
433

C H A P T E R

19
The FORMAT Procedure

Overview 433
Procedure Syntax 435

PROC FORMAT Statement 435

EXCLUDE Statement 437

INVALUE Statement 438

PICTURE Statement 441
SELECT Statement 449

VALUE Statement 450

Informat and Format Options 453

Specifying Values or Ranges 454

Concepts 455

Associating Informats and Formats with Variables 455
Tips 456

See Also 456

Storing Informats and Formats 456

Temporary Informats and Formats 457

Permanent Informats and Formats 457
Accessing Permanent Informats and Formats 457

Results 457

Output Control Data Set 458

Input Control Data Set 460

Procedure Output 461
Examples 463

Example 1: Creating a Picture Format 463

Example 2: Creating a Format for Character Values 465

Example 3: Writing a Format for Dates Using a Standard SAS Format 466

Example 4: Converting Raw Character Data to Numeric Values 468

Example 5: Creating a Format from a Data Set 470
Example 6: Printing the Description of Informats and Formats 472

Example 7: Retrieving a Permanent Format 474

Example 8: Writing Ranges for Character Strings 476

Example 9: Filling a Picture Format 479

Overview

The FORMAT procedure enables you to define your own informats and formats for
variables. In addition, you can print the contents of a catalog that contains informats or
formats, store descriptions of informats or formats in a SAS data set, and use a SAS
data set to create informats or formats.

434 Overview 4 Chapter 19

Informats determine how raw data values are read and stored. Formats determine
how variable values are printed. For simplicity, this section uses the terminology the
informat converts and the format prints.

Informats and formats tell the SAS System the data’s type (character or numeric)
and form (such as how many bytes it occupies; decimal placement for numbers; how to
handle leading, trailing, or embedded blanks and zeros; and so forth). The SAS System
provides informats and formats for reading and writing variables. For a thorough
description of informats and formats that SAS provides, see the sections on formats and
informats in SAS Language Reference: Dictionary.

With informats, you can

� convert a number to a character string (for example, convert 1 to YES)

� convert a character string to a different character string (for example, convert
’YES’ to ’OUI’)

� convert a character string to a number (for example, convert YES to 1)

� convert a number to another number (for example, convert 0 through 9 to 1, 10
through 100 to 2, and so forth.

With formats, you can

� print numeric values as character values (for example, print 1 as MALE and 2 as
FEMALE)

� print one character string as a different character string (for example, print YES as
OUI)

� print numeric values using a template (for example, print 9458763450 as
945-876-3450).

The following figure summarizes what occurs when you associate an informat and
format with a variable. The COMMAw.d informat and the DOLLARw.d format are
provided by SAS.

raw data value $1,544.32

converted value 1544.32

printed value $1,544.32

read with
COMMA9.2
informat

printed using
DOLLAR9.2
format

In the figure, SAS reads the raw data value that contains the dollar sign and comma.
The COMMA9.2 informat ignores the dollar sign and comma and converts the value to
1544.32. The DOLLAR9.2 format prints the value, adding the dollar sign and comma.
For more information about associating informats and formats with variables, see
“Associating Informats and Formats with Variables” on page 455.

The FORMAT Procedure 4 PROC FORMAT Statement 435

Procedure Syntax
Restriction: You cannot use a SELECT statement and an EXCLUDE statement within
the same PROC FORMAT step.
Reminder: You can also use appropriate global statements with this procedure. See
Chapter 2, "Fundamental Concepts for Using Base SAS Procedures," for a list.

PROC FORMAT <option(s)>;
EXCLUDE entry(s);
INVALUE <$>name <(informat-option(s))>

value-range-set(s);
PICTURE name <(format-option(s))>

value-range-set-1 <(picture-1-option(s))>
<…value-range-set-n <(picture-n-option(s))>>;

SELECT entry(s);
VALUE <$>name <(format-option(s))>

value-range-set(s);

To do this Use this statement

Exclude catalog entries from processing by the FMTLIB and
CNTLOUT= options

EXCLUDE

Create an informat for reading and converting raw data values INVALUE

Create a template for printing numbers PICTURE

Select catalog entries from processing by the FMTLIB and
CNTLOUT= options

SELECT

Create a format that specifies character strings to use to print
variable values

VALUE

PROC FORMAT Statement
Reminder: You can use data set options with the CNTLIN= and CNTLOUT= data set
options.See Chapter 2, "Fundamental Concepts for Using Base SAS Procedures," for a
list.

PROC FORMAT <option(s)>;

436 PROC FORMAT Statement 4 Chapter 19

To do this Use this option

Specify a SAS data set from which PROC FORMAT builds an
informat or format

CNTLIN=

Create a SAS data set that stores information about informats or
formats

CNTLOUT=

Print information about informats or formats FMTLIB

Specify a SAS catalog that will contain the informats or formats
that you are creating in the PROC FORMAT step

LIBRARY=

Specify the number of characters of the informatted or formatted
value that appear in PROC FORMAT output

MAXLABLEN=

Specify the number of characters of the start and end values that
appear in the PROC FORMAT output

MAXSELEN=

Prevent a new informat or format from replacing an existing one
of the same name

NOREPLACE

Print information about each format and informat on a separate
page

PAGE

Options

CNTLIN=input-control-SAS-data-set
specifies a SAS data set from which PROC FORMAT builds informats and formats.
CNTLIN= builds formats and informats without using a VALUE, PICTURE, or
INVALUE statement. If you specify a one-level name, the procedure searches only
the default data library (either the WORK data library or USER data library) for the
data set, regardless of whether you specify the LIBRARY= option.

Tip: A common source for an input control data set is the output from the
CNTLOUT= option of another PROC FORMAT step.

See also: “Input Control Data Set” on page 460

Featured in: Example 5 on page 470

CNTLOUT=output-control-SAS-data-set
creates a SAS data set that stores information about informats and formats that are
contained in the catalog specified in the LIBRARY= option.

If you are creating an informat or format in the same step that the CNTLOUT=
options appears, the informat or format that you are creating is included in the
CNTLOUT= data set.

If you specify a one-level name, the procedure stores the data set in the default
data library (either the WORK data library or the USER data library), regardless of
whether you specify the LIBRARY= option.

Tip: You can use an output control data set as an input control data set in
subsequent PROC FORMAT steps.

See also: “Output Control Data Set” on page 458

FMTLIB
prints information about all the informats and formats in the catalog that is specified
in the LIBRARY= option. To get information only about specific informats or formats,
subset the catalog using the SELECT or EXCLUDE statement.

Interaction: The PAGE option invokes FMTLIB.

The FORMAT Procedure 4 EXCLUDE Statement 437

Tip: If your output from FMTLIB is not formatted correctly, try increasing your
linesize.

Tip: If you use the SELECT or EXCLUDE statement and omit the FMTLIB and
CNTLOUT= options, the procedure invokes the FMTLIB option and you receive
FMTLIB option output.

Featured in: Example 6 on page 472

LIBRARY=libref<.catalog>
specifies a catalog to contain informats or formats you are creating in the current
PROC FORMAT step. The procedure stores these informats and formats in the
catalog you specify so that you can use them in subsequent SAS sessions or jobs.
Alias: LIB=
Default: WORK.FORMATS
Tip: SAS automatically searches LIBRARY.FORMATS. You may want to use the

LIBRARY libref for your format catalog.
See also: “Storing Informats and Formats” on page 456
Featured in: Example 1 on page 463

MAXLABLEN=number-of-characters
specifies the number of characters in the informatted or formatted value that you
want to appear in the CNTLOUT= data set or in the output of the FMTLIB option.
The FMTLIB option prints a maximum of 40 characters for the informatted or
formatted value.

MAXSELEN=number-of-characters
specifies the number of characters in the start and end values that you want to
appear in the CNTLOUT= data set or in the output of the FMTLIB option. The
FMTLIB option prints a maximum of 16 characters for start and end values.

NOREPLACE
prevents a new informat or format that you are creating from replacing an existing
informat or format of the same name. If you omit NOREPLACE, the procedure
warns you that the informat or format already exists and replaces it.

PAGE
prints information about each format and informat (that is, each entry) in the catalog
on a separate page.
Tip: The PAGE option activates the FMTLIB option.

EXCLUDE Statement

Excludes entries from processing by the FMTLIB and CNTLOUT= options.

Restriction: Only one EXCLUDE statement can appear in a PROC FORMAT step.
Restriction: You cannot use a SELECT statement and an EXCLUDE statement within
the same PROC FORMAT step.

EXCLUDE entry(s);

Required Arguments

438 INVALUE Statement 4 Chapter 19

entry(s)
specifies one or more catalog entries to exclude from processing. Catalog entry names
are the same as the name of the informat or format that they store. Because
informats and formats can have the same name, and because character and numeric
informats or formats can have the same name, you must use certain prefixes when
specifying informats and formats in the EXCLUDE statement. Follow these rules
when specifying entries in the EXCLUDE statement:

� Precede names of entries that contain character formats with a dollar sign ($).
� Precede names of entries that contain numeric informats with an at sign (@).
� Precede names of entries that contain character informats with an at sign and a

dollar sign (for example, @$entry-name).

Shortcuts to Specifying Names
You can use the colon (:) and hyphen (-) wildcard characters to exclude entries. For

example, the following EXCLUDE statement excludes all formats or informats that
begin with the letter a.

exclude a:;

In addition, the following EXCLUDE statement excludes all formats or informats
that occur alphabetically between apple and pear, inclusive:

exclude apple-pear;

FMTLIB Output
If you use the EXCLUDE statement without either FMTLIB or CNTLOUT= in the

PROC FORMAT statement, the procedure invokes FMTLIB.

INVALUE Statement

Creates an informat for reading and converting raw data values.

Featured in: Example 4 on page 468.
See also: The section on informats in SAS Language Reference: Dictionary for
documentation on informats supplied by SAS.

