
783

C H A P T E R

28
The PRINT Procedure

Overview 783
Procedure Syntax 785

PROC PRINT Statement 786

BY Statement 791

ID Statement 792

PAGEBY Statement 793
SUM Statement 793

SUMBY Statement 794

VAR Statement 795

Results 795

Procedure Output 795

Page Layout 795
Column Headings 797

Column Width 797

Examples 798

Example 1: Selecting Variables to Print 798

Example 2: Customizing Text in Column Headers 799
Example 3: Creating Separate Sections of a Report for Groups of Observations 801

Example 4: Summing Numeric Variables with One BY Group 803

Example 5: Summing Numeric Variables with Multiple BY Variables 805

Example 6: Limiting the Number of Sums in a Report 808

Example 7: Controlling the Layout of a Report with Many Variables 810
Example 8: Creating a Customized Layout with BY Groups and ID Variables 813

Example 9: Printing All the Data Sets in a SAS Library 815

Overview
The PRINT procedure prints the observations in a SAS data set, using all or some of

the variables. You can create a variety of reports ranging from a simple listing to a
highly customized report that groups the data and calculates totals and subtotals for
numeric variables.

Output 28.1 on page 783 illustrates the simplest kind of report that you can
produce. The statements that produce the output follow. A DATA step on page 798
creates the data set EXPREV.

options nodate pageno=1 linesize=64
pagesize=60;

proc print data=exprev;
run;

784 Overview 4 Chapter 28

Output 28.1 Simple Report Produced with PROC PRINT

The SAS System 1

Obs Region State Month Expenses Revenues

1 Southern GA JAN95 2000 8000
2 Southern GA FEB95 1200 6000
3 Southern FL FEB95 8500 11000
4 Northern NY FEB95 3000 4000
5 Northern NY MAR95 6000 5000
6 Southern FL MAR95 9800 13500
7 Northern MA MAR95 1500 1000

Output 28.2 on page 784 is a customized report that is produced by PROC PRINT.
The statements that create this report

� customize the title and the column headings
� place dollar signs and commas in numeric output
� selectively include and control the order of variables in the report
� group the data by JobCode
� sum the values for Salary for each job code and for all job codes.

For an explanation of the program that produces this report, see Example 8 on page
813.

The PRINT Procedure 4 Procedure Syntax 785

Output 28.2 Customized Report Produced with PROC PRINT

Expenses Incurred for 1
Salaries for Flight Attendants and Mechanics

Job Code Gender Annual Salary
======== ====== =============

FA1 F $23,177.00
F $22,454.00
M $22,268.00

-------- -------------
FA1 $67,899.00

FA2 F $28,888.00
F $27,787.00
M $28,572.00

-------- -------------
FA2 $85,247.00

FA3 F $32,886.00
F $33,419.00
M $32,217.00

-------- -------------
FA3 $98,522.00

ME1 M $29,769.00
M $28,072.00
M $28,619.00

-------- -------------
ME1 $86,460.00

ME2 F $35,108.00
F $34,929.00
M $35,345.00
M $36,925.00
M $35,090.00
M $35,185.00

-------- -------------
ME2 $212,582.00

ME3 M $43,025.00
=============

$593,735.00

Procedure Syntax
Tip: Supports the Output Delivery System (see Chapter 2, “Fundamental Concepts for
Using Base SAS Procedures”)

Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, "Statements with the Same Function in Multiple Procedures," for details.
You can also use any global statements as well. See Chapter 2, "Fundamental Concepts
for Using Base SAS Procedures," for a list.

PROC PRINT <option(s)>;

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n>
<NOTSORTED>;

786 PROC PRINT Statement 4 Chapter 28

PAGEBY BY-variable;
SUMBY BY-variable;

ID variable(s);
SUM variable(s);

VAR variable(s);

To do this Use this statement

Produce a separate section of the report for each BY
group

BY

Identify observations by the formatted values of the
variables that you list instead of by observation
numbers

ID

Control page ejects that occur before a page is full PAGEBY

Limit the number of sums that appear in the report SUMBY

Total values of numeric variables SUM

Select variables that appear in the report and
determine their order

VAR

PROC PRINT Statement

PROC PRINT <option(s)>;

