
745

C H A P T E R

27
The PMENU Procedure

Overview 745
Procedure Syntax 746

PROC PMENU Statement 747

CHECKBOX Statement 748

DIALOG Statement 748

ITEM Statement 750
MENU Statement 753

RADIOBOX Statement 755

RBUTTON Statement 755

SELECTION Statement 756

SEPARATOR Statement 757

SUBMENU Statement 757
TEXT Statement 758

Concepts 759

Procedure Execution 759

Ending the Procedure 760

Steps for Building and Using PMENU Catalog Entries 760
Templates for Coding PROC PMENU Steps 760

Examples 762

Example 1: Building a Menu Bar for an FSEDIT Application 762

Example 2: Collecting User Input in a Dialog Box 764

Example 3: Creating a Dialog Box to Search Multiple Variables 767
Example 4: Creating Menus for a DATA Step Window Application 773

Example 5: Associating Menus with a FRAME Application 779

Overview

The PMENU procedure defines menus that can be used in DATA step windows,
macro windows, both SAS/AF and SAS/FSP windows, or in any SAS application that
enables you to specify customized menus.

Menus can replace the command line as a way to execute commands. To activate
menus, issue the PMENU command from any command line. Menus must be activated
in order for them to appear.

When menus are activated, each active window has a menu bar, which lists items
that you can select. Depending upon which item you select, SAS either processes a
command, displays a menu or a submenu, or requests that you complete information in
a dialog box. The dialog box is simply a box of questions or choices that require
answers before an action can be performed. Figure 27.1 on page 746 illustrates features
that you can create with PROC PMENU.
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Figure 27.1 Menu Bar, Pull-Down Menu, and Dialog Box
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Note: A menu bar in some operating environments may appear as a popup menu or
may appear at the bottom of the window. 4

The PMENU procedure produces no immediately visible output. It simply builds a
catalog entry of type PMENU that can be used later in an application.

Procedure Syntax
Restriction: You must use at least one MENU statement followed by at least one ITEM
statement.
Tip: Supports RUN group processing
Tip: Supports Output Delivery System (see Chapter 2, “Fundamental Concepts for
Using Base SAS Procedures,” on page 15)
Reminder: You can also use appropriate global statements with this procedure. See
Chapter 2, “Fundamental Concepts for Using Base SAS Procedures,” on page 15 for a
list.

PROC PMENU <CATALOG=< libref.>catalog>
<DESC ’entry-description’>;

MENU menu-bar;
ITEM command <option(s)>;
ITEM ’menu-item’ <option(s)>;

DIALOG dialog-box ’command-string
field-number-specification’;

CHECKBOX <ON> #line @column
’text-for-selection’
<COLOR=color> <SUBSTITUTE=’text-for-substitution’>;

RADIOBOX DEFAULT=button-number;
RBUTTON <NONE> #line @column

’text-for-selection’ <COLOR=color>
<SUBSTITUTE=’text-for-substitution’>;

TEXT #line @column field-description
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<ATTR=attribute> <COLOR=color>;
MENU pull-down-menu;
SELECTIONselection ’command-string’;
SEPARATOR;
SUBMENU submenu-name SAS-file;

To do this Use this statement

Define choices a user can make in a dialog box CHECKBOX

Describe a dialog box that is associated with an item
in a pull-down menu

DIALOG

Identify an item to be listed in a menu bar or in a
pull-down menu

ITEM

Name the catalog entry or define a pull-down menu MENU

List and define mutually exclusive choices within a
dialog box

RADIOBOX and RBUTTON

Define a command that is submitted when an item is
selected

SELECTION

Draw a line between items in a pull-down menu SEPARATOR

Define a common submenu associated with an item SUBMENU

Specify text and the input fields for a dialog box TEXT

PROC PMENU Statement

Invokes the PMENU procedure and specifies where to store all PMENU catalog entries created in
the PROC PMENU step.

PROC PMENU <CATALOG=< libref.>catalog>
<DESC ’entry-description’>;

Options

CATALOG=<libref.>catalog
specifies the catalog in which you want to store PMENU entries.
Default: If you omit libref, the PMENU entries are stored in a catalog in the

SASUSER data library. If you omit CATALOG=, the entries are stored in the
SASUSER.PROFILE catalog.

Featured in: Example 1 on page 762

DESC ’entry-description’
provides a description for the PMENU catalog entries created in the step.
Default: Menu description

Note: These descriptions are displayed when you use the CATALOG window in
the windowing environment or the CONTENTS statement in the CATALOG
procedure. 4
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CHECKBOX Statement
Defines choices that a user can make within a dialog box.

Restriction: Must be used after a DIALOG statement.

CHECKBOX <ON> #line @column
’text-for-selection’
<COLOR=color> <SUBSTITUTE=’text-for-substitution’>;

Required Arguments

column
specifies the column in the dialog box where the checkbox and text are placed.

line
specifies the line in the dialog box where the checkbox and text are placed.

text-for-selection
defines the text that describes this check box. This text appears in the window and,
if the SUBSTITUTE= option is not used, is also inserted into the command in the
preceding DIALOG statement when the user selects the check box.

Options

COLOR=color
defines the color of the check box and the text that describes it.

ON
indicates that by default this check box is active. If you use this option, you must
specify it immediately after the CHECKBOX keyword.

SUBSTITUTE=’text-for-substitution’
specifies the text that is to be inserted into the command in the DIALOG statement.

Check Boxes in a Dialog Box
Each CHECKBOX statement defines a single item that the user can select

independent of other selections. That is, if you define five choices with five CHECKBOX
statements, the user can select any combination of these choices. When the user selects
choices, the text-for-selection values that are associated with the selections are inserted
into the command string of the previous DIALOG statement at field locations prefixed
by an ampersand (&).

DIALOG Statement
Describes a dialog box that is associated with an item on a pull-down menu.

Restriction: Must be followed by at least one TEXT statement.
Featured in: Example 2 on page 764, Example 3 on page 767, and Example 4 on page 773
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DIALOG dialog-box ’command-string
field-number-specification’;

Required Arguments

command-string
is the command or partial command that is executed when the item is selected. The
limit of the command-string that results after the substitutions are made is the
command-line limit for your operating environment. Typically, the command-line
limit is approximately 80 characters.

The limit for ’command-string field-number-specification’ is 200 characters.

Note: If you are using PROC PMENU to submit any command that is valid only
in the PROGRAM EDITOR window (such as the INCLUDE command), you must
have the windowing environment running, and you must return control to the
PROGRAM EDITOR window. 4

dialog-box
is the same name specified for the DIALOG= option in a previous ITEM statement.

field-number-specification
can be one or more of the following:

@1...@n

%1...%n

&1...&n
You can embed the field numbers, for example @1, %1, or &1, in the command

string and mix different types of field numbers within a command string. The
numeric portion of the field number corresponds to the relative position of TEXT,
RADIOBOX, and CHECKBOX statements, not to any actual number in these
statements.

