3) (n � 4)

where

D1 =
X

i

(Qi � 1) (Qi � 2)

D2 =
X

i

(Ri � 1) (Ri � 2) (Si � 1) (Si � 2)

D3 =
X

i

(Ri � 2) (Si � 2) (Qi � 1)

Ri is the rank of xi, Si is the rank of yi, and Qi (also called the bivariate rank) is 1
plus the number of points with both x and y values less than the ith point. A point
that is tied on only the x value or y value contributes 1/2 to Qi if the other value is less
than the corresponding value for the ith point. A point that is tied on both x and y
contributes 1/4 to Qi .

PROC CORR obtains the Qi values by first ranking the data. The data are then
double sorted by ranking observations according to values of the first variable and
reranking the observations according to values of the second variable. Hoeffding’s D
statistic is computed using the number of interchanges of the first variable.

When no ties occur among data set observations, the D statistic values are between
-0.5 and 1, with 1 indicating complete dependence. However, when ties occur, the D
statistic may result in a smaller value. That is, for a pair of variables with identical
values, the Hoeffding’s D statistic may be less than 1. With a large number of ties in a
small data set, the D statistic may be less than -0.5 . For more information on
Hoeffding’s D, see Hollander and Wolfe (1973, p. 228).

Partial Correlation
A partial correlation measures the strength of a relationship between two variables,

while controlling the effect of one or more additional variables. The Pearson partial
correlation for a pair of variables may be defined as the correlation of errors after
regression on the controlling variables. Let y= (y1 ;y2 ; . . . ; yv ) be the set of variables
to correlate. Also let � and � be sets of regression parameters and z be the set of
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controlling variables, where � =(�1; �2; . . . ; �v), � is the slope, and
z= (z1 ; z2 ; . . . ; zp). Suppose

E (y) = �+ z�

is a regression model for y given z. The population Pearson partial correlation between
the ith and the jth variables of y given z is defined as the correlation between errors
(yi � E (yi )) and (yj � E (yj )).

If the exact values of � and � are unknown, you can use a sample Pearson partial
correlation to estimate the population Pearson partial correlation. For a given sample
of observations, you estimate the sets of unknown parameters � and � using the
least-squares estimators b� and b�. Then the fitted least-squares regression model is

by = b�+ zb�
The partial corrected sums of squares and crossproducts (CSSCP) of y given z are

the corrected sums of squares and crossproducts of the residuals y� by. Using these
partial corrected sums of squares and crossproducts, you can calculate the partial
variances, partial covariances, and partial correlations.

PROC CORR derives the partial corrected sums of squares and crossproducts matrix
by applying the Cholesky decomposition algorithm to the CSSCP matrix. For Pearson
partial correlations, let S be the partitioned CSSCP matrix between two sets of
variables, z and y:

S =

�
Szz Szy
S0

zy
Syy

�

PROC CORR calculates Syy�z, the partial CSSCP matrix of y after controlling for z,
by applying the Cholesky decomposition algorithm sequentially on the rows associated
with z, the variables being partialled out.

After applying the Cholesky decomposition algorithm to each row associated with
variables z, PROC CORR checks all higher numbered diagonal elements associated
with z for singularity. After the Cholesky decomposition, a variable is considered
singular if the value of the corresponding diagonal element is less than p times the
original unpartialled corrected sum of squares of that variable. You can specify the
singularity criterion p using the SINGULAR= option. For Pearson partial correlations,
a controlling variable z is considered singular if the R2 for predicting this variable from
the variables that are already partialled out exceeds 1� p. When this happens, PROC
CORR excludes the variable from the analysis. Similarly, a variable is considered
singular if the R2 for predicting this variable from the controlling variables exceeds
1 � p. When this happens, its associated diagonal element and all higher numbered
elements in this row or column are set to zero.

After the Cholesky decomposition algorithm is performed on all rows associated with
z, the resulting matrix has the form

�
Tzz Tzy

0 Syy�z

�

where Tzz is an upper triangular matrix with
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T
0

zzTzz = Szz0

T
0

zzTzy = Szy0

Syy�z = Syy �T
0

zyTzy:

If Szz is positive definite, then the partial CSSCP matrix Syy�z is identical to the
matrix derived from the formula

Syy�z = Syy � S
0

zy S
�1
zz Szy

The partial variance-covariance matrix is calculated with the variance divisor
(VARDEF= option). PROC CORR can then use the standard Pearson correlation
formula on the partial variance-covariance matrix to calculate the Pearson partial
correlation matrix. Another way to calculate Pearson partial correlation is by applying
the Cholesky decomposition algorithm directly to the correlation matrix and by using
the correlation formula on the resulting matrix.