To do this Use this option

Specify the input data set DATA=

Control general format

Write a blank line between observations DOUBLE

Print the number of observations in the data set,
in BY groups, or both, and specify explanatory
text to print with the number

N=

Suppress the column in the output that
identifies each observation by number

NOOBS

Specify a column header for the column that
identifies each observation by number

OBS=

Round unformatted numeric values to two
decimal places

ROUND

Control page format

Format the rows on a page ROWS=

Use each variable’s formatted width as its
column width on all pages

WIDTH=UNIFORM

The PRINT Procedure 4 PROC PRINT Statement 787

To do this Use this option

Control column format

Control the orientation of the column headings HEADING=

Use variables’ labels as column headings LABEL or SPLIT=

Specify the split character, which controls line
breaks in column headings

SPLIT=

Determine the column width for each variable WIDTH=

Options

DATA=SAS-data-set
specifies the SAS data set to print.

Main discussion: “Input Data Sets” on page 18

DOUBLE
writes a blank line between observations.

Alias: D

Restriction: This option has no effect on the HTML output.

Featured in: Example 1 on page 798

HEADING=direction
controls the orientation of the column headings, where direction is one of the
following:

HORIZONTAL
prints all column headings horizontally.

Alias: H

VERTICAL
prints all column headings vertically.

Alias: V

Default: Headings are either all horizontal or all vertical. If you omit HEADING=,
PROC PRINT determines the direction of the column headings as follows:

� If you do not use LABEL, spacing dictates whether column headings are
vertical or horizontal.

� If you use LABEL and at least one variable has a label, all headings are
horizontal.

LABEL
uses variables’ labels as column headings.

Alias: L

Default: If you omit LABEL, PROC PRINT uses the variable’s name as the column
heading even if the PROC PRINT step contains a LABEL statement. If a variable
does not have a label, PROC PRINT uses the variable’s name as the column
heading.

Interaction: By default, if you specify LABEL and at least one variable has a label,
PROC PRINT prints all column headings horizontally. Therefore, using LABEL
may increase the number of pages of output. (Use HEADING=VERTICAL in the
PROC PRINT statement to print vertical column headings.)

788 PROC PRINT Statement 4 Chapter 28

Interaction: PROC PRINT sometimes conserves space by splitting labels across
multiple lines. Use SPLIT= in the PROC PRINT statement to control where these
splits occur. You do not need to use LABEL if you use SPLIT=.

Tip: To create a blank column header for a variable, use this LABEL statement in
your PROC PRINT step:

label variable-name=’00’x;

See also: For information on using the LABEL statement to create temporary
labels in procedures see Chapter 3, “Statements with the Same Function in
Multiple Procedures,” on page 67.

For information on using the LABEL statement in a DATA step to create
permanent labels, see the section on statements in SAS Language Reference:
Dictionary.

Featured in: Example 3 on page 801
Note: The SAS system option LABEL must be in effect in order for any procedure

to use labels. For more information see the section on system options in SAS
Language Reference: Dictionary 4

N<=“string-1” <“string-2”>>
prints the number of observations in the data set, in BY groups, or both and specifies
explanatory text to print with the number.

If you use the
N option ... PROC PRINT ...

with neither a BY nor a SUM statement prints the number of observations in the data set
at the end of the report and labels the number
with the value of string-1.

with a BY statement prints the number of observations in the BY group
at the end of each BY group and labels the number
with the value of string-1.

with a BY statement and a SUM statement prints the number of observations in the BY group
at the end of each BY group and prints the
number of observations in the data set at the end
of the report. The numbers for BY groups are
labeled with string-1; the number for the entire
data set is labeled with string-2.

Featured in: Example 2 on page 799 (alone)
Example 3 on page 801 (with a BY statement)
Example 4 on page 803 (with a BY statement and a SUM statement)

NOOBS
suppresses the observation number in the output.
Featured in: Example 3 on page 801

OBS=“column-header”
specifies a column header for the column that identifies each observation by number.
Tip: OBS= honors the split character (see the discussion of SPLIT= on page 790).
Featured in: Example 2 on page 799

ROUND
rounds unformatted numeric values to two decimal places. (Formatