
329

C H A P T E R

14
The DATASETS Procedure

Overview 330
Notes 332

Procedure Syntax 333

PROC DATASETS Statement 334

AGE Statement 337

APPEND Statement 339
AUDIT Statement 343

CHANGE Statement 345

CONTENTS Statement 346

COPY Statement 349

DELETE Statement 354

EXCHANGE Statement 357
EXCLUDE Statement 358

FORMAT Statement 359

IC CREATE Statement 360

IC DELETE Statement 361

IC REACTIVATE Statement 362
INDEX CENTILES 362

INDEX CREATE Statement 363

INDEX DELETE Statement 365

INFORMAT Statement 365

LABEL Statement 366
MODIFY Statement 367

RENAME Statement 370

REPAIR Statement 371

SAVE Statement 372

SELECT Statement 374

Concepts 375
Procedure Execution 375

RUN-Group Processing 375

Error Handling 376

Password Errors 376

Forcing a RUN Group with Errors to Execute 377
Ending the Procedure 377

Using Passwords with the DATASETS Procedure 377

Restricting Member Types Available for Processing 378

In the PROC DATASETS Statement 378

In Subordinate Statements 378
Member Types 379

Results 380

Directory Listing to the SAS Log 380

330 Overview 4 Chapter 14

Directory Listing as SAS Output 380
Procedure Output 380

Data Set Attributes 381

Engine and Operating Environment-dependent Information 381

Alphabetic List of Variables and Attributes 382

Alphabetic List of Indexes and Attributes 383
Sort Information 384

Output Data Sets 384

The OUT= Data Set 385

The OUT2= Data Set 389

Examples 391

Example 1: Manipulating SAS Files 391
Example 2: Saving SAS Files from Deletion 395

Example 3: Modifying SAS Data Sets 397

Example 4: Describing a SAS Data Set 399

Example 5: Concatenating Two SAS Data Sets 403

Example 6: Aging SAS Data Sets 404

Overview
The DATASETS procedure is a utility procedure that manages your SAS files.
With PROC DATASETS, you can
� copy SAS files from one SAS library to another
� rename SAS files
� repair SAS files
� delete SAS files
� list the SAS files that are contained in a SAS library
� list the attributes of a SAS data set, information such as the date the data were

last modified, whether the data are compressed, whether the data are indexed,
and so on

� manipulate passwords on SAS files
� append SAS data sets
� modify attributes of SAS data sets and variables within the data sets
� create and delete indexes on SAS data sets
� create and delete integrity constraints on SAS data sets.

The following PROC DATASETS step
� copies all data sets from the CONTROL library to the HEALTH library
� lists the contents of the HEALTH library
� deletes the SYNDROME data set from the HEALTH library
� changes the name of the PRENAT data set to INFANT.

The SAS log is shown in Output 14.1 on page 331.

libname control ’SAS-data-library-1’;
libname health ’SAS-data-library-2’;

proc datasets memtype=data;
copy in=control out=health;

The DATASETS Procedure 4 Overview 331

run;

proc datasets library=health details;
delete syndrome;
change prenat=infant;

run;
quit;

332 Notes 4 Chapter 14

Output 14.1 Log of PROC DATASETS Activity (UNIX Environment)

16 proc datasets library=health details;

-----Directory-----

Libref: HEALTH

Engine: V7

Filefmt: 7

Physical Name: external-file

File Name: external-file

Inode Number: 718930053

Access Permission: rwxr-xr-x

Owner Name: UNIX-userid

File Size (bytes): 2048

Obs, Entries File

Name Memtype or Indexes Vars Label size Last modified

1 ALL DATA 23 17 17408 Thu Aug 28 15:53:10 1997

2 BODYFAT DATA 1 2 12288 Thu Aug 28 15:53:10 1997

3 CONFOUND DATA 8 4 12288 Thu Aug 28 15:53:10 1997

4 CORONARY DATA 39 4 12288 Thu Aug 28 15:53:10 1997

5 DRUG1 DATA 6 2 JAN95 Data 12288 Thu Aug 28 15:53:10 1997

6 DRUG2 DATA 13 2 MAY95 Data 12288 Thu Aug 28 15:53:11 1997

7 DRUG3 DATA 11 2 JUL95 Data 12288 Thu Aug 28 15:53:11 1997

8 DRUG4 DATA 7 2 JAN92 Data 12288 Thu Aug 28 15:53:11 1997

9 DRUG5 DATA 1 2 JUL92 Data 12288 Thu Aug 28 15:53:11 1997

10 GROUP DATA 148 11 32768 Thu Aug 28 15:53:12 1997

11 MLSCL DATA 32 4 Multiple Sclerosis Data 12288 Thu Aug 28 15:53:12 1997

12 NAMES DATA 7 4 12288 Thu Aug 28 15:53:12 1997

13 OXYGEN DATA 31 7 13312 Thu Aug 28 15:53:13 1997

14 PERSONL DATA 148 11 32768 Thu Aug 28 15:53:13 1997

15 PHARM DATA 6 3 Sugar Study 12288 Thu Aug 28 15:53:13 1997

16 POINTS DATA 6 6 12288 Thu Aug 28 15:53:13 1997

17 PRENAT DATA 149 6 23552 Thu Aug 28 15:53:14 1997

18 RESULTS DATA 10 5 12288 Thu Aug 28 15:53:14 1997

19 SLEEP DATA 108 6 16384 Thu Aug 28 15:53:14 1997

20 SYNDROME DATA 46 8 16384 Thu Aug 28 15:53:15 1997

21 TENSION DATA 4 3 12288 Thu Aug 28 15:53:15 1997

22 TEST2 DATA 15 5 12288 Thu Aug 28 15:53:15 1997

23 TRAIN DATA 7 2 12288 Thu Aug 28 15:53:15 1997

24 VISION DATA 16 3 12288 Thu Aug 28 15:53:16 1997

25 WEIGHT DATA 83 13 California Results 26624 Thu Aug 28 15:53:16 1997

26 WGHT DATA 83 13 California Results 26624 Thu Aug 28 15:53:16 1997

17 delete syndrome;

18 change prenat=infant;

19 run;

NOTE: Deleting HEALTH.SYNDROME (memtype=DATA).

NOTE: Changing the name HEALTH.PRENAT to HEALTH.INFANT (memtype=DATA).

20 quit;

Notes

� Although the DATASETS procedure can perform some operations on catalogs,
generally the CATALOG procedure is the best utility to use for managing catalogs.
For documentation of PROC CATALOG, see Chapter 6, “The CATALOG
Procedure,” on page 155. See Chapter 3, "Statements with the Same Function in
Multiple Procedures," for details. You can also use any global statements as well.
See Chapter 2, "Fundamental Concepts for Using Base SAS Procedures," for a list.
.

The DATASETS Procedure 4 Procedure Syntax 333

� The term member often appears as a synonym for SAS file. In addition, if you are
unfamiliar with SAS files and SAS libraries, see the chapter on SAS files in SAS
Language Reference: Concepts.

� PROC DATASETS cannot work with sequential data libraries.

Procedure Syntax
Tip: Supports RUN-group processing.

Tip: Supports the Output Delivery System. (See Chapter 2, "Fundamental Concepts
for Using Base SAS Procedures" for information on the Output Delivery System.)

Reminder: You can use any global statements as well. See Chapter 3, "Statements with
the Same Function in Multiple Procedures," for details. You can also use any global
statements as well. See Chapter 2, "Fundamental Concepts for Using Base SAS
Procedures," for a list.

PROC DATASETS <option(s)>;

AGE current-name related-SAS-file(s)
</ <ALTER=alter-password>
<MEMTYPE=mtype>>;

APPEND BASE=<libref.>SAS-data-set
<APPENDVER=V6>
<DATA=< libref.>SAS-data-set>
<FORCE>;

AUDIT SAS-file-name <SAS-password>;
INITIATE;

<LOG <BEFORE_IMAGE=YES|NO>
<DATA_IMAGE=YES|NO>
<ERROR_IMAGE=YES|NO>;>

<USER_VAR=variable-1 <... variable-n>;>
<SUSPEND|RESUME|TERMINATE;>

CHANGE old-name-1=new-name-1
<…old-name-n=new-name-n >
</ <ALTER=alter-password>
<CONSTRAINT=YES|NO>
<GENNUM=ALL|integer>

<INDEX=YES|NO>
<MEMTYPE=mtype>>;

CONTENTS<option(s)>;

COPY OUT=libref-1
<CLONE|NOCLONE>
<IN=libref-2>
<MEMTYPE=(mtype(s))>
<MOVE <ALTER=alter-password>>;

EXCLUDE SAS-file(s) < / MEMTYPE=mtype>;
SELECT SAS-file(s)

</ <ALTER=alter-password>
<MEMTYPE= mtype>>;

DELETE SAS-file(s)
</ <ALTER=alter-password>

334 PROC DATASETS Statement 4 Chapter 14

<GENNUM=ALL|HIST|REVERT|integer>
<MEMTYPE=mtype>>;

EXCHANGE name-1=other-name-1
<…name-n=other-name-n>
</ <ALTER=alter-password>
<MEMTYPE=mtype> >;

MODIFY SAS-file <(file-option(s))>
</ <GENNUM=ALL|HIST|REVERT|integer>
<MEMTYPE=mtype>>;

FORMAT variable-list-1 <format-1>
<…variable-list-n <format-n>>;

IC CREATE <constraint-name>=constraint
<NOT NULL | CHECK(WHERE-clause)
| PRIMARY KEY | UNIQUE
| FOREIGN KEY(variable)
REFERENCES SAS-data-set>
<MESSAGE=’message-string’>;

IC DELETE constraint-name(s)| _ALL_;
IC REACTIVATE foreign-key-name REFERENCES libref;
INDEX CENTILES index(s)

</ <REFRESH>
<UPDATECENTILES=
ALWAYS|NEVER|integer> >;

INDEX CREATE index-specification(s)
</ <NOMISS>
<UNIQUE>
<UPDATECENTILES=
ALWAYS|NEVER|integer>>;

INDEX DELETE index(s) | _ALL_;
INFORMAT variable-list-1 <informat-1>

<…variable-list-n <informat-n>>;
LABEL variable-1=<’label-1’|’ ’>

<…variable-n=< ’label-n’|’ ’ >>;
RENAME old-name-1=new-name-1

<…old-name-n=new-name-n>;

REPAIR SAS-file(s)
</ <ALTER=alter-password>
<GENNUM=integer>

<MEMTYPE=mtype>>;

SAVE SAS-file(s) </ MEMTYPE=mtype>;

PROC DATASETS Statement

PROC DATASETS <option(s)>;

The DATASETS Procedure 4 PROC DATASETS Statement 335

To do this Use this option

Specify the procedure input library LIBRARY=

Provide alter access to any alter-protected SAS
file in the SAS data library

ALTER=

Include information in the output about the
number of observations, number of variables, and
data set labels

DETAILS|NODETAILS

Force a RUN group to execute even when there
are errors

FORCE

Force an append operation FORCE

Delete SAS files KILL

Restrict processing to a certain type of SAS file MEMTYPE=

Suppress the printing of the directory NOLIST

Suppress error processing NOWARN

Provide read, write, or alter access PW=

Provide read access READ=

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files in the SAS data library.
See also: “Using Passwords with the DATASETS Procedure” on page 377

DETAILS|NODETAILS
determines whether the output includes the following columns:

Obs or Entries
gives the number of observations for SAS files of type DATA and VIEW and the
number of entries for type CATALOG. If the SAS System cannot determine the
number of observations in a SAS data set, the value in this column is a period (.).
The value for type CATALOG is the total number of entries. For other types, this
column is blank.

Vars
gives the number of variables for types DATA and VIEW. If the SAS System
cannot determine the number of variables in the SAS data set, the value in this
column is a period (.). For other types, this column is blank.

Label
contains the label associated with the SAS data set. This column prints a label
only for the type DATA.
The DETAILS option requires read access to all read-protected SAS files in the

SAS data library. If you do not supply the read password, the directory listing
contains missing values for the columns produced by the DETAILS option.
Default: DETAILS system option setting
Tip: If you are using the SAS windowing environment and specify the DETAILS

option for a library that contains read-protected SAS files, a requestor window
prompts you for each read password that you do not specify in the PROC
DATASETS statement. Therefore, you may want to assign the same read
password to all SAS files in the same SAS data library.

336 PROC DATASETS Statement 4 Chapter 14

Featured in: Example 1 on page 391

FORCE
performs two separate actions:

� forces a RUN group to execute even if errors are present in one or more
statements in the RUN group. See “Procedure Execution” on page 375 for a
discussion of RUN-group processing and error handling.

� forces all APPEND statements to concatenate two data sets even when the
variables in the data sets are not exactly the same. The APPEND statement
drops the extra variables and issues a warning message. Without the FORCE
option, the procedure issues an error message and stops processing if you try to
perform an append operation with two SAS data sets whose variables are not
exactly the same. Refer to “APPEND Statement” on page 339 for more
information on the FORCE option.

KILL
deletes all SAS files in the SAS data library that are available for processing. The
MEMTYPE= option subsets the member types that the statement deletes.

CAUTION:
The KILL option deletes the SAS files immediately after you submit the statement. 4

LIBRARY=libref
names the library that the procedure processes. This library is the procedure input
library.
Aliases: DDNAME=, DD=, LIB=
Default: WORK or USER. See “Temporary and Permanent SAS Data Sets” on page

16 for more information on the WORK and USER libraries.
Restriction: A SAS library that is accessed via a sequential engine (such as a tape

format engine) cannot be specified as the value of the LIBRARY= option.
Featured in: Example 1 on page 391

MEMTYPE=(mtype(s))
restricts processing to one or more member types and restricts the listing of the data
library directory to SAS files of the specified member types. For example, the
following PROC DATASETS statement limits processing to SAS data sets in the
default data library and limits the directory listing in the SAS log to SAS files of
member type DATA:

proc datasets memtype=data;

Aliases: MTYPE=, MT=
Default: ALL
See also: “Restricting Member Types Available for Processing” on page 378

NODETAILS
See the description of DETAILS on page 335.

NOLIST
suppresses in the SAS log the printing of the directory of the SAS files that are
available for processing.
Featured in: Example 3 on page 397

NOWARN
suppresses the error processing that occurs when a SAS file that is specified in a
SAVE, CHANGE, EXCHANGE, or COPY statement or listed as the first SAS file in
an AGE statement is not in the procedure input library. When an error occurs and
the NOWARN option is in effect, PROC DATASETS continues processing that RUN

The DATASETS Procedure 4 AGE Statement 337

group. If NOWARN is not in effect, PROC DATASETS stops processing that RUN
group.

PW= password
provides the password for any protected SAS files in the SAS data library. PW= can
act as an alias for READ=, WRITE=, or ALTER=.

See also: “Using Passwords with the DATASETS Procedure” on page 377

READ=read-password
provides the read-password for any read-protected SAS files in the SAS data library.

See also: “Using Passwords with the DATASETS Procedure” on page 377

AGE Statement

Renames a group of related SAS files in a library.

Featured in: Example 6 on page 404

AGE current-name related-SAS-file(s)
</ <ALTER=alter-password>
<MEMTYPE=mtype>>;

Required Arguments

current-name
is a SAS file that the procedure renames. current-name receives the name of the first
name in related-SAS-file(s).

related-SAS-file(s)
is one or more SAS files in the SAS data library.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files named in the AGE
statement. Because an AGE statement renames and deletes SAS files, you need alter
access to use the AGE statement. You can use the ALTER= option in parentheses
after the name of each SAS file or after a forward slash.

See also: “Using Passwords with the DATASETS Procedure” on page 377

MEMTYPE=mtype
restricts processing to one member type (mtype). All the SAS files you name in the
AGE statement must be the same member type.