To derive the corresponding Spearman partial rank-order correlations and Kendall
partial tau-b correlations, PROC CORR applies the Cholesky decomposition algorithm
to the Spearman rank-order correlation matrix and Kendall tau-b correlation matrix
and uses the correlation formula. The singularity criterion for nonparametric partial
correlations is identical to Pearson partial correlation except that PROC CORR uses a
matrix of nonparametric correlations and sets a singular variable’s associated
correlations to missing. The partial tau-b correlations range from –1 to 1. However, the
sampling distribution of this partial tau-b is unknown; therefore, the probability values
are not available.

When a correlation matrix (Pearson, Spearman, or Kendall tau-b correlation matrix)
is positive definite, the resulting partial correlation between variables x and y after
adjusting for a single variable z is identical to that obtained from the first-order partial
correlation formula

rxy�z =
rxy � rxzryzq

(1 � r2
xz
)
�
1� r2

yz

�

where rxy, rxz, and ryz are the appropriate correlations.
The formula for higher-order partial correlations is a straightforward extension of

the above first-order formula. For example, when the correlation matrix is positive
definite, the partial correlation between x and y controlling for both z1 and z2 is
identical to the second-order partial correlation formula

rxy�z1z2 =
rxy�z1 � rxz2�z1ryz2�z1q�
1 � r2

xz2�z1

� �
1� r2

yz2�z1

�

where rxy�z1, rxz2�z1, and ryz2�z1 are first-order partial correlations among variables x,
y, and z2 given z1.

Cronbach’s Coefficient Alpha
Analyzing latent constructs such as job satisfaction, motor ability, sensory

recognition, or customer satisfaction requires instruments to accurately measure the
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constructs. Interrelated items may be summed to obtain an overall score for each
participant. Cronbach’s coefficient alpha estimates the reliability of this type of scale by
determining the internal consistency of the test or the average correlation of items
within the test (Cronbach 1951).

When a value is recorded, the observed value contains some degree of measurement
error. Two sets of measurements on the same variable for the same individual may not
have identical values. However, repeated measurements for a series of individuals will
show some consistency. Reliability measures internal consistency from one set of
measurements to another. The observed value Y is divided into two components, a true
value T and a measurement error E. The measurement error is assumed to be
independent of the true value, that is,

Y = T+ E ; cov (T;E) = 0

The reliability coefficient of a measurement test is defined as the squared correlation
between the observed value Y and the true value T, that is,

�2 (Y;T) =
cov (Y;T)2

var (Y) var (T)

=
var (T)2

var (Y) var (T)

=
var (T)

var (Y)

which is the proportion of the observed variance due to true differences among
individuals in the sample. If Y is the sum of several observed variables measuring the
same feature, you can estimate var(T). Cronbach’s coefficient alpha, based on a lower
bound for var(T), is an estimate of the reliability coefficient.

Suppose p variables are used with Yj = Tj + Ej for j = 1; 2; . . . ; p, where Yj is
the observed value, Tj is the true value, and Ej is the measurement error. The
measurement errors (Ej ) are independent of the true values (Tj ) and are also
independent of each other. Let Y0 =

P
Yj be the total observed score and T0 =

P
Tj

be the total true score. Because

(p� 1)
X

var (Tj ) �
X

i 6=j

cov (Ti ;Tj ) ;

a lower bound for var (T0) is given by

p

p� 1

X

i 6=j

cov (Ti ;Tj )

With cov (Yi ;Yj ) = cov (Ti ;Tj ) for i 6= j, a lower bound for the reliability
coefficient is then given by the Cronbach’s coefficient alpha:
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� =

�
p

p � 1

� P
i 6=j

cov (Yi ;Yj )

var (Y0)

=

�
p

p � 1

�0B@1 �

P
j
var (Yj )

var (Y0)

1
CA

If the variances of the items vary widely, you can standardize the items to a standard
deviation of 1 before computing the coefficient alpha. If the variables are dichotomous
(0,1), the coefficient alpha is equivalent to the Kuder-Richardson 20 (KR-20) reliability
measure.

When the correlation between each pair of variables is 1, the coefficient alpha has a
maximum value of 1. With negative correlations between some variables, the coefficient
alpha can have a value less than zero. The larger the overall alpha coefficient, the more
likely that items contribute to a reliable scale. Nunnally (1978) suggests .70 as an
acceptable reliability coefficient; smaller reliability coefficients are seen as inadequate.
However, this varies by discipline.