INVALUE <$>name <(informat-option(s))>
<value-range-set(s)>;

To do this Use this option

Specify the default length of the informat DEFAULT=

Specify a fuzz factor for matching values to a range FUZZ=

Specify a maximum length for the informat MAX=

Specify a minimum length for the informat MIN=

Store values or ranges in the order that you define them NOTSORTED

The FORMAT Procedure 4 INVALUE Statement 439

To do this Use this option

Left-justify all input strings before they are compared to ranges JUST

Uppercase all input strings before they are compared to ranges UPCASE

Required Arguments

name
names the informat you are creating. The name must be a SAS name up to seven
characters long, not ending in a number. If you are creating a character informat,
use a dollar sign ($) as the first character, with no more than six additional
characters. A user-defined informat name cannot be the same as an informat that is
supplied by SAS. Refer to the informat later by using the name followed by a period.
However, do not put a period after the informat name in the INVALUE statement.
Tip: When SAS prints messages referring to a user-written informat, the name is

prefixed by an at sign (@). When the informat is stored, the at sign is prefixed to
the name you specify for the informat, which is why you are limited to only seven
characters in the name. You need to use the at sign only when you are using the
name in an EXCLUDE or SELECT statement; do not prefix the name with an at
sign when you are associating the informat with a variable.

Options
The following options are common to the INVALUE, PICTURE, and VALUE

statements and are described in “Informat and Format Options” on page 453:
DEFAULT=length
FUZZ= fuzz-factor
MAX=length
MIN=length
NOTSORTED

In addition, you can use the following options:

JUST
left-justifies all input strings before they are compared to the ranges.

UPCASE
converts all raw data values to uppercase before they are compared to the possible
ranges. If you use UPCASE, make sure the values or ranges you specify are in
uppercase.

value-range-set(s)
specifies raw data and values that the raw data will become. The value-range-set(s)
can be one or more of the following:

value-or-range-1 <…, value-or-range-n>=informatted-value|[existing-informat]
The informat converts the raw data to the values of informatted-value on the right

side of the equal sign.

informatted-value
is the value you want the raw data in value-or-range to become. Use one of the
following forms for informatted-value:

’character-string’
is a character string up to 200 characters long. Typically, character-string
becomes the value of a character variable when you use the informat to convert

440 INVALUE Statement 4 Chapter 19

raw data. Use character-string for informatted-value only when you are creating
a character informat. If you omit the single quotation marks around
character-string, the INVALUE statement assumes the quotation marks are
there.

For hex literals, you can use up to 199 typed characters, or up to 98
represented characters at 2 hex characters per represented character.

number
is a number that becomes the informatted value. Typically, number becomes the
value of a numeric variable when you use the informat to convert raw data. Use
number for informatted-value when you are creating a numeric informat. The
maximum for number depends on the host operating environment.

ERROR
treats data values in the designated range as invalid data. SAS assigns a
missing value to the variable, prints the data line in the SAS log, and issues a
warning message.

SAME
prevents the informat from converting the raw data as any other value. For
example, the following GROUP. informat converts values 01 through 20 and
assigns the numbers 1 through 20 as the result. All other values are assigned a
missing value.

invalue group 01-20= _same_
other= .;

existing-informat
is an informat that is supplied by SAS or a user-defined informat. The informat
you are creating uses the existing informat to convert the raw data that match
value-or-range on the left side of the equals sign. If you use an existing informat,
enclose the informat name in square brackets, for example, [date9.] or with
parentheses and vertical bars, for example, (|date9.|). Do not enclose the name of
the existing informat in single quotation marks.

value-or-range
See “Specifying Values or Ranges” on page 454.
Consider the following examples:
� The $GENDER. character informat converts the raw data values F and M to 1

and 2:

invalue $gender ’F’=’1’
’M’=’2’;

The dollar sign prefix indicates that the informat converts character data.
� When you are creating numeric informats, you can specify character strings or

numbers for value-or-range. For example, the TRIAL. informat converts any
character string that sorts between A and M to the number 1 and any character
string that sorts between N and Z to the number 2. The informat treats the
unquoted range 1–3000 as a numeric range, which includes all numeric values
between 1 and 3000:

invalue trial ’A’-’M’=1
’N’-’Z’=2

1-3000=3;

If you use a numeric informat to convert character strings that do not
correspond to any values or ranges, you receive an error message.

� The CHECK. informat uses _ERROR_ and _SAME_ to convert values of 1
through 4 and 99. All other values are invalid:

The FORMAT Procedure 4 PICTURE Statement 441

invalue check 1-4=_same_
99=.

other=_error_;

PICTURE Statement

Creates a template for printing numbers.

Featured in: Example 1 on page 463 and Example 9 on page 479

See also: The section on formats in SAS Language Reference: Dictionary for
documentation on formats supplied by SAS.

PICTURE name <(format-option(s))>
<value-range-set-1 <(picture-1-option(s))>
<…value-range-set-n <(picture-n-option(s))>>>;

To do this Use this option

Control the attributes of the format

Specify a fuzz factor for matching values to a range DEFAULT=

Specify a fuzz factor for matching values to a range FUZZ=

Specify a maximum length for the format MAX=

Specify a minimum length for the format MIN=

Specify multiple pictures for a given value or range and for
overlapping ranges

MULTILABEL

Store values or ranges in the order that you define them NOTSORTED

Round the value to the nearest integer before formatting ROUND

Control the attributes of each picture in the format

Specify a character that completes the formatted value FILL=

Specify a number to multiply the variable’s value by before it
is formatted

MULTIPLIER=

Specify that numbers are message characters rather than digit
selectors

NOEDIT

Specify a character prefix for the formatted value PREFIX=

Required Arguments

name
names the format you are creating. The name must be a SAS name up to eight
characters long, not ending in a number. A user-defined format cannot be the name
of a format supplied by SAS. Refer to the format later by using the name followed by

442 PICTURE Statement 4 Chapter 19

a period. However, do not put a period after the format name in the PICTURE
statement.

Options
The following options are common to the INVALUE, PICTURE, and VALUE

statements and are described in “Informat and Format Options” on page 453:
DEFAULT= length

FUZZ= fuzz-factor

MAX=length

MIN=length

NOTSORTED

In addition, you can use the following arguments:

DATATYPE=DATE | TIME | DATETIME
specifies that you can use directives in the picture as a template to format date, time,
or datetime values. See the definition of directives on page 445 for a list.

DECSEP=’character’
specifies the separator character for the fractional part of a number.
Default: . (a decimal point)

DIG3SEP=’character’
specifies the three-digit separator character for a number.
Default: , (a comma)

FILL=’character’
specifies a character that completes the formatted value. If the number of significant
digits is less than the length of the format, the format must complete, or fill, the
formatted value:

� The format uses character to fill the formatted value if you specify zeros as digit
selectors.

� The format uses zeros to fill the formatted value if you specify nonzero digit
selectors. The FILL= option has no effect.

If the picture includes other characters, such as a comma, which appear to the left
of the digit selector that maps to the last significant digit placed, the characters are
replaced by the fill character or leading zeros.
Default: ’ ’(a blank)
Interaction: If you use the FILL= and PREFIX= options in the same picture, the

format places the prefix and then the fill characters.

Featured in: Example 9 on page 479

MULTILABEL
allows the assignment of multiple labels or external values to internal values. The
following PICTURE statements show the two uses of the MULTILABEL option. In
each case, number formats are assigned as labels. The first PICTURE statement
assigns multiple labels to a single internal value. Multiple labels may also be
assigned to a single range of internal values. The second PICTURE statement
assigns labels to overlapping ranges of internal values. The MULTILABEL option
allows the assignment of multiple labels to the overlapped internal values.

picture abc (multilabel)
1000=’9,999’
1000=’9999’;

The FORMAT Procedure 4 PICTURE Statement 443

picture overlap (multilabel)
/* without decimals */
0-999=’999’
1000-9999=’9,999’

/* with decimals */
0-9=’9.999’
10-99=’99.99’
100-999=’999.9’;

Only multilabel-enabled procedures such as PROC MEANS, PROC SUMMARY, and
PROC TABULATE can use multiple labels. All other procedures recognize only the
primary label. The primary label for a given entry is the external value that is
assigned to the first internal value or range of internal values that matches or
contains the entry when all internal values are ordered sequentially. For example, in
the first PICTURE statement, the primary label for 1000 is 1,000 because the format
9,999 is the first external value that is assigned to 1000. The secondary label for
1000 is 1000, based on the 9999 format.

In the second PICTURE statement, the primary label for 5 is 5.000 based on the
9.999 format that is assigned to the range 0–9 because 0–9 is sequentially the first
range of internal values containing 5. The secondary label for 5 is 005 because the
range 0–999 occurs in sequence after the range 0–9. Consider carefully when you
assign multiple labels to an internal value. Unless you use the NOTSORTED option
when you assign variables, the SAS System stores the variables in sorted order. This
may produce unexpected results when variables with the MULTILABEL format are
processed. For example, in the second PICTURE statement, the primary label for 15
is 015, and the secondary label for 15 is 15.00 because the range 0–999 occurs in
sequence before the range 10–99. If you want the primary label for 15 to use the
99.99 format you may want to change the range 10–99 to 0–99 in the PICTURE
statement. The range 0–99 occurs in sequence before the range 0–999 and will
produce the desired result.

MULTIPLIER=n
specifies a number that the variable’s value is to be multiplied by before it is
formatted. For example, the following PICTURE statement creates the MILLION.
format, which formats the variable value 1600000 as $1.6M:

picture million low-high=’00.0M’
(prefix=’$’ mult=.00001);

Alias: MULT=

Default: 10n , where n is the number of digits after the first decimal point in the
picture. For example, suppose your data contain a value 123.456 and you want to
print it using a picture of ’999.999’. The format multiplies 123.456 by 103 to obtain
a value of 123456, which results in a formatted value of 123.456.

Example: Example 1 on page 463

NOEDIT
specifies that numbers are message characters rather than digit selectors; that is, the
format prints the numbers as they appear in the picture. For example, the following
PICTURE statement creates the MILES. format, which formats any variable value
greater than 1000 as >1000 miles:

picture miles 1-1000=’0000’
1000<-high=’>1000 miles’(noedit);

444 PICTURE Statement 4 Chapter 19

PREFIX=’prefix’
specifies a character prefix to place in front of the value’s first significant digit. You
must use zero digit selectors or the prefix will not be used.

The picture must be wide enough to contain both the value and the prefix. If the
picture is not wide enough to contain both the value and the prefix, the format
truncates or omits the prefix. Typical uses for PREFIX= are printing leading dollar
signs and minus signs. For example, the PAY. format prints the variable value 25500
as $25,500.00:

picture pay low-high=’000,009.99’
(prefix=’$’);

Default: no prefix

Interaction: If you use the FILL= and PREFIX= options in the same picture, the
format places the prefix and then the fill characters.

Featured in: Example 1 on page 463 and Example 9 on page 479

ROUND
rounds the value to the nearest integer before formatting. Without the ROUND
option, the format multiplies the variable value by the multiplier, truncates the
decimal portion (if any), and prints the result according to the template you define.
With the ROUND option, the format multiplies the variable value by the multiplier,
rounds that result to the nearest integer, and then formats the value according to the
template.

Tip: Note that the ROUND option rounds a value of .5 to the next highest integer.

value-range-set
specifies one or more variable values and a template for printing those values. The
value-range-set is the following:

value-or-range-1 <…, value-or-range-n>=’picture’

picture
specifies a template for formatting values of numeric variables. The picture is a
sequence of characters in single quotation marks. The maximum length for a
picture is 40 characters. Pictures are specified with three types of characters: digit
selectors, message characters, and directives. You can have a maximum of 16 digit
selectors in a picture.

Digit selectors are numeric characters (0 through 9) that define positions for
numeric values. A picture format with nonzero digit selectors prints any leading
zeros in variable values; picture digit selectors of 0 do not print leading zeros in
variable values. If the picture format contains digit selectors, a digit selector must
be the first character in the picture.

Note: This chapter uses 9’s as nonzero digit selectors. 4
Message characters are nonnumeric characters that print as specified in the

picture. The following PICTURE statement contains both digit selectors (99) and
message characters (illegal day value). Because the DAYS. format has nonzero
digit selectors, values are printed with leading zeros. The special range OTHER
prints the message characters for any values that do not fall into the specified
range (1 through 31).

picture days 01-31=’99’
other=’99-illegal day value’;

For example, the values 02 and 67 print as

The FORMAT Procedure 4 PICTURE Statement 445

02
67-illegal day value

Directives are special characters that you can use in the picture to format date,
time, or datetime values.
Restriction: You can only use directives when you specify the DATATYPE= option

in the PICTURE statement.
The permitted directives are

%a Locale’s abbreviated weekday name

%A Locale’s full weekday name

%b Locale’s abbreviated month name

%B Locale’s full month name

%d Day of the month as a decimal number (1–31), with no leading
zero

%H Hour (24–hour clock) as a decimal number (0–23), with no
leading zero

%I Hour (12–hour clock) as a decimal number (1–12), with no
leading zero

%j Day of the year as a decimal number (1–366), with no leading
zero

%m Month as a decimal number (1–12), with no leading zero

%M Minute as a decimal number (0–59), with no leading zero

%p Locale’s equivalent of either AM or PM

%S Second as a decimal number (0–59), with no leading zero

%U Week number of the year (Sunday as the first day of the week)
as a decimal number (0,53), with no leading zero

%w Weekday as a decimal number (1= Sunday, 7)

%y Year without century as a decimal number (0–99), with no
leading zero

%Y Year with century as a decimal number

%% %
Any directive that generates numbers can produce a leading zero, if desired, by

adding a 0 before the directive. This applies to %d, %H, %I, %j, %m, %M, %S, %U,
and %y. For example, if you specify %y in the picture, then 2001 would be
formatted as ’1’, but if you specify %0y, then 2001 would be formatted as ’01’.

value-or-range
See “Specifying Values or Ranges” on page 454.

Building a Picture Format: Step by Step
This section shows how to write a picture format for formatting numbers with

leading zeros. In the SAMPLE data set, the default printing of the variable Amount
has leading zeros on numbers between 1 and −1:

options nodate pageno=1 linesize=64
pagesize=60;

data sample;

446 PICTURE Statement 4 Chapter 19

input Amount;
datalines;

-2.05
-.05
-.01

0
.09
.54
.55

6.6
14.63
;

Default Printing of the Variable Amount 1

Obs Amount

1 -2.05
2 -0.05
3 -0.01
4 0.00
5 0.09
6 0.54
7 0.55
8 6.60
9 14.63

The following PROC FORMAT step creates the NOZEROS. format, which eliminates
leading zeros in the formatted values:

libname library ’SAS-data-library’;

proc format library=library;
picture nozeros

low - -1 = ’00.00’
(prefix=’-’)

-1 <-< 0 = ’99’
(prefix=’-.’ mult=100)

0 -< 1 = ’99’
(prefix=’.’ mult=100)

1 - high = ’00.00’;
run;

Table 19.1 on page 447 explains how one value from each range is formatted. Figure
19.1 on page 448 provides an illustration of each step. The circled numbers in the figure
correspond to the step numbers in the table.

The FORMAT Procedure 4 PICTURE Statement 447

Table 19.1 Building a Picture Format

Step Rule In this example

1 Determine into which range the value falls and
use that picture.

In the second range, the exclusion operator <
appears on both sides of the hyphen and excludes −1
and 0 from the range.

2 Take the absolute value of the numeric value. Because the absolute value is used, you need a
separate range and picture for the negative
numbers in order to prefix the minus sign.

3 Multiply the number by the MULT= value. If
you do not specify the MULT= option, the
PICTURE statement uses the default. The
default is 10

n
, where n is the number of digit

selectors to the right of the decimal1 in the
picture. (Step 6 discusses digit selectors further.)

Specifying a MULT= value is necessary for numbers
between 0 and 1 and numbers between 0 and −1
because no decimal appears in the pictures for those
ranges. Because MULT= defaults to 1, truncation of
the significant digits results without a MULT=
value specified. (Truncation is explained in the next
step.) For the two ranges that do not have MULT=
values specified, the MULT= value defaults to 100
because the corresponding picture has two digit
selectors to the right of the decimal. After the
MULT= value is applied, all significant digits are
moved to the left of the decimal.

4 Truncate the number after the decimal. If the
ROUND option is in effect, the format rounds
the number after the decimal to the next
highest integer if the number after the decimal
is greater than or equal to .5.

Because the example uses MULT= values that
ensured that all of the significant digits were moved
to the left of the decimal, no significant digits are
lost. The zeros are truncated.

5 Turn the number into a character string. If the
number is shorter than the picture, the length
of the character string is equal to the number of
digit selectors in the picture. Pad the character
string with leading zeros. (The results are
equivalent to using the Zw. format. Zw. is
explained in the section on SAS formats in SAS
Language Reference: Dictionary.

The numbers 205, 5, and 660 become the character
strings 0205, 05, and 0660, respectively. Because
each picture is longer than the numbers, the format
adds a leading zero to each value. The format does
not add leading zeros to the number 55 because the
corresponding picture only has two digit selectors.

448 PICTURE Statement 4 Chapter 19

Step Rule In this example

6 Apply the character string to the picture. The
format only maps the rightmost n characters in
the character string, where n is the number of
digit selectors in the picture. Thus, it is
important to make sure that the picture has
enough digit selectors to accommodate the
characters in the string. After the format takes
the rightmost n characters, it then maps those
characters to the picture from left to right.
Choosing a zero or nonzero digit selector is
important if the character string contains
leading zeros. If one of the leading zeros in the
character string maps to a nonzero digit
selector, it and all subsequent leading zeros
become part of the formatted value. If all of the
leading zeros map to zero digit selectors, none of
the leading zeros become part of the formatted
value; the format replaces the leading zeros in
the character string with blanks.2

The leading zero is dropped from each of the
character strings 0205 and 0660 because the
leading zero maps to a zero digit selector in the
picture.

7 Prefix any characters that are specified in the
PREFIX= option. You need the PREFIX= option
because when a picture contains any digit
selectors, the picture must begin with a digit
selector. Thus, you cannot begin your picture
with a decimal point, minus sign, or any other
character that is not a digit selector.

The PREFIX= option reclaims the decimal point and
the negative sign, as shown with the formatted
values -.05 and .55.

1 A decimal in a PREFIX= option is not part of the picture.
2 You can use the FILL= option to specify a character other than a blank to become part of the formatted value.

Figure 19.1 Formatting One Value in Each Range

range

picture

absolute value

MULT=

truncation

character string

template

prefix

formatted result

-2.05

low - -1

00.00

2.05

2.05 X 102=
205.000

205

0205

prefix = '-'

-2.05

2 0 5.

-.05

-1 <-< 0

99

.05

.05 X 100=
5.000

5

05

prefix = '-.'

-.05

0 5

.55

0 -< 1

99

.55

.55 X 100=
55.000

55

55

prefix = '.'

.55

5 5

6.6

1 - high

00.00

6.6

6.6 X 102=
660.000

660

0660

none

6.60

6 6 0.

➊

➊

➋

➌

➍

➎

➏

➐

The FORMAT Procedure 4 SELECT Statement 449

The following PROC PRINT step associates the NOZEROS. format with the
AMOUNT variable in SAMPLE:

proc print data=sample noobs;
format amount nozeros.;
title ’Formatting the Variable Amount’;
title2 ’with the NOZEROS. Format’;

run;

Formatting the Variable Amount 1
with the NOZEROS. Format

Amount

-2.05
-.05
-.01

.00

.09

.54

.55
6.60

14.63

CAUTION:
The picture must be wide enough for the prefix and the numbers. In this example, if the
value −45.00 were formatted with NOZEROS. the result would be 45.00 because it
falls into the first range, low - −1, and the picture for that range is not wide enough
to accommodate the prefixed minus sign and the number. 4

Specifying No Picture
This PICTURE statement creates a picture-name format that has no picture:

picture picture-name;

SELECT Statement

Selects entries from processing by the FMTLIB and CNTLOUT= options.

Restriction: Only one SELECT statement can appear in a PROC FORMAT step.
Restriction: You cannot use a SELECT statement and an EXCLUDE statement within
the same PROC FORMAT step.
Featured in: Example 6 on page 472.

SELECT entry(s);

Required Arguments

450 VALUE Statement 4 Chapter 19

entry(s)
specifies one or more catalog entries for processing. Catalog entry names are the
same as the name of the informat or format that they store. Because informats and
formats can have the same name, and because character and numeric informats or
formats can have the same name, you must use certain prefixes when specifying
informats and formats in the SELECT statement. Follow these rules when specifying
entries in the SELECT statement:

� Precede names of entries that contain character formats with a dollar sign ($).

� Precede names of entries that contain numeric informats with an at sign (@).

� Precede names of entries that contain character informats with an at sign and a
dollar sign, for example, @$entry-name.

Shortcuts to Specifying Names
You can use the colon (:) and hyphen (-) wildcard characters to select entries. For

example, the following SELECT statement selects all formats or informats that begin
with the letter a.

select a:;

In addition, the following SELECT statement selects all formats or informats that
occur alphabetically between apple and pear, inclusive:

select apple-pear;

FMTLIB Output
If you use the SELECT statement without either FMTLIB or CNTLOUT= in the

PROC FORMAT statement, the procedure invokes FMTLIB.

VALUE Statement

Creates a format that specifies character strings to use to print variable values.

Featured in: Example 2 on page 465.

See also: The chapter on formats in SAS Language Reference: Dictionary for
documentation on formats supplied by SAS.

VALUE <$>name <(format-option(s))>
<value-range-set(s)>;

To do this Use this option

Specify the default length of the format DEFAULT=

Specify a fuzz factor for matching values to a range FUZZ=

Specify a maximum length for the format MAX=

Specify a minimum length for the format MIN=

The FORMAT Procedure 4 VALUE Statement 451

To do this Use this option

Specify multiple values for a given range, or for overlapping ranges MULTILABEL

Store values or ranges in the order that you define them. NOTSORTED

Required Arguments

name
names the format you are creating. The name must be a SAS name up to eight
characters long, not ending in a number. Character format names must have a dollar
sign ($) as the first character and no more than seven additional characters. A
user-defined format cannot be the name of a format supplied by SAS. Refer to the
format later by using the name followed by a period. However, do not put a period
after the format name in the VALUE statement.

Options
The following options are common to the INVALUE, PICTURE, and VALUE

statements and are described in “Informat and Format Options” on page 453:
DEFAULT=length
FUZZ= fuzz-factor
MAX=length
MIN=length
NOTSORTED

In addition, you can use the following options:

MULTILABEL
allows the assignment of multiple labels or external values to internal values. The
following VALUE statements show the two uses of the MULTILABEL option. The
first VALUE statement assigns multiple labels to a single internal value. Multiple
labels may also be assigned to a single range of internal values. The second VALUE
statement assigns labels to overlapping ranges of internal values. The MULTILABEL
option allows the assignment of multiple labels to the overlapped internal values.

value one (multilabel)
1=’ONE’
1=’UNO’
1=’UN’

value agefmt (multilabel)
15-29=’below 30 years’
30-50=’between 30 and 50’
51-high=’over 50 years’
15-19=’15 to 19’
20-25=’20 to 25’
25-39=’25 to 39’
40-55=’40 to 55’
56-high=’56 and above’;

Only multilabel-enabled procedures such as PROC MEANS, PROC SUMMARY, and
PROC TABULATE can use multiple labels. All other procedures recognize only the
primary label. The primary label for a given entry is the external value that is
assigned to the first internal value or range of internal values that matches or

452 VALUE Statement 4 Chapter 19

contains the entry when all internal values are ordered sequentially. For example, in
the first VALUE statement, the primary label for 1 is ONE because ONE is the first
external value that is assigned to 1. The secondary labels for 1 are UNO and UN. In
the second VALUE statement, the primary label for 33 is 25 to 39 because the
range 25–39 is sequentially the first range of internal values that contains 33. The
secondary label for 33 is between 30 and 50 because the range 30–50 occurs in
sequence after the range 25–39.

value-range-set(s)
specifies one or more variable values and a character string or an existing format.
The value-range-set(s) can be one or more of the following:

value-or-range-1 <…, value-or-range-n>=’formatted-value’|[existing-format]
The variable values on the left side of the equals sign print as the character string

on the right side of the equals sign.

formatted-value
specifies a character string that becomes the printed value of the variable value
that appears on the left side of the equals sign. Formatted values are always
character strings, regardless of whether you are creating a character or numeric
format.

Formatted values can be up to 200 characters. For hex literals, you can use up
to 199 typed characters, or up to 98 represented characters at 2 hex characters per
represented character. Some procedures, however, use only the first 8 or 16
characters of a formatted value.

If you omit the single quotation marks around formatted-value, the VALUE
statement assumes them to be there.

If a formatted value contains a single quotation mark, write it as two separate
single quotation marks:

value sect 1=’Smith’’s class’
2=’Leung’’s class’;

Tip: Formatting numeric variables does not preclude your using those variables in
arithmetic operations. SAS uses stored values for arithmetic operations.

existing-format
specifies a format supplied by SAS or an existing user-defined format. The format
you are creating uses the existing format to convert the raw data that match
value-or-range on the left side of the equals sign.

If you use an existing format, enclose the format name in square brackets, for
example, [date9.] or with parentheses and vertical bars, for example, (|date9.|).
Do not enclose the name of the existing format in single quotation marks.

Using an existing format can be thought of as nesting formats. A nested level of
one means that if you are creating the format A with the format B as a formatted
value, the procedure only has to use one existing format to create A.

Tip: Avoid nesting formats more than one level. The resource requirements
increase dramatically with each additional level.

value-or-range
For details on how to specify value-or-range, see “Specifying Values or Ranges” on
page 454.
Consider the following examples:

� The $STATE. character format prints the postal code for selected states:

value $state ’Delaware’=’DE’
’Florida’=’FL’

The FORMAT Procedure 4 Informat and Format Options 453

’Ohio’=’OH’;

The variable value Delaware prints as DE, the variable value Florida prints
as FL, and the variable value Ohio prints as OH. Note that the $STATE. format
begins with a dollar sign.

� The ANSWER. numeric format, writes the values 1 and 2 as yes and no:

value answer 1=’yes’
2=’no’;

Specifying No Ranges
This VALUE statement creates a format-name format that has no ranges:

value format-name;

Informat and Format Options

This section discusses options that are valid in the INVALUE, PICTURE, and
VALUE statements. These options appear in parentheses after the informat or format
name. They affect the entire informat or format that you are creating.

DEFAULT=length
specifies the default length of the informat or format. The value for DEFAULT=
becomes the length of the informat or format if you do not give a specific length
when you associate the informat or format with a variable.

The default length of a format is the length of the longest formatted value.
The default length of an informat depends on whether the informat is character

or numeric. The default length of character informats is the length of the longest
informatted value. The default of a numeric informat is 12 if you have numeric
data to the left of the equals sign. If you have a quoted string to the left of the
equals sign, the default length is the length of the longest string.

FUZZ=fuzz-factor
specifies a fuzz factor for matching values to a range. If a number does not match
or fall in a range exactly but comes within fuzz-factor, the format considers it a
match. For example, the following VALUE statement creates the LEVELS. format,
which uses a fuzz factor of .2:

value levels (fuzz=.2) 1=’A’
2=’B’
3=’C’;

FUZZ=.2 means that if a variable value falls within .2 of a value on either end
of the range, the format uses the corresponding formatted value to print the
variable value. So the LEVELS. format formats the value 2.1 as B.

If a variable value matches one value or range without the fuzz factor, and also
matches another value or range with the fuzz factor, the format assigns the
variable value to the value or range that it matched without the fuzz factor.

Default: 1E−12 for numeric formats and 0 for character formats.

Tip: Specify FUZZ=0 to save storage space when you use the VALUE statement
to create numeric formats.

Tip: A value that is excluded from a range using the < operator does not receive
the formatted value, even if it falls into the range when you use the fuzz factor.

454 Specifying Values or Ranges 4 Chapter 19

MAX=length
specifies a maximum length for the informat or format. When you associate the
format with a variable, you cannot specify a width greater than the MAX= value.
Default: 40
Range: 1–40

MIN=length
specifies a minimum length for the informat or format.
Default: 1
Range: 1–40

NOTSORTED
stores values or ranges for informats or formats in the order that you define them.
If you do not specify NOTSORTED, values or ranges are stored in sorted order by
default. Use NOTSORTED if

� you know the likelihood of certain ranges occurring, and you want your
informat or format to search those ranges first to save processing time.

� you want to preserve the order that you define ranges when you print a
description of the informat or format using the FMTLIB option.

� you want to preserve the order that you define ranges when you use the
ORDER=DATA option and the PRELOADFMT option to analyze class
variables in PROC MEANS, PROC SUMMARY, or PROC TABULATE.

Tip: SAS automatically sets the NOTSORTED option when you use the CPORT
and the CIMPORT procedures to transport informats or formats between host
platforms with different standard collating sequences. This can occur when you
transport informats or formats between ASCII and EBCDIC host platforms.

Specifying Values or Ranges
As the syntax of the INVALUE, PICTURE, and VALUE statements indicates, you

must specify values as value-range-sets. On the left side of the equals sign you specify
the values that you want to convert to other values. On the right side of the equals
sign, you specify the values that you want the values on the left side to become. This
section discusses the different forms you can use for value-or-range, which represents
the values on the left side of the equals sign. For details on how to specify values for the
right side of the equals sign, see "Required Arguments" for the appropriate statement.

The INVALUE, PICTURE, and VALUE statements accept numeric values on the left
side of the equals sign. INVALUE and VALUE also accept character strings on the left
side of the equals sign.