Aliases: MTYPE=, MT=

Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the
default is DATA.

See also: “Restricting Member Types Available for Processing” on page 378

338 AGE Statement 4 Chapter 14

Details

� The AGE statement renames current-name to the name of the first name in
related-SAS-file(s), renames the first name in related-SAS-file(s) to the second
name in related-SAS-file(s), and so on until it changes the name of the next-to-last
SAS file in related-SAS-file(s) to the last name in related-SAS-file(s). The AGE
statement then deletes the last file in related-SAS-file(s).

� If the first SAS file named in the AGE statement does not exist in the SAS data
library, PROC DATASETS stops processing the RUN group containing the AGE
statement and issues an error message. The AGE statement does not age any of
the related-SAS-file(s). To override this behavior, use the NOWARN option in the
PROC DATASETS statement.

If one of the related-SAS-file(s) does not exist, the procedure prints a warning
message to the SAS log but continues to age the SAS files that it can.

� If you age a data set that has an index, the index continues to correspond to the
data set.

� You can age only entire generation groups. For example, if A and B are generation
groups, then the following statement deletes generation group B and ages
(renames) generation group A to the name B:

age a b;

For example, suppose the generation group A has 3 historical generations and the
generation group B has 2 historical generations. Then aging A to B has this effect:

Old Name GENNUM New Name GENNUM

A B

A 1 B 1

A 2 B 2

A 3 B 3

B is deleted

The DATASETS Procedure 4 APPEND Statement 339

B 1 is deleted

B 2 is deleted

APPEND Statement
Adds the observations from one SAS data set to the end of another SAS data set.

Reminder: You can use data set options with the BASE= and DATA= options. See
Chapter 3, "Statements with the Same Function in Multiple Procedures," for details.
You can also use any global statements as well. See Chapter 2, "Fundamental Concepts
for Using Base SAS Procedures," for a list.
Restriction: The BASE= data set must be a member of a SAS library that supports
UPDATE access. The TAPE engine and the XPORT engine are examples of engines
that do not support UPDATE access.
Restriction: If the BASE= data set is accessed through a SAS server and if no other user
has the data set open at the time the APPEND statement begins processing, the
BASE= data set defaults to CNTLLEV=MEMBER. When this happens, no other user
can update the file while the data set is processed.
Featured in: Example 5 on page 403

APPEND BASE=< libref.>SAS-data-set <options> ;

Required Arguments

BASE=<libref.> SAS-data-set
names the data set to which you want to add observations.

libref
specifies the library that contains the SAS data set. If you omit libref, the default
is the libref for the procedure input library. If you are using PROC APPEND, the
default for libref is either WORK or USER.

SAS-data-set
names a SAS data set. If the APPEND statement cannot find an existing data set
with this name, it creates a new data set in the library. In other words, you can
use the APPEND statement to create a data set by specifying a new data set name
in the BASE= argument.
The BASE= data set is the current SAS data set after all append operations

regardless of whether you are creating a new data set or appending to an existing
data set.
Alias: OUT=
Featured in: Example 5 on page 403

Options

APPENDVER=V6
uses the Version 6 behavior for appending observations to the BASE= data set. You
must specify V6.

340 APPEND Statement 4 Chapter 14

See also: “Appending to an Indexed Data Set” on page 341

DATA=<libref.> SAS-data-set
names the SAS data set containing observations that you want to append to the end
of the SAS data set specified in the BASE= argument.

libref
specifies the library that contains the SAS data set. If you omit libref, the default
is the libref for the procedure input library. The DATA= data set can be from any
SAS data library, but you must use the two-level name if the data set resides in a
library other than the procedure input library.

SAS-data-set
names a SAS data set. If the APPEND statement cannot find an existing data set
with this name, it stops processing.

Alias: NEW=

Default: the most recently created SAS data set, from any SAS data library
Featured in: Example 5 on page 403

FORCE
forces the APPEND statement to concatenate data sets when the DATA= data set
contains variables that either

� are not in the BASE= data set
� do not have the same type as the variables in the BASE= data set

� are longer than the variables in the BASE= data set.
See also: “Appending to Data Sets with Different Variables” on page 342 and

“Appending to Data Sets That Contain Variables with Different Attributes” on
page 342

Featured in: Example 5 on page 403

Restricting the Observations That Are Appended
You can use the WHERE= data set option with the DATA= data set to restrict the

observations that are appended. Likewise, you can use the WHERE statement to
restrict the observations from the DATA= data set. The WHERE statement has no
affect on the BASE= data set. If you use the WHERE= data set option with the BASE=
data set, WHERE= has no affect.

Choosing between the SET Statement and the APPEND Statement
If you use the SET statement in a DATA step to concatenate two data sets, the SAS

System must process all the observations in both data sets to create a new one. The
APPEND statement bypasses the processing of data in the original data set and adds
new observations directly to the end of the original data set. Using the APPEND
statement can be more efficient than using a SET statement if

� the BASE= data set is large

� all variables in the BASE= data set have the same length and type as the
variables in the DATA= data set and if all variables exist in both data sets.

Note: You can use the CONTENTS statement to see the variable lengths and
types. 4

The APPEND statement is especially useful if you frequently add observations to a
SAS data set (for example, in production programs that are constantly appending data
to a journal-type data set).

The DATASETS Procedure 4 APPEND Statement 341

Appending Password-Protected SAS Data Sets
In order to use the APPEND statement, you need read access to the DATA= data set

and write access to the BASE= data set. To gain access, use the READ= and WRITE=
data set options in the APPEND statement the way you would use them in any other
SAS statement, in parentheses immediately after the data set name. When you are
appending password-protected data sets, remember the following guidelines:

� If you do not give the read password for the DATA= data set in the APPEND
statement, by default the procedure looks for the read password for the DATA=
data set in the PROC DATASETS statement. However, the procedure does not
look for the write password for the BASE= data set in the PROC DATASETS
statement. Therefore, you must specify the write password for the BASE= data set
in the APPEND statement.

� If the BASE= data set is read-protected only, you must specify its read password in
the APPEND statement.

Appending to a Compressed Data Set
You can concatenate compressed SAS data sets. Either or both of the BASE= and

DATA= data sets can be compressed. If the BASE= data set allows the reuse of space
from deleted observations, the APPEND statement may insert the observations into the
middle of the BASE= data set to make use of available space.

For information on the COMPRESS= and REUSE= data set and system options, see
SAS Language: Reference.

Appending to an Indexed Data Set
Beginning with Version 7, the behavior of appending to an indexed data set has

changed to improve performance.

� In Version 6, when you appended to an indexed data set, the index was updated
for each added observation. Index updates tend to be random; therefore, disk I/O
could have been high.

� Currently, SAS does not update the index until all observations are added to the
data set. After the append, SAS internally sorts the observations and inserts the
data into the index in sequential order, which reduces most of the disk I/O and
results in a faster append method.

The current method is used by default when the following requirements are met;
otherwise, the Version 6 method is used:

� The BASE= data set is open for member-level locking.

� The BASE= data set does not contain referential integrity constraints.
� The BASE= data set is not accessed using the Cross Environment Data Access

(CEDA) facility.

� The BASE= data set is not using a WHERE= data set option.

To display information in the SAS log about the append method that is being used,
you can specify the MSGLEVEL= system option as follows:

options msglevel=i;

Either a message displays if the fast-append method is in use or a message or messages
display as to why the fast-append method is not in use.

The current append method initially adds observations to the BASE= data set
regardless of the restrictions that are determined by the index. For example, a variable
that has an index that was created with the UNIQUE option does not have its values

342 APPEND Statement 4 Chapter 14

validated for uniqueness until the index is updated. Then, if a nonunique value is
detected, the offending observation is deleted from the data set. This means that after
observations are appended, some of them may subsequently be deleted.

For a simple example, consider that the BASE= data set has ten observations
numbered from 1 to 10 with a UNIQUE index for the variable ID. You append a data
set that contains five observations numbered from 1 to 5, and observations 3 and 4 both
contain the same value for ID. The following occurs

1 After the observations are appended, the BASE= data set contains 15 observations
numbered from 1 to 15.

2 SAS updates the index for ID, validates the values, and determines that
observations 13 and 14 contain the same value for ID.

3 SAS deletes one of the observations from the BASE= data set, resulting in 14
observations that are numbered from 1 to 15. For example, observation 13 is
deleted. Note that you cannot predict which observation will be deleted, because
the internal sort may place either observation first. (In Version 6, you could
predict that observation 13 would be added and observation 14 would be rejected.)

If you do not want the current behavior (which could result in deleted observations)
or if you want to be able to predict which observations are appended, request the
Version 6 append method by specifying the APPENDVER=V6 option:

proc data sets;
append base=a data=b appendver=v6;

run;

Note: In Version 6, deleting the index and then recreating it after the append could
improve performance. The current method may eliminate the need to do that. However,
the performance depends on the nature of your data. 4

Appending to Data Sets with Different Variables

If the DATA= data set contains variables that are not in the BASE= data set, use the
FORCE option in the APPEND statement to force the concatenation of the two data
sets. The APPEND statement drops the extra variables and issues a warning message.

If the BASE= data set contains a variable that is not in the DATA= data set, the
APPEND statement concatenates the data sets, but the observations from the DATA=
data set have a missing value for the variable that was not present in the DATA= data
set. The FORCE option is not necessary in this case.

Appending to Data Sets That Contain Variables with Different Attributes

If a variable has different attributes in the BASE= data set than it does in the
DATA= data set, the attributes in the BASE= data set prevail.

If the length of a variable is longer in the DATA= data set than in the BASE= data
set, or if the same variable is a character variable in one data set and a numeric
variable in the other, use the FORCE option. Using FORCE has these consequences:

� The length of the variables in the BASE= data set takes precedence. The SAS
System truncates values from the DATA= data set to fit them into the length that
is specified in the BASE= data set.

� The type of the variables in the BASE= data set takes precedence. The APPEND
statement replaces values of the wrong type (all values for the variable in the
DATA= data set) with missing values.

The DATASETS Procedure 4 AUDIT Statement 343

Appending Data Sets That Contain Integrity Constraints
If the DATA= data set contains integrity constraints and the BASE= data set does

not exist, the APPEND statement copies both general and referential integrity
constraints. If the BASE= data set exists, the APPEND action copies only observations.

Appending with Generation Groups
You can use the GENNUM= data set option to append to a specific generation file.

Here are examples:

SAS Statements Result

proc datasets;
append base=a

data=b(gennum=2);

appends B (GENNUM=2) to A

proc datasets;
append base=a(gennum=2)

data=b(gennum=2);

appends B (GENNUM=2) to
A(GENNUM=2)

Using the APPEND Procedure Instead of the APPEND Statement
The only difference between the APPEND procedure and the APPEND statement in

PROC DATASETS, is the default for libref in the BASE= and DATA= arguments. For
PROC APPEND, the default is either WORK or USER. For the APPEND statement,
the default is the libref of the procedure input library.

System Failures
If a system failure or some other type of interruption occurs while the procedure is

executing, the append operation may not be successful; it is possible that not all,
perhaps none, of the observations will be added to the BASE= data set. In addition, the
BASE= data set may suffer damage. The APPEND operation performs an update in
place, which means that it does not make a copy of the original data set before it begins
to append observations.

AUDIT Statement

Initiates and controls event logging to an audit file.

AUDIT SAS-file-name <SAS-password>;
INITIATE;

<LOG< BEFORE_IMAGE=YES|NO>
<DATA_IMAGE=YES|NO> <ERROR_IMAGE=YES|NO>;>

<USER_VAR=variable-1 <... variable-n>;>
<SUSPEND|RESUME|TERMINATE;>

Required Arguments and Statements

SAS-file-name
specifies the SAS data file in the procedure input library that you want to audit.

344 AUDIT Statement 4 Chapter 14

INITIATE
creates an audit file that has the same name as the SAS data file and a data set type
of AUDIT. In the initial release of the Audit Trail, the audit file documents additions,
deletions, and updates to the SAS data file.

Options

SAS-password
specifies the password for the SAS data file, if one exists.

LOG
specifies the audit settings. The audit settings are

BEFORE_IMAGE=YES|NO
controls the storage of before-update record images.

DATA_IMAGE=YES|NO
controls the storage of after-update record images.

ERROR_IMAGE=YES|NO
controls the storage of unsuccessful after-update record images.

USER_VAR=variable-1 < ... variable-n>
defines optional variables to be logged in the audit file with each update to an
observation. The syntax for defining variable formats is

USER_VAR=variable-name-1 <$> <length> <LABEL=’variable-label’ >
<... variable-name-n <$> <length> <LABEL=’variable-label’ > >

where

variable-name
is a name for the variable.

$
indicates that the variable is a character variable.

length
specifies the length of the variable. If a length is not specified, the default is 8.

LABEL=’variable-label’
specifies a label for the variable.

SUSPEND
suspends event logging to the audit file, but does not delete the audit file.

RESUME
resumes event logging to the audit file, if it was suspended.

TERMINATE
terminates event logging and deletes the audit file.

Creating an Audit File
The following example code shows you how to create the audit file

MYLIB.MYFILE.AUDIT to log updates to the data file MYLIB.MYFILE.DATA, storing
all available record images:

proc datasets library=MyLib;
audit MyFile alter=MyPassword;
initiate;

The DATASETS Procedure 4 CHANGE Statement 345

run;

The following example code creates the same audit file but stores only error record
images:

proc datasets library=MyLib;
audit MyFile alter=MyPassword;
initiate;
log data_image=NO before_image=NO;

run;

CHANGE Statement

Renames one or more SAS files in the same SAS data library.

Featured in: Example 1 on page 391

CHANGEold-name-1=new-name-1
<…old-name-n=new-name-n >
</ <ALTER=alter-password>
<GENNUM=ALL|integer>

<MEMTYPE=mtype>>;

Required Arguments

old-name=new-name
changes the name of a SAS file in the input data library. old-name must be the name
of an existing SAS file in the input data library.

Featured in: Example 1 on page 391

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files named in the CHANGE
statement. Because a CHANGE statement changes the names of SAS files, you need
alter access to use the CHANGE statement. You can use the ALTER= option in
parentheses after new-name or after a forward slash.

See also: “Using Passwords with the DATASETS Procedure” on page 377

GENNUM=ALL|integer
restricts processing to a single generation file or to the entire generation group. Valid
values for GENNUM= are

ALL
refers to the base name and all generation files of a generation group.

postive integer
refers to an explicit generation file.

346 CONTENTS Statement 4 Chapter 14

negative integer
refers to a relative generation file.
The following statements change the name of A(GENNUM=3) to B:

proc datasets;
change A=B / gennum=3;

proc datasets;
change A(gennum=3)=B;

The following CHANGE statement produces an error:

proc datasets;
change A(gennum=3)=B(gennum=3);

MEMTYPE=mtype
restricts processing to one member type (mtype).

Aliases: MTYPE=, MT=

Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the
default is MEMTYPE=ALL.

See also: “Restricting Member Types Available for Processing” on page 378

Details

� The CHANGE statement changes names by the order that the old-names occur in
the directory listing, not in the order that you list the changes in the CHANGE
statement.

� If the old-name SAS file does not exist in the SAS data library, PROC DATASETS
stops processing the RUN group containing the CHANGE statement and issues an
error message. To override this behavior, use the NOWARN option in the PROC
DATASETS statement.

� If you change the name of a data set that has an index, the index continues to
correspond to the data set.

� The CHANGE statement can reference only a specific generation file or the entire
generation group. Therefore, you cannot use HIST or REVERT with the
GENNUM= option.

CONTENTS Statement

Describes the contents of one or more SAS data sets and prints the directory of the SAS data
library.

Reminder: You can use data set options with the BASE= and DATA= options. See
Chapter 3, "Statements with the Same Function in Multiple Procedures," for details.
You can also use any global statements as well. See Chapter 2, "Fundamental Concepts
for Using Base SAS Procedures," for a list.

Featured in: Example 4 on page 399

CONTENTS<option(s)>;

The DATASETS Procedure 4 CONTENTS Statement 347

To do this Use this option

Specify the input data set DATA=

Specify the name for an output data set OUT=

Specify the name of an output data set to contain
information about indexes and constraints

OUT2=

Include information in the output about the number of
observations, number of variables, and data set labels

DETAILS|NODETAILS

Print a list of the SAS files in the SAS data library DIRECTORY

Print the length of a variable’s informat or format FMTLEN

Restrict processing to one or more types of SAS files MEMTYPE=

Suppress the printing of individual files NODS

Suppress the printing of the output NOPRINT

Print a list of the variables by their position in the
data set

VARNUM

Print abbreviated output SHORT

Print centiles information for indexed variables CENTILES

Options

CENTILES
prints centiles information for indexed variables.

DATA=SAS-file-specification
specifies an entire library or a specific SAS data set within a library.
SAS-file-specification can take one of the following forms:

<libref.>SAS-data-set
names one SAS data set to process. The default for libref is the libref of the
procedure input library. For example, to obtain the contents of the SAS data set
HTWT from the procedure input library, use the following CONTENTS statement:

contents data=HtWt;

To obtain the contents of a specific generation file, use the following CONTENTS
statement:

contents data=HtWt(gennum=3);

<libref.>_ALL_
gives you information about all SAS data sets having the type or types specified by
the MEMTYPE= option. libref refers to the SAS data library. The default for libref
is the libref of the procedure input library.

� If you are using the _ALL_ keyword, you need read access to all
read-protected SAS data sets in the SAS data library.

� DATA=_ALL_ automatically prints a listing of SAS files in the library.
Default: most recently created data set in your job or session, from any SAS data

library
Tip: If you specify a read-protected data set in the DATA= option but do not give

the read password, by default the procedure looks in the PROC DATASETS

348 CONTENTS Statement 4 Chapter 14

statement for the read password. However, if you do not specify the DATA= option
and the default data set (last one created in the session) is read protected, the
procedure does not look in the PROC DATASETS statement for the read password.

Featured in: Example 4 on page 399

DETAILS|NODETAILS
includes three additional columns in the directory.
Default: first defaults to DETAILS option in PROC DATASETS statement, then to

the DETAILS system option setting.
See also: description of these additional columns in "Options" in “PROC DATASETS

Statement” on page 334

DIRECTORY
prints a list of all SAS files in the specified SAS data library.

FMTLEN
prints the length of the informat or format. If you do not specify a length for the
informat or format when you associate it with a variable, the length does not appear
in the output of the CONTENTS statement unless you use the FMTLEN option. The
length also appears in the FORMATL or INFORML variable in the output data set.

MEMTYPE=(mtype(s))
restricts processing to one or more member types. The CONTENTS statement
produces output only for member types DATA, VIEW, and ALL, which includes DATA
and VIEW.

MEMTYPE= in the CONTENTS statement differs from MEMTYPE= in most of
the other statements in the DATASETS procedure in the following ways:

� A slash does not precede the option.
� You cannot enclose the MEMTYPE= option in parentheses to limit its effect to

only the SAS file immediately preceding it.
Specifying the MEMTYPE= option in the PROC DATASETS statement affects the

CONTENTS statement only if you specify the _ALL_ keyword in the DATA= option.
For example, the following statements produce the contents of only the SAS data sets
with member type DATA:

proc datasets memtype=data;
contents data=_all_;

run;

Aliases: MT=, MTYPE=
Default: DATA

NODS
suppresses printing the contents of individual files when you specify _ALL_ in the
DATA= option. The CONTENTS statement prints only the SAS data library
directory. You cannot use the NODS option when you specify only one SAS data set
in the DATA= option.

NODETAILS
See the description of DETAILS on page 348.

NOPRINT
suppresses printing the output of the CONTENTS statement.

OUT=SAS-data-set
names an output SAS data set.
Tip: OUT= does not suppress the printed output from the statement. If you want to

suppress the printed output, you must use the NOPRINT option.

The DATASETS Procedure 4 COPY Statement 349

See also: “The OUT= Data Set” on page 385 for a description of the variables in the
OUT= data set.

OUT2=SAS-data-set
names an output data set to contain information about indexes and integrity
constraints.

See also: “The OUT2= Data Set” on page 389 for a description of the variables in
the OUT2= data set.

SHORT
prints only the list of variable names, the index information, and the sort
information for the SAS data set.

VARNUM
prints a second list of the variable names in the order of their logical position in the
data set. By default, the CONTENTS statement lists the variables alphabetically.
The physical position of the variable in the data set is engine-dependent.

Using the CONTENTS Procedure Instead of the CONTENTS Statement
The only difference between the CONTENTS procedure and the CONTENTS

statement in PROC DATASETS is the default for libref in the DATA= option. For
PROC CONTENTS, the default is either WORK or USER. For the CONTENTS
statement, the default is the libref of the procedure input library.

COPY Statement

Copies all or some of the SAS files in a SAS data library.

Featured in: Example 1 on page 391

COPY OUT=libref-1
<CLONE|NOCLONE>
<CONSTRAINT=YES|NO>
<IN=libref-2>
<INDEX=YES|NO>
<MEMTYPE=(mtype(s))>
<MOVE <ALTER=alter-password>> ;

Required Arguments

OUT=libref
names the SAS data library to copy SAS files to.

Aliases: OUTLIB= and OUTDD=

Featured in: Example 1 on page 391

Options

350 COPY Statement 4 Chapter 14

ALTER=alter-password
provides the alter password for any alter-protected SAS files that you are moving
from one data library to another. Because the MOVE option deletes the SAS file from
the original data library, you need alter access to move the SAS file.
See also: “Using Passwords with the DATASETS Procedure” on page 377

CLONE|NOCLONE
specifies whether to copy the following data set attributes:

� size of input/output buffers
� whether the data set is compressed
� whether free space is reused.
You specify these attributes with either data set options or SAS system options:
� BUFSIZE= value for the size of the input/output buffers
� COMPRESS= value for whether the data set is compressed
� REUSE= value for whether free space is reused.
For the BUFSIZE= attribute, Table 14.1 on page 350 summarizes how the COPY

statement works:

Table 14.1 CLONE and the BUFSIZE= Attribute

If you use... the COPY statement...

CLONE uses the BUFSIZE= value from the input data set for the output data
set.

NOCLONE uses the current setting of the SAS system option BUFSIZE= for the
output data set.

neither determines the type of access method, sequential or random, used by
the engine for the input data set and the engine for the output data
set. If both engines use the same type of access, the COPY statement
uses the BUFSIZE= value from the input data set for the output data
set. If the engines do not use the same type of access, the COPY
statement uses the setting of SAS system option BUFSIZE= for the
output data set.

For the COMPRESS= and REUSE= attributes, Table 14.2 on page 350
summarizes how the COPY statement works:

Table 14.2 CLONE and the COMPRESS= and REUSE= Attributes

If you use... the COPY statement...

CLONE uses the values from the input data set for the output data set. If the
engine for the input data set does not support the COMPRESS= or
REUSE= attribute, the COPY statement uses the current setting of
the corresponding SAS system option.

NOCLONE uses the current setting of the SAS system options COMPRESS= or
REUSE= for the output data set.

neither defaults to CLONE.

CONSTRAINT=YES|NO
specifies whether to copy all integrity constraints when copying a data set.

The DATASETS Procedure 4 COPY Statement 351

Default: NO

IN=libref
names the SAS data library containing SAS files to copy.
Aliases: INLIB= and INDD=
Default: the libref of the procedure input library

INDEX=YES|NO
specifies whether to copy all indexes for a data set when copying the data set to
another SAS data library.
Default: YES

MEMTYPE=(mtype(s))
restricts processing to one or more member types.
Aliases: MT=, MTYPE=
Default: If you omit MEMTYPE= in the PROC DATASETS statement, the default

is MEMTYPE=ALL.
See also:

“Specifying Member Types When Copying or Moving SAS Files” on page 351
“Member Types” on page 379

Featured in: Example 1 on page 391

MOVE
moves SAS files from the input data library (named with the IN= option) to the
output data library (named with the OUT= option) and deletes the original files from
the input data library.
Restriction: The MOVE option can be used to delete a member of a SAS library

only if the IN= engine supports the deletion of tables. A tape format engine does
not support table deletion. If you use a tape format engine, SAS suppresses the
MOVE operation and prints a warning.

Featured in: Example 1 on page 391

NOCLONE
See the description of CLONE on page 350.

Copying an Entire Library
To copy an entire SAS data library, simply specify an input data library and an

output data library. For example, the following statements copy all the SAS files in the
SOURCE data library into the DEST data library:

proc datasets library=source;
copy out=dest;

run;

Copying Selected SAS Files
To copy selected SAS files, use a SELECT or EXCLUDE statement. For more

discussion of using the COPY statement with a SELECT or an EXCLUDE statement,
see “Specifying Member Types When Copying or Moving SAS Files” on page 351 and
see Example 1 on page 391 for an example.

Specifying Member Types When Copying or Moving SAS Files
The MEMTYPE= option in the COPY statement differs from the MEMTYPE= option

in other statements in the procedure in several ways:

352 COPY Statement 4 Chapter 14

� A slash does not precede the option.
� You cannot enclose the MEMTYPE= option in parentheses to limit its effect to the

member immediately preceding it.
� The SELECT and EXCLUDE statements and the IN= option (in the COPY

statement) affect the behavior of the MEMTYPE= option in the COPY statement
according to the following rules:

1 MEMTYPE= in a SELECT or EXCLUDE statement takes precedence over
the MEMTYPE= option in the COPY statement. The following statements
copy only VISION.CATALOG and NUTR.DATA from the default data library
to the DEST data library; the MEMTYPE= value in the first SELECT
statement overrides the MEMTYPE= value in the COPY statement.

proc datasets;
copy out=dest memtype=data;

select vision(memtype=catalog)
nutr;

run;

2 If you do not use the IN= option, or you use it to specify the library that
happens to be the procedure input library, the value of the MEMTYPE=
option in the PROC DATASETS statement limits the types of SAS files that
are available for processing. The procedure uses the order of precedence
described in rule 1 to further subset the types available for copying. The
following statements do not copy any members from the default data library
to the DEST data library; instead, the procedure issues an error message
because the MEMTYPE= value specified in the SELECT statement is not one
of the values of the MEMTYPE= option in the PROC DATASETS statement.

/* This step fails! */
proc datasets memtype=(data program);

copy out=dest;
select apples / memtype=catalog;

run;

3 If you specify an input data library in the IN= option other than the
procedure input library, the MEMTYPE= option in the PROC DATASETS
statement has no affect on the copy operation. Because no subsetting has yet
occurred, the procedure uses the order of precedence described in rule 1 to
subset the types available for copying. The following statements successfully
copy BODYFAT.DATA to the DEST data library because the SOURCE library
specified in the IN= option in the COPY statement is not affected by the
MEMTYPE= option in the PROC DATASETS statement.

proc datasets library=work
memtype=catalog;

copy in=source out=dest;
select bodyfat / memtype=data;

run;

Copying Password-Protected SAS Files
You can copy a password-protected SAS file without specifying the password.

However, because the password continues to correspond to the SAS file, you must know
the password in order to access and manipulate the SAS file after you copy it.

The DATASETS Procedure 4 COPY Statement 353

Copying Data Sets with Long Variable Names
If the VALIDVARNAME=V6 option is set and the data set has long variable names,

the long variable names are truncated, unique variables names are generated, and the
copy succeeds. If VALIDVARNAME=ANY or V7, the copy fails with an error if the
OUT= engine does not support long variable names.

When a variable name is truncated, the variable name is shortened to eight bytes. If
this name has already been defined in the dataset, the name is shortened and a digit is
added, starting with the number 2. The process of truncation and adding a digit
continues until the variable name is unique. For example, a variable named
LONGVARNAME becomes LONGVARN, provided that a variable with that names does
not already exist in the data set. In that case, the variable names becomes LONGVAR2.

CAUTION:
Truncated variable names can collide with names already defined in the input data set.
This is possible when the variable name that is already defined is exactly eight bytes
long and ends in a digit. In that case, the truncated name is defined in the output
data set and the name from the input data set is changed. For example,

options validvarname=v7;
data test;

lonvar10=’aLongVariableName’;
retain longvar1-longvar5 0;

run;
options validvarname=v6;
proc copy in=work out=sasuser;

select test;
run;

In this example, LONGVAR10 is truncated to LONVAR1 and placed in the output
data set. Next, the original LONGVAR1 is copied. Its name is no longer unique and
so it is renamed LONGVAR2. The other variables in the input data set are also
renamed according to the renaming algorithm. 4

Using the COPY Procedure Instead of the COPY Statement
Generally, the COPY procedure functions the same as the COPY statement in the

DATASETS procedure. The two differences are
� The IN= argument is required with PROC COPY. In the COPY statement, IN= is

optional. If omitted, the default value is the libref of the procedure input library.
� PROC DATASETS cannot work with libraries that allow only sequential data

access.

Copying Generation Groups
You can use the COPY statement to copy generation groups. However, you cannot

copy individual generation files.

Transporting SAS Data Sets between Hosts
Typically, you use PROC COPY to transport SAS data sets between hosts. See

Chapter 11, “The COPY Procedure,” on page 269 for more information and an example.

354 DELETE Statement 4 Chapter 14

DELETE Statement

Deletes SAS files from a SAS data library.

Featured in: Example 1 on page 391

DELETESAS-file(s)
</ <ALTER=alter-password>
<GENNUM=ALL|HIST|REVERT|integer>

<MEMTYPE=mtype>>;

Required Arguments

SAS-file(s)
specifies one or more SAS files that you want to delete.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files that you want to delete.
You can use the ALTER= option in parentheses after the name of each SAS file or
after a forward slash.
See also: “Using Passwords with the DATASETS Procedure” on page 377

GENNUM=ALL|HIST|REVERT|integer
restricts processing to the specified generation files. Valid values for GENNUM= are

ALL
refers to the base name and all generations.

HIST
refers to all generations (excludes the base name).

REVERT
refers to deleting the base name and changing the most current generation file, if
it exists, to the base name.

postive integer
refers to an explicit generation file.

negative integer
refers to a relative generation file.

MEMTYPE=mtype
restricts processing to one member type (mtype).
Aliases: MT=, MTYPE=
Default: DATA
See also: “Restricting Member Types Available for Processing” on page 378
Featured in: Example 1 on page 391

Details

The DATASETS Procedure 4 DELETE Statement 355

� The SAS System immediately deletes SAS files when the RUN group executes.
You do not have an opportunity to verify the delete operation before it begins.

� If you attempt to delete a SAS file that does not exist in the procedure input
library, PROC DATASETS issues a message and continues processing.

� When you use the DELETE statement to delete a data set that has indexes
associated with it, the statement also deletes the indexes.

� You cannot use the DELETE statement to delete a data file that has a foreign key
integrity constraint or a primary key with foreign key references. For data files
that have foreign keys, you must remove the foreign keys before you delete the
data file. For data files that have primary keys with foreign key references, you
must remove the foreign keys that reference the primary key before you delete the
data file.

Working with Generation Groups
When you are working with generation groups, you can use the DELETE statement to
� delete the base name and all generations

� delete the base name and rename the youngest generation to the base name

� delete a specific generation

� delete a relative generation
� delete all generations and leave the base name.