To determine how each item reflects the reliability of the scale, you calculate a
coefficient alpha after deleting each variable independently from the scale. The
Cronbach’s coefficient alpha from all variables except the kth variable is given by

�k =

�
p � 1

p � 2

�
0
BBBB@1�

P
i 6=k

var (Yi)

var

 P
i 6=k

Yi

!
1
CCCCA

If the reliability coefficient increases after deleting an item from the scale, you can
assume that the item is not correlated highly with other items in the scale. Conversely,
if the reliability coefficient decreases you can assume that the item is highly correlated
with other items in the scale. See SAS Communications, 4th Quarter 1994, for more
information on how to interpret Cronbach’s coefficient alpha.

Listwise deletion of observations with missing values is necessary to correctly
calculate Cronbach’s coefficient alpha. PROC CORR does not automatically use listwise
deletion when you specify ALPHA. Therefore, use the NOMISS option if the data set
contains missing values. Otherwise, PROC FREQ prints a warning message in the SAS
log indicating the need to use NOMISS with ALPHA.

Probability Values
Probability values for the Pearson and Spearman correlations are computed by

treating

(n� 2)1=2 r

(1 � r2)
1=2
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as coming from a t distribution with n � 2 degrees of freedom, where r is the
appropriate correlation.

Probability values for the Pearson and Spearman partial correlations are computed
by treating

(n� k � 2)1=2 r

(1� r2)
1=2

as coming from a t distribution with n � k � 2 degrees of freedom, where r is the
appropriate partial correlation and k is the number of variables being partialled out.

Probability values for Kendall correlations are computed by treating

sp
var (s)

as coming from a normal distribution when

s =
X
i<j

sgn (xi � xj ) sgn (yi � yj )

and where xi are the values of the first variable, yi are the values of the second
variable, and the function sgn(z) is defined as

sgn (z) =

(
1 if z > 0
0 if z = 0

�1 if z < 0

The formula for the variance of s, var(s), is computed as

var (s) =
v0 � vt � vu

18
+

v1
2n (n� 1)

+
v2

9n (n� 1) (n� 2)

where
v0 = n (n� 1) (2n+ 5)
vt =

P
ti (ti � 1) (2ti + 5)

vu =
P

ui (ui � 1) (2ui + 5)
v1 = (

P
ti (ti � 1)) (

P
ui (ui � 1))

v2 = (
P

ti (ti � 1) (ti � 2)) (
P

ui (ui � 1) (ui � 2))

The sums are over tied groups of values where ti is the number of tied x values and
ui is the number of tied y values (Noether 1967). The sampling distribution of
Kendall’s partial tau-b is unknown; therefore, the probability values are not available.

The probability values for Hoeffding’s D statistic are computed using the asymptotic
distribution computed by Blum, Kiefer, and Rosenblatt (1961). The formula is

(n� 1)�4

60
D +

�4

72



The CORR Procedure 4 Procedure Output 297

which comes from the asymptotic distribution. When the sample size is less than 10,
see the tables for the distribution of D in Hollander and Wolfe (1973).

Results

Missing Values
By default, PROC CORR uses pairwise deletion when observations contain missing

values. PROC CORR includes all nonmissing pairs of values for each pair of variables
in the statistical computations. Therefore, the correlations statistics may be based on
different numbers of observations.

If you specify the NOMISS option, PROC CORR uses listwise deletion when a value
of the BY, FREQ, VAR, WEIGHT, or WITH statement variable is missing. PROC CORR
excludes all observations with missing values from the analysis. Therefore, the number
of observations for each pair of variables is identical. The PARTIAL statement always
excludes the observations with missing values by automatically invoking NOMISS.
Listwise deletion is needed to correctly calculate Cronbach’s coefficient alpha when data
are missing. If a data set contains missing values, when you specify ALPHA use the
NOMISS option

There are two reasons to specify NOMISS and, thus, to avoid pairwise deletion.
First, NOMISS is computationally more efficient, so you use fewer computer resources.
Second, if you use the correlations as input to regression or other statistical procedures,
a pairwise-missing correlation matrix leads to several statistical difficulties. Pairwise
correlation matrices may not be nonnegative definite, and the pattern of missing values
may bias the results.

Procedure Output
By default, PROC CORR prints a report that includes descriptive statistics and

correlation statistics for each variable.The descriptive statistics include the number of
observations with nonmissing values, the mean, the standard deviation, the minimum,
and the maximum. PROC CORR reports the following additional descriptive statistics
when you request various correlation statistics:

sum
for Pearson correlation only

median
for nonparametric measures of association

partial variance
for Pearson partial correlation

partial standard deviation
for Pearson partial correlation.

If variable labels are available, PROC CORR labels the variables.
When you specify the CSSCP, SSCP, or COV option, the appropriate sum-of-squares

and crossproducts and covariance matrix appears at the top of the correlation report. If
the data set contains missing values, PROC CORR prints additional statistics for each
pair of variables. These statistics, calculated from the observations with nonmissing
row and column variable values, may include

SSCP(W’,’V’)
uncorrected sum-of-squares and crossproducts
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USS(W’)
uncorrected sum-of-squares for the row variable

USS(V’)
uncorrected sum-of-squares for the column variable

CSSCP(W’,’V’)
corrected sum-of-squares and crossproducts

CSS(W’)
corrected sum-of-squares for the row variable

CSS(V’)
corrected sum-of-squares for the column variable

COV (W’,’V’)
covariance

VAR (W’)
variance for the row variable

VAR (V’)
variance for the column variable

DF(W’,V’)
divisor for calculating covariance and variances.

For each pair of variables, PROC CORR always prints the correlation coefficients, the
number of observations used to calculate the coefficient, and the significance probability.
When you specify the ALPHA option, PROC CORR prints Cronbach’s coefficient alpha,
the correlation between the variable and the total of the remaining variables, and
Cronbach’s coefficient alpha using the remaining variables for the raw variables and
the standardized variables.

Output Data Sets
When you specify the OUTP=, OUTS=, OUTK=, or OUTH= option, PROC CORR

creates an output data set containing statistics for Pearson correlation, Spearman
correlation, Kendall correlation, or Hoeffding’s D, respectively. By default, the output
data set is a special data set type (TYPE=CORR) that many SAS/STAT procedures
recognize, including PROC REG and PROC FACTOR. When you specify the NOCORR
option and the COV, CSSCP, or SSCP option, use the TYPE= data set option to change
the data set type to COV, CSSCP, or SSCP. For example, the following statement

proc corr nocorr cov outp=b(type=cov);

specifies the output data set type as COV.
PROC CORR does not print the output data set. Use PROC PRINT, PROC REPORT,

or another SAS reporting tool to print the output data set.
The output data set includes the following variables

BY variables
identifies the BY group when using a BY statement.

_TYPE_ variable
identifies the type of observation.

_NAME_ variable
identifies the variable that corresponds to a given row of the correlation matrix.

INTERCEP variable
identifies variable sums when specifying the SSCP option.
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VAR variables
identifies the variables listed in the VAR statement.

You can use a combination of the _TYPE_ and _NAME_ variables to identify the
contents of an observation. The _NAME_ variable indicates which row of the correlation
matrix the observation corresponds to. The values of the _TYPE_ variable are

SSCP
uncorrected sums of squares and crossproducts

CSSCP
corrected sums of squares and crossproducts

COV
covariances

MEAN
mean of each variable

STD
standard deviation of each variable

N
number of nonmissing observations for each variable

SUMWGT
sum of the weights for each variable when using a WEIGHT statement

CORR
correlation statistics for each variable.

When you specify the SSCP option, the OUTP= data set includes an additional
observation that contains intercept values. When you specify the ALPHA option, the
OUTP= data set also includes observations with the following _TYPE_ values:

RAWALPHA
Cronbach’s coefficient alpha for raw variables

STDALPHA
Cronbach’s coefficient alpha for standardized variables

RAWALDEL
Cronbach’s coefficient alpha for raw variables after deleting one variable

STDALDEL
Cronbach’s coefficient alpha for standardized variables after deleting one variable

RAWCTDEL
correlation between a raw variable and the total of the remaining raw variables

STDCTDEL
correlation between a standardized variable and the total of the remaining
standardized variables.

When you use a PARTIAL statement, the previous statistics are calculated for the
variables after partialling. If PROC CORR computes Pearson correlation statistics,
MEAN equals zero and STD equals the partial standard deviation associated with the
partial variance for the OUTP=, OUTK=, or OUTS= data set. Otherwise, PROC CORR
assigns missing values to MEAN and STD. Output 12.4 on page 299 lists the
observations in an OUTP= data set when the COV option and PARTIAL statement are
used to compute Pearson partial correlations. The _TYPE_ variable identifies COV,
MEAN, STD, N, and CORR as the statistical values for the variables Weight, Oxygen,
and Runtime. MEAN always equals 0, while STD is a partial standard deviation.
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Output 12.4 OUTP= Data Set with Pearson Partial Correlations

Pearson Correlation Statistics Using the PARTIAL Statement 1
Output Data Set from PROC CORR

_TYPE_ _NAME_ Weight Oxygen Runtime

COV Weight 72.4374 -12.7511 2.0677
COV Oxygen -12.7511 27.0165 -5.5937
COV Runtime 2.0677 -5.5937 1.9451
MEAN 0.0000 0.0000 0.0000
STD 8.5110 5.1977 1.3947
N 28.0000 28.0000 28.0000
CORR Weight 1.0000 -0.2882 0.1742
CORR Oxygen -0.2882 1.0000 -0.7716
CORR Runtime 0.1742 -0.7716 1.0000

Examples

Example 1: Computing Pearson Correlations and Other Measures of
Association

Procedure features:
PROC CORR statement options:

HOEFFDING
PEARSON
SPEARMAN

VAR statement

This example
� produces a correlation analysis with descriptive statistics, Pearson

product-moment correlation, Spearman rank-order correlation, and Hoeffding’s
measure of dependence, D

� selects the analysis variables.