As the syntax shows, you can have multiple occurrences of value-or-range in each
value-range-set, with commas separating the occurrences. Each occurrence of
value-or-range is either one of the following:

value
a single value, for example, 12 or’CA’. Enclose character values in single
quotation marks; if you omit the quotes around value, PROC FORMAT assumes
the quotes to be there.

You can use the keyword OTHER as a single value. OTHER matches all values
that do not match any other value or range.

range
a list of values, for example, 12–68 or ’A’-’Z’. For ranges with character strings,
be sure to enclose each string in single quotation marks. For example, if you want

The FORMAT Procedure 4 Associating Informats and Formats with Variables 455

a range that includes character strings from A to Z, specify the range as ’A’-’Z’,
with single quotes around the A and around the Z.

If you specify ’A-Z’, the procedure interprets it as a three-character string with
A as the first character, a hyphen (-) as the second character, and a Z as the third
character.

If you omit the quotes, the procedure assumes quotes around each string. For
example, if you specify the range abc-zzz, the procedure interprets it as
’abc’-’zzz’.

You can use LOW or HIGH as one value in a range, and you can use the range
LOW-HIGH to encompass all values. For example, these are valid ranges:

low-’ZZ’
35-high
low-high

You can use the less than (<) symbol to exclude values from ranges. If you are
excluding the first value in a range, put the < after the value. If you are excluding
the last value in a range, put the < before the value. For example, the following
range does not include 0:

0<-100

Likewise, the following range does not include 100:

0-<100

The following ranges show how to avoid overlapping ranges using noninclusive
notation:

’AA’-<’AJ’=1 ’AJ’-’AZ’=2

AJ is part of the second range, not the first.
If you overlap values in ranges, PROC FORMAT assigns the value to the first

range. For example, in the following ranges, the value AJ is part of the first range:

’AA’-’AJ’=1 ’AJ’-’AZ’=2

Each value-or-range can be up to 200 characters. If value-or-range has more than 200
characters, the procedure truncates the value after it processes the first 200 characters.

Note: You do not have to account for every value on the left side of the equals sign.
Those values are converted using the default informat or format. For example, the
following VALUE statement creates the TEMP. format, which prints all occurrences of
98.6 as NORMAL:

value temp 98.6=’NORMAL’;

If the value were 96.9, the printed result would be 96.9. 4

Concepts

Associating Informats and Formats with Variables
Table 19.2 on page 456 summarizes the different methods for associating informats

and formats with variables.

456 Storing Informats and Formats 4 Chapter 19

Table 19.2 Associating Informats and Formats with Variables

Step Informats Formats

In a DATA step Use the ATTRIB or INFORMAT statement
to permanently associate an informat with
a variable. Use the INPUT function or
INPUT statement to associate the informat
with the variable only for the duration of
the DATA step.

Use the ATTRIB or FORMAT statement to
permanently associate a format with a
variable. Use the PUT function or PUT
statement to associate the format with the
variable only for the duration of the DATA
step.

In a PROC step The ATTRIB and INFORMAT statements
are valid in base SAS procedures. However,
in base SAS software, typically you do not
assign informats in PROC steps because the
data have already been read into SAS
variables.

Use the ATTRIB statement or the FORMAT
statement to associate formats with
variables. If you use either statement in a
procedure that produces an output data set,
the format is permanently associated with
the variable in the output data set. If you use
either statement in a procedure that does not
produce an output data set, the statement
associates the format with the variable only
for the duration of the PROC step.

Tips

� Do not confuse the FORMAT statement with the FORMAT procedure. The
FORMAT and INFORMAT statements associate an existing format or informat
(either standard SAS or user-defined) with one or more variables. PROC FORMAT
creates user-defined formats or informats.

� It is often useful to assign informats in the FSEDIT procedure in SAS/FSP
software and in the BUILD procedure in SAS/AF software.

See Also

� For complete documentation on the ATTRIB, INFORMAT, and FORMAT
statements, see the section on statements in SAS Language Reference: Dictionary.

� For complete documentation on the INPUT and PUT functions, see the section on
functions in SAS Language Reference: Dictionary.

� See “Formatted Values” on page 59 for more information and examples of using
formats in base SAS procedures.

Storing Informats and Formats
PROC FORMAT stores user-written informats and formats as entries in SAS

catalogs.* You use the LIBRARY= option in the PROC FORMAT statement to indicate
the catalog. The name of the catalog entry is the name of the format or informat. The
entry types are

� FORMAT for numeric formats

* Catalogs are a type of SAS file and reside in a SAS data library. If you are unfamiliar with the types of SAS files or the SAS
data library structure, see the section on SAS files in SAS Language Reference: Dictionary.

The FORMAT Procedure 4 Results 457

� FORMATC for character formats
� INFMT for numeric informats
� INFMTC for character informats.

Temporary Informats and Formats
Informats and formats are temporary when you do not specify the LIBRARY= option

in the PROC FORMAT statement. If you omit the LIBRARY= option, PROC FORMAT
stores the informats and formats in the temporary catalog WORK.FORMATS. You can
retrieve temporary informats and formats only in the same SAS session or job in which
they are created. To retrieve a temporary format or informat, simply include the name
of the format or informat in the appropriate SAS statement. The SAS System
automatically looks for the format or informat in the WORK.FORMATS catalog.

Permanent Informats and Formats
If you want to use a format or informat that is created in one SAS job or session in a

subsequent job or session, you must permanently store the format or informat in a SAS
catalog.

You can create permanent informats and formats by using the LIBRARY= option in
the PROC FORMAT statement. See the discussion of the LIBRARY= option in “PROC
FORMAT Statement” on page 435.

Accessing Permanent Informats and Formats
After you have permanently stored an informat or format, you can use it in later SAS

sessions or jobs. If you associate permanent informats or formats with variables in a
later SAS session or job, SAS must be able to access the informats and formats. Thus,
you must use a LIBNAME statement to assign a libref to the library that stores the
catalog that stores the informats or formats.

SAS always searches the WORK.FORMATS and the LIBRARY.FORMATS catalogs
for any user-defined informats or formats that you associate with variables. If you want
to specify a search order for catalogs, or if you want to specify additional catalogs for
SAS to search, use the SAS system option FMTSEARCH=. For further information on
FMTSEARCH=, see the section on SAS system options in SAS Language Reference:
Dictionary. For an example that uses the LIBRARY= and FMTSEARCH= options
together, see Example 8 on page 476.

CAUTION:
Serious complications arise if you do not save informats and formats that are permanently
associated with variables in a data set. 4

If you reference an informat or format that the SAS System cannot find, you receive
an error message and processing stops unless the SAS system option NOFMTERR is in
effect. When NOFMTERR is in effect, the SAS System uses the w. or $w. default
format to print values for variables with formats it cannot find. For example, to use
NOFMTERR, use this OPTIONS statement:

options nofmterr;

Refer to the section on SAS system options in SAS Language Reference: Dictionary
for more information on NOFMTERR.

Results

458 Output Control Data Set 4 Chapter 19

Output Control Data Set
The output control data set contains information that describes informats or formats.

You can use output control data sets, or a set of observations from an output control data
set, as an input control data set in a subsequent PROC FORMAT step. You create an
output control data set with the CNTLOUT= option in the PROC FORMAT statement.

Output control data sets contain an observation for every value or range in each of
the informats or formats in the LIBRARY= catalog. The data set consists of variables
that give either global information about each format and informat created in the
PROC FORMAT step or specific information about each range and value.

The variables in the output control data set are

DEFAULT
numeric variable that indicates the default length for format or informat

END
character variable that gives the range’s ending value

EEXCL
character variable that indicates whether the range’s ending value is excluded.
Values are

Y the range’s ending value is excluded

N the range’s ending value is not excluded

FILL
numeric variable whose value is the value of the FILL= option

FMTNAME
character variable whose value is the format or informat name

FUZZ
numeric variable whose value is the value of the FUZZ= option

HLO
character variable that contains range information about the format or informat in
the form of eight different letters that can appear in any combination. Values are

F standard SAS format or informat used for formatted value or
informatted value

H range’s ending value is HIGH

I numeric informat range (informat defined with unquoted
numeric range)

L range’s starting value is LOW

N format or informat has no ranges, including no OTHER= range

O range is OTHER

R ROUND option is in effect

S NOTSORTED option is in effect

LABEL
character variable whose value is the informatted or formatted value or the name
of a standard SAS informat or format

LENGTH
numeric variable whose value is the value of the LENGTH= option

The FORMAT Procedure 4 Output Control Data Set 459

MAX
numeric variable whose value is the value of the MAX= option

MIN
numeric variable whose value is the value of the MIN= option

MULT
numeric variable whose value is the value of the MULT= option

NOEDIT
character variable whose value indicates whether the NOEDIT option is in effect.
Values are

1 NOEDIT option is in effect

0 NOEDIT option is not in effect

PREFIX
character variable whose value is the value of the PREFIX= option

SEXCL
character variable that indicates whether the range’s starting value is excluded.
Values are

Y the range’s starting value is excluded

N the range’s starting value is not excluded

START
character variable that gives the range’s starting value

TYPE
character variable that indicates the type of format. Possible values are

C character format

I numeric informat

J character informat

N numeric format (excluding pictures)

P picture format

Output 19.1 on page 459 shows an output control data set that contains information
on all the informats and formats created in “Examples” on page 463.

460 Input Control Data Set 4 Chapter 19

Output 19.1 Output Control Data Set for PROC FORMAT Examples

An Output Control Data Set 1

D L

F D D A A

M E L P N D I T N

T S L F E R O S E E G A G

N T A A N F E M F E T E E C 3 T U

O A A E B M M U G U F U I D Y X X H S S Y A

b M R N E I A L T Z I L L I P C C L E E P G

s E T D L N X T H Z X T L T E L L O P P E E

1 BENEFIT LOW 7304 WORDDATE20. 1 40 20 20 1E-12 0.00 0 N N N LF

2 BENEFIT 7305 HIGH ** Not Eligible ** 1 40 20 20 1E-12 0.00 0 N N N H

3 NOZEROS LOW -1 00.00 1 40 5 5 1E-12 - 100.00 0 P N N L . ,

4 NOZEROS -1 0 99 1 40 5 5 1E-12 -. 100.00 0 P Y Y . ,

5 NOZEROS 0 1 99 1 40 5 5 1E-12 . 100.00 0 P N Y . ,

6 NOZEROS 1 HIGH 00.00 1 40 5 5 1E-12 100.00 0 P N N H . ,

7 PTSFRMT 0 3 0% 1 40 3 3 1E-12 0.00 0 N N N

8 PTSFRMT 4 6 3% 1 40 3 3 1E-12 0.00 0 N N N

9 PTSFRMT 7 8 6% 1 40 3 3 1E-12 0.00 0 N N N

10 PTSFRMT 9 10 8% 1 40 3 3 1E-12 0.00 0 N N N

11 PTSFRMT 11 HIGH 10% 1 40 3 3 1E-12 0.00 0 N N N H

12 USCURR LOW HIGH 000,000 1 40 7 7 1E-12 $ 1.61 0 P N N LH . ,

13 CITY BR1 BR1 Birmingham UK 1 40 14 14 0 0.00 0 C N N

14 CITY BR2 BR2 Plymouth UK 1 40 14 14 0 0.00 0 C N N

15 CITY BR3 BR3 York UK 1 40 14 14 0 0.00 0 C N N

16 CITY US1 US1 Denver USA 1 40 14 14 0 0.00 0 C N N

17 CITY US2 US2 Miami USA 1 40 14 14 0 0.00 0 C N N

18 CITY **OTHER** **OTHER** INCORRECT CODE 1 40 14 14 0 0.00 0 C N N O

19 EVAL C C 1 1 40 1 1 0 0.00 0 I N N

20 EVAL E E 2 1 40 1 1 0 0.00 0 I N N

21 EVAL N N 0 1 40 1 1 0 0.00 0 I N N

22 EVAL O O 4 1 40 1 1 0 0.00 0 I N N

23 EVAL S S 3 1 40 1 1 0 0.00 0 I N N

Input Control Data Set
You specify an input control data set with the CNTLIN= option in the PROC

FORMAT statement. The FORMAT procedure uses the data in the input control data
set to construct informats and formats. Thus, you can create informats and formats
without writing INVALUE, PICTURE, or VALUE statements.

The input control data set must have these characteristics:
� For both numeric and character formats, the data set must contain the variables

FMTNAME, START, and LABEL, which are described in “Output Control Data
Set” on page 458. The remaining variables are not required.

� If you are creating a character format, a character informat, or a PICTURE
statement format, you must specify a TYPE variable with the value that indicates
the type of informat or format you are creating.

� If range values are to be noninclusive, the variables SEXCL and EEXCL must
each have a value of Y. Inclusion is the default.

You can create more than one format from an input control data set if the
observations for each format are grouped together.

You can use a VALUE, INVALUE, or PICTURE statement in the same PROC
FORMAT step with the CNTLIN= option. If the VALUE, INVALUE, or PICTURE
statement is creating the same informat or format that the CNTLIN= option is
creating, the VALUE, INVALUE, or PICTURE statement creates the informat or format
and the CNTLIN= data set is not used. You can, however, create an informat or format

The FORMAT Procedure 4 Procedure Output 461

with VALUE, INVALUE, or PICTURE and create a different informat or format with
CNTLIN= in the same PROC FORMAT step.

For an example featuring an input control data set, see Example 5 on page 470.

Procedure Output
The FORMAT procedure prints output only when you specify the FMTLIB option or

the PAGE option in the PROC FORMAT statement. The printed output is a table for
each format or informat entry in the catalog specified in the LIBRARY= option. The
output also contains global information and the specifics of each value or range defined
for the format or informat.

The FMTLIB output shown in Output 19.2 on page 461 contains a description of the
NOZEROS. format, which is created in “Building a Picture Format: Step by Step” on
page 445, and the EVAL. informat, which is created in Example 4 on page 468.

Output 19.2 Output from PROC FORMAT with the FMTLIB Option

FMTLIB Output for the NOZEROS. Format and the 1
EVAL. Informat

--
| FORMAT NAME: NOZEROS LENGTH: 5 NUMBER OF VALUES: 4 |
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 5 FUZZ: STD
START
----------------+----------------+--
LOW
-1< 0<99 P-. F M100
0
1
--

--
| INFORMAT NAME: @EVAL LENGTH: 1 NUMBER OF VALUES: 5 |
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 1 FUZZ: 0
START
----------------+----------------+--
C
E
N
O
S
--

The fields are described below in the order they appear in the output, from left to right:

INFORMAT NAME
FORMAT NAME

the name of the informat or format. Informat names begin with an at-sign (@).

462 Procedure Output 4 Chapter 19

LENGTH
the length of the informat or format. PROC FORMAT determines the length in the
following ways:

� For character informats, the value for LENGTH is the length of the longest
raw data value on the left side of the equals sign.

� For numeric informats
� LENGTH is 12 if all values on the left side of the equals sign are

numeric.
� LENGTH is the same as the longest raw data value on the left side of

the equal sign.
� For formats, the value for LENGTH is the length of the longest value on the

right side of the equal sign.
In the output for @EVAL., the length is 1 because 1 is the length of the longest

raw data value on the left side of the equals sign.
In the output for NOZEROS., the LENGTH is 5 because the longest picture is 5

characters.

NUMBER OF VALUES
the number of values or ranges associated with the informat or format.
NOZEROS. has 4 ranges, EVAL. has 5.

MIN LENGTH
the minimum length of the informat or format. The value for MIN LENGTH is 1
unless you specify a different minimum length with the MIN= option.

MAX LENGTH
the maximum length of the informat or format. The value for MAX LENGTH is 40
unless you specify a different maximum length with the MAX= option.

DEFAULT LENGTH
the length of the longest value in the INVALUE or LABEL field, or the value of
the DEFAULT= option.

FUZZ
the fuzz factor. For informats, FUZZ always is 0. For formats, the value for this
field is STD if you do not use the FUZZ= option. STD signifies the default fuzz
value.

START
the beginning value of a range. FMTLIB prints only the first 16 characters of a
value in the START and END columns.

END
the ending value of a range. The exclusion sign (<) appears after the values in
START and END, if the value is excluded from the range.

INVALUE
LABEL

INVALUE appears only for informats and contains the informatted values.
LABEL appears only for formats and contains either the formatted value or
picture. The release of the SAS System and the date on which the format or
informat was created are in parentheses after INVALUE or LABEL.

For picture formats, such as NOZEROS., the LABEL section contains the
PREFIX=, FILL=, and MULT= values. To note these values, FMTLIB prints the
letters P, F, and M to represent each option, followed by the value. For example, in
the LABEL section, P-. indicates that the prefix value is a dash followed by a
period.

FMTLIB prints only 40 characters in the LABEL column.

The FORMAT Procedure 4 Example 1: Creating a Picture Format 463

Examples
Several examples in this section use the PROCLIB.STAFF data set. In addition,

many of the informats and formats that are created in these examples are stored in
LIBRARY.FORMATS. The output data set shown in “Output Control Data Set” on page
458 contains a description of these informats and the formats.

libname proclib ’SAS-data-library’;

PROCLIB.STAFF contains information about a small subset of employees who work for a
corporation that has sites in the U.S. and Britain. The data contain the name, identification
number, salary (in British pounds), location, and date of hire for each employee. The FORMAT
statement in the DATA step assigns the standard SAS format DATE7. to the variable HireDate.

data proclib.staff;
input Name & $16. IdNumber $ Salary

Site $ HireDate date7.;
format hiredate date7.;
datalines;

Capalleti, Jimmy 2355 21163 BR1 30JAN79
Chen, Len 5889 20976 BR1 18JUN76
Davis, Brad 3878 19571 BR2 20MAR84
Leung, Brenda 4409 34321 BR2 18SEP74
Martinez, Maria 3985 49056 US2 10JAN93
Orfali, Philip 0740 50092 US2 16FEB83
Patel, Mary 2398 35182 BR3 02FEB90
Smith, Robert 5162 40100 BR5 15APR86
Sorrell, Joseph 4421 38760 US1 19JUN93
Zook, Carla 7385 22988 BR3 18DEC91
;

Example 1: Creating a Picture Format
Procedure features:

PROC FORMAT statement options:
LIBRARY=

PICTURE statement options:
MULT=
PREFIX=

LIBRARY libref
LOW and HIGH keywords

Data set:
PROCLIB.STAFF on page 463.

This example uses a PICTURE statement to create a format that prints the values
for SALARY in the data set PROCLIB.STAFF in U.S. dollars.

464 Program 4 Chapter 19

Program

The LIBNAME statement specifies a SAS data library to store permanent informats and
formats. The libref LIBRARY is useful because SAS automatically searches for informats and
formats in any library referenced with the LIBRARY libref.

libname proclib ’SAS-data-library-1 ’;
libname library ’SAS-data-library-2’;

options nodate pageno=1 linesize=80 pagesize=40;

LIBRARY=LIBRARY stores the USCURR. format in the catalog LIBRARY.FORMATS.

proc format library=library;

The format USCURR. uses the MULT= value of 1.61 and a prefix of $. Any number you format
with the USCURR. format will be multiplied by 1.61 and then applied to the picture. The
picture contains six digit selectors: five for the salary and one for the dollar sign prefix.
LOW-HIGH ensures that all values are formatted.

picture uscurr low-high=’000,000’ (mult=1.61 prefix=’$’);
run;

PROC PRINT prints PROCLIB.STAFF. The FORMAT statement associates the USCURR.
format with Salary for the duration of this procedure step only. The LABEL statement
associates the label with Salary for the duration of this step only.

proc print data=proclib.staff noobs label;
label salary=’Salary in U.S. Dollars’;
format salary uscurr.;
title ’PROCLIB.STAFF with a Format for the Variable Salary’;

run;

The FORMAT Procedure 4 Program 465

Output

PROCLIB.STAFF with a Format for the Variable Salary 1

Salary in
Id U.S. Hire

Name Number Dollars Site Date

Capalleti, Jimmy 2355 $34,072 BR1 30JAN79
Chen, Len 5889 $33,771 BR1 18JUN76
Davis, Brad 3878 $31,509 BR2 20MAR84
Leung, Brenda 4409 $55,256 BR2 18SEP74
Martinez, Maria 3985 $78,980 US2 10JAN93
Orfali, Philip 0740 $80,648 US2 16FEB83
Patel, Mary 2398 $56,643 BR3 02FEB90
Smith, Robert 5162 $64,561 BR5 15APR86
Sorrell, Joseph 4421 $62,403 US1 19JUN93
Zook, Carla 7385 $37,010 BR3 18DEC91

Example 2: Creating a Format for Character Values
Procedure features:

VALUE statement
OTHER keyword

Data set:
PROCLIB.STAFF on page 463.