@1...@n
are optional TEXT statement numbers that can add information to the command
before it is submitted. Numbers preceded by an at sign (@) correspond to TEXT
statements that use the LEN= option to define input fields.

%1...%n
are optional RADIOBOX statement numbers that can add information to the
command before it is submitted. Numbers preceded by a percent sign (%)
correspond to RADIOBOX statements following the DIALOG statement.

Note: Keep in mind that the numbers correspond to RADIOBOX statements,
not to RBUTTON statements. 4

&1...&n
are optional CHECKBOX statement numbers that can add information to the
command before it is submitted. Numbers preceded by an ampersand (&)
correspond to CHECKBOX statements following the DIALOG statement.

Note: To specify a literal @ (at sign), % (percent sign), or & (ampersand) in the
command-string, use a double character: @@ (at signs), %% (percent signs), or &&
(ampersands). 4
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Details

� You cannot control the placement of the dialog box. The dialog box is not
scrollable. The size and placement of the dialog box are determined by your
windowing environment.

� To use the DIALOG statement, specify an ITEM statement with the DIALOG=
option in the ITEM statement.

� The ITEM statement creates an entry in a menu bar or in a pull-down menu, and
the DIALOG= option specifies which DIALOG statement describes the dialog box.

� You can use CHECKBOX, RADIOBOX, and RBUTTON statements to define the
contents of the dialog box.

� Figure 27.2 on page 750 shows a typical dialog box. A dialog box can request
information in three ways:

� Fill in a field. Fields that accept text from a user are called text fields.
� Choose from a list of mutually exclusive choices. A group of selections of this

type is called a radio box, and each individual selection is called a radio
button.

� Indicate whether you want to select other independent choices. For example,
you could choose to use various options by selecting any or all of the listed
selections. A selection of this type is called a check box.

Figure 27.2 A Typical Dialog Box
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Dialog boxes have two or more push buttons, such as OK and Cancel,
automatically built into the box.* A push button causes an action to occur.

ITEM Statement
Identifies an item to be listed in a menu bar or in a pull-down menu.

Featured in: Example 1 on page 762

* The actual names of the push buttons vary in different windowing environments.
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ITEM command <option(s)><action-options>;

ITEM ’menu-item’ <option(s)><action-options>;

To do this Use this option

Specify the action for the item

Associate the item with a dialog box DIALOG=

Associate the item with a pull-down menu MENU=

Associate the item with a command SELECTION=

Associate the item with a common submenu SUBMENU=

Specify help text for an item HELP=

Define a key that can be used instead of the
pull-down menu

ACCELERATE=

Indicate that the item is not an active choice in the
window

GRAY

Provide an ID number for an item ID=

Define a single character that can select the item MNEMONIC=

Place a check box or a radio button next to an item STATE=

Required Arguments

command
a single word that is a valid SAS command for the window in which the menu
appears. Commands that are more than one word, such as WHERE CLEAR, must be
in single quotes. The command appears in uppercase letters on the menu bar.

If you want to control the casing of a SAS command on the menu, enclose the
command in single quotes and the case that you used then appears on the menu.

menu-item
a word or text string, enclosed in quotes, that describes the action that occurs when
the user selects this item. A menu item should not begin with a percent sign (%).

Options

ACCELERATE=name-of-key
defines a key sequence that can be used instead of selecting an item. When the user
presses the key sequence, it has the same effect as selecting the item from the menu
bar or pull-down menu.
Restriction: The functionality of this option is limited to only a few characters. For

details, see the SAS documentation for your operating environment.
Restriction: This option is not available in all operating environments. If you

include this option and it is not available in your operating environment, the
option is ignored.

action-option
is one of the following:
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DIALOG=dialog-box
the name of an associated DIALOG statement, which displays a dialog box when
the user selects this item.
Featured in: Example 3 on page 767

MENU=pull-down-menu
the name of an associated MENU statement, which displays a pull-down menu
when the user selects this item.
Featured in: Example 1 on page 762

SELECTION=selection
the name of an associated SELECTION statement, which submits a command
when the user selects this item.
Featured in: Example 1 on page 762

SUBMENU=submenu
the name of an associated SUBMENU statement, which displays a pmenu entry
when the user selects this item.
Featured in: Example 1 on page 762
If no DIALOG=, MENU=, SELECTION=, or SUBMENU= option is specified, the

command or menu-item text string is submitted as a command-line command when
the user selects the item.

GRAY
indicates that the item is not an active choice in this window. This option is useful
when you want to define standard lists of items for many windows, but not all items
are valid in all windows. When this option is set and the user selects the item, no
action occurs.

HELP=’help-text’
specifies text that is displayed when the user displays the menu item. For example,
if you use a mouse to pull down a menu, hold the mouse button on the item and the
text is displayed.
Restriction: This option is not available in all operating environments. If you

include this option and it is not available in your operating environment, the
option is ignored.

Tip: The place where the text is displayed is operating environment-specific.

ID=integer
a value that is used as an identifier for an item in a pull-down menu. This identifier
is used within a SAS/AF application to selectively gray or ungray items in a menu or
to set the state of an item as a check box or a radio button.
Minimum: 3001
Restriction: Integers from 0 - 3000 are reserved for operating environment and

SAS System use.
Restriction: This option is not available in all operating environments. If you

include this option and it is not available in your operating environment, the
option is ignored.

Tip: ID= is useful with the WINFO function in SAS Screen Control Language.
Tip: You can use the same ID for more than one item.
See also: STATE= option on page 753

MNEMONIC=character
underlines the first occurrence of character in the text string that appears on the
pull-down menu. The character must be in the text string.

The character is typically used in combination with another key, such as ALT.
When you use the key sequence, it has the same effect as putting your cursor on the
item. But it does not invoke the action that the item controls.
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Restriction: This option is not available in all operating environments. If you
include this option and it is not available in your operating environment, the
option is ignored.

STATE=CHECK|RADIO
provides the ability to place a check box or a radio button next to an item that has
been selected.
Tip: STATE= is used with the ID= option and the WINFO function in SAS Screen

Control Language.
Restriction: This option is not available in all operating environments. If you

include this option and it is not available in your operating environment, the
option is ignored.

Defining Items on the Menu Bar
You must use ITEM statements to name all the items that appear in a menu bar.

You also use the ITEM statement to name the items that appear in any pull-down
menus. The items that you specify in the ITEM statement can be commands that are
issued when the user selects the item, or they can be descriptions of other actions that
are performed by associated DIALOG, MENU, SELECTION, or SUBMENU statements.

All ITEM statements for a menu must be placed immediately after the MENU
statement and before any DIALOG, SELECTION, SUBMENU, or other MENU
statements. In some operating environments, you can insert SEPARATOR statements
between ITEM statements to produce lines separating groups of items in a pull-down
menu. See “SEPARATOR Statement” on page 757 for more information.

CAUTION:
If you specify a menu bar that is too long for the window, it might be truncated or

wrapped to multiple lines. 4

MENU Statement

Names the catalog entry that stores the menus or defines a pull-down menu.

Featured in: Example 1 on page 762
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MENU menu-bar;

MENU pull-down-menu;

Required Arguments

One of the following arguments is required:

menu-bar
names the catalog entry that stores the menus.

pull-down-menu
names the pull-down menu that appears when the user selects an item in the menu
bar. The value of pull-down-menu must match the pull-down-menu name that is
specified in the MENU= option in a previous ITEM statement.

Defining Pull-Down Menus

When used to define a pull-down menu, the MENU statement must follow an ITEM
statement that specifies the MENU= option. Both the ITEM statement and the MENU
statement for the pull-down menu must be in the same RUN group as the MENU
statement that defines the menu bar for the PMENU catalog entry.

For both menu bars and pull-down menus, follow the MENU statement with ITEM
statements that define each of the items that appear on the menu. Group all ITEM
statements for a menu together. For example, the following PROC PMENU step creates
one catalog entry, WINDOWS, which produces a menu bar with two items, Primary
windows and Other windows. When you select one of these items, a pull-down menu is
displayed.

libname proclib ’SAS-data-library’;

proc pmenu cat=proclib.mycat;

/* create catalog entry */
menu windows;
item ’Primary windows’ menu=prime;
item ’Other windows’ menu=other;

/* create first pull-down menu */
menu prime;
item output;
item manager;
item log;
item pgm;

/* create second pull-down menu */
menu other;
item keys;
item help;
item pmenu;
item bye;

/* end of run group */
run;
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Figure 27.3 on page 755 shows the resulting menu selections.

Figure 27.3 Pull-Down Menu
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RADIOBOX Statement

Defines a box that contains mutually exclusive choices within a dialog box.

Restriction: Must be used after a DIALOG statement.
Restriction: Must be followed by one or more RBUTTON statements.
Featured in: Example 3 on page 767

RADIOBOX DEFAULT=button-number;

Required Arguments

DEFAULT=button-number
indicates which radio button is the default.
Default: 1

Details
The RADIOBOX statement indicates the beginning of a list of selections.

Immediately after the RADIOBOX statement, you must list an RBUTTON statement
for each of the selections the user can make. When the user makes a choice, the text
value that is associated with the selection is inserted into the command string of the
previous DIALOG statement at field locations prefixed by a percent sign (%).

RBUTTON Statement

Lists mutually exclusive choices within a dialog box.

Restriction: Must be used after a RADIOBOX statement.
Featured in: Example 3 on page 767
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RBUTTON <NONE> #line @column
’text-for-selection’ <COLOR=color> <SUBSTITUTE=’text-for-substitution’>;

Required Arguments

column
specifies the column in the dialog box where the radio button and text are placed.

line
specifies the line in the dialog box where the radio button and text are placed.

text-for-selection
defines the text that appears in the dialog box and, if the SUBSTITUTE= option is
not used, defines the text that is inserted into the command in the preceding
DIALOG statement.

CAUTION:
Be careful not to overlap columns and lines when placing text and radio buttons. You
receive an error message if you overlap text or buttons. In addition, specify space
between other text and a radio button. 4

Options

COLOR=color
defines the color of the radio button and the text that describes the button.
Restriction: This option is not available in all operating environments. If you

include this option and it is not available in your operating environment, the
option is ignored.

NONE
defines a button that indicates none of the other choices. Defining this button
enables the user to ignore any of the other choices. No characters, including blanks,
are inserted into the DIALOG statement.
Restriction: If you use this option, it must occur immediately after the RBUTTON

keyword.

SUBSTITUTE=’text-for-substitution’
specifies the text that is to be inserted into the command in the DIALOG statement.
Featured in: Example 3 on page 767

SELECTION Statement

Defines a command that is submitted when an item is selected.

Restriction: Must be used after an ITEM statement
Featured in: Example 1 on page 762 and Example 4 on page 773

SELECTION selection ’command-string’;
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Required Arguments

selection
is the same name specified for the SELECTION= option in a previous ITEM
statement.

command-string
is a text string, enclosed in quotes, that is submitted as a command-line command
when the user selects this item. There is a limit of 200 characters for
command-string. However, the command-line limit of approximately 80 characters
cannot be exceeded. The command-line limit differs slightly for various operating
environments.

Details
You define the name of the item in the ITEM statement and specify the

SELECTION= option to associate the item with a subsequent SELECTION statement.
The SELECTION statement then defines the actual command that is submitted when
the user chooses the item in the menu bar or pull-down menu.

You are likely to use the SELECTION statement to define a command string. You
create a simple alias by using the ITEM statement, which invokes a longer command
string that is defined in the SELECTION statement. For example, you could include an
item in the menu bar that invokes a WINDOW statement to allow data entry. The
actual commands that are processed when the user selects this item are the commands
to include and submit the application.

Note: If you are using PROC PMENU to issue any command that is valid only in
the PROGRAM EDITOR window (such as the INCLUDE command), you must have the
windowing environment running, and you must return control to the PROGRAM
EDITOR window. 4

SEPARATOR Statement

Draws a line between items on a pull-down menu.

Restriction: Must be used after an ITEM statement.
Restriction: Not available in all operating environments.

SEPARATOR;

SUBMENU Statement

Specifies the SAS file that contains a common submenu associated with an item.

Featured in: Example 1 on page 762
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SUBMENU submenu-name SAS-file;

Required Arguments

submenu-name
specifies a name for the submenu statement. To associate a submenu with a menu
item, submenu-name must match the submenu name specified in the SUBMENU=
action-option in the ITEM statement.

SAS-file
specifies the name of the SAS file that contains the common submenu.

TEXT Statement

Specifies text and the input fields for a dialog box.

Restriction: Can be used only after a DIALOG statement.

Featured in: Example 2 on page 764

TEXT #line @column field-description
<ATTR=attribute> <COLOR=color>;

Required Arguments

column
specifies the starting column for the text or input field.

field-description
defines how the TEXT statement is used. The field-description can be one of the
following:

LEN=field-length
is the length of an input field in which the user can enter information. If the
LEN= argument is used, the information entered in the field is inserted into the
command string of the previous DIALOG statement at field locations prefixed by
an at sign (@).

Featured in: Example 2 on page 764

’text’
is the text string that appears inside the dialog box at the location defined by line
and column.

line
specifies the line number for the text or input field.

Options



The PMENU Procedure 4 Procedure Execution 759

ATTR=attribute
defines the attribute for the text or input field. Valid attribute values are

� BLINK
� HIGHLIGH
� REV_VIDE
� UNDERLIN

Restriction: This option is not available in all operating environments. If you
include this option and it is not available in your operating environment, the
option is ignored.

Restriction: Your hardware may not support all of these attributes.

COLOR=color
defines the color for the text or input field characters. These are the color values that
you can use:

BLACK BROWN

GRAY MAGENTA

PINK WHITE

BLUE CYAN

GREEN ORANGE

RED YELLOW

Restriction: This option is not available in all operating environments. If you
include this option and it is not available in your operating environment, the
option is ignored.

Restriction: Your hardware may not support all of these colors.

Concepts

Procedure Execution
You can define multiple menus by separating their definitions with RUN statements.

A group of statements that ends with a RUN statement is called a RUN group. You
must completely define a PMENU catalog entry before submitting a RUN statement.
You do not have to restart the procedure after a RUN statement.

You must include an initial MENU statement that defines the menu bar, and you
must include all ITEM statements and any SELECTION, MENU, SUBMENU, and
DIALOG statements as well as statements that are associated with the DIALOG
statement within the same RUN group. For example, the following statements define
two separate PMENU catalog entries. Both are stored in the same catalog, but each
PMENU catalog entry is independent of the other. In the example, both PMENU
catalog entries create menu bars that simply list windowing environment commands
the user can select and execute:

libname proclib ’SAS-data-library’;

proc pmenu catalog=proclib.mycat;
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menu menu1;
item end;
item bye;

run;

menu menu2;
item end;
item pgm;
item log;
item output;

run;

When you submit these statements, you receive a message that says that the
PMENU entries have been created. To display one of these menu bars, you must
associate the PMENU catalog entry with a window and then activate the window with
the menus turned on, as described in “Steps for Building and Using PMENU Catalog
Entries” on page 760.

Ending the Procedure
Submit a QUIT, DATA, or new PROC statement to execute any statements that have

not executed and end the PMENU procedure. Submit a RUN CANCEL statement to
cancel any statements that have not executed and end the PMENU procedure.

Steps for Building and Using PMENU Catalog Entries
In most cases, building and using PMENU entries requires the following steps:

1 Use PROC PMENU to define the menu bars, pull-down menus and other features
that you want. Store the output of PROC PMENU in a SAS catalog.

2 Define a window using SAS/AF and SAS/FSP Software, or the WINDOW or
%WINDOW statement in base SAS software.

3 Associate the PMENU catalog entry created in step 1 with a window by using one
of the following:

� the MENU= option in the WINDOW statement in base SAS software. See
“Associating a Menu with a Window” on page 776.

� the MENU= option in the %WINDOW statement in the macro facility.

� the Command Menu field in the GATTR window in PROGRAM entries in SAS/
AF Software.

� the Keys, Pmenu, and Commands window in a FRAME entry in SAS/AF
Software. See Example 5 on page 779.

� the PMENU function in SAS/AF and SAS/FSP Software.

� the SETPMENU command in SAS/FSP Software. See Example 1 on page 762.

4 Activate the window you have created. Make sure that the menus are turned on.

Templates for Coding PROC PMENU Steps
The following coding templates summarize how to use the statements in the PMENU

procedure. Refer to descriptions of the statements for more information:

� Build a simple menu bar. All items on the menu bar are windowing environment
commands:
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proc pmenu;
menu menu-bar;
item command;
...more-ITEM-statements...

run;

� Create a menu bar with an item that produces a pull-down menu:

proc pmenu;
menu menu-bar;
item ’menu-item’ menu=pull-down-menu;
...more-ITEM-statements...
menu pull-down-menu;
...ITEM-statements-for-pull-down-menu...

run;

� Create a menu bar with an item that submits a command other than that which
appears on the menu bar:

proc pmenu;
menu menu-bar;
item ’menu-item’ selection=selection;
...more-ITEM-statements...
selection selection ’command-string’;

run;

� Create a menu bar with an item that opens a dialog box, which displays
information and requests text input:

proc pmenu;
menu menu-bar;
item ’menu-item’ menu=pull-down-menu;
...more-ITEM-statements...
menu pull-down-menu;

item ’menu-item’ dialog=dialog-box;
dialog dialog-box ’command @1’;

text #line @column ’text’;
text #line @column LEN=field-length;

run;

� Create a menu bar with an item that opens a dialog box, which permits one choice
from a list of possible values:

proc pmenu;
menu menu-bar;
item ’menu-item’ menu=pull-down-menu;
...more-ITEM-statements...
menu pull-down-menu;

item ’menu-item’ dialog=dialog-box;
dialog dialog-box ’command %1’;

text #line @column ’text’;
radiobox default=button-number;
rbutton #line @column

’text-for-selection’;
...more-RBUTTON-statements...

run;

� Create a menu bar with an item that opens a dialog box, which permits several
independent choices:
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proc pmenu;
menu menu-bar;
item ’menu-item’ menu=pull-down-menu;
...more-ITEM-statements...
menu pull-down-menu;

item ’menu-item’ dialog=dialog-box;
dialog dialog-box ’command &1’;

text #line @column ’text’;
checkbox #line @column ’text’;
...more-CHECKBOX-statements...

run;

Examples
The windows in these examples were produced in the UNIX environment and may

appear slightly different from the same windows in other operating environments.
You should know the operating environment-specific system options that can affect

how menus are displayed and merged with existing SAS menus. For details, see the
SAS documentation for your operating environment.

Example 1: Building a Menu Bar for an FSEDIT Application

Procedure features:
PROC PMENU statement option:

CATALOG=
ITEM statement options:

MENU=
SELECTION=
SUBMENU=

MENU statement
SELECTION statement
SUBMENU statement

This example creates a menu bar that can be used in an FSEDIT application to
replace the default menu bar. The selections available on these pull-down menus do not
enable end users to delete or duplicate observations.