Program

options nodate pageno=1 linesize=80 pagesize=60;

The data set FITNESS contains measurements from a study of physical fitness for 30
participants between the ages 38 and 57. Each observation represents one person. Two
observations contain missing values.
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data fitness;
input Age Weight Runtime Oxygen @@;
datalines;

57 73.37 12.63 39.407 54 79.38 11.17 46.080
52 76.32 9.63 45.441 50 70.87 8.92 .
51 67.25 11.08 45.118 54 91.63 12.88 39.203
51 73.71 10.47 45.790 57 59.08 9.93 50.545
49 76.32 . 48.673 48 61.24 11.5 47.920
52 82.78 10.5 47.467 44 73.03 10.13 50.541
45 87.66 14.03 37.388 45 66.45 11.12 44.754
47 79.15 10.6 47.273 54 83.12 10.33 51.855
49 81.42 8.95 40.836 51 77.91 10.00 46.672
48 91.63 10.25 46.774 49 73.37 10.08 50.388
44 89.47 11.37 44.609 40 75.07 10.07 45.313
44 85.84 8.65 54.297 42 68.15 8.17 59.571
38 89.02 9.22 49.874 47 77.45 11.63 44.811
40 75.98 11.95 45.681 43 81.19 10.85 49.091
44 81.42 13.08 39.442 38 81.87 8.63 60.055
;

PEARSON, SPEARMAN, and HOEFFDING compute correlation statistics. When you request
nonparametric correlations, specify PEARSON to compute Pearson correlations.

proc corr data=fitness pearson spearman hoeffding;

The VAR statement specifies the analysis variables and the order to print them.

var weight oxygen runtime;

The TITLE statement specifies a title for the report.

title ’Measures of Association for’;
title2 ’a Physical Fitness Study’;

run;

Output
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The correlation report includes descriptive statistics, Pearson’s rho, Spearman’s rho, and
Hoeffding’s D. The report uses the median, instead of the sum, as a descriptive measure when
PROC CORR computes nonparametric measures of association.

Because missing data are excluded pairwise, the number of observations PROC CORR uses to
calculate the correlation coefficients varies.

Measures of Association for 1
a Physical Fitness Study

The CORR Procedure

3 Variables: Weight Oxygen Runtime

Simple Statistics

Variable N Mean Std Dev Median Minimum Maximum

Weight 30 77.70500 8.34152 77.68000 59.08000 91.63000
Oxygen 29 47.06445 5.32129 46.67200 37.38800 60.05500
Runtime 29 10.61448 1.41655 10.47000 8.17000 14.03000

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Weight Oxygen Runtime

Weight 1.00000 -0.19900 0.15155
0.3007 0.4326

30 29 29

Oxygen -0.19900 1.00000 -0.78346
0.3007 <.0001

29 29 28

Runtime 0.15155 -0.78346 1.00000
0.4326 <.0001

29 28 29

Spearman Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Weight Oxygen Runtime

Weight 1.00000 -0.13110 0.10546
0.4979 0.5861

30 29 29

Oxygen -0.13110 1.00000 -0.68363
0.4979 <.0001

29 29 28

Runtime 0.10546 -0.68363 1.00000
0.5861 <.0001

29 28 29
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Measures of Association for 2
a Physical Fitness Study

The CORR Procedure

Hoeffding Dependence Coefficients
Prob > D under H0: D=0
Number of Observations

Weight Oxygen Runtime

Weight 0.97559 -0.01789 -0.02418
<.0001 0.9775 1.0000

30 29 29

Oxygen -0.01789 1.00000 0.16554
0.9775 <.0001

29 29 28

Runtime -0.02418 0.16554 1.00000
1.0000 <.0001

29 28 29

Example 2: Computing Rectangular Correlation Statistics with Missing Data
Procedure features:

PROC CORR statement options:
COV
NOSIMPLE
SSCP

VAR statement
WITH statement

This example
� suppresses descriptive statistics
� prints uncorrected sum-of-squares and crossproducts
� calculates a rectangular covariance matrix
� calculates a rectangular correlation matrix
� excludes observations with missing values using pairwise deletion (default

method).

