
611

C H A P T E R

23
The IMPORT Procedure

Overview 611
Procedure Syntax 611

PROC IMPORT Statement 612

Data Source Statements 613

Examples 617

Example 1: Importing a Delimited External File 617
Example 2: Importing an Excel Spreadsheet 620

Example 3: Importing a Microsoft Access Table 621

Overview
The IMPORT procedure reads data from an external data source and writes it to a

SAS data set. External data sources can include DBMS tables, PC files, spreadsheets,
and delimited external files (which are files containing columns of data values that are
separated by a delimiter such as a blank or a comma).

Once you invoke PROC IMPORT, the procedure reads the input file and writes the
data to a SAS data set, with the SAS variables defined based on the input records.
PROC IMPORT imports the data by one of the following methods:

� generated DATA step code
� generated SAS/ACCESS code
� translation engines.

You control the results with options and statements that are specific to the input data
source. PROC IMPORT produces the specified output SAS data set and writes
information regarding the import to the SAS log. In the log, you see the DATA step or
the SAS/ACCESS code generated by PROC IMPORT. If a translation engine is used,
then no code is submitted.

PROC IMPORT is available on the following hosts:
� OS/2
� UNIX
� OpenVMS
� Windows 95
� Windows NT
� Windows 98

Procedure Syntax
PROC IMPORT

612 PROC IMPORT Statement 4 Chapter 23

DATAFILE=“filename” | TABLE=“tablename”
OUT=SAS-data-set
<DBMS=identifier><REPLACE>;

<data-source-statements>;

PROC IMPORT Statement
Featured in: All examples

PROC IMPORT
DATAFILE=“filename” | TABLE=“tablename”
OUT=SAS-data-set
<DBMS=identifier><REPLACE>;

Required Arguments

DATAFILE=”filename”
specifies the complete path and filename of the input PC file, spreadsheet, or
delimited external file. If the name does not include special characters (such as the
backslash in a path), lowercase characters, or spaces, you can omit the quotes.

Featured in: Example 1 on page 617 and Example 2 on page 620

TABLE=“tablename”
specifies the table name of the input DBMS table. If the name does not include
special characters (such as question marks), lowercase characters, or spaces, you can
omit the quotes. Note that the DBMS table name may be case-sensitive.

Requirement: When you import a DBMS table, you must specify the DBMS=
option.

Featured in: Example 3 on page 621

OUT=SAS-data-set
identifies the output SAS data set with either a one- or two-level SAS name (library
and member name). If the specified SAS data set does not exist, PROC IMPORT
creates it. If you specify a one-level name, PROC IMPORT uses the WORK library.
Featured in: All examples

Options

DBMS=identifier
specifies the type of data to import. For example, DBMS=DBF specifies to import a
dBASE file. For PC files, spreadsheets, and delimited external files, you do not have
to specify DBMS= if the filename specified with DATAFILE= contains a valid
extension so that PROC IMPORT can recognize the type of data. For example, PROC
IMPORT recognizes the filename ACCOUNTS.WK1 as a Lotus 1 spreadsheet and the
filename MYDATA.CSV as a delimited external file that contains comma-separated
data values. PROC IMPORT can recognize the difference between Excel Version 4
and Version 5 spreadsheets when you use the extension .XLS, regardless of whether

The IMPORT Procedure 4 Data Source Statements 613

you specify DBMS=EXCEL, DBMS=EXCEL4, or DBMS=EXCEL5. However, you
must specify DBMS=EXCEL97 to import Excel 97 spreadsheets. If you do not specify
an identifier or if the extension of the filename is not recognized, an error is returned.

To import a DBMS table, you must specify DBMS= using a valid database product.
For example, DBMS=ACCESS imports a Microsoft Access table.

The DBMS= specification can include the values listed in the following table:

Identifier Input Data Source Extension

ACCESS Microsoft Access database .MDB

DBF dBASE file .DBF

WK1 Lotus 1 spreadsheet .WK1

WK3 Lotus 3 spreadsheet .WK3

WK4 Lotus 4 spreadsheet .WK4

EXCEL Excel Version 4 or 5 spreadsheet .XLS

EXCEL4 Excel Version 4 spreadsheet .XLS

EXCEL5 Excel Version 5 spreadsheet .XLS

EXCEL97 Excel 97 spreadsheet .XLS

DLM delimited file (default delimiter is a blank) .*

CSV delimited file (comma-separated values) .CSV

TAB delimited file (tab-delimited values) .TXT

Restriction: The data sources available to you depend on the SAS/ACCESS
products that you have licensed. If you do not have any SAS/ACCESS products
licensed, then the only types of data source files available to you are .CSV, .TXT,
and delimited files.

Restriction: The OS/2 operating environment does not support Excel 5 and Excel
97 spreadsheets.

Featured in: Example 1 on page 617 and Example 3 on page 621

REPLACE
overwrites an existing SAS data set. If you do not specify REPLACE, PROC
IMPORT does not overwrite an existing data set.

Featured in: Example 1 on page 617

Data Source Statements
Featured in: All examples

PROC IMPORT provides a variety of statements that are specific to the input data
source.

614 Data Source Statements 4 Chapter 23

Statements for PC Files, Spreadsheets, or Delimited External Files
Table 23.1 on page 614 describes which statements are available to import PC files,

spreadsheets, and delimited external files, and it denotes which statements are valid for
a specific data source. For example, Excel spreadsheets have optional statements to
indicate whether column names are in the first row of data or which sheet and range of
data to import, while a dBASE file (.DBF) does not. For more information about PC file
formats, see SAS/ACCESS Software for PC File Formats: Reference.

Table 23.1 Statements for PC Files, Spreadsheets, and Delimited External Files

Statements

Input Type GETNAMES= RANGE= SHEET= DELIMITER= GETDELETED= DATAROW=

DBF X

WK1 X X X

WK3 X X X

WK4 X X X

EXCEL X X X

EXCEL4 X X X

EXCEL5 X X X

EXCEL97 X X X

DLM X X X

CSV X X

TAB X X

DATAROW=n
starts reading data from row number n in the external file.

Default:

1 when GETNAMES=NO

2 when GETNAMES=YES (default for GETNAMES=)

Interaction: When GETNAMES=YES, DATAROW must be ≥ 2. When
GETNAMES=NO, DATAROW must be ≥ 1.

DELIMITER=’char’|’nn’x
for a delimited external file, specifies the delimiter that separates columns of data
in the input file. You can specify the delimiter as a single character or as a
hexidecimal value. For example, if columns of data are separated by an
ampersand, specify DELIMITER=’&’. If you do not specify DELIMITER=, PROC
IMPORT assumes that the delimiter is the blank. You may replace the equals sign
with a blank.

Featured in: Example 1 on page 617

GETDELETED=YES|NO
for a DBF file, indicates whether to write records to the SAS data set that are
marked for deletion but have not been purged. You may replace the equals sign
with a blank.

Default: NO

The IMPORT Procedure 4 Data Source Statements 615

GETNAMES=YES|NO
for spreadsheets and delimited external files, determines whether to generate SAS
variable names from the column names in the input file’s first row of data. If you
specify GETNAMES=NO or if the column names are not valid SAS names, PROC
IMPORT uses the variable names VAR0, VAR1, VAR2, and so on. You may replace
the equals sign with a blank.
Default: YES

Featured in: Example 1 on page 617 and Example 2 on page 620

RANGE=range-name|absolute-range
subsets a spreadsheet by identifying the rectangular set of cells to import from the
specified spreadsheet. The syntax for range-name and absolute-range is native to
the file being read. The range-name is the name that is assigned to a range
address within a spreadsheet. The absolute-range identifies the top left cell that
begins the range and bottom right cell that ends the range. The beginning and
ending cells are separated by two periods. For example, C9..F12 specifies a cell
range that begins at cell C9, ends at cell F12, and includes all the cells in between.
If you do not specify RANGE=, PROC IMPORT reads the entire spreadsheet. You
may replace the equals sign with a blank.
Restriction: You cannot use absolute-range with Excel 97 spreadsheets.

SHEET=spreadsheet-name
for spreadsheets, identifies a particular spreadsheet to read from a group of
spreadsheets, for example, SHEET=PRICES. Use this statement with spreadsheet
files that support multiple spreadsheets within a single file, such as EXCEL5,
EXCEL97, WK3, and WK4. The naming convention for the spreadsheet name is
native to the file being read. If you do not specify SHEET=, PROC IMPORT reads
the first spreadsheet in the file. You may replace the equals sign with a blank.

Featured in: Example 2 on page 620

Statements for DBMS Tables
The following data source statements are available to establish a connection to the

DBMS when you import a DBMS table.

DATABASE=“database”
specifies the complete path and filename of the database that contains the
specified DBMS table. If the database name does not contain lowercase characters,
special characters, or national characters, you can omit the quotes. You may
replace the equals sign with a blank.

Note: A default may be configured in the DBMS client software; however, the
SAS System does not generate a default value. 4

Featured in: Example 3 on page 621

DBPWD=“database password”
specifies a password that allows access to a database. You may replace the equals
sign with a blank.

Interaction: DBPWD= cannot be used with PWD=.
Featured in: Example 3 on page 621

MEMOSIZE=field-length
specifies the field length for importing Microsoft Access Memo fields.
Range: 255–32,767

616 Data Source Statements 4 Chapter 23

Default: 1024
Tip: To prevent Memo fields from being imported, you can specify MEMOSIZE=0.

PWD=“password”
specifies the user password used by the DBMS to validate a specific userid. If the
password does not contain lowercase characters, special characters, or national
characters, you can omit the quotes. You may replace the equals sign with a blank.

Note: The DBMS client software may default to the userid and password that
was used to log in to the operating environment; the SAS System does not
generate a default value. 4

Interaction: PWD= cannot be used with DBPWD=.
Featured in: Example 3 on page 621

UID=“userid”
identifies the user to the DBMS. If the userid does not contain lowercase
characters, special characters, or national characters, you can omit the quotes. You
may replace the equals sign with a blank.

Note: The DBMS client software may default to the userid and password that
was used to log in to the operating environment; the SAS System does not
generate a default value. 4
Featured in: Example 3 on page 621

WGDB=“workgroup-database-name”
specifies the workgroup (security) database name that contains the USERID and
PWD data for the DBMS. If the workgroup database name does not contain
lowercase characters, special characters, or national characters, you can omit the
quotes. You may replace the equals sign with a blank.

Note: A default workgroup database may be used by the DBMS; the SAS
System does not generate a default value. 4
Featured in: Example 3 on page 621

Security Levels for Microsoft Access Tables
Microsoft Access tables have three levels of security, for which specific combinations of
security statements must be used.

None
Do not specify DBPWD=, PWD=, UID=, or WGDB=.

Password
Specify only DBPWD=.

User-level
Specify only PWD=, UID=, and WGDB=.

Each statement has a default value; however, you may find it necessary to provide a
value for each statement explicitly.

The IMPORT Procedure 4 Program 617

Examples

Example 1: Importing a Delimited External File
Procedure features:

PROC IMPORT statement arguments:
DATAFILE=
DBMS=
OUT=
REPLACE

Data source statements:
DELIMITER=
GETNAMES=

Other features:
PRINT procedure

This example imports the following delimited external file and creates a temporary
SAS data set named WORK.MYDATA.

Region&State&Month&Expenses&Revenue
Southern&GA&JAN97&2000&8000
Southern&GA&FEB97&1200&6000
Southern&FL&FEB97&8500&11000
Northern&NY&FEB97&3000&4000
Northern&NY&MAR97&6000&5000
Southern&FL&MAR97&9800&13500
Northern&MA&MAR97&1500&1000

Program

DATAFILE= specifies the input file. The filename does not contain an extension.

proc import datafile="/myfiles/mydata"

OUT= identifies MYDATA as the output SAS data set.

out=mydata

DBMS= specifies that the input file is a delimited external file.

dbms=dlm

618 Program 4 Chapter 23

REPLACE specifies to overwrite the data set if it exists.

replace;

DELIMITER= specifies that the delimiter that separates the columns of data in the input file is
the ampersand.

delimiter=’&’;

GETNAMES= specifies that PROC IMPORT generates the variable names from the first row of
data in the input file.

getnames=yes;
run;

The PRINT procedure displays the output data set, WORK.MYDATA.

options nodate ps=60 ls=80;

proc print data=mydata;
run;

The IMPORT Procedure 4 SAS Log 619

SAS Log
The SAS log displays information about the successful import. For this example,

PROC IMPORT generates a SAS DATA step, as shown in the partial log that follows.

8 /**
9 * PRODUCT: SAS

10 * VERSION: 8.00
11 * CREATOR: External File Interface - Version 1.1
12 * DATE: 01MAR1999
13 * DESC: Generated SAS Datastep Code
14 * TEMPLATE SOURCE: (None Specified.)
15 ***/
16 data WORK.MYDATA ;
17 %let _EFIERR_ = 0; /* clear ERROR detection macro variable */
18 infile ’/myfiles/mydata’ delimiter = ’&’ MISSOVER
18 ! DSD lrecl=32767 firstobs=2 ;
19 format Region $8. ;
20 format State $2. ;
21 format Month $5. ;
22 format Expenses best12. ;
23 format Revenue best12. ;
24 informat Region $8. ;
25 informat State $2. ;
26 informat Month $5. ;
27 informat Expenses best32. ;
28 informat Revenue best32. ;
29 input
30 Region $
31 State $
32 Month $
33 Expenses
34 Revenue
35 ;
36 If _ERROR_ then /* ERROR detection */
37 call symput(’_EFIERR_’,1);
38 run;
NOTE: Numeric values have been converted to character

values at the places given by: (Line):(Column).
86:31

NOTE: 7 records were read from the infile
’/myfiles/mydata’.
The minimum record length was 27.
The maximum record length was 28.

NOTE: The data set WORK.MYDATA has 7 observations and 5 variables.
NOTE: DATA statement used:

real time 7.91 seconds
cpu time 0.97 seconds

-42 rows created in WORK.MYDATA from
/myfiles/mydata.
NOTE: WORK.MYDATA was successfully created.
NOTE: PROCEDURE IMPORT used:

real time 1:58.92
cpu time 11.03 seconds

620 Output 4 Chapter 23

Output
This output lists the output data set, MYDATA, created by PROC IMPORT from the

delimited external file.

The SAS System 2

Obs Region State Month Expenses Revenue

1 Southern GA JAN97 2000 8000
2 Southern GA FEB97 1200 6000
3 Southern FL FEB97 8500 11000
4 Northern NY FEB97 3000 4000
5 Northern NY MAR97 6000 5000
6 Southern FL MAR97 9800 13500
7 Northern MA MAR97 1500 1000

Example 2: Importing an Excel Spreadsheet

Procedure features:
Data source statements:

GETNAMES=
SHEET=

Other features:
PRINT procedure option:

OBS=

This example imports an Excel spreadsheet and creates a new, permanent SAS data
set named SASUSER.ACCOUNTS.

Program

DATAFILE= specifies the input file. The filename contains the extension .XLS, which PROC
IMPORT recognizes, for this example, as an Excel 5 spreadsheet.

proc import datafile="c:\myfiles\Accounts.xls"

OUT= identifies SASUSER.ACCOUNTS as the output SAS data set.

out=sasuser.accounts

SHEET= specifies to import only the spreadsheet PRICES that is contained in the file
ACCOUNTS.XLS.

sheet="Prices";

The IMPORT Procedure 4 Program 621

GETNAMES= specifies that PROC IMPORT does not generate the variable names from the
input file, but uses VAR0, VAR1, and so on.

getnames=no;
run;

The PRINT procedure invoked with the OBS= option displays the first 10 observations of the
output data set.

proc print data=sasuser.accounts(obs=10);
run;

Output
The following output displays the first 10 observations of the output data set,

SASUSER.ACCOUNTS.

The SAS System 1

OBS VAR0 VAR1 VAR2

1 Dharamsala Tea 10 boxes x 20 bags 18.00
2 Tibetan Barley Beer 24 - 12 oz bottles 19.00
3 Licorice Syrup 12 - 550 ml bottles 10.00
4 Chef Anton’s Cajun Seasoning 48 - 6 oz jars 22.00
5 Chef Anton’s Gumbo Mix 36 boxes 21.35
6 Grandma’s Boysenberry Spread 12 - 8 oz jars 25.00
7 Uncle Bob’s Organic Dried Pears 12 - 1 lb pkgs. 30.00
8 Northwoods Cranberry Sauce 12 - 12 oz jars 40.00
9 Mishi Kobe Beef 18 - 500 g pkgss. 97.00

10 Fish Roe 12 - 200 ml jars 31.00

Example 3: Importing a Microsoft Access Table
Procedure features:

PROC IMPORT statement arguments:
TABLE=
DBMS=

Data source Statements:
DATABASE=
PWD=
UID=
WGDB=

This example imports a Microsoft Access table and creates a permanent SAS data set
named SASUSER.CUST. The Access table has user-level security, so it is necessary to
specify values for the PWD=, UID=, and WGDB= statements.

Program

622 Output 4 Chapter 23

TABLE= specifies the input DBMS table name.

proc import table="customers"

OUT= identifies SASUSER.CUST as the output SAS data set.

out=sasuser.cust

DBMS= specifies that the input file is a Microsoft Access table.

dbms=access;

UID= identifies the user to the DBMS.

uid="userid";

PWD= specifies the DBMS password used by the user to access the table.

pwd="mypassword";

DATABASE= specifies the path and filename of the database that contains the table.

database="c:\myfiles\east.mdb";

WGDB= specifies the workgroup (security) database name that contains the userid and
password data for a Microsoft Access table.

wgdb="c:\winnt\system32\security.mdb";

The PRINT procedure displays the first five observations of the output data set,
SASUSER.CUST.

proc print data=sasuser.cust(obs=5);
run;

Output
The following output displays the first five observations of the output data set,

SASUSER.CUST.

The SAS System 1

Obs Name Street Zipcode

1 David Taylor 124 Oxbow Street 72511
2 Theo Barnes 2412 McAllen Avenue 72513
3 Lydia Stirog 12550 Overton Place 72516
4 Anton Niroles 486 Gypsum Street 72511
5 Cheryl Gaspar 36 E. Broadway 72515

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Procedures Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 1729 pp.

SAS® Procedures Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–482–9
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