Delete the Base Name and All Generations
� The following statements delete the base name and all generations where the base

name is A:

proc datasets;
delete A(gennum=all);

proc datasets;
delete A / gennum=all;

proc datasets gennum=all;
delete A;

� The following statements delete the base name and all generations where the base
name begins with the letter A:

proc datasets;
delete A:(gennum=all);

proc datasets;
delete A: / gennum=all;

proc datasets gennum=all;
delete A:;

Delete the Base Name and Rename Youngest Generation to the Base Name
� The following statements delete the base name and rename the youngest

generation to the base name, where the base name is A:

proc datasets;
delete A(gennum=revert);

356 DELETE Statement 4 Chapter 14

proc datasets;
delete A / gennum=revert;

proc datasets gennum=revert;
delete A;

� The following statements delete the base name and rename the youngest
generation to the base name, where the base name begins with the letter “A”:

proc datasets;
delete A:(gennum=revert);

proc datasets;
delete A: / gennum=revert;

proc datasets gennum=revert;
delete A:;

Delete a Specific Generation

� The following statements delete the first generation that uses an absolute number:

proc datasets;
delete A(gennum=1);

proc datasets;
delete A / gennum=1;

proc datasets gennum=1;
delete A;

� The following statements delete a specific generation, where the base name begins
with the letter A:

proc datasets;
delete A:(gennum=1);

proc datasets;
delete A: / gennum=1;

proc datasets gennum=1;
delete A:;

Delete a Relative Generation

� The following statements delete the youngest version, where the base name is A,
using a relative number:

proc datasets;
delete A(gennum=-1);

proc datasets;
delete A / gennum=-1;

proc datasets gennum=-1;
delete A;

� The following statements delete a relative generation, where the base name begins
with the letter A:

The DATASETS Procedure 4 EXCHANGE Statement 357

proc datasets;
delete A:(gennum=-1);

proc datasets;
delete A: / gennum=-1;

proc datasets gennum=-1;
delete A:;

Delete all Generations and Leave the Base Name
� The following statements delete all generations and leave the base name, where

the base name is A:

proc datasets;
delete A(gennum=hist);

proc datasets;
delete A / gennum=hist;

proc datasets gennum=hist;
delete A;

� The following statements delete all generations and leave the base name, where
the base name begins with the letter A:

proc datasets;
delete A:(gennum=hist);

proc datasets;
delete A: / gennum=hist;

proc datasets gennum=hist;
delete A:;

EXCHANGE Statement

Exchanges the names of two SAS files in a SAS data library.

Featured in: Example 1 on page 391

EXCHANGE name-1=other-name-1
<…name-n=other-name-n>
</ <ALTER=alter-password>
<MEMTYPE=mtype> >;

Required Arguments

name=other-name
exchanges the names of SAS files in the procedure input library. Both name and
other-name must already exist in the procedure input library.

358 EXCLUDE Statement 4 Chapter 14

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files whose names you want
to exchange. You can use the ALTER= option in parentheses after the name of each
SAS file or after a forward slash.
See also: “Using Passwords with the DATASETS Procedure” on page 377

MEMTYPE=mtype
restricts processing to one member type (mtype). You can only exchange the names of
SAS files of the same type.
Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the

default is ALL.
See also: “Restricting Member Types Available for Processing” on page 378

Details

� When you exchange more than one pair of names in one EXCHANGE statement,
PROC DATASETS performs the exchanges in the order that the names of the SAS
files occur in the directory listing, not in the order that you list the exchanges in
the EXCHANGE statement.

� If the name SAS file does not exist in the SAS data library, PROC DATASETS
stops processing the RUN group that contains the EXCHANGE statement and
issues an error message. To override this behavior, specify the NOWARN option in
the PROC DATASETS statement.

� The EXCHANGE statement also exchanges the associated indexes so that they
correspond with the new name.

� The EXCHANGE statement only allows two existing generation groups to
exchange names. You cannot exchange a specific generation number with either an
existing base name or another generation number.

EXCLUDE Statement

Excludes SAS files from copying.

Restriction: Must follow a COPY statement
Restriction: Cannot appear in the same COPY step with a SELECT statement
Featured in: Example 1 on page 391

EXCLUDE SAS-file(s) </ MEMTYPE=mtype>;

Required Arguments

SAS-file(s)
specifies one or more SAS files to exclude from the copy operation. All the SAS files
you name in the EXCLUDE statement must be in the library that is specified in the

The DATASETS Procedure 4 FORMAT Statement 359

IN= option in the COPY statement. If the SAS files are generation groups, the
EXCLUDE statement allows only selection of the base names.

Options

MEMTYPE=mtype
restricts processing to one member type (mtype).

Aliases: MTYPE=, MT=

Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the
COPY statement, or in the EXCLUDE statement, the default is MEMTYPE=ALL.

See also: “Restricting Member Types Available for Processing” on page 378 and
“Specifying Member Types When Copying or Moving SAS Files” on page 351

Excluding Many Like-Named Files
You can use shortcuts for listing many SAS files in the EXCLUDE statement. For

more information, see “Shortcuts for Specifying Lists of Variable Names” on page 58.

FORMAT Statement

Permanently assigns, changes, and removes variable formats in the SAS data set specified in the
MODIFY statement.

Restriction: Must appear in a MODIFY RUN group

Featured in: Example 3 on page 397

FORMAT variable-list-1 <format-1>
<…variable-list-n <format-n>>;

Required Arguments

variable-list
specifies one or more variables whose format you want to assign, change, or remove.
If you want to disassociate a format with a variable, list the variable last in the list
with no format following. For example:

format x1-x3 4.1 time hhmm2.2 age;

Options

format
specifies a format to apply to the variable or variables listed before it. If you do not
specify a format, the FORMAT statement removes any format associated with the
variables in variable-list.

360 IC CREATE Statement 4 Chapter 14

Note: You can use shortcut methods for specifying variables, such as the keywords
_NUMERIC, _CHARACTER_, and _ALL_. See “Shortcuts for Specifying Lists of
Variable Names” on page 58 for more information. 4

IC CREATE Statement

Creates an integrity constraint.

Restriction: Must be in a MODIFY RUN group

IC CREATE <constraint-name>=constraint <MESSAGE=’message-string’>;

Required Arguments

<constraint-name=>
is a name for the constraint. The name must be a valid SAS name. When you do not
supply a constraint name, a default name is generated. This default constraint name
has the following form

Default name Constraint type

NMxxxx Not Null

UNxxxx Unique

CKxxxx Check

PKxxxx Primary key

FKxxxx Foreign key

where xxxx is a counter beginning at 0001.

Note: The names PRIMARY, FOREIGN, MESSAGE, UNIQUE, DISTINCT,
CHECK, and NOT cannot be used as values for constraint-name. 4

constraint
is the type of constraint. Valid values are

NOT NULL(variable)
specifies that variable does not contain a SAS missing value, including special
missing values.

UNIQUE(variables)
specifies that the values of variables must be unique. This constraint is identical
to DISTINCT.

DISTINCT(variables)
specifies that the values of variables must be unique. This constraint is identical
to UNIQUE.

CHECK(WHERE-clause)
specifies validity checking with respect to lists and ranges. This is accomplished
with a WHERE clause.

The DATASETS Procedure 4 IC DELETE Statement 361

PRIMARY KEY(variable)
specifies a primary key variable, that is, a variable that does not contain missing
values and whose values are unique.

FOREIGN KEY(variables) REFERENCES table-name <ON DELETE
referential-action> <ON UPDATE referential-action>

specifies a foreign key, that is, a set of variables whose values are linked to the
values of the primary key variable in another data set. The referential actions are
performed when updates are made to the values of a primary key variable that is
referenced by a foreign key. For a RESTRICT referential action,

a delete operation
deletes the primary key row, but only if no foreign key values matches the
deleted value.

an update operation
updates the primary key value, but only if no foreign keys match the current
value to be updated.

For a SET NULL referential action,

a delete operation
deletes the primary key row and sets the corresponding foreign key values to
NULL.

an update operation
modifies the primary key value and sets all matching foreign key values to
NULL.

MESSAGE=’message-string’
“message-string” is the text of an error message that is written to the log when the
data fail the constraint. For example,

ic create not null(socsec)
message=’Invalid Social Security number’;

Length: The maximum length of the message is 250 characters.
The following examples show how to create integrity constraints:

ic create a = not null(x);
ic create Unique_D = unique(d);
ic create Distinct_DE = distinct(d e);
ic create E_less_D = check(where (e < d or d = 99));
ic create primkey = primary key(a);
ic create not null (x);

IC DELETE Statement
Deletes an integrity constraint.

Restriction: Must be in a MODIFY RUN group

IC DELETE constraint-name(s) | _ALL_;

Required Arguments

362 IC REACTIVATE Statement 4 Chapter 14

constraint-name(s)
names one or more constraints to delete. For example, to delete the constraints
Unique_D and Unique_E, use this statement:

ic delete Unique_D Unique_E;

ALL
deletes all constraints.

IC REACTIVATE Statement

Reactivates a foreign key integrity constraint that is inactive.

Restriction: Must be in a MODIFY RUN group

IC REACTIVATE foreign-key-name REFERENCES libref;

Required Arguments

foreign-key-name
is the name of the foreign key to reactivate.

libref
refers to the SAS library containing the data set that contains the primary key that
is referenced by the foreign key.
For example, suppose that you have a foreign key, FKEY, defined in a data set named

MYLIB.MYOWN, and suppose that FKEY is linked to a primary key in the data set
MAINLIB.MAIN. If the integrity constraint becomes inactive because of a processing
error, you can reactivate the integrity constraint by using the following code:

proc datasets library=mylib;
modify myown;
ic reactivate fkey references mainlib;

run;

INDEX CENTILES
Updates centiles information for indexed variables.

Restriction: Must be in a MODIFY RUN group

INDEX CENTILES index(s)
</ <REFRESH>
<UPDATECENTILES= ALWAYS|NEVER|integer>>;

Required Arguments

The DATASETS Procedure 4 INDEX CREATE Statement 363

index(s)
names one or more indexes.

Options

REFRESH
updates the centiles immediately, regardless of the value of UPDATECENTILES.

UPDATECENTILES=ALWAYS|NEVER|integer
specifies when the centiles are to be updated. It is not practical to update centiles
after every data set update. Therefore, you can specify as the value of
UPDATECENTILES the percent of the data values that can be changed before the
centiles for the indexed variables are updated.

Valid values for UPDATECENTILES are

ALWAYS|0
Centiles are updated when the data set is closed if any changes have been made to
the data set index.

NEVER|101
Centiles are not updated.

integer
The percent of values for the indexed variable that can be updated before the
centiles are refreshed.

Alias: UPDCEN

Default 5 (percent)

INDEX CREATE Statement

Creates simple or composite indexes in the SAS data set specified in the MODIFY statement.

Restriction: Must be in a MODIFY RUN group

See also: "SAS Files" in SAS Language: Reference

Featured in: Example 3 on page 397

INDEX CREATE index-specification(s)
</ <NOMISS><UNIQUE>
<UPDATECENTILES= ALWAYS|NEVER|integer>>;

Required Arguments

index-specification(s)
can be one or both of the following forms:

variable
creates a simple index on the variable you specify.

364 INDEX CREATE Statement 4 Chapter 14

index=(variables)
creates a composite index. The name you use for index is the name of the
composite index. It must be a SAS name and cannot be the same as any variable
name or any other composite index name. You must specify at least two variables.

Options

NOMISS
excludes from the index all observations with missing values for all index variables.

When you create an index with the NOMISS option, the SAS System uses the
index only for WHERE processing and only when missing values fail to satisfy the
WHERE clause. For example, if you use this WHERE statement

where dept ne ’01’;

the SAS System does not use the index because missing values satisfy the WHERE
clause. Refer to SAS Language Reference: Concepts.

Note: BY-group processing ignores indexes that are created with the NOMISS
option. 4

Featured in: Example 3 on page 397

UNIQUE
specifies that the combination of values of the index variables must be unique. If you
specify UNIQUE and multiple observations have the same values for the index
variables, the index is not created.

Featured in: Example 3 on page 397

UPDATECENTILES=ALWAYS|NEVER|integer
specifies when the centiles are to be updated. It is not practical to update centiles
after every data set update. Therefore, you can specify as the value of
UPDATECENTILES the percent of the data values that can be changed before the
centiles for the indexed variables are updated.

Valid values for UPDATECENTILES are

ALWAYS|0
Centiles are updated when the data set is closed if any changes have been made to
the data set index.

NEVER|101
Centiles are not updated.

integer
The percent of values for the indexed variable that can be updated before the
centiles are refreshed.

Alias: UPDCEN

Default 5 (percent)

How Indexes Are Affected by Changes to SAS Data Sets
Indexes are separate files in SAS data libraries, but in general, they are treated as

an extension of the data set. Therefore, most data management tasks you perform on a
data set also affect associated indexes, and the indexes continue to correspond to the
data set. For example, if you change the name of a data set, any associated indexes
continue to correspond to the data set.

The DATASETS Procedure 4 INFORMAT Statement 365

INDEX DELETE Statement

Deletes one or more indexes associated with the data set specified in the MODIFY statement.

Restriction: Must appear in a MODIFY RUN group

INDEX DELETE index(s) | _ALL_;

Required Arguments

index(s)
names one or more indexes to delete. The indexes must be on variables in the data
set that is named in the preceding MODIFY statement. You can delete simple and
composite indexes.

ALL
deletes all indexes, except for indexes that are owned by an integrity constraint.

The SAS System uses indexes in the following situations:
� when a user adds a primary key value. SAS must ensure that there are no

duplicate values in the data set.
� when a user adds a foreign key value. SAS must ensure that a matching

primary key value exists.
� when a user updates or deletes a primary key value. SAS must locate all of the

matching foreign key values.
� when a user specifies unique and primary key integrity constraints. SAS must

ensure that duplicate values for the specified variables do not exist in the data
set.

When an index is created, it is marked as “owned” by the user, by an integrity
constraint, or by both. If an index is owned by both a user and an integrity
constraint, the index is not deleted until both an IC DELETE statement and an
INDEX DELETE statement are processed.

Note: You can use the CONTENTS statement to produce a list of all indexes for a
data set. 4

INFORMAT Statement

Permanently assigns, changes, and removes variable informats in the data set specified in the
MODIFY statement.

Restriction: Must appear in a MODIFY RUN group
Featured in: Example 3 on page 397

INFORMAT variable-list-1 <informat-1>
<…variable-list-n <informat-n>>;

366 LABEL Statement 4 Chapter 14

Required Arguments

variable-list
specifies one or more variables whose informats you want to assign, change, or
remove. If you want to disassociate an informat with a variable, list the variable last
in the list with no informat following. For example:

informat a b 2. x1-x3 4.1 c;

Options

informat
specifies an informat for the variables immediately preceding it in the statement. If
you do not specify an informat, the INFORMAT statement removes any existing
informats for the variables in variable-list.

Note: You can use shortcut methods for specifying variables, such as the keywords
_NUMERIC, _CHARACTER_, and _ALL_. See “Shortcuts for Specifying Lists of
Variable Names” on page 58 for more information. 4

LABEL Statement

Assigns, changes, and removes variable labels in the SAS data set specified in the MODIFY
statement.

Restriction: Must appear in a MODIFY RUN group
Featured in: Example 3 on page 397

LABEL variable-1=<’label-1’|’ ’>
<…variable-n=< ’label-n’|’ ’ >>;

Required Arguments

variable=<’label’>
assigns a label to a variable. If a single quote appears in the label, write it as two
single quotes in the LABEL statement. Specifying variable= or variable=’ ’removes
the current label.
Range: 1-40 characters

The DATASETS Procedure 4 MODIFY Statement 367

MODIFY Statement
Changes the attributes of SAS files and, through the use of subordinate statements, the attributes
of variables in those SAS files.

Featured in: Example 3 on page 397

MODIFY SAS-file <(file-option(s))>
</ <GENNUM=integer>
<MEMTYPE=mtype>>;

To do this Use this option

Restrict processing to a certain type of SAS file MEMTYPE=

Specify attributes

Assign or change a data set label LABEL=

Assign or change a special data set type TYPE=

Specify how the data are currently sorted SORTEDBY=

Modify passwords

Modify an alter password ALTER=

Modify a read, write, or alter password PW=

Modify a read password READ=

Modify a write password WRITE=

Modify generation groups

Modify the maximum number of generations for
a generation group

GENMAX=

Modify a historical version GENNUM=

Required Arguments

SAS-file
specifies a SAS file in the procedure input library.

Options

ALTER=password-modification
assigns, changes, or removes an alter password for the SAS file named in the
MODIFY statement. password-modification is one of the following:

� new-password
� old-password / new-password
� / new-password
� old-password /
� /

368 MODIFY Statement 4 Chapter 14

See also: “Manipulating Passwords” on page 369

GENMAX=integer
sets the maximum number of files in a generation group.
Range: 0 to 999
Default: 0

GENNUM=integer
restricts processing to the specified generation file. Valid values for GENNUM= are

postive integer
refers to an explicit generation file.

negative integer
refers to a relative generation file.

LABEL=’data-set-label’ | ’’
assigns, changes, or removes a data set label for the SAS data set named in the
MODIFY statement. If a single quote appears in the label, write it as two single
quotes. LABEL= or LABEL=’ ’removes the current label.
Range: 1-40 characters
Featured in: Example 3 on page 397

MEMTYPE=mtype
restricts processing to one member type (mtype).
Aliases: MTYPE= and MT=
Default: If you do not specify the MEMTYPE= option in the PROC DATASETS

statement or in the MODIFY statement, the default is MEMTYPE=DATAVIEW.
See also: “Restricting Member Types Available for Processing” on page 378

PW=password-modification
assigns, changes, or removes a read, write, or alter password for the SAS file named
in the MODIFY statement. password-modification is one of the following:

� new-password
� old-password / new-password
� / new-password
� old-password /
� /

See also: “Manipulating Passwords” on page 369

READ=password-modification
assigns, changes, or removes a read password for the SAS file named in the MODIFY
statement. password-modification is one of the following:

� new-password
� old-password / new-password
� / new-password
� old-password /
� /

See also: “Manipulating Passwords” on page 369
Featured in: Example 3 on page 397

SORTEDBY=sort-information
specifies how the data are currently sorted. SAS stores the sort information with the
file but does not verify that the data are sorted the way you indicate.

sort-information can be one of the following:

The DATASETS Procedure 4 MODIFY Statement 369

by-clause </ collate-name>
indicates how the data are currently sorted. Values for by-clause are the variables
and options you can use in a BY statement in a PROC SORT step. collate-name
names the collating sequence used for the sort. By default, the collating sequence
is that of your host operating environment.

NULL
removes any existing sort information.

Featured in: Example 3 on page 397

TYPE=special-type
assigns or changes the special data set type of a SAS data set.

SAS does not verify

� the SAS data set type you specify in the TYPE= option (except to check if it has
a length of eight or fewer characters).

� that the SAS data set’s structure is appropriate for the type you have
designated.

Note: Do not confuse the TYPE= option with the MEMTYPE= option. The
TYPE= option specifies a type of special SAS data set. The MEMTYPE= option
specifies one or more types of SAS files in a SAS data library. 4

Tip: Most SAS data sets have no special type. However, certain SAS procedures,
like the CORR procedure, can create a number of special SAS data sets. In
addition, SAS/STAT software and SAS/EIS software support special data set types.

WRITE=password-modification
assigns, changes, or removes a write password for the SAS file named in the
MODIFY statement. password-modification is one of the following:

� new-password

� old-password / new-password

� / new-password

� old-password /

� /

See also: “Manipulating Passwords” on page 369

Manipulating Passwords
In order to assign, change, or remove a password, you must specify the password for

the highest level of protection that currently exists on that file.

Assigning Passwords

/* assign a password to an unprotected
file */

modify colors (pw=green);

/* assigns an alter password to an already
read-protected SAS data set */

modify colors (read=green alter=red);

Changing Passwords

370 RENAME Statement 4 Chapter 14

/* changes the write password from
YELLOW to BROWN */

modify cars (write=yellow/brown);

/* use alter access to change the unknown
read password to BLUE */

modify colors (read=/blue alter=red);

Removing Passwords

/* removes the alter password RED from
STATES */

modify states (alter=red/);

/* Use alter access to remove the read
password */

modify zoology (read=green/ alter=red);

/* Use PW= as an alias for either WRITE=
or ALTER= to remove the unknown read
password */

modify biology (read=/ pw=red);

Working with Generation Groups

Changing the Number of Generations

/* change the number of generations on A to 99 */
modify A(genmax=99);

Removing Passwords

/* removes the alter password RED from
STATES(GENNUM=2) */

modify states (alter=red/) / gennum=2;

RENAME Statement

Renames variables in the SAS data set specified in the MODIFY statement.

Restriction: Must appear in a MODIFY RUN group

Featured in: Example 3 on page 397

RENAME old-name-1=new-name-1
<…old-name-n=new-name-n>;

The DATASETS Procedure 4 REPAIR Statement 371

Required Arguments

old-name=new-name
changes the name of a variable in the data set specified in the MODIFY statement.
old-name must be a variable that already exists in the data set. new-name, which
must be a SAS name, cannot be the name of a variable that already exists in the
data set or the name of an index.

Details

� If old-name does not exist in the SAS data set or new-name already exists, PROC
DATASETS stops processing the RUN group containing the RENAME statement
and issues an error message.

� When you use the RENAME statement to change the name of a variable for which
there is a simple index, the statement also renames the index.

� If the variable that you are renaming is used in a composite index, the composite
index automatically references the new variable name. However, if you attempt to
rename a variable to a name that has already been used for a composite index, you
receive an error message.

REPAIR Statement

Attempts to restore damaged SAS data sets or catalogs to a usable condition.

REPAIR SAS-file(s)
</ <ALTER=alter-password>
<GENNUM=integer>

<MEMTYPE=mtype>>;

Required Arguments

SAS-file(s)
specifies one or more SAS data sets or catalogs in the procedure input library.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files that are named in the
REPAIR statement. You can use the ALTER= option in parentheses after the name
of each SAS file or after a forward slash.
See also: “Using Passwords with the DATASETS Procedure” on page 377

GENNUM=integer
restricts processing to the specified generation files. Valid values for GENNUM= are

postive integer
refers to an explicit generation file.

372 SAVE Statement 4 Chapter 14

negative integer
refers to a relative generation file.

MEMTYPE=mtype
restricts processing to one member type (mtype).
Aliases: MT=, MTYPE=
Default: If you do not specify the MEMTYPE= option in the PROC DATASETS

statement or in the REPAIR statement, the default is MEMTYPE=ALL.
See also: “Restricting Member Types Available for Processing” on page 378

Details
The most common situations that require the REPAIR statement are described here:
� A system failure occurs while you are updating a SAS data set or catalog.
� The device on which a SAS data set or an associated index resides is damaged. In

this case, you can restore the damaged data set or index from a backup device, but
the data set and index no longer match.

� The disk that stores the SAS data set or catalog becomes full before the file is
completely written to disk. You may need to free some disk space. PROC
DATASETS requires free space when repairing SAS data sets with indexes and
when repairing SAS catalogs.

� An I/O error occurs while you are writing a SAS data set or catalog entry.

When you use the REPAIR statement for SAS data sets, it re-creates all indexes for
the data set. It also attempts to restore the data set to a usable condition, but the
restored data set may not include the last several updates that occurred before the
system failed. You cannot use the REPAIR statement to re-create indexes that were
destroyed by using the FORCE option in a PROC SORT step.

When you use the REPAIR statement for a catalog, you receive a message stating
whether the REPAIR statement restored the entry. If the entire catalog is potentially
damaged, the REPAIR statement attempts to restore all the entries in the catalog. If
only a single entry is potentially damaged, for example when a single entry is being
updated and a disk-full condition occurs, on most systems only the entry that is open
when the problem occurs is potentially damaged. In this case, the REPAIR statement
attempts to repair only that entry. Some entries within the restored catalog may not
include the last updates that occurred before a system crash or an I/O error. The
REPAIR statement issues warning messages for entries that may have truncated data.

If the REPAIR operation is not successful, try to restore the SAS data set or catalog
from your system’s backup files.

The REPAIR statement can reference only a specific file to be repaired. Therefore,
when you are referring to generation files, ALL, HIST, and REVERT cannot be used
with the GENNUM= option.

SAVE Statement

Deletes all the SAS files in a library except the ones listed in the SAVE statement.

Featured in: Example 2 on page 395

SAVE SAS-file(s) </ MEMTYPE=mtype>;

The DATASETS Procedure 4 SAVE Statement 373

Required Arguments

SAS-file(s)
specifies one or more SAS files that you do not want to delete from the SAS data
library.

Options

MEMTYPE=mtype
restricts processing to one member type (mtype).
Aliases: MTYPE= and MT=
Default: If you do not specify the MEMTYPE= option in the PROC DATASETS

statement or in the SAVE statement, the default is MEMTYPE=ALL.
See also: “Restricting Member Types Available for Processing” on page 378
Featured in: Example 2 on page 395

Details

� If one of the SAS files in SAS-file does not exist in the procedure input library,
PROC DATASETS stops processing the RUN group containing the SAVE
statement and issues an error message. To override this behavior, specify the
NOWARN option in the PROC DATASETS statement.

� When the SAVE statement deletes SAS data sets, it also deletes any indexes
associated with those data sets.

CAUTION:
SAS immediately deletes libraries and library members when you submit a RUN
group. You are not asked to verify the delete operation before it begins. Because
the SAVE statement deletes many SAS files in one operation, be sure that you
understand how the MEMTYPE= option affects which types of SAS files are
saved and which types are deleted. 4

� When you use the SAVE statement with generation groups, the SAVE statement
treats the base name and all generations as a unit. You cannot save a specific
generation file.

374 SELECT Statement 4 Chapter 14

SELECT Statement

Selects SAS files for copying.

Restriction: Must follow a COPY statement

Restriction: Cannot appear with an EXCLUDE statement in the same COPY step

Featured in: Example 1 on page 391

SELECT SAS-file(s)
</ <ALTER=alter-password>
<MEMTYPE= mtype>>;

Required Arguments

SAS-file(s)
specifies one or more SAS files that you want to copy. All the SAS files you name
must be in the data library that is referenced by the libref named in the IN= option
in the COPY statement. If the SAS files are generation groups, the SELECT
statement allows only selection of the base names.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files that you are moving
from one data library to another. Because you are moving, and thus deleting, a SAS
file from a SAS data library, you need alter access. You can use the ALTER= option
in parentheses after the name of each SAS file or after a forward slash.

See also: “Using Passwords with the DATASETS Procedure” on page 377

MEMTYPE=mtype
restricts processing to one member type (mtype).

Aliases: MTYPE= and MT=

Default: If you do not specify the MEMTYPE= option in the PROC DATASETS
statement, in the COPY statement, or in the SELECT statement, the default is
MEMTYPE=ALL.

See also: “Specifying Member Types When Copying or Moving SAS Files” on page
351 and “Restricting Member Types Available for Processing” on page 378

Featured in: Example 1 on page 391

Selecting Many Like-Named Files

You can use shortcuts for listing many SAS files in the SELECT statement. For more
information, see “Shortcuts for Specifying Lists of Variable Names” on page 58.

The DATASETS Procedure 4 Procedure Execution 375

Concepts

Procedure Execution
When you start the DATASETS procedure, you specify the procedure input library in

the PROC DATASETS statement. If you omit a procedure input library, the procedure
processes the current default SAS data library (usually the WORK data library). To
specify a new procedure input library, start the DATASETS procedure again.

Statements execute in the order they are written. For example, if you want to see
the contents of a data set, copy a data set, and then compare the contents of the second
data set with the first, the statements that perform those tasks must appear in that
order (that is, CONTENTS, COPY, CONTENTS).

RUN-Group Processing
PROC DATASETS supports RUN-group processing. RUN-group processing enables

you to submit RUN groups without ending the procedure.
The DATASETS procedure supports four types of RUN groups. Each RUN group is

defined by the statements that compose it and by what causes it to execute.
Some statements in PROC DATASETS act as implied RUN statements because they

cause the RUN group preceding them to execute.
The following list discusses what statements compose a RUN group and what causes

each RUN group to execute:
� The PROC DATASETS statement always executes immediately. No other

statement is necessary to cause the PROC DATASETS statement to execute.
Therefore, the PROC DATASETS statement alone is a RUN group.

� The MODIFY statement, and any of its subordinate statements, form a RUN
group. These RUN groups always execute immediately. No other statement is
necessary to cause a MODIFY RUN group to execute.

� The APPEND, CONTENTS, and COPY statements (including EXCLUDE and
SELECT, if present), form their own separate RUN groups. Every APPEND
statement forms a single-statement RUN group; every CONTENTS statement
forms a single-statement RUN group; and every COPY step forms a RUN group.
Any other statement in the procedure, except those that are subordinate to either
the COPY or MODIFY statement, causes the RUN group to execute.

� One or more of the following statements form a RUN group:

AGE EXCHANGE

CHANGE REPAIR

DELETE SAVE

If any of these statements appear in sequence in the PROC step, the sequence
forms a RUN group. For example, if a REPAIR statement appears immediately
after a SAVE statement, the REPAIR statement does not force the SAVE
statement to execute; it becomes part of the same RUN group. To execute the
RUN group, submit one of the following statements:

376 Procedure Execution 4 Chapter 14

PROC DATASETS MODIFY

APPEND QUIT

CONTENTS RUN

COPY another DATA or PROC step

The SAS System reads the program statements that are associated with one task
until it reaches a RUN statement or an implied RUN statement. It executes all of the
preceding statements immediately, then continues reading until it reaches another
RUN statement or implied RUN statement. To execute the last task, you must use a
RUN statement or a statement that stops the procedure.

The following PROC DATASETS step contains five RUN groups:

libname dest ’SAS-data-library’;
/* RUN group */

proc datasets;
/* RUN group */

change nutr=fatg;
delete bldtest;
exchange xray=chest;

/* RUN group */
copy out=dest;

select report;
/* RUN group */

modify bp;
label dias=’Taken at Noon’;
rename weight=bodyfat;
/* RUN group */

append base=tissue data=newtiss;
quit;

Note: If you are running in interactive line mode, you can receive messages that
statements have already executed before you submit a RUN statement. Plan your tasks
carefully if you are using this environment for running PROC DATASETS. 4

Error Handling

Generally, if an error occurs in a statement, the RUN group containing the error does
not execute. RUN groups preceding or following the one containing the error execute
normally. The MODIFY RUN group is an exception. If a syntax error occurs in a
statement subordinate to the MODIFY statement, only the statement containing the
error fails. The other statements in the RUN group execute.

Note that if the first word of the statement (the statement name) is in error and the
procedure cannot recognize it, the procedure treats the statement as part of the
preceding RUN group.

Password Errors

If there is an error involving an incorrect or omitted password in a statement, the
error only affects the statement containing the error. The other statements in the RUN
group execute.

The DATASETS Procedure 4 Using Passwords with the DATASETS Procedure 377

Forcing a RUN Group with Errors to Execute
The FORCE option in the PROC DATASETS statement forces execution of the RUN

group even if one or more of the statements contain errors. Only the statements that
are error-free execute.

Ending the Procedure
To stop the DATASETS procedure, you must issue a QUIT statement, a RUN

CANCEL statement, a new PROC statement, or a DATA statement. Submitting a
QUIT statement executes any statements that have not executed. Submitting a RUN
CANCEL statement cancels any statements that have not executed.

Using Passwords with the DATASETS Procedure
Several statements in PROC DATASETS support options that manipulate passwords

on SAS files. These options, ALTER=, PW=, READ=, and WRITE=, are also data set
options.* If you do not know how passwords affect SAS files, refer to SAS Language
Reference: Concepts.

When you are working with password-protected SAS files in the AGE, CHANGE,
DELETE, EXCHANGE, REPAIR, or SELECT statement, you can specify password
options in the PROC DATASETS statement or in a subordinate statement. The SAS
System searches for passwords in the following order:

1 in parentheses after the name of the SAS file in a subordinate statement. When
used in parentheses, the option only refers to the name immediately preceding the
option. If you are working with more than one SAS file in a data library and each
SAS file has a different password, you must specify password options in
parentheses after individual names.

In the following statement, the ALTER= option provides the password RED for
the SAS file BONES only:

delete xplant bones(alter=red);

2 after a forward slash (/) in a subordinate statement. When you use a password
option following a slash, the option refers to all SAS files named in the statement
unless the same option appears in parentheses after the name of a SAS file. This
method is convenient when you are working with more than one SAS file and they
all have the same password.

In the following statement, the ALTER= option in parentheses provides the
password RED for the SAS file CHEST, and the ALTER= option after the slash
provides the password BLUE for the SAS file VIRUS:

delete chest(alter=red) virus /
alter=blue;

3 in the PROC DATASETS statement. Specifying the password in the PROC
DATASETS statement can be useful if all the SAS files you are working with in
the library have the same password.

In the following PROC DATASETS step, the PW= option provides the password
RED for the SAS files INSULIN and ABNEG:

proc datasets pw=red;
delete insulin;

* In the APPEND and CONTENTS statements, you use these options just as you use any SAS data set option, in parentheses
after the SAS data set name.

378 Restricting Member Types Available for Processing 4 Chapter 14

contents data=abneg;
run;

Note: For the password for a SAS file in a SELECT statement, the SAS System
looks in the COPY statement before it looks in the PROC DATASETS statement. 4

Restricting Member Types Available for Processing

In the PROC DATASETS Statement
If you name a member type or several member types in the PROC DATASETS

statement, in most subsequent statements (the CONTENTS and COPY statements are
exceptions to this rule) you can name only a subset of the list of member types included
in the PROC DATASETS statement. The directory listing that the PROC DATASETS
statement writes to the SAS log includes only those SAS files of the type specified in the
MEMTYPE= option.

In Subordinate Statements
Use the MEMTYPE= option in the following subordinate statements to limit the

member types that are available for processing:

AGE

CHANGE

DELETE

EXCHANGE

EXCLUDE

REPAIR

SAVE

SELECT

Note: The MEMTYPE= option works slightly differently for the CONTENTS and
COPY statements. Refer to “CONTENTS Statement” on page 346 and “COPY
Statement” on page 349 for more information. 4

The procedure searches for MEMTYPE= in the following order:

1 in parentheses immediately after the name of a SAS file. When used in
parentheses, the MEMTYPE= option refers only to the SAS file immediately
preceding the option. For example, the following statement deletes HOUSE.DATA,
LOT.CATALOG, and SALES.DATA because the default member type for the
DELETE statement is DATA. (Refer to Table 14.3 on page 379 for the default
types for each statement.)

delete house lot(memtype=catalog) sales;

2 after a slash (/) at the end of the statement. When used following a slash, the
MEMTYPE= option refers to all SAS files named in the statement unless the option
appears in parentheses after the name of a SAS file. For example, the following
statement deletes LOTPIX.CATALOG, REGIONS.DATA, and APPL.CATALOG:

The DATASETS Procedure 4 Restricting Member Types Available for Processing 379

delete lotpix regions(memtype=data) appl
/ memtype=catalog;

3 in the PROC DATASETS statement. For example, this PROC DATASETS step
deletes APPL.CATALOG:

proc datasets memtype=catalog;
delete appl;

run;

Note: When you use the EXCLUDE and SELECT statements, the procedure
looks in the COPY statement for the MEMTYPE= option before it looks in the
PROC DATASETS statement. For more information, see “Specifying Member
Types When Copying or Moving SAS Files” on page 351. 4

4 for the default value. If you do not specify a MEMTYPE= option in the subordinate
statement or in the PROC DATASETS statement, the default value for the
subordinate statement determines the member type available for processing.

Member Types
The following list gives the possible values for the MEMTYPE= option:

ACCESS
access descriptor files (created by SAS/ACCESS software)

ALL
all member types

CATALOG
SAS catalogs

DATA
SAS data sets

FDB
financial database

MDDB
multidimensional database

PROGRAM
stored compiled SAS programs

VIEW
SAS data views

Table 14.3 on page 379 shows the member types that you can use in each statement:

Table 14.3 Subordinate Statements and Appropriate Member Types

Statement Appropriate member types Default
member type

AGE ACCESS, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

DATA

CHANGE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

380 Results 4 Chapter 14

Statement Appropriate member types Default
member type

CONTENTS ALL, DATA, VIEW DATA1

COPY ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

DELETE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

DATA

EXCHANGE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

EXCLUDE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

MODIFY ACCESS, DATA, VIEW DATA

REPAIR ALL, CATALOG, DATA ALL2

SAVE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

SELECT ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

1 When DATA=_ALL_ in the CONTENTS statement, the default is ALL. ALL includes only DATA and VIEW.
2 ALL includes only DATA and CATALOG.

Results

Directory Listing to the SAS Log
The PROC DATASETS statement lists the SAS files in the procedure input library

unless the NOLIST option is specified. If you specify the MEMTYPE= option, only
specified types are listed. If you specify the DETAILS option, PROC DATASETS prints
three additional columns of information: Obs or Entries, Vars, and Label.

Directory Listing as SAS Output
The CONTENTS statement lists the directory of the procedure input library if you

use the DIRECTORY option or use DATA=_ALL_.
If you want only a directory, use the NODS option and the _ALL_ keyword in the

DATA= option. The NODS option suppresses the description of the SAS data sets; only
the directory appears in the output.

Note: The CONTENTS statement does not put a directory in an output data set. If
you try to create an output data set using the NODS option, you receive an empty
output data set. Use the SQL procedure to create a SAS data set that contains
information about a SAS data library. See “DICTIONARY tables” on page 1062 for
more information. 4

Procedure Output
The only statement in PROC DATASETS that produces procedure output is the

CONTENTS statement. This section shows the output from the CONTENTS statement

The DATASETS Procedure 4 Procedure Output 381

for the GROUP data set, including the modifications made to the GROUP data set in
Example 3 on page 397.

Only the items in the output that require explanation are discussed.

Data Set Attributes
Here are descriptions of selected fields in Output 14.2 on page 381:

Member Type
names the type of library member (DATA or VIEW).

Protection
indicates whether the SAS data set is READ, WRITE, or ALTER protected.

Data Set Type
names the special data set type (such as CORR, COV, SSPC, EST, or FACTOR), if
any.

Deleted Observations
is the number of observations marked for deletion. These observations are not
included in the total number of observations, shown in the Observations field.

Compressed
indicates whether the data set is compressed. If the data set is compressed, the
output includes an additional item, Reuse Space (with a value of YES or NO),
that indicates whether to reuse space that is made available when observations
are deleted.

Sorted
indicates whether the data set is sorted. If you sort the data set with PROC SORT,
PROC SQL, or specify sort information with the SORTEDBY= data set option, a
value of YES appears here, and there is an additional section to the output. See
“Sort Information” on page 384 for details.

Output 14.2 Data Set Attributes Section

The Contents of the GROUP Data Set

DATASETS PROCEDURE

Data Set Name: HEALTH.GROUP Observations: 148
Member Type: DATA Variables: 11
Engine: V7 Indexes: 1
Created: 10:42 Thursday, August 28, 1997 Observation Length: 96
Last Modified: 11:13 Thursday, August 28, 1997 Deleted Observations: 0
Protection: READ Compressed: NO
Data Set Type: Sorted: YES
Label: Test Subjects

Engine and Operating Environment-dependent Information
The CONTENTS statement produces operating environment-specific and

engine-specific information. This information differs depending on the operating
environment. The example in Output 14.3 on page 381 is from the UNIX environment.

382 Procedure Output 4 Chapter 14

Output 14.3 Engine and Operating Environment Dependent Information Section of CONTENTS Output

-----Engine/Host Dependent Information-----

Data Set Page Size: 8192

Number of Data Set Pages: 4

File Format: 7

First Data Page: 1

Max Obs per Page: 84

Obs in First Data Page: 62

Index File Page Size: 4096

Number of Index File Pages: 2

Number of Data Set Repairs: 0

File Name: external-file
Release Created: 7.00.000

Host Created: HP-UX

Inode Number: 718939608

Access Permission: rw-r--r--

Owner Name: UNIX-userid

File Size (bytes): 40960

Alphabetic List of Variables and Attributes
Here are descriptions of selected columns in Output 14.4 on page 382:

#
indicates the position of each variable in the data set.

Variable
is the name of each variable. By default, variables appear alphabetically.

Note: Variable names are sorted such that X1, X2, and X10 appear in that
order and not in the true collating sequence of X1, X10, and X2. Variable names
that contain an underscore and digits may appear in a nonstandard sort order.
For example, P25 and P75 appear before P2_5. 4

Type
specifies the type of variable, character or numeric.

Pos
specifies the starting position of each variable in the observation.

Note: If none of the variables in the SAS data set has a format, informat, or label
associated with it, the column for that attribute does not appear. 4

The DATASETS Procedure 4 Procedure Output 383

Output 14.4 Variable Attributes Section

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

--

9 BIRTH Num 8 8 DATE7. DATE7.

4 CITY Char 15 58 $. $.

3 FNAME Char 15 43 $. $.

10 HIRED Num 8 16 DATE7. DATE7.

11 HPHONE Char 12 79 $. $.

1 IDNUM Char 4 24 $. $.

7 JOBCODE Char 3 76 $. $.

2 LNAME Char 15 28 $. $.

8 SALARY Num 8 0 COMMA8. current salary excluding bonus

6 SEX Char 1 75 $. $.

5 STATE Char 2 73 $. $.

Alphabetic List of Indexes and Attributes
The section shown in Output 14.5 on page 383 appears only if the data set has

indexes associated with it.

#
indicates the number of each index. The CONTENTS statement numbers the
indexes sequentially as they are defined.

Index
displays the name of each index. For simple indexes, the name of the index is the
same as a variable in the data set.

Unique Option
indicates whether the index must have unique values. If the column contains YES,
the combination of values of the index variables is unique for each observation.

Nomiss Option
indicates whether the index excludes missing values for all index variables. If the
column contains YES, the index does not contain observations with missing values
for all index variables.

of Unique Values
gives the number of unique values in the index.

Variables
names the variables in a composite index.

384 Output Data Sets 4 Chapter 14

Output 14.5 Index Attributes Section

-----Alphabetic List of Indexes and Attributes-----

of
Unique Nomiss Unique

Index Option Option Values Variables
--
1 vital YES YES 148 BIRTH SALARY

Sort Information
The section shown in Output 14.6 on page 384 appears only if the Sorted field has a

value of YES.

Sortedby
indicates how the data are currently sorted. This field contains either the
variables and options you use in the BY statement in PROC SORT, the column
name in PROC SQL, or the values you specify in the SORTEDBY= option.

Validated
indicates whether PROC SORT or PROC SQL sorted the data. If PROC SORT or
PROC SQL sorted the data set, the value is YES. If you assigned the sort
information with the SORTEDBY= data set option, the value is NO.

Character Set
is the character set used to sort the data. The value for this field can be ASCII,
EBCDIC, or PASCII.

Collating Sequence
is the collating sequence used to sort the data set. This field does not appear if you
do not specify a specific collating sequence that is different from the character set.
(not shown)

Sort Option
indicates whether PROC SORT used the NODUPKEY or NODUPREC option
when sorting the data set. This field does not appear if you did not use one of
these options in a PROC SORT statement. (not shown)

Output 14.6 Sort Information Section

-----Sort Information-----

Sortedby: LNAME
Validated: NO
Character Set: ASCII

Output Data Sets
The CONTENTS statement is the only statement in the DATASETS procedure that

generates output data sets.

The DATASETS Procedure 4 Output Data Sets 385

The OUT= Data Set
The OUT= option in the CONTENTS statement creates an output data set. Each

variable in each DATA= data set has one observation in the OUT= data set. These are
the variables in the output data set:

CHARSET
the character set used to sort the data set. The value is ASCII, EBCDIC, or
PASCII. A blank appears if the data set does not have sort information stored with
it.

COLLATE
the collating sequence used to sort the data set. A blank appears if the sort
information for the input data set does not include a collating sequence.

COMPRESS
indicates whether the data set is compressed.

CRDATE
date the data set was created.

DELOBS
number of observations marked for deletion in the data set. (Observations can be
marked for deletion but not actually deleted when you use the FSEDIT procedure
of SAS/FSP software.)

ENCRYPT
indicates whether the data set is encrypted.

ENGINE
name of the method used to read from and write to the data set.

FORMAT
variable format. The value of FORMAT is a blank if you do not associate a format
with the variable.

FORMATD
number of decimals you specify when you associate the format with the variable.
The value of FORMATD is 0 if you do not specify decimals in the format.

FORMATL
format length. If you specify a length for the format when you associate the format
with a variable, the length you specify is the value of FORMATL. If you do not
specify a length for the format when you associate the format with a variable, the
value of FORMATL is the default length of the format if you use the FMTLEN
option and 0 if you do not use the FMTLEN option.

GENMAX
maximum number of files (generations) for the generation group.

GENNEXT
the next generation number for a generation group.

GENNUM
the generation number.

IDXCOUNT
number of indexes for the data set.

IDXUSAGE
use of the variable in indexes. Possible values are

NONE
the variable is not part of an index.

386 Output Data Sets 4 Chapter 14

SIMPLE
the variable has a simple index. No other variables are included in the index.

COMPOSITE
the variable is part of a composite index.

BOTH
the variable has a simple index and is part of a composite index.

INFORMAT
variable informat. The value is a blank if you do not associate an informat with
the variable.

INFORMD
number of decimals you specify when you associate the informat with the variable.
The value is 0 if you do not specify decimals when you associate the informat with
the variable.

INFORML
informat length. If you specify a length for the informat when you associate the
informat with a variable, the length you specify is the value of INFORML. If you
do not specify a length for the informat when you associate the informat with a
variable, the value of INFORML is the default length of the informat if you use
the FMTLEN option and 0 if you do not use the FMTLEN option.

JUST
justification (0=left, 1=right).

LABEL
variable label (blank if none given).

LENGTH
variable length.

LIBNAME
libref used for the data library.

MEMLABEL
label for this SAS data set (blank if no label).

MEMNAME
SAS data set that contains the variable.

MEMTYPE
library member type (DATA or VIEW).

MODATE
date the data set was last modified.

NAME
variable name.

NOBS
number of observations in the data set.

NODUPKEY
indicates whether the NODUPKEY option was used in a PROC SORT statement
to sort the input data set.

NODUPREC
indicates whether the NODUPREC option was used in a PROC SORT statement
to sort the input data set.

NPOS
physical position of the first character of the variable in the data set.

The DATASETS Procedure 4 Output Data Sets 387

POINTOBS
indicates if the data set can be addressed by observation.