Program

options nodate pageno=1 linesize=80 pagesize=60;

The data set SETOSA contains measurements for four iris parts: sepal length, sepal width,
petal length, and petal width based on Fisher’s iris data (1936). Fifty iris specimens from the
species Iris setosa are used. Each observation represents one specimen. Three observations
contain missing values. The LABEL statement associates a label with each variable.
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data setosa;
input SepalLength SepalWidth PetalLength PetalWidth @@;
label sepallength=’Sepal Length in mm.’

sepalwidth=’Sepal Width in mm.’
petallength=’Petal Length in mm.’
petalwidth=’Petal Width in mm.’;

datalines;
50 33 14 02 46 34 14 03 46 36 . 02
51 33 17 05 55 35 13 02 48 31 16 02
52 34 14 02 49 36 14 01 44 32 13 02
50 35 16 06 44 30 13 02 47 32 16 02
48 30 14 03 51 38 16 02 48 34 19 02
50 30 16 02 50 32 12 02 43 30 11 .
58 40 12 02 51 38 19 04 49 30 14 02
51 35 14 02 50 34 16 04 46 32 14 02
57 44 15 04 50 36 14 02 54 34 15 04
52 41 15 . 55 42 14 02 49 31 15 02
54 39 17 04 50 34 15 02 44 29 14 02
47 32 13 02 46 31 15 02 51 34 15 02
50 35 13 03 49 31 15 01 54 37 15 02
54 39 13 04 51 35 14 03 48 34 16 02
48 30 14 01 45 23 13 03 57 38 17 03
51 38 15 03 54 34 17 02 51 37 15 04
52 35 15 02 53 37 15 02
;

SSCP displays the uncorrected sum-of-squares and crossproducts matrix and invokes
PEARSON. COV calculates the covariance matrix. NOSIMPLE suppresses descriptive statistics.

proc corr data=setosa sscp cov nosimple;

The WITH statement together with the VAR statement produces a rectangular correlation
matrix. The matrix rows are PetalLength and PetalWidth while the matrix columns are
SepalLength and SepalWidth.

var sepallength sepalwidth;
with petallength petalwidth;

The TITLE statement specifies a title for the report.

title ’Fisher (1936) Iris Setosa Data’;
run;

Output
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The correlation report includes rectangular sum-of-squares and crossproducts, covariances, and
the correlation matrix using the two WITH variables and two VAR variables. The descriptive
statistics do not appear. PROC CORR uses variable labels to label matrix rows (WITH
variables).

PROC CORR calculates sum-of-squares and crossproducts and covariances statistics for each
pair of variables by using observations with nonmissing row and column variable values.

Because missing data are excluded pairwise, the number of observations PROC CORR uses to
calculate the correlation coefficients changes.

Fisher (1936) Iris Setosa Data 1

The CORR Procedure

2 With Variables: PetalLength PetalWidth
2 Variables: SepalLength SepalWidth

Sums of Squares and Crossproducts
SSCP / Row Var SS / Col Var SS

SepalLength SepalWidth

PetalLength 36214.00000 24756.00000
Petal Length in mm. 10735.00000 10735.00000

123793.0000 58164.0000

PetalWidth 6113.00000 4191.00000
Petal Width in mm. 355.00000 355.00000

121356.0000 56879.0000

Variances and Covariances
Covariance / Row Var Variance / Col Var Variance / DF

SepalLength SepalWidth

PetalLength 1.270833333 1.363095238
Petal Length in mm. 2.625000000 2.625000000

12.33333333 14.60544218
48 48

PetalWidth 0.911347518 1.048315603
Petal Width in mm. 1.063386525 1.063386525

11.80141844 13.62721631
47 47

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Sepal Sepal
Length Width

PetalLength 0.22335 0.22014
Petal Length in mm. 0.1229 0.1285

49 49

PetalWidth 0.25726 0.27539
Petal Width in mm. 0.0775 0.0582

48 48



306 Example 3: Computing Cronbach’s Coefficient Alpha 4 Chapter 12

Example 3: Computing Cronbach’s Coefficient Alpha
Procedure features:

PROC CORR statement options:
ALPHA
NOCORR
NOMISS

This example
� computes Cronbach’s coefficient alpha for a multiple-item mixed-rating scale
� suppresses Pearson correlation statistics
� excludes observations with missing values using listwise deletion.

This example does not examine the correlation matrix but assumes that all items are
positively correlated. Normally, you want to examine the correlation and covariance
matrices to make sure that all variables are positively correlated. Positive correlation is
needed because items measure a common entity. You exclude negatively correlated
items from the analysis because they do not measure the same construct.

Program

options nodate pageno=1 linesize=80 pagesize=60;

The data set PYSCHDAT contains responses to a questionnaire assessing the mental stability of
30 randomly selected female psychiatric patients.* Each observation represents one patient. The
scale includes seven items. The LABEL statement provides a label for each item. Seven
observations contain missing values.

data psychdat;
input Age Anxiety Depression Sleep Sex Life WeightChange @@;
label age = ’age in years’

anxiety = ’anxiety level’
depression = ’depression level’
sleep = ’normal sleep (1=y 2=n)’
sex = ’sexual (1=n 2=y)’
life = ’suicidal (1=n 2=y)’
weightchange = ’recent weight change’;

datalines;
39 2 2 2 2 2 4.9 41 2 2 2 2 2 2.2
42 3 3 . 2 2 4.0 30 2 2 2 2 2 -2.6
35 2 1 1 2 1 -0.3 44 . 1 2 1 1 0.9
31 2 2 . 2 2 -1.5 39 3 2 2 2 1 3.5
35 3 2 2 2 2 -1.2 33 2 2 2 2 2 0.8
38 2 1 1 1 1 -1.9 31 2 2 2 . 1 5.5

*
Data are from Assignments in Applied Statistics by Simon Conrad. Copyright ©1989, by John Wiley & Sons, Inc. Reprinted
with permission from the publisher.
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40 3 2 2 2 1 2.7 44 2 2 2 2 2 4.4
43 3 2 2 2 2 3.2 32 1 1 1 2 1 -1.5
32 1 2 2 . 1 -1.9 43 4 3 2 2 2 8.3
46 3 2 2 2 2 3.6 30 2 2 2 2 1 1.4
34 3 3 . 2 2 . 37 3 2 2 2 1 .
35 2 1 2 2 1 -1.0 45 2 2 2 2 2 6.5
35 2 2 2 2 1 -2.1 31 2 2 2 2 1 -0.4
32 2 2 2 2 1 -1.9 44 2 2 2 2 2 3.7
40 3 3 2 2 2 4.5 42 3 3 2 2 2 4.2
;

ALPHA computes Cronbach’s alpha and invokes PEARSON. NOCORR suppresses Pearson
correlation statistics. NOMISS excludes observations with missing values. Omitting a VAR
statement causes PROC CORR to use all numeric variables.

proc corr data=psychdat alpha nocorr nomiss;

The TITLE statement specifies a title for the report.

title1 ’Mental Stability Scale for Female Psychiatric Patients’;
run;
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Output

The correlation report includes descriptive statistics and Cronbach’s coefficient alpha, the
correlation between the variable and the total of the remaining variables, and Cronbach’s
coefficient alpha using the remaining variables for both the raw variables and the standardized
variables. These calculations use the 23 observations without missing values.

Because the variances of some variables vary widely, you use the standardized scores to
estimate reliability. The overall standardized alpha of .85 is an acceptable reliability coefficient.
This is greater than Nunnally’s suggested value of .70.

The standardized alpha provides information on how each item reflects the reliability of the
scale. Notice that the standardized alpha decreases after removing Depression from the
construct. Therefore, this variable appears strongly correlated with other items in the scale.
The standardized alpha increases slightly after removing Sex from the construct. Thus,
removing this variable from the scale makes the construct more reliable.

Mental Stability Scale for Female Psychiatric Patients 1

The CORR Procedure

7 Variables: Age Anxiety Depression Sleep Sex
Life WeightChange

Simple Statistics

Variable N Mean Std Dev Sum

Age 23 37.91304 5.13378 872.00000
Anxiety 23 2.34783 0.64728 54.00000
Depression 23 1.95652 0.56232 45.00000
Sleep 23 1.86957 0.34435 43.00000
Sex 23 1.95652 0.20851 45.00000
Life 23 1.56522 0.50687 36.00000
WeightChange 23 1.78261 3.06381 41.00000

Simple Statistics

Variable Minimum Maximum Label

Age 30.00000 46.00000 age in years
Anxiety 1.00000 4.00000 anxiety level
Depression 1.00000 3.00000 depression level
Sleep 1.00000 2.00000 normal sleep (1=y 2=n)
Sex 1.00000 2.00000 sexual (1=n 2=y)
Life 1.00000 2.00000 suicidal (1=n 2=y)
WeightChange -2.60000 8.30000 recent weight change

Cronbach Coefficient Alpha

Variables Alpha
----------------------------
Raw 0.627754
Standardized 0.845339
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Mental Stability Scale for Female Psychiatric Patients 2