Format: USCURR on page 464.

This example uses a VALUE statement to create a character format that prints a
value of a character variable as a different character string.

Program

The LIBNAME statement specifies a SAS data library to store permanent informats and
formats. The libref LIBRARY is useful because SAS automatically searches for informats and
formats in any library referenced with the LIBRARY libref.

libname proclib ’SAS-data-library-1’;
libname library ’SAS-data-library-2’;

options nodate pageno=1 linesize=80 pagesize=40;

LIBRARY=LIBRARY stores the $CITY. format in the catalog LIBRARY.FORMATS.

proc format library=library;

466 Output 4 Chapter 19

The $CITY. format converts each of the codes BR1, BR2, and so on, to the name of the
corresponding city. The keyword OTHER formats values in the data set that do not match any
values on the left side of the equals sign as INCORRECT CODE.

value $city ’BR1’=’Birmingham UK’
’BR2’=’Plymouth UK’
’BR3’=’York UK’
’US1’=’Denver USA’
’US2’=’Miami USA’
other=’INCORRECT CODE’;

run;

PROC PRINT prints PROCLIB.STAFF. The LABEL statement associates the label with Salary.
The FORMAT statement associates the USCURR. format (created in Example 1 on page 463)
with Salary and the $CITY. format with Site. The labels and formats are not permanently
assigned.

proc print data=proclib.staff noobs label;
label salary=’Salary in U.S. Dollars’;
format salary uscurr. site $city.;
title ’PROCLIB.STAFF with a Format for the Variables’;
title2 ’Salary and Site’;

run;

Output

PROCLIB.STAFF with a Format for the Variables 1
Salary and Site

Salary in
Id U.S. Hire

Name Number Dollars Site Date

Capalleti, Jimmy 2355 $34,072 Birmingham UK 30JAN79
Chen, Len 5889 $33,771 Birmingham UK 18JUN76
Davis, Brad 3878 $31,509 Plymouth UK 20MAR84
Leung, Brenda 4409 $55,256 Plymouth UK 18SEP74
Martinez, Maria 3985 $78,980 Miami USA 10JAN93
Orfali, Philip 0740 $80,648 Miami USA 16FEB83
Patel, Mary 2398 $56,643 York UK 02FEB90
Smith, Robert 5162 $64,561 INCORRECT CODE 15APR86
Sorrell, Joseph 4421 $62,403 Denver USA 19JUN93
Zook, Carla 7385 $37,010 York UK 18DEC91

Example 3: Writing a Format for Dates Using a Standard SAS Format

Procedure features:
VALUE statement:

HIGH keyword
Data set:

The FORMAT Procedure 4 Program 467

PROCLIB.STAFF on page 463.
Formats:

USCURR. on page 464 and $CITY. on page 466.

This example uses an existing format that is supplied by SAS as a formatted value.
Tasks include
� creating a numeric format

� nesting formats
� writing a format using a standard SAS format
� formatting dates.

Program

libname proclib ’SAS-data-library-1’;
libname library ’SAS-data-library-2’;

options nodate pageno=1 linesize=80 pagesize=40;

LIBRARY=LIBRARY stores the BENEFIT. format in the catalog LIBRARY.FORMATS.

proc format library=library;

The BENEFIT. format differentiates between the employees who were hired on or before
31DEC79 and those who were hired after that date. Employees hired on or before 31DEC79 are
eligible for a benefits package, those hired after are not. The first range in BENEFIT. uses the
LOW keyword and the SAS date constant ’31DEC79’D to include all variable values up to and
including December 31, 1979. For values that fall into this range, the format uses the
WORDDATEw. format. WORDDATEw. is a format supplied by SAS.*

value benefit low-’31DEC79’d=[worddate20.]

The second range in BENEFIT. uses the SAS date constant ’01JAN80’D and the keyword HIGH
to include all variable values from January 1, 1980, to the most recent date. Values that fall into
this range receive ** Not Eligible ** as a formatted value.

’01JAN80’d-high=’ ** Not Eligible **’;
run;

PROC PRINT prints PROCLIB.STAFF. The FORMAT statement associates the USCURR.
format (created in Example 1 on page 463) with Salary, the $CITY. format (created in Example
2 on page 465) with Site, and the BENEFIT. format with HireDate.

* For more information on SAS date constants, see the section on dates, times, and intervals in SAS Language Reference:
Concepts. For complete documentation on WORDDATEw., see the section on formats in SAS Language Reference: Dictionary.

468 Output 4 Chapter 19

proc print data=proclib.staff noobs label;
label salary=’Salary in U.S. Dollars’;
format salary uscurr. site $city. hiredate benefit.;
title ’PROCLIB.STAFF with a Format for the Variables’;
title2 ’Salary, Site, and HireDate’;

run;

Output

PROCLIB.STAFF with a Format for the Variables 1
Salary, Site, and HireDate

Salary in
Id U.S.

Name Number Dollars Site HireDate

Capalleti, Jimmy 2355 $34,072 Birmingham UK January 30, 1979
Chen, Len 5889 $33,771 Birmingham UK June 18, 1976
Davis, Brad 3878 $31,509 Plymouth UK ** Not Eligible **
Leung, Brenda 4409 $55,256 Plymouth UK September 18, 1974
Martinez, Maria 3985 $78,980 Miami USA ** Not Eligible **
Orfali, Philip 0740 $80,648 Miami USA ** Not Eligible **
Patel, Mary 2398 $56,643 York UK ** Not Eligible **
Smith, Robert 5162 $64,561 INCORRECT CODE ** Not Eligible **
Sorrell, Joseph 4421 $62,403 Denver USA ** Not Eligible **
Zook, Carla 7385 $37,010 York UK ** Not Eligible **

Example 4: Converting Raw Character Data to Numeric Values
Procedure feature:

INVALUE statement

This example uses an INVALUE statement to create a numeric informat that
converts numeric and character raw data to numeric data.

Program

libname proclib ’SAS-data-library-1’;
libname library ’SAS-data-library-2’;

options nodate pageno=1 linesize=64 pagesize=40;

LIBRARY=LIBRARY stores the EVAL. informat in the catalog LIBRARY.FORMATS.

proc format library=library;

The FORMAT Procedure 4 Program 469

The INVALUE statement creates the numeric informat EVAL., which converts the letters to
their numeric equivalents. The letters O (Outstanding), S (Superior), E (Excellent), C
(Commendable), and N (None) correspond to the numbers 4, 3, 2, 1, and 0, respectively.

invalue eval ’O’=4
’S’=3
’E’=2
’C’=1
’N’=0;

run;

The PROCLIB.POINTS data set includes a unique four-character identification number
(EmployeeId) and bonus evaluations for each employee for each quarter of the year (Q1–Q4). In
the raw data, performance ratings are noted with numbers and letters. The EVAL. informat
converts the value O to 4, the value S to 3, and so on. The raw data values 0 through 4 are
read as themselves because they are not referenced in the definition of the informat. Converting
the letter values to numbers makes it possible to calculate the total number of bonus points for
each employee for the year. TotalPoints is the total number of bonus points.

data proclib.points;
input EmployeeId $ (Q1-Q4) (eval.,+1);
TotalPoints=sum(of q1-q4);
datalines;

2355 S O O S
5889 2 2 2 2
3878 C E E E
4409 0 1 1 1
3985 3 3 3 2
0740 S E E S
2398 E E C C
5162 C C C E
4421 3 2 2 2
7385 C C C N
;

PROC PRINT prints PROCLIB.POINTS.

proc print data=proclib.points noobs;
title ’The PROCLIB.POINTS Data Set’;

run;

470 Output 4 Chapter 19

Output

The PROCLIB.POINTS Data Set 1

Employee Total
Id Q1 Q2 Q3 Q4 Points

2355 3 4 4 3 14
5889 2 2 2 2 8
3878 1 2 2 2 7
4409 0 1 1 1 3
3985 3 3 3 2 11
0740 3 2 2 3 10
2398 2 2 1 1 6
5162 1 1 1 2 5
4421 3 2 2 2 9
7385 1 1 1 0 3

Example 5: Creating a Format from a Data Set
Procedure features:

PROC FORMAT statement option:
CNTLIN=

Input Control Data Set
Data sets:

PROCLIB.POINTS on page 469.

This example shows how to create a format from a SAS data set.
Tasks include
� creating a format from an input control data set
� creating an input control data set from an existing SAS data set.