PROTECT
the first letter of the level of protection. The value for PROTECT is one or more of
the following:

A indicates the data set is alter-protected.

R indicates the data set is read-protected.

W indicates the data set is write-protected.

REUSE
indicates whether the space made available when observations are deleted from a
compressed data set should be reused. If the data set is not compressed, the
REUSE variable has a value of NO.

SORTED
the value depends on the sorting characteristics of the input data set. Possible
values are

. (period) for not sorted.

0 for sorted but not validated.

1 for sorted and validated.

SORTEDBY
the value depends on that variable’s role in the sort. Possible values are

. (period)
if the variable was not used to sort the input data set.

n
where n is an integer that denotes the position of that variable in the sort. A
negative value of n indicates that the data set is sorted by the descending
order of that variable.

TYPE
type of the variable (1=numeric, 2=character).

TYPEMEM
special data set type (blank if no TYPE= value is specified).

VARNUM
variable number in the data set. Variables are numbered in the order they appear.

The output data set is sorted by the variables LIBNAME and MEMNAME.

Note: The variable names are sorted so that the values X1, X2, and X10 are listed
in that order, not in the true collating sequence of X1, X10, X2. Therefore, if you want
to use a BY statement on MEMNAME in subsequent steps, run a PROC SORT step on
the output data set first or use the NOTSORTED option in the BY statement. 4

Output 14.7 on page 387 is an example of an output data set created from the
GROUP data set, which is shown in Example 4 on page 399 and in “Procedure Output”
on page 380.

388 Output Data Sets 4 Chapter 14

Output 14.7 The Data Set Health.Grpout

An Example of an Output Data Set 1

OBS LIBNAME MEMNAME MEMLABEL TYPEMEM NAME TYPE LENGTH VARNUM

1 HEALTH GROUP Test Subjects BIRTH 1 8 9
2 HEALTH GROUP Test Subjects CITY 2 15 4
3 HEALTH GROUP Test Subjects FNAME 2 15 3
4 HEALTH GROUP Test Subjects HIRED 1 8 10
5 HEALTH GROUP Test Subjects HPHONE 2 12 11
6 HEALTH GROUP Test Subjects IDNUM 2 4 1
7 HEALTH GROUP Test Subjects JOBCODE 2 3 7
8 HEALTH GROUP Test Subjects LNAME 2 15 2
9 HEALTH GROUP Test Subjects SALARY 1 8 8

10 HEALTH GROUP Test Subjects SEX 2 1 6
11 HEALTH GROUP Test Subjects STATE 2 2 5

OBS LABEL FORMAT FORMATL FORMATD INFORMAT INFORML

1 DATE 7 0 DATE 7
2 $ 0 0 $ 0
3 $ 0 0 $ 0
4 DATE 7 0 DATE 7
5 $ 0 0 $ 0
6 $ 0 0 $ 0
7 $ 0 0 $ 0
8 $ 0 0 $ 0
9 current salary excluding bonus COMMA 8 0 0

10 $ 0 0 $ 0
11 $ 0 0 $ 0

An Example of an Output Data Set 2

OBS INFORMD JUST NPOS NOBS ENGINE CRDATE MODATE DELOBS

1 0 0 8 148 V7 28AUG97:10:42:26 28AUG97:11:13:46 0
2 0 0 58 148 V7 28AUG97:10:42:26 28AUG97:11:13:46 0
3 0 0 43 148 V7 28AUG97:10:42:26 28AUG97:11:13:46 0
4 0 0 16 148 V7 28AUG97:10:42:26 28AUG97:11:13:46 0
5 0 0 79 148 V7 28AUG97:10:42:26 28AUG97:11:13:46 0
6 0 0 24 148 V7 28AUG97:10:42:26 28AUG97:11:13:46 0
7 0 0 76 148 V7 28AUG97:10:42:26 28AUG97:11:13:46 0
8 0 0 28 148 V7 28AUG97:10:42:26 28AUG97:11:13:46 0
9 0 0 0 148 V7 28AUG97:10:42:26 28AUG97:11:13:46 0

10 0 0 75 148 V7 28AUG97:10:42:26 28AUG97:11:13:46 0
11 0 0 73 148 V7 28AUG97:10:42:26 28AUG97:11:13:46 0

OBS IDXUSAGE MEMTYPE IDXCOUNT PROTECT FLAGS COMPRESS REUSE SORTED SORTEDBY

1 COMPOSITE DATA 1 R-- --- NO NO 0 .
2 NONE DATA 1 R-- --- NO NO 0 .
3 NONE DATA 1 R-- --- NO NO 0 .
4 NONE DATA 1 R-- --- NO NO 0 .
5 NONE DATA 1 R-- --- NO NO 0 .
6 NONE DATA 1 R-- --- NO NO 0 .
7 NONE DATA 1 R-- --- NO NO 0 .
8 NONE DATA 1 R-- --- NO NO 0 1
9 COMPOSITE DATA 1 R-- --- NO NO 0 .

10 NONE DATA 1 R-- --- NO NO 0 .
11 NONE DATA 1 R-- --- NO NO 0 .

The DATASETS Procedure 4 Output Data Sets 389

An Example of an Output Data Set 3

OBS CHARSET COLLATE NODUPKEY NODUPREC ENCRYPT POINTOBS GENMAX GENNUM GENNEXT

1 ASCII NO NO NO YES 0 . 0
2 ASCII NO NO NO YES 0 . 0
3 ASCII NO NO NO YES 0 . 0
4 ASCII NO NO NO YES 0 . 0
5 ASCII NO NO NO YES 0 . 0
6 ASCII NO NO NO YES 0 . 0
7 ASCII NO NO NO YES 0 . 0
8 ASCII NO NO NO YES 0 . 0
9 ASCII NO NO NO YES 0 . 0

10 ASCII NO NO NO YES 0 . 0
11 ASCII NO NO NO YES 0 . 0

The OUT2= Data Set
The OUT2= option in the CONTENTS statement creates an output data set that

contains information about indexes and integrity constraints. These are the variables in
the output data set:

NUMVARS
the number of variables involved in the index or integrity constraint.

NAME
the name of the index or integrity constraint.

TYPE
the type. For an index, the value is “Index” while for an integrity constraint, the
value is the type of integrity constraint (Not Null, Check, Primary Key, etc.).

RECREATE
the SAS statement necessary to recreate the index or integrity constraint.

MG
the value of MESSAGE=, if it is used, in the IC CREATE statement.

INACTIVE
contains YES if the integrity constraint is inactive.

ONDELETE
for a foreign key integrity constraint, contains RESTRICT or SET NULL if
applicable (the ON DELETE option in the IC CREATE statement).

ONUPDATE
for a foreign key integrity constraint, contains RESTRICT or SET NULL if
applicable (the ON UPDATE option in the IC CREATE statement).

REFERENCE
for a foreign key integrity constraint, contains the name of the referenced data set.

WHERE
for a check integrity constraint, contains the WHERE statement.

UNIQUE
contains YES if the UNIQUE option is defined for the index.

NOMISS
contains YES if the NOMISS option is defined for the index.

IC_BUILD
contains YES if the index was built by creating an integrity constraint.

390 Output Data Sets 4 Chapter 14

IC_OWN
contains YES if the index is owned by the integrity constraint.

NUMVALS
the number of distinct values in the index (displayed for centiles).

UPERCMX
the percentage of the index update that triggers a refresh (displayed for centiles).

UPERC
the percentage of the index that has been updated since the last refresh (displayed
for centiles).

The DATASETS Procedure 4 Program 391

Examples

Example 1: Manipulating SAS Files
Procedure features:

PROC DATASETS statement options:
DETAILS
LIBRARY=

CHANGE statement
COPY statement options:

MEMTYPE
MOVE
OUT=

DELETE statement option:
MEMTYPE=

EXCHANGE statement
EXCLUDE statement
SELECT statement option:

MEMTYPE=

This example
� changes the names of SAS files
� copies SAS files between SAS data libraries
� deletes SAS files
� selects SAS files to copy
� exchanges the names of SAS files
� excludes SAS files from a copy operation.

Program

The SAS system option SOURCE writes the programming statements to the SAS log.

options pagesize=40 linesize=132 nodate pageno=1 source;

libname dest1 ’SAS-data-library-1’;
libname dest2 ’SAS-data-library-2’;
libname health ’SAS-data-library-3’;

LIBRARY= specifies the procedure input library. DETAILS prints three additional columns in
the directory: Obs or Entries, Vars, and Label. All member types are available for
processing because the MEMTYPE= option does not appear in the PROC DATASETS statement.

392 SAS Log 4 Chapter 14

proc datasets library=health details;

The DELETE statement deletes the TENSION data set and the A2 catalog. MT=CATALOG only
applies to A2 and is necessary because the default member type for the DELETE statement is
DATA. The CHANGE statement changes the name of the A1 catalog to POSTDRUG. The
EXCHANGE statement exchanges the names of the WEIGHT and BODYFAT data sets.
MEMTYPE= is not necessary in the CHANGE or EXCHANGE statement because the default is
MEMTYPE=ALL for each statement.

delete tension a2(mt=catalog);
change a1=postdrug;
exchange weight=bodyfat;

MEMTYPE=VIEW restricts processing to SAS data views. MOVE specifies that all SAS data
views named in the SELECT statements in this step be deleted from the HEALTH data library
and moved to the DEST1 data library.

copy out=dest1 move memtype=view;

The SELECT statement specifies that the SAS data view SPDATA be moved from the HEALTH
data library to the DEST1 data library.

select spdata;

The SELECT statement specifies that the catalogs ETEST1 through ETEST5 be moved from the
HEALTH data library to the DEST1 data library. MEMTYPE=CATALOG overrides the
MEMTYPE=VIEW option in the COPY statement.

select etest1-etest5 / memtype=catalog;

The EXCLUDE statement excludes from the COPY operation all SAS files that begin with the
letter D and the other SAS files listed. All remaining SAS files in the HEALTH data library are
copied to the DEST2 data library.

copy out=dest2;
exclude d: mlscl oxygen source test2 vision weight;

quit;

SAS Log

The DATASETS Procedure 4 SAS Log 393

(UNIX Environment)

cpu time 0.00 seconds

1

2 libname dest1

3 ’SAS-data-library’;

NOTE: Libref DEST1 was successfully assigned as follows:

Engine: V8

Physical Name: UNIX-path

4 libname dest2

5 ’SAS-data-library’;

NOTE: Libref DEST2 was successfully assigned as follows:

Engine: V8

Physical Name: UNIX-path

6 libname health

7 ’SAS-data-library ’;

NOTE: Libref HEALTH was successfully assigned as follows:

Engine: V8

Physical Name: UNIX-path

17 proc datasets library=health details;

-----Directory-----

Libref: HEALTH

Engine: V8

Physical Name: UNIX-path

File Name: UNIX-path

Inode Number: inode-number

Access Permission: rwxr-xr-x

Owner Name: UNIX-user

File Size (bytes): 4096

394 SAS Log 4 Chapter 14

Obs, Entries File

Name Memtype or Indexes Vars Label size Last modified

1 A1 CATALOG 23 69632 09FEB1999:10:42:10

2 A2 CATALOG 1 24576 09FEB1999:10:42:11

3 ALL DATA 23 17 17408 09FEB1999:10:42:11

4 BODYFAT DATA 1 2 12288 09FEB1999:10:42:11

5 CONFOUND DATA 8 4 12288 09FEB1999:10:42:11

6 CORONARY DATA 39 4 12288 09FEB1999:10:42:11

7 DRUG1 DATA 6 2 JAN95 Data 12288 09FEB1999:10:42:11

8 DRUG2 DATA 13 2 MAY95 Data 12288 09FEB1999:10:42:11

9 DRUG3 DATA 11 2 JUL95 Data 12288 09FEB1999:10:42:11

10 DRUG4 DATA 7 2 JAN92 Data 12288 09FEB1999:10:42:11

11 DRUG5 DATA 1 2 JUL92 Data 12288 09FEB1999:10:42:11

12 ETEST1 CATALOG 1 24576 09FEB1999:10:42:11

13 ETEST2 CATALOG 1 24576 09FEB1999:10:42:12

14 ETEST3 CATALOG 1 24576 09FEB1999:10:42:12

15 ETEST4 CATALOG 1 24576 09FEB1999:10:42:12

16 ETEST5 CATALOG 1 24576 09FEB1999:10:42:12

17 ETESTS CATALOG 1 24576 09FEB1999:10:42:12

18 FORMATS CATALOG 6 24576 09FEB1999:10:42:12

19 GROUP DATA 148 11 32768 09FEB1999:10:42:13

20 GRPOUT DATA 11 40 24576 29JAN1999:13:38:22

21 INFANT DATA 149 6 23552 18JAN1999:14:08:42

22 MLSCL DATA 32 4 Multiple Sclerosis Data 12288 09FEB1999:10:42:13

23 NAMES DATA 7 4 12288 09FEB1999:10:42:13

24 OXYGEN DATA 31 7 13312 09FEB1999:10:42:13

25 PERSONL DATA 148 11 32768 09FEB1999:10:42:13

26 PHARM DATA 6 3 Sugar Study 12288 09FEB1999:10:42:13

27 POINTS DATA 6 6 12288 09FEB1999:10:42:13

28 PRENAT DATA 149 6 23552 09FEB1999:10:42:13

29 RESULTS DATA 10 5 12288 09FEB1999:10:42:13

30 SLEEP DATA 108 6 16384 09FEB1999:10:42:13

31 SOURCE PROGRAM 16384 09FEB1999:10:42:13

32 SPDATA VIEW . 2 12288 09FEB1999:10:42:14

33 SUR DATA 3 6 12288 18JAN1999:14:08:44

34 SYNDROME DATA 46 8 16384 09FEB1999:10:42:14

35 TENSION DATA 4 3 12288 09FEB1999:10:42:14

36 TEST2 DATA 15 5 12288 09FEB1999:10:42:14

37 TRAIN DATA 7 2 12288 09FEB1999:10:42:14

38 VISION DATA 16 3 12288 09FEB1999:10:42:14

39 WEIGHT DATA 83 13 California Results 26624 09FEB1999:10:42:14

40 WGHT DATA 83 13 California Results 26624 09FEB1999:10:42:14

The DATASETS Procedure 4 Example 2: Saving SAS Files from Deletion 395

19 delete tension a2(mt=catalog);

20 change a1=postdrug;

21 exchange weight=bodyfat;

NOTE: Deleting HEALTH.TENSION (memtype=DATA).

NOTE: Deleting HEALTH.A2 (memtype=CATALOG).

NOTE: Changing the name HEALTH.A1 to HEALTH.POSTDRUG (memtype=CATALOG).

NOTE: Exchanging the names HEALTH.WEIGHT and HEALTH.BODYFAT (memtype=DATA).

22 copy out=dest1 move memtype=view;

23

24 select spdata;

25

26 select etest1-etest5 / memtype=catalog;

27

NOTE: Moving HEALTH.SPDATA to DEST1.SPDATA (memtype=VIEW).

NOTE: Moving HEALTH.ETEST1 to DEST1.ETEST1 (memtype=CATALOG).

NOTE: Moving HEALTH.ETEST2 to DEST1.ETEST2 (memtype=CATALOG).

NOTE: Moving HEALTH.ETEST3 to DEST1.ETEST3 (memtype=CATALOG).

NOTE: Moving HEALTH.ETEST4 to DEST1.ETEST4 (memtype=CATALOG).

NOTE: Moving HEALTH.ETEST5 to DEST1.ETEST5 (memtype=CATALOG).

28 copy out=dest2;

29 exclude d: mlscl oxygen source test2 vision weight;

30 quit;

NOTE: Copying HEALTH.ALL to DEST2.ALL (memtype=DATA).

NOTE: The data set DEST2.ALL has 23 observations and 17 variables.

NOTE: Copying HEALTH.BODYFAT to DEST2.BODYFAT (memtype=DATA).

NOTE: The data set DEST2.BODYFAT has 83 observations and 13 variables.

NOTE: Copying HEALTH.CONFOUND to DEST2.CONFOUND (memtype=DATA).

NOTE: The data set DEST2.CONFOUND has 8 observations and 4 variables.

NOTE: Copying HEALTH.CORONARY to DEST2.CORONARY (memtype=DATA).

NOTE: The data set DEST2.CORONARY has 39 observations and 4 variables.

NOTE: Copying HEALTH.ETESTS to DEST2.ETESTS (memtype=CATALOG).

NOTE: Copying HEALTH.FORMATS to DEST2.FORMATS (memtype=CATALOG).

NOTE: Copying HEALTH.GROUP to DEST2.GROUP (memtype=DATA).

NOTE: The data set DEST2.GROUP has 148 observations and 11 variables.

NOTE: Copying HEALTH.GRPOUT to DEST2.GRPOUT (memtype=DATA).

NOTE: The data set DEST2.GRPOUT has 11 observations and 40 variables.

NOTE: Copying HEALTH.INFANT to DEST2.INFANT (memtype=DATA).

NOTE: The data set DEST2.INFANT has 149 observations and 6 variables.

NOTE: Copying HEALTH.NAMES to DEST2.NAMES (memtype=DATA).

NOTE: The data set DEST2.NAMES has 7 observations and 4 variables.

NOTE: Copying HEALTH.PERSONL to DEST2.PERSONL (memtype=DATA).

NOTE: The data set DEST2.PERSONL has 148 observations and 11 variables.

NOTE: Copying HEALTH.PHARM to DEST2.PHARM (memtype=DATA).

NOTE: The data set DEST2.PHARM has 6 observations and 3 variables.

NOTE: Copying HEALTH.POINTS to DEST2.POINTS (memtype=DATA).

NOTE: The data set DEST2.POINTS has 6 observations and 6 variables.

NOTE: Copying HEALTH.POSTDRUG to DEST2.POSTDRUG (memtype=CATALOG).

NOTE: Copying HEALTH.PRENAT to DEST2.PRENAT (memtype=DATA).

NOTE: The data set DEST2.PRENAT has 149 observations and 6 variables.

NOTE: Copying HEALTH.RESULTS to DEST2.RESULTS (memtype=DATA).

NOTE: The data set DEST2.RESULTS has 10 observations and 5 variables.

NOTE: Copying HEALTH.SLEEP to DEST2.SLEEP (memtype=DATA).

NOTE: The data set DEST2.SLEEP has 108 observations and 6 variables.

NOTE: Copying HEALTH.SUR to DEST2.SUR (memtype=DATA).

NOTE: The data set DEST2.SUR has 3 observations and 6 variables.

NOTE: Copying HEALTH.SYNDROME to DEST2.SYNDROME (memtype=DATA).

NOTE: The data set DEST2.SYNDROME has 46 observations and 8 variables.

NOTE: Copying HEALTH.TRAIN to DEST2.TRAIN (memtype=DATA).

NOTE: The data set DEST2.TRAIN has 7 observations and 2 variables.

NOTE: Copying HEALTH.WGHT to DEST2.WGHT (memtype=DATA).

NOTE: The data set DEST2.WGHT has 83 observations and 13 variables.

Example 2: Saving SAS Files from Deletion
Procedure features:

SAVE statement option:

396 Program 4 Chapter 14

MEMTYPE=

This example uses the SAVE statement to save some SAS files from deletion and to
delete other SAS files.

Program

The SAS system option SOURCE writes the programming statements to the SAS log.

options pagesize=40 linesize=80 nodate pageno=1 source;

libname elder ’SAS-data-library’;

LIBRARY= specifies the procedure input library.

proc datasets lib=elder;

The SAVE statement saves the data sets CHRONIC, AGING, and CLINICS and deletes all
other SAS files (of all types) in the ELDER library. MEMTYPE=DATA is necessary because the
ELDER library has a catalog named CLINICS and a data set named CLINICS.

save chronic aging clinics / memtype=data;
run;

SAS Log

The DATASETS Procedure 4 Example 3: Modifying SAS Data Sets 397

(UNIX Environment)

8 options pagesize=40 linesize=80 nodate pageno=1 source;
9
10 proc datasets lib=elder;

-----Directory-----

Libref: ELDER
Engine: V8
Physical Name: UNIX-pathname
File Name: UNIX-pathname
Inode Number: Inode-name
Access Permission: rwxr-xr-x
Owner Name: UNIX-userid
File Size (bytes): 2048

File
Name Memtype size Last modified

1 AGING DATA 12288 29JAN1999:13:29:33
2 ALCOHOL DATA 12288 29JAN1999:13:29:33
3 BACKPAIN DATA 12288 29JAN1999:13:29:33
4 CHRONIC DATA 12288 29JAN1999:13:29:33
5 CLINICS CATALOG 24576 29JAN1999:13:29:33
6 CLINICS DATA 12288 29JAN1999:13:29:33
7 DISEASE DATA 12288 29JAN1999:13:29:33
8 GROWTH DATA 12288 29JAN1999:13:29:33
9 HOSPITAL CATALOG 24576 29JAN1999:13:29:33

11
12 save chronic aging clinics / memtype=data;
13 run;
NOTE: Saving ELDER.CHRONIC (memtype=DATA).
NOTE: Saving ELDER.AGING (memtype=DATA).
NOTE: Saving ELDER.CLINICS (memtype=DATA).
NOTE: Deleting ELDER.ALCOHOL (memtype=DATA).
NOTE: Deleting ELDER.BACKPAIN (memtype=DATA).
NOTE: Deleting ELDER.CLINICS (memtype=CATALOG).
NOTE: Deleting ELDER.DISEASE (memtype=DATA).
NOTE: Deleting ELDER.GROWTH (memtype=DATA).
NOTE: Deleting ELDER.HOSPITAL (memtype=CATALOG).

Example 3: Modifying SAS Data Sets

Procedure features:
PROC DATASETS statement option:

NOLIST
FORMAT statement
INDEX CREATE statement options:

NOMISS
UNIQUE

INFORMAT statement
LABEL statement
MODIFY statement options:

LABEL=
READ=
SORTEDBY=

398 Program 4 Chapter 14

RENAME statement

This example modifies two SAS data sets using the MODIFY statement and
statements subordinate to it. Example 4 on page 399 shows the modifications to the
GROUP data set.

Tasks include
� modifying SAS files
� labeling a SAS data set
� adding a READ password to a SAS data set
� indicating how a SAS data set is currently sorted
� creating an index for a SAS data set
� assigning informats and formats to variables in a SAS data set
� renaming variables in a SAS data set
� labeling variables in a SAS data set.

Program

The SAS system option SOURCE writes the programming statements to the SAS log.

options pagesize=40 linesize=80 nodate pageno=1 source;

libname health ’SAS-data-library’;

LIBRARY= specifies HEALTH as the procedure input library. NOLIST suppresses the directory
listing for the HEALTH data library.

proc datasets library=health nolist;

LABEL= adds a data set label to the data set GROUP. READ= assigns GREEN as the read
password. The password appears as Xs in the SAS log. SAS issues a warning message if you
specify a level of password protection on a SAS file that does not include alter protection.
SORTEDBY= specifies how the data are sorted.

modify group (label=’Test Subjects’ read=green sortedby=lname);

The INDEX CREATE statement creates the composite index VITAL on the variables BIRTH
and SALARY for the GROUP data set. NOMISS excludes all observations that have missing
values for BIRTH and SALARY from the index. UNIQUE specifies that the index is created only
if each observation has a unique combination of values for BIRTH and SALARY.

index create vital=(birth salary) / nomiss unique;

The INFORMAT and FORMAT statements assign an informat and format, respectively, to the
BIRTH variable.

The DATASETS Procedure 4 Example 4: Describing a SAS Data Set 399

informat birth date7.;
format birth date7.;

The LABEL statement assigns a label to the variable SALARY.

label salary=’current salary excluding bonus’;

The MODIFY statement names the data set to modify. The RENAME statement renames the
variable OXYGEN to INTAKE. The LABEL statement assigns a label to the variable INTAKE.

modify oxygen;
rename oxygen=intake;
label intake=’Intake Measurement’;

quit;

SAS Log

1 options pagesize=40 linesize=80 nodate pageno=1 source;
2
3 proc datasets library=health nolist;
4
5 modify group (label=’Test Subjects’ read=XXXXX sortedby=lname);
WARNING: The file HEALTH.GROUP.DATA is not ALTER protected. It could be

deleted or replaced without knowing the password.
6
7 index create vital=(birth salary) / nomiss unique;
NOTE: Composite index vital has been defined.
8
9 informat birth date7.;
10 format birth date7.;
11 label salary=’current salary excluding bonus’;
12
13 modify oxygen;
14 rename oxygen=intake;
NOTE: Renaming variable oxygen to intake.
15 label intake=’Intake Measurement’;
16 quit;

Example 4: Describing a SAS Data Set
Procedure features:

CONTENTS statement option:
DATA=

Other features:
SAS data set option:

READ=

400 Program 4 Chapter 14

This example shows the output from the CONTENTS statement for the GROUP data
set. The output shows the modifications made to the GROUP data set in Example 3 on
page 397.

Program

options pagesize=40 linesize=132 nodate pageno=1;

libname health ’SAS-data-library’;

LIBRARY= specifies HEALTH as the procedure input library. NOLIST suppresses the directory
listing for the HEALTH data library.

proc datasets library=health nolist;

DATA= specifies GROUP as the data set to describe. READ= gives read access to the GROUP
data set. OUT= creates the output data set GRPOUT, which appears in “The OUT= Data Set”
on page 385.

contents data=group(read=green) out=grpout;
title ’The Contents of the GROUP Data Set’;

run;

The DATASETS Procedure 4 Output 401

Output

(UNIX Environment)

The Contents of the GROUP Data Set 1

The DATASETS Procedure

Data Set Name: HEALTH.GROUP Observations: 148

Member Type: DATA Variables: 11

Engine: V8 Indexes: 1

Created: 13:24 Friday, January 29, 1999 Observation Length: 96

Last Modified: 13:34 Friday, January 29, 1999 Deleted Observations: 0

Protection: READ Compressed: NO

Data Set Type: Sorted: YES

Label: Test Subjects

-----Engine/Host Dependent Information-----

Data Set Page Size: 8192

Number of Data Set Pages: 4

First Data Page: 1

Max Obs per Page: 84

Obs in First Data Page: 62

Index File Page Size: 4096

Number of Index File Pages: 2

Number of Data Set Repairs: 0

File Name: Unix-pathname

Release Created: 8.00.00B

Host Created: HP-UX

Inode Number: Inode-number

Access Permission: rw-r--r--

Owner Name: UNIX-userid

File Size (bytes): 40960

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

9 BIRTH Num 8 8 DATE7. DATE7.

4 CITY Char 15 58 $. $.

3 FNAME Char 15 43 $. $.

402 Output 4 Chapter 14

The Contents of the GROUP Data Set 2

The DATASETS Procedure

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

10 HIRED Num 8 16 DATE7. DATE7.

11 HPHONE Char 12 79 $. $.

1 IDNUM Char 4 24 $. $.

7 JOBCODE Char 3 76 $. $.

2 LNAME Char 15 28 $. $.

8 SALARY Num 8 0 COMMA8. current salary excluding bonus

6 SEX Char 1 75 $. $.

5 STATE Char 2 73 $. $.

-----Alphabetic List of Indexes and Attributes-----

of

Unique Nomiss Unique

Index Option Option Values Variables

--

1 vital YES YES 148 BIRTH SALARY

-----Sort Information-----

Sortedby: LNAME

Validated: NO

Character Set: ASCII

The DATASETS Procedure 4 Program 403

Example 5: Concatenating Two SAS Data Sets
Procedure features:

APPEND statement options:
BASE=
DATA=
FORCE=

This example appends one data set to the end of another data set.

Input Data Sets

The BASE= data set, EXP.RESULTS.

The EXP.RESULTS Data Set 1

ID TREAT INITWT WT3MOS AGE

1 Other 166.28 146.98 35

2 Other 214.42 210.22 54

3 Other 172.46 159.42 33

5 Other 175.41 160.66 37

6 Other 173.13 169.40 20

7 Other 181.25 170.94 30

10 Other 239.83 214.48 48

11 Other 175.32 162.66 51

12 Other 227.01 211.06 29

13 Other 274.82 251.82 31

The DATA= data set, EXP.SUR, contains the variable WT6MOS, but the
EXP.RESULTS data set does not.

The EXP.SUR Data Set 2

id treat initwt wt3mos wt6mos age

14 surgery 203.60 169.78 143.88 38
17 surgery 171.52 150.33 123.18 42
18 surgery 207.46 155.22 . 41

Program

options pagesize=40 linesize=64 nodate pageno=1;

404 Output 4 Chapter 14

libname exp ’SAS-data-library’;

LIBRARY= specifies EXP as the procedure input library. NOLIST suppresses the directory
listing for the EXP library. The APPEND statement appends the DATA= data set, EXP.SUR, to
the BASE= data set, EXP.RESULTS. FORCE causes the APPEND statement to carry out the
append operation even though EXP.SUR has a variable that EXP.RESULTS does not. APPEND
does not add the WT6MOS variable to EXP.RESULTS.

proc datasets library=exp nolist;
append base=exp.results data=exp.sur force;

run;

PROC PRINT prints the data set.

proc print data=exp.results noobs;
title ’The EXP.RESULTS Data Set’;

run;

Output

Output 14.8

The EXP.RESULTS Data Set 2

ID TREAT INITWT WT3MOS AGE

1 Other 166.28 146.98 35
2 Other 214.42 210.22 54
3 Other 172.46 159.42 33
5 Other 175.41 160.66 37
6 Other 173.13 169.40 20
7 Other 181.25 170.94 30

10 Other 239.83 214.48 48
11 Other 175.32 162.66 51
12 Other 227.01 211.06 29
13 Other 274.82 251.82 31
14 surgery 203.60 169.78 38
17 surgery 171.52 150.33 42
18 surgery 207.46 155.22 41

Example 6: Aging SAS Data Sets

Procedure features:
AGE statement

This example shows how the AGE statement ages SAS files.

The DATASETS Procedure 4 SAS Log 405

Program

The SAS system option SOURCE writes the programming statements to the SAS log.

options pagesize=40 linesize=80 nodate pageno=1 source;

libname daily ’SAS-data-library’;

LIBRARY= specifies DAILY as the procedure input library. NOLIST suppresses the directory
listing for DAILY.

proc datasets library=daily nolist;

The AGE statement deletes the last SAS file in the list, DAY7, and then ages (or renames)
DAY6 to DAY7, DAY5 to DAY6, and so on, until it ages TODAY to DAY1.

age today day1-day7;
run;

SAS Log

6 options pagesize=40 linesize=80 nodate pageno=1 source;
7
8 proc datasets library=daily nolist;
9
10 age today day1-day7;
11 run;
NOTE: Deleting DAILY.DAY7 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY6 to DAILY.DAY7 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY5 to DAILY.DAY6 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY4 to DAILY.DAY5 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY3 to DAILY.DAY4 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY2 to DAILY.DAY3 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY1 to DAILY.DAY2 (memtype=DATA).
NOTE: Ageing the name DAILY.TODAY to DAILY.DAY1 (memtype=DATA).

406 SAS Log 4 Chapter 14

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Procedures Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 1729 pp.

SAS® Procedures Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–482–9
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