The CORR Procedure

Cronbach Coefficient Alpha with Deleted Variable

Raw Variables Standardized Variables

Deleted Correlation Correlation
Variable with Total Alpha with Total Alpha
----------------------------------------------------------------------------
Age 0.742614 0.557515 0.546856 0.832207

Cronbach Coefficient Alpha with Deleted Variable

Deleted
Variable Label
--------------------------------------
Age age in years

Cronbach Coefficient Alpha with Deleted Variable

Raw Variables Standardized Variables

Deleted Correlation Correlation
Variable with Total Alpha with Total Alpha
----------------------------------------------------------------------------
Anxiety 0.577129 0.600944 0.590851 0.825643
Depression 0.554983 0.608273 0.770956 0.797610
Sleep 0.378930 0.630242 0.618367 0.821482
Sex 0.155115 0.642017 0.333368 0.862537
Life 0.622207 0.607333 0.625338 0.820421
WeightChange 0.843939 0.341006 0.749261 0.801087

Cronbach Coefficient Alpha with Deleted Variable

Deleted
Variable Label
--------------------------------------
Anxiety anxiety level
Depression depression level
Sleep normal sleep (1=y 2=n)
Sex sexual (1=n 2=y)
Life suicidal (1=n 2=y)
WeightChange recent weight change

Example 4: Storing Partial Correlations in an Output Data Set

Procedure features:
PROC CORR statement options:

COV
KENDALL
NOSIMPLE
OUTP=
SPEARMAN

PARTIAL statement
VAR statement
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Data set: FITNESS on page 301

This example
� suppresses descriptive statistics
� calculates three types of partial correlation coefficients
� calculates a partial covariance matrix
� excludes observations with missing values using listwise deletion
� selects the analysis variables
� creates an output data set with Pearson correlation statistics.

See Output 12.4 on page 299 for a listing of the output data set.

Program

options nodate pageno=1 linesize=120 pagesize=60;

SPEARMAN and KENDALL request correlation statistics. COV calculates the covariance
matrix and invokes PEARSON. NOSIMPLE suppresses descriptive statistics. OUT= creates the
FITCORR data set that contains Pearson correlation statistics.

proc corr data=fitness spearman kendall cov nosimple
outp=fitcorr;

The VAR statement specifies the analysis variables and the order to print them.

var weight oxygen runtime;

The PARTIAL statement calculates partial correlations using Age as the controlling variable.

partial age;

The LABEL statement associates a label with each variable for the duration of the PROC step.

label age = ’Age of subject’
weight = ’Wt in kg’
runtime = ’1.5 mi in minutes’
oxygen = ’O2 use’;

The TITLE statement specifies a title for the report.

title1 ’Partial Correlations for a Fitness and Exercise Study’;
run;
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Output

The report includes a partial covariance matrix and partial correlations for Pearson’s rho, Spearman’s rho, and
Kendall’s tau-b. The p-values for Kendall’s tau-b are not available. Because observations with missing data are
excluded, PROC CORR uses 28 observations to calculate correlation coefficients.

Partial Correlations for a Fitness and Exercise Study 1

The CORR Procedure

1 Partial Variables: Age

3 Variables: Weight Oxygen Runtime

Partial Covariance Matrix, DF = 26

Weight Oxygen Runtime

Weight Wt in kg 72.43742055 -12.75113194 2.06766763

Oxygen O2 use -12.75113194 27.01654904 -5.59370556

Runtime 1.5 mi in minutes 2.06766763 -5.59370556 1.94512451

Pearson Partial Correlation Coefficients, N = 28

Prob > |r| under H0: Partial Rho=0

Weight Oxygen Runtime

Weight 1.00000 -0.28824 0.17419

Wt in kg 0.1448 0.3849

Oxygen -0.28824 1.00000 -0.77163

O2 use 0.1448 <.0001

Runtime 0.17419 -0.77163 1.00000

1.5 mi in minutes 0.3849 <.0001

Spearman Partial Correlation Coefficients, N = 28

Prob > |r| under H0: Partial Rho=0

Weight Oxygen Runtime

Weight 1.00000 -0.16407 0.08708

Wt in kg 0.4135 0.6658

Oxygen -0.16407 1.00000 -0.67112

O2 use 0.4135 0.0001

Runtime 0.08708 -0.67112 1.00000

1.5 mi in minutes 0.6658 0.0001

Kendall Partial Tau b Correlation Coefficients, N = 28

Weight Oxygen Runtime

Weight 1.00000 -0.09021 0.02854

Wt in kg

Oxygen -0.09021 1.00000 -0.52158

O2 use

Runtime 0.02854 -0.52158 1.00000

1.5 mi in minutes
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