Program

libname proclib ’SAS-data-library-1’;
libname library ’SAS-data-library-2’;

options nodate pageno=1 linesize=80 pagesize=60;

Each observation in the PROCLIB.SCALE data set contains a range for the format. AMOUNT
contains a percentage that will be used as the formatted value in the format.

data proclib.scale;
input begin $ 1-2 end $ 5-8 amount $ 10-12;
datalines;

0 3 0%
4 6 3%

The FORMAT Procedure 4 Program 471

7 8 6%
9 10 8%
11 16 10%
;

The DATA step creates the CTRL data set from PROCLIB.SCALE. RENAME= renames BEGIN
and AMOUNT as START and LABEL, respectively. The END= option specifies a variable whose
value is an end-of-file flag.

data ctrl(rename=(begin=start amount=label));
set proclib.scale end=last;

The RETAIN statement creates the variables FMTNAME and TYPE with fixed values. The
RETAIN statement is more efficient than an assignment statement in this case. RETAIN
retains the value of FMTNAME and TYPE in the program data vector and eliminates the need
for the value to be written on every iteration of the DATA step. FMTNAME specifies the name
of the format that the input control data set creates. The TYPE variable specifies that the input
control data set will create a numeric format.

retain fmtname ’ptsfrmt’ type ’n’;

The IF and ELSE statements create the HLO variable. The IF statement executes only if the
DATA step is writing the last observation. HLO receives a value of h for the last observation in
the data set. The value h indicates that the ending value of the range is HIGH. HLO has
missing values for all other observations.

if last then hlo=’h’;
else hlo=’ ’;

run;

PROC PRINT prints the control data set, CTRL.

proc print data=ctrl noobs;
title ’The CTRL Data Set’;

run;

LIBRARY=LIBRARY stores the format that is created in the PROC FORMAT step in the
catalog LIBRARY.FORMATS. CNTLIN= creates the format PTSFRMT. from the input control
data set, CTRL.

proc format library=library cntlin=ctrl;
run;

PROC REPORT prints PROCLIB.POINTS and associates the PTSFRMT. format with the
TotalPoints variable. The column that contains the formatted values of TotalPoints is using the
alias Pctage. Using an alias enables you to print a variable twice, once with a format and once
with the default format. See Chapter 32, “The REPORT Procedure,” on page 859 for more
information on PROC REPORT.

472 Output 4 Chapter 19

proc report data=proclib.points nowd colwidth=12;
column employeeid totalpoints totalpoints=Pctage;
define pctage / format=ptsfrmt10. ’Percentage’;
title ’The Percentage of Salary For Calculating Bonus’;

run;

Output

PROC PRINT output

The CTRL Data Set 1

start end label fmtname type hlo

0 3 0% ptsfrmt n
4 6 3% ptsfrmt n
7 8 6% ptsfrmt n
9 10 8% ptsfrmt n
11 16 10% ptsfrmt n h

PROC REPORT output

The Percentage of Salary For Calculating Bonus 1

Employee
Id TotalPoints Percentage
2355 14 10%
5889 8 6%
3878 7 6%
4409 3 0%
3985 11 10%
0740 10 8%
2398 6 3%
5162 5 3%
4421 9 8%
7385 3 0%

Example 6: Printing the Description of Informats and Formats

Procedure features:
PROC FORMAT statement option:

FMTLIB
SELECT statement

Format:
NOZEROS on page 446.

Informat:
EVAL. on page 469.

The FORMAT Procedure 4 Program 473

This example illustrates how to print a description of an informat and a format. The
description shows the values that are input and output.

Program

libname library ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=60;

FMTLIB prints a description of EVAL. and NOZEROS. LIBRARY=LIBRARY points to the
LIBRARY.FORMATS catalog, which contains EVAL. and NOZEROS.

proc format library=library fmtlib;

The SELECT statement selects the EVAL. informat and the NOZEROS. format, which are
created in previous examples. The at-sign (@) in front of EVAL indicates that EVAL. is an
informat.

select @eval nozeros;
title ’FMTLIB Output for the NOZEROS. Format and the’;
title2 ’EVAL. Informat’;

run;

474 Output 4 Chapter 19

Output

The output is described in “Procedure Output” on page 461.

FMTLIB Output for the NOZEROS. Format and the 1
EVAL. Informat

--
| FORMAT NAME: NOZEROS LENGTH: 5 NUMBER OF VALUES: 4 |
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 5 FUZZ: STD
START
----------------+----------------+--
LOW
-1< 0<99 P-. F M100
0
1
--

--
| INFORMAT NAME: @EVAL LENGTH: 1 NUMBER OF VALUES: 5 |
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 1 FUZZ: 0
START
----------------+----------------+--
C
E
N
O
S
--

Example 7: Retrieving a Permanent Format
Procedure features:

PROC FORMAT statement options:
LIBRARY=

Other features:
FMTSEARCH= system option

Data sets:
SAMPLE on page 445.

This example uses the LIBRARY= option and the FMTSEARCH= system option to
store and retrieve a format stored in a catalog other than WORK.FORMATS or
LIBRARY.FORMATS.

Program

libname proclib ’SAS-data-library’;

The FORMAT Procedure 4 Program 475

options nodate pageno=1 linesize=64 pagesize=60;

LIBRARY= stores the NOZEROS. format in the PROCLIB.FORMATS catalog.

proc format library=proclib;

The PICTURE statement creates the NOZEROS. format. NOZEROS. is explained in “Building a
Picture Format: Step by Step” on page 445.

picture nozeros
low - -1 = ’00.00’ (prefix=’-’)

-1 <-< 0 = ’99’ (prefix=’-.’ mult=100)
0 -< 1 = ’99’ (prefix=’.’ mult=100)
1 - high = ’00.00’;

run;

476 Output 4 Chapter 19

The FMTSEARCH= system option adds the PROCLIB.FORMATS catalog to the search path
that the SAS System uses to find user-defined formats. The FMTSEARCH= system option
requires only a libref. FMTSEARCH= assumes the catalog name FORMATS if no catalog name
appears. Without the FMTSEARCH= option, SAS would not find the NOZEROS. format.*

options fmtsearch=(proclib);

PROC PRINT prints the SAMPLE data set. The FORMAT statement associates the NOZEROS.
format with the Amount variable.

proc print data=sample;
format amount nozeros.;
title1 ’Retrieving the NOZEROS. Format from PROCLIB.FORMATS’;
title2 ’The SAMPLE Data Set’;

run;

Output

Retrieving the NOZEROS. Format from PROCLIB.FORMATS 1
The SAMPLE Data Set

Obs Amount

1 -2.05
2 -.05
3 -.01
4 .00
5 .09
6 .54
7 .55
8 6.60
9 14.63

Example 8: Writing Ranges for Character Strings
Data sets:

PROCLIB.STAFF on page 463.

This example creates a format and shows how to use ranges with character strings.

Program

* For complete documentation on the FMTSEARCH= system option, see the section on SAS system options in SAS Language
Reference: Dictionary.

The FORMAT Procedure 4 Program 477

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=40;

The DATA step creates the TRAIN data set from the PROCLIB.STAFF data set, which was
created earlier in “Examples” on page 463.

data train;
set proclib.staff(keep=name idnumber);

run;

PROC PRINT prints TRAIN without a format.

proc print data=train noobs;
title ’The TRAIN Data Set without a Format’;

run;

Because the LIBRARY= option does not appear, the format is stored in WORK.FORMATS and is
available only for the current SAS session.

proc format;

The VALUE statement creates the $SKILL. format, which prints each employee’s identification
number and the skills test they have been assigned. Employees must take either TEST A, TEST
B, or TEST C, depending on their last name. The exclusion operator (<) excludes the last value
in the range. Thus, the first range includes employees whose last name begins with any letter
between A and D, and the second range includes employees whose last name begins with any
letter between E and M. The tilde (~) in the last range is necessary to include an entire string
that begins with the letter Z.

value $skill ’a’-<’e’,’A’-<’E’=’Test A’
’e’-<’m’,’E’-<’M’=’Test B’
’m’-’z~’,’M’-’Z~’=’Test C’;

run;

PROC REPORT prints TRAIN. The FORMAT= option in the DEFINE statement associates
$SKILL. with the Name variable. The column that contains the formatted values of Name is
using the alias Test. Using an alias enables you to print a variable twice, once with a format
and once with the default format. See Chapter 32, “The REPORT Procedure,” on page 859for
more information on PROC REPORT.

proc report data=train nowd;
column name name=test idnumber;
define test / display format=$skill. ’Test’;
title ’Test Assignment for Each Employee’;

run;

478 Output 4 Chapter 19

Output

PROC PRINT output

The TRAIN Data Set without a Format 1

Zook, Carla Test C Id
Name Number

Capalleti, Jimmy 2355
Chen, Len 5889
Davis, Brad 3878
Leung, Brenda 4409
Martinez, Maria 3985
Orfali, Philip 0740
Patel, Mary 2398
Smith, Robert 5162
Sorrell, Joseph 4421
Zook, Carla 7385

The FORMAT Procedure 4 Program 479

PROC REPORT output

Test Assignment for Each Employee 1

Name Test IdNumber
Capalleti, Jimmy Test A 2355
Chen, Len Test A 5889
Davis, Brad Test A 3878
Leung, Brenda Test B 4409
Martinez, Maria Test C 3985
Orfali, Philip Test C 0740
Patel, Mary Test C 2398
Smith, Robert Test C 5162
Sorrell, Joseph Test C 4421
Zook, Carla Test C 7385

Example 9: Filling a Picture Format

Procedure features:
PICTURE statement options:

FILL=
PREFIX=

This example

� prefixes the formatted value with a specified character

� fills the leading blanks with a specified character

� shows the interaction between the FILL= and PREFIX= options.

Program

options nodate pageno=1 linesize=64 pagesize=40;

The PAY data set contains the monthly salary for each employee.

data pay;
input Name $ MonthlySalary;
datalines;

Liu 1259.45
Lars 1289.33
Kim 1439.02
Wendy 1675.21
Alex 1623.73
;

480 Output 4 Chapter 19

When FILL= and PREFIX= appear in the same picture, the format places the prefix and then the
fill characters. The SALARY. format fills the picture with the fill character because the picture
has zeros as digit selectors. The leftmost comma in the picture is replaced by the fill character.

proc format;
picture salary low-high=’00,000,000.00’ (fill=’*’ prefix=’$’);

run;

PROC PRINT prints the PAY data set. The FORMAT statement temporarily associates the
SALARY. format with the variable MonthlySalary.

proc print data=pay noobs;
format monthlysalary salary.;
title ’Printing Salaries for a Check’;

run;

Output

Printing Salaries for a Check 1

Name MonthlySalary

Liu ****$1,259.45
Lars ****$1,289.33
Kim ****$1,439.02
Wendy ****$1,675.21
Alex ****$1,623.73

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Procedures Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 1729 pp.

SAS® Procedures Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–482–9
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