Program

libname proclib ’SAS-data-library’;

CATALOG= specifies PROCLIB.MENUCAT as the catalog that stores the menus.

proc pmenu catalog=proclib.menucat;
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The MENU statement specifies PROJECT as the name of the catalog entry. The menus are
stored in the catalog entry PROCLIB.MENUCAT.PROJECT.PMENU.

menu project;

The ITEM statements specify the items for the menu bar. The value of the MENU= option is
used in a subsequent MENU statement. The Edit item uses a common predefined submenu;
the menus for the other items are defined in this PROC step.

item ’File’ menu=f;
item ’Edit’ submenu=editmnu;
item ’Scroll’ menu=s;
item ’Help’ menu=h;

This group of statements defines the selections available under File on the menu bar. The first
ITEM statement specifies Goback as the first selection under File. The value of the
SELECTION= option corresponds to the subsequent SELECTION statement, which specifies
END as the command that is issued for that selection. The second ITEM statement specifies
that the SAVE command is issued for that selection.

menu f;
item ’Goback’ selection=g;
item ’Save’;
selection g ’end’;

The SUBMENU statement associates a predefined submenu that is located in the SAS file
SASHELP.CORE.EDIT with the Edit item on the menu bar. The name of this SUBMENU
statement is EDITMNU, which corresponds with the name in the SUBMENU= action-option in
the ITEM statement for the Edit item.

submenu editmnu sashelp.core.edit;

This group of statements defines the selections available under Scroll on the menu bar.

menu s;
item ’Next Obs’ selection=n;
item ’Prev Obs’ selection=p;
item ’Top’;
item ’Bottom’;
selection n ’forward’;
selection p ’backward’;

This group of statements defines the selections available under Help on the menu bar. The
SETHELP command specifies a HELP entry that contains user-written information for this
FSEDIT application. The semicolon that appears after the HELP entry name allows the HELP
command to be included in the string. The HELP command invokes the HELP entry.
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menu h;
item ’Keys’;
item ’About this application’ selection=hlp;
selection hlp ’sethelp user.menucat.staffhlp.help;help’;

quit;

Associating a Menu Bar with an FSEDIT Session
The following SETPMENU command associates the customized menu bar with the

FSEDIT window.

setpmenu proclib.menucat.project.pmenu;pmenu on

You can also specify the menu bar on the command line in the FSEDIT session or
with a CALL EXECCMD in Screen Control Language.

See “Associating a Menu Bar with an FSEDIT Session” on page 771 for other
methods of associating the customized menu bar with the FSEDIT window.

The FSEDIT window shows the menu bar.

Example 2: Collecting User Input in a Dialog Box

Procedure features:
DIALOG statement
TEXT statement option:

LEN=

This example adds a dialog box to the menus created in Example 1 on page 762. The
dialog box enables the user to use a WHERE clause to subset the SAS data set.

Tasks include

� collecting user input in a dialog box

� creating customized menus for an FSEDIT application.
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Program

libname proclib ’SAS-data-library’;

CATALOG= specifies PROCLIB.MENUCAT as the catalog that stores the menus.

proc pmenu c=proclib.menucat;

The MENU statement specifies PROJECT as the name of the catalog entry. The menus are
stored in the catalog entry PROCLIB.MENUCAT.PROJECT.PMENU.

menu project;

The ITEM statements specify the items for the menu bar. The value of the MENU= option is
used in a subsequent MENU statement.

item ’File’ menu=f;
item ’Edit’ menu=e;
item ’Scroll’ menu=s;
item ’Subset’ menu=sub;
item ’Help’ menu=h;

This group of statements defines the selections under File on the menu bar. The first ITEM
statement specifies Go-back as the first selection under File. The value of the SELECTION=
option corresponds to the subsequent SELECTION statement, which specifies END as the
command that is issued for that selection. The second ITEM statement specifies that the SAVE
command is issued for that selection.

menu f;
item ’Goback’ selection=g;
item ’Save’;
selection g ’end’;

This group of statements defines the selections available under Edit on the menu bar.

menu e;
item ’Cancel’;
item ’Add’;

This group of statements defines the selections available under Scroll on the menu bar.

menu s;
item ’Next Obs’ selection=n;
item ’Prev Obs’ selection=p;
item ’Top’;
item ’Bottom’;
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selection n ’forward’;
selection p ’backward’;

This group of statements defines the selections available under Subset on the menu bar. The
value d1 in the DIALOG= option is used in the subsequent DIALOG statement.

menu sub;
item ’Where’ dialog=d1;
item ’Where Clear’;

This group of statements defines the selections available under Help on the menu bar. The
SETHELP command specifies a HELP entry that contains user-written information for this
FSEDIT application. The semicolon allows for the HELP command to be included in the string.
The HELP command invokes the HELP entry.

menu h;
item ’Keys’;
item ’About this application’ selection=hlp;
selection hlp ’sethelp proclib.menucat.staffhlp.help;help’;

The DIALOG statement builds a WHERE command. The arguments for the WHERE command
are provided by user input into the text entry fields described by the three TEXT statements.
The @1 notation is a placeholder for user input in the text field. The TEXT statements specify
the text in the dialog box and the length of the input field.

dialog d1 ’where @1’;
text #2 @3 ’Enter a valid WHERE clause or UNDO’;
text #4 @3 ’WHERE ’;
text #4 @10 len=40;

quit;

Associating a Menu Bar with an FSEDIT Window
The following SETPMENU command associates the customized menu bar with the

FSEDIT window.

setpmenu proclib.menucat.project.pmenu;pmenu on

You can also specify the menu bar on the command line in the FSEDIT session or
with a CALL EXECCMD command in SAS Screen Control Language (SCL). Refer to
SAS Screen Control Language: Reference for complete documentation on SCL.

See “Associating a Menu Bar with an FSEDIT Session” on page 771 for other
methods of associating the customized menu bar with the FSEDIT window.
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This dialog box appears when the user chooses Subset and then Where.

Example 3: Creating a Dialog Box to Search Multiple Variables
Procedure features:

DIALOG statement
SAS macro invocation

ITEM statement
DIALOG= option

RADIOBOX statement option:
DEFAULT=

RBUTTON statement option:
SUBSTITUTE=

Other features: SAS macro invocation

This example shows how to modify the menu bar in an FSEDIT session to enable a
search for one value across multiple variables. The example creates customized menus
to use in an FSEDIT session. The menu structure is the same as in the preceding
example, except for the WHERE dialog box.

Once selected, the menu item invokes a macro. The user input becomes values for
macro parameters. The macro generates a WHERE command that expands to include
all the variables needed for the search.

Tasks include
� associating customized menus with an FSEDIT session
� searching multiple variables with a WHERE clause
� extending PROC PMENU functionality with a SAS macro.

Program

libname proclib ’SAS-data-library’;
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CATALOG= specifies PROCLIB.MENUCAT as the catalog that stores the PMENU entry.

proc pmenu catalog=proclib.menucat;

The MENU statement specifies STAFF as the name of the catalog entry. The menus are stored
in the catalog entry PROCLIB.MENUCAT.PROJECT.PMENU.

menu project;

The ITEM statements specify the items for the menu bar. The value of the MENU= option is
used in a subsequent MENU statement.

item ’File’ menu=f;
item ’Edit’ menu=e;
item ’Scroll’ menu=s;
item ’Subset’ menu=sub;
item ’Help’ menu=h;

This group of statements defines the selections under File on the menu bar. The first ITEM
statement specifies Go-back as the first selection under File. The value of the SELECTION=
option corresponds to the subsequent SELECTION statement, which specifies END as the
command that is issued for that selection. The second ITEM statement specifies that the SAVE
command is issued for that selection.

menu f;
item ’Goback’ selection=g;
item ’Save’;
selection g ’end’;

The ITEM statements define the selections under Edit on the menu bar.

menu e;
item ’Cancel’;
item ’Add’;

This group of statements defines the selections under Scroll on the menu bar. If the quoted
string in the ITEM statement is not a valid command, the SELECTION= option corresponds to
a subsequent SELECTION statement, which specifies a valid command.

menu s;
item ’Next Obs’ selection=n;
item ’Prev Obs’ selection=p;
item ’Top’;
item ’Bottom’;
selection n ’forward’;
selection p ’backward’;
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This group of statements defines the selections under Subset on the menu bar. The DIALOG=
option names a dialog box that is defined in a subsequent DIALOG statement.

menu sub;
item ’Where’ dialog=d1;
item ’Where Clear’;

This group of statements defines the selections under Help on the menu bar. The SETHELP
command specifies a HELP entry that contains user-written information for this FSEDIT
application. The semicolon that appears after the HELP entry name allows the HELP command
to be included in the string. The HELP command invokes the HELP entry.

menu h;
item ’Keys’;
item ’About this application’ selection=hlp;
selection hlp ’sethelp proclib.menucat.staffhlp.help;help’;

WBUILD is a SAS macro. The double percent sign that precedes WBUILD is necessary to
prevent PROC PMENU from expecting a field number to follow. The field numbers %1, %2, and
%3 equate to the values specified by the user with the radio boxes. The field number @1 equates
to the search value that the user enters. See “How the WBUILD Macro Works” on page 772.

dialog d1 ’%%wbuild(%1,%2,@1,%3)’;

The TEXT statement specifies text for the dialog box that appears on line 1 and begins in
column 1. The RADIOBOX statement specifies that a radio box will appear in the dialog box.
DEFAULT= specifies that the first radio button ( Northeast) will be selected by default. The
RBUTTON statements specify the mutually exclusive choices for the radio buttons: Northeast,
Northwest, Southeast, or Southwest. SUBSTITUTE= gives the value that is substituted for
the %1 in the DIALOG statement above if that radio button is selected.

text #1 @1 ’Choose a region:’;
radiobox default=1;

rbutton #3 @5 ’Northeast’ substitute=’NE’;
rbutton #4 @5 ’Northwest’ substitute=’NW’;
rbutton #5 @5 ’Southeast’ substitute=’SE’;
rbutton #6 @5 ’Southwest’ substitute=’SW’;

The TEXT statement specifies text for the dialog box that appears on line 8 (#8) and begins in
column 1 (@1). The RADIOBOX statement specifies that a radio box will appear in the dialog
box. DEFAULT= specifies that the first radio button ( Pollutant A) will be selected by default.
The RBUTTON statements specify the mutually exclusive choices for the radio buttons:
Pollutant A or Pollutant B. SUBSTITUTE= gives the value that is substituted for the %2 in
the preceding DIALOG statement if that radio button is selected.

text #8 @1 ’Choose a contaminant:’;
radiobox default=1;

rbutton #10 @5 ’Pollutant A’ substitute=’pol_a,2’;
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rbutton #11 @5 ’Pollutant B’ substitute=’pol_b,4’;

The first TEXT statement specifies text for the dialog box that appears on line 13 and begins in
column 1. The second TEXT statement specifies an input field that is 6 bytes long that appears
on line 13 and begins in column 25. The value that the user enters in the field is substituted for
the @1 in the preceding DIALOG statement.

text #13 @1 ’Enter Value for Search:’;
text #13 @25 len=6;

The TEXT statement specifies text for the dialog box that appears on line 15 and begins in
column 1. The RADIOBOX statement specifies that a radio box will appear in the dialog box.
DEFAULT= specifies that the first radio button ( Greater Than or Equal To) will be selected
by default. The RBUTTON statements specify the mutually exclusive choices for the radio
buttons. SUBSTITUTE= gives the value that is substituted for the %3 in the preceding
DIALOG statement if that radio button is selected.

text #15 @1 ’Choose a comparison criterion:’;
radiobox default=1;

rbutton #16 @5 ’Greater Than or Equal To’
substitute=’GE’;

rbutton #17 @5 ’Less Than or Equal To’
substitute=’LE’;

rbutton #18 @5 ’Equal To’ substitute=’EQ’;
quit;

This dialog box appears when the user selects Subset and then Where.
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Associating a Menu Bar with an FSEDIT Session
The SAS data set PROCLIB.LAKES has data about several lakes. Two pollutants,

pollutant A and pollutant B, were tested at each lake. Tests were conducted for
pollutant A twice at each lake, and the results are recorded in the variables POL_A1
and POL_A2. Tests were conducted for pollutant B four times at each lake, and the
results are recorded in the variables POL_B1 - POL_B4. Each lake is located in one of
four regions. The following output lists the contents of PROCLIB.LAKES:

Output 27.1

PROCLIB.LAKES 1

region lake pol_a1 pol_a2 pol_b1 pol_b2 pol_b3 pol_b4

NE Carr 0.24 0.99 0.95 0.36 0.44 0.67
NE Duraleigh 0.34 0.01 0.48 0.58 0.12 0.56
NE Charlie 0.40 0.48 0.29 0.56 0.52 0.95
NE Farmer 0.60 0.65 0.25 0.20 0.30 0.64
NW Canyon 0.63 0.44 0.20 0.98 0.19 0.01
NW Morris 0.85 0.95 0.80 0.67 0.32 0.81
NW Golf 0.69 0.37 0.08 0.72 0.71 0.32
NW Falls 0.01 0.02 0.59 0.58 0.67 0.02
SE Pleasant 0.16 0.96 0.71 0.35 0.35 0.48
SE Juliette 0.82 0.35 0.09 0.03 0.59 0.90
SE Massey 1.01 0.77 0.45 0.32 0.55 0.66
SE Delta 0.84 1.05 0.90 0.09 0.64 0.03
SW Alumni 0.45 0.32 0.45 0.44 0.55 0.12
SW New Dam 0.80 0.70 0.31 0.98 1.00 0.22
SW Border 0.51 0.04 0.55 0.35 0.45 0.78
SW Red 0.22 0.09 0.02 0.10 0.32 0.01

A DATA step on page 1509 creates PROCLIB.LAKES.
The following statements initiate a PROC FSEDIT session for PROCLIB.LAKES:

proc fsedit data=proclib.lakes screen=proclib.lakes;
run;

To associate the customized menu bar menu with the FSEDIT session, do any one of
the following:

� enter a SETPMENU command on the command line. The command for this
example is

setpmenu proclib.menucat.project.pmenu

Turn on the menus by entering PMENU ON on the command line.

� enter the SETPMENU command in a Command window.

� include an SCL program with the FSEDIT session that uses the customized menus
and turns on the menus, for example:

fseinit:
call execcmd(’setpmenu proclib.menucat.project.pmenu;

pmenu on;’);
return;
init:
return;
main:
return;
term:
return;
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How the WBUILD Macro Works
Consider how you would learn whether any of the lakes in the Southwest region

tested for a value of .50 or greater for pollutant A. Without the customized menu item,
you would issue the following WHERE command in the FSEDIT window:

where region="SW" and (pol_a1 ge .50 or pol_a2 ge .50);

Using the custom menu item, you would select Southwest, Pollutant A, enter .50
as the value, and choose Greater Than or Equal To as the comparison criterion. Two
lakes, New Dam and Border, meet the criteria.

The WBUILD macro uses the four pieces of information from the dialog box to
generate a WHERE command:

� One of the values for region, either NE, NW, SE, or SW, becomes the value of the
macro parameter REGION.

� Either pol_a,2 or pol_b,4 become the values of the PREFIX and NUMVAR
macro parameters. The comma is part of the value that is passed to the WBUILD
macro and serves to delimit the two parameters, PREFIX and NUMVAR.

� The value that the user enters for the search becomes the value of the macro
parameter VALUE.

� The operator that the user chooses becomes the value of the macro parameter
OPERATOR.

To see how the macro works, again consider the following example, in which you
want to know if any of the lakes in the southwest tested for a value of .50 or greater for
pollutant A. The values of the macro parameters would be

REGION SW

PREFIX pol_a

NUMVAR 2

VALUE .50

OPERATOR GE

The first %IF statement checks to make sure that the user entered a value. If a
value has been entered, the macro begins to generate the WHERE command. First, the
macro creates the beginning of the WHERE command:

where region="SW" and (

Next, the %DO loop executes. For pollutant A, it executes twice because NUMVAR=2.
In the macro definition, the period in &prefix.&i concatenates pol_a with 1 and with
2. At each iteration of the loop, the macro resolves PREFIX, OPERATOR, and VALUE,
and it generates a part of the WHERE command. On the first iteration, it generates

pol_a1 GE .50

The %IF statement in the loop checks to see if the loop is working on its last
iteration. If it is not, the macro makes a compound WHERE command by putting an OR
between the individual clauses. The next part of the WHERE command becomes

OR pol_a2 GE .50

The loop ends after two executions for pollutant A, and the macro generates the last
of the WHERE command:

)
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Results from the macro are placed on the command line. The following code is the
definition of the WBUILD macro. The underlined code shows the parts of the WHERE
command that are text strings that the macro does not resolve:

%macro wbuild(region,prefix,numvar,value,operator);
/* check to see if value is present */

%if &value ne %then %do;
where region="&region" AND (

/* If the values are character, */
/* enclose &value in double quotes. */

%do i=1 %to &numvar;
&prefix.&i &operator &value

/* if not on last variable, */
/* generate ’OR’ */

%if &i ne &numvar %then %do;
OR

%end;
%end;

)
%end;

%mend wbuild;

Example 4: Creating Menus for a DATA Step Window Application

Procedure features:
DIALOG statement
SELECTION statement

Other features: FILENAME statement

This example defines an application that enables the user to enter human resources
data for various departments and to request reports from the data sets created by the
data entry.

The first part of the example describes the PROC PMENU step that creates the
menus. The subsequent sections describe how to use the menus in a DATA step window
application.

Tasks include
� associating customized menus with a DATA step window
� creating menus for a DATA step window
� submitting SAS code from a menu selection
� creating a pull-down menu selection that calls a dialog box.

Program

The LIBNAME statement defines the SAS data library in which the PMENU entries are stored.
The FILENAME statements define the external files in which the programs to create the
windows are stored.
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libname proclib ’SAS-data-library’;
filename de ’external-file’;
filename prt ’external-file’;

CATALOG= specifies PROCLIB.MENUS as the catalog that stores menus.

proc pmenu catalog=proclib.menus;

The MENU statement specifies SELECT as the name of the catalog entry. The menus are stored
in the catalog entry PROCLIB.MENUS.SELECT.PMENU.

menu select;

The ITEM statements specify the three items on the menu bar. The value of the MENU= option
is used in a subsequent MENU statement.

item ’File’ menu=f;
item ’Data_Entry’ menu=deptsde;
item ’Print_Report’ menu=deptsprt;

This group of statements defines the selections under File. The value of the SELECTION=
option is used in a subsequent SELECTION statement.

menu f;
item ’End this window’ selection=endwdw;
item ’End this SAS session’ selection=endsas;
selection endwdw ’end’;
selection endsas ’bye’;

This group of statements defines the selections under Data_Entry on the menu bar. The ITEM
statements specify that For Dept01 and For Dept02 appear under Data_Entry. The value of
the SELECTION= option equates to a subsequent SELECTION statement, which contains the
string of commands that are actually submitted. The value of the DIALOG= option equates to a
subsequent DIALOG statement, which describes the dialog box that appears when this item is
selected.

menu deptsde;
item ’For Dept01’ selection=de1;
item ’For Dept02’ selection=de2;
item ’Other Departments’ dialog=deother;

The commands in single quotes are submitted when the user selects For
Dept01 or For Dept02. The END command ends the current window and returns to the
PROGRAM EDITOR window so that further commands can be submitted. The INCLUDE
command includes the SAS statements that create the data entry window. The CHANGE
command modifies the DATA statement in the included program so that it creates the correct
data set. See “Using a Data Entry Program” on page 777. The SUBMIT command submits the
DATA step program.
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selection de1 ’end;pgm;include de;change xx 01;submit’;
selection de2 ’end;pgm;include de;change xx 02;submit’;

The DIALOG statement defines the dialog box that appears when the user selects
Other Departments. The DIALOG statement modifies the command string so that the name of
the department that is entered by the user is used to change deptxx in the SAS program that
is included. See “Using a Data Entry Program” on page 777. The first two TEXT statements
specify text that appears in the dialog box. The third TEXT statement specifies an input field.
The name that is entered in this field is substituted for the @1 in the DIALOG statement.

dialog deother ’end;pgm;include de;c deptxx @1;submit’;
text #1 @1 ’Enter department name’;
text #2 @3 ’in the form DEPT99:’;
text #2 @25 len=7;

This group of statements defines the choices under the Print_Report item. These ITEM
statements specify that For Dept01 and For Dept02 appear in the pull-down menu. The
value of the SELECTION= option equates to a subsequent SELECTION statement, which
contains the string of commands that are actually submitted.

menu deptsprt;
item ’For Dept01’ selection=prt1;
item ’For Dept02’ selection=prt2;
item ’Other Departments’ dialog=prother;

The commands in single quotes are submitted when the user selects For
Dept01 or For Dept02. The END command ends the current window and returns to the
PROGRAM EDITOR window so that further commands can be submitted. The INCLUDE
command includes the SAS statements that print the report. See “Printing a Program” on page
778. The CHANGE command modifies the PROC PRINT step in the included program so that it
prints the correct data set. The SUBMIT command submits the PROC PRINT program.

selection prt1
’end;pgm;include prt;change xx 01 all;submit’;

selection prt2
’end;pgm;include prt;change xx 02 all;submit’;

The DIALOG statement defines the dialog box that appears when the user selects
Other Departments. The DIALOG statement modifies the command string so that the name of
the department that is entered by the user is used to change deptxx in the SAS program that
is included. See “Printing a Program” on page 778. The first two TEXT statements specify text
that appears in the dialog box. The third TEXT statement specifies an input field. The name
entered in this field is substituted for the @1 in the DIALOG statement.

dialog prother ’end;pgm;include prt;c deptxx @1 all;submit’;
text #1 @1 ’Enter department name’;
text #2 @3 ’in the form DEPT99:’;
text #2 @25 len=7;
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The RUN statement ends this RUN group.

run;

The MENU statement specifies ENTRDATA as the name of the catalog entry that this RUN group is creating. Fil
the menu bar. The selections available are End this window and End this SAS session.

menu entrdata;
item ’File’ menu=f;
menu f;

item ’End this window’ selection=endwdw;
item ’End this SAS session’ selection=endsas;
selection endwdw ’end’;
selection endsas ’bye’;

run;
quit;

Associating a Menu with a Window
The first group of statements defines the primary window for the application. These

statements are stored in the file that is referenced by the HRWDW fileref:

The WINDOW statement creates the HRSELECT window. MENU= associates the
PROCLIB.MENUS.SELECT.PMENU entry with this window.

data _null_;
window hrselect menu=proclib.menus.select
#4 @10 ’This application allows you to’
#6 @13 ’- Enter human resources data for’
#7 @15 ’one department at a time.’
#9 @13 ’- Print reports on human resources data for’
#10 @15 ’one department at a time.’
#12 @13 ’- End the application and return to the PGM window.’
#14 @13 ’- Exit from the SAS System.’
#19 @10 ’You must have the menus turned on.’;

The DISPLAY statement displays the window HRSELECT.

display hrselect;
run;
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Primary window, HRSELECT.

Using a Data Entry Program
When the user selects Data_Entry from the menu bar in the HRSELECT window, a

pull-down menu is displayed. When the user selects one of the listed departments or
chooses to enter a different department, the following statements are invoked. These
statements are stored in the file that is referenced by the DE fileref.

The WINDOW statement creates the HRDATA window. MENU= associates the
PROCLIB.MENUS.ENTRDATA.PMENU entry with the window.

data proclib.deptxx;
window hrdata menu=proclib.menus.entrdata
#5 @10 ’Employee Number’
#8 @10 ’Salary’
#11 @10 ’Employee Name’
#5 @31 empno $4.
#8 @31 salary 10.
#11 @31 name $30.
#19 @10 ’Press ENTER to add the observation to the data set.’;

The DISPLAY statement displays the HRDATA window.

display hrdata;
run;

The %INCLUDE statement recalls the statements in the file HRWDW. The statements in
HRWDW redisplay the primary window. See HRSELECT on page 776.
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filename hrwdw ’external-file’;
%include hrwdw;
run;

The SELECTION and DIALOG statements in the PROC PMENU step modify the
DATA statement in this program so that the correct department name is used when the
data set is created. That is, if the user selects Other Departments and enters DEPT05,
the DATA statement is changed by the command string on the DIALOG statement to

data proclib.dept05;

Data entry window, HRDATA.

Printing a Program
When the user selects Print_Report from the menu bar, a pull-down menu is

displayed. When the user selects one of the listed departments or chooses to enter a
different department, the following statements are invoked. These statements are
stored in the external file referenced by the PRT fileref.

PROC PRINTTO routes the output to an external file.

proc printto file=’external-file’ new;
run;

The xx’s are changed to the appropriate department number by the CHANGE command in the
SELECTION or DIALOG statement in the PROC PMENU step. PROC PRINT prints that data
set.
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libname proclib ’SAS-data-library’;

proc print data=proclib.deptxx;
title ’Information for deptxx’;

run;

This PROC PRINTTO steps restores the default output destination. See Chapter 29, “The
PRINTTO Procedure,” on page 819 for documentation on PROC PRINTTO.

proc printto;
run;

The %INCLUDE statement recalls the statements in the file HRWDW. The statements in
HRWDW redisplay the primary window.

filename hrwdw ’external-file’;
%include hrwdw;
run;

Example 5: Associating Menus with a FRAME Application
Procedure features:

ITEM statement
MENU statement

Other features: SAS/AF software

This example creates menus for a FRAME entry and gives the steps necessary to
associate the menus with a FRAME entry from SAS/AF software.

Program

libname proclib ’SAS-data-library’;

CATALOG= specifies PROCLIB.MENUCAT as the catalog that stores the menus.

proc pmenu catalog=proclib.menucat;

The MENU statement specifies FRAME as the name of the catalog entry. The menus are stored
in the catalog entry PROCLIB.MENUS.FRAME.PMENU.

menu frame;
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The ITEM statements specify the items in the menu bar. The value of MENU= corresponds to a
subsequent MENU statement.

item ’File’ menu=f;
item ’Help’ menu=h;

The MENU statement equates to the MENU= option in a preceding ITEM statement. The
ITEM statements specify the selections that are available under File in the menu bar.

menu f;
item ’Cancel’;
item ’End’;

The MENU statement equates to the MENU= option in a preceding ITEM statement. The
ITEM statements specify the selections that are available under Help on the menu bar. The
value of the SELECTION= option equates to a subsequent SELECTION statement.

menu h;
item ’About the application’ selection=a;
item ’About the keys’ selection=k;

The SETHELP command specifies a HELP entry that contains user-written information for this
application. The semicolon that appears after the HELP entry name allows the HELP command
to be included in the string. The HELP command invokes the HELP entry.

selection a ’sethelp proclib.menucat.app.help;help’;
selection k ’sethelp proclib.menucat.keys.help;help’;

run;
quit;

Steps to Associate Menus with a FRAME

1 In the BUILD environment for the FRAME entry, from the menu bar, select

View I Properties Window

2 In the Properties window, select the Value field for the pmenuEntry Attribute
Name. The Select An Entry window opens.

3 In the Select An Entry window, enter the name of the catalog entry that is
specified in the PROC PMENU step that creates the menus.

4 Test the FRAME as follows from the menu bar of the FRAME:

Build I Test
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Notice that the menus are now associated with the FRAME.

Refer to Getting Started with the FRAME Entry: Developing Object-Oriented
Applications for more information on SAS programming with FRAME entries.
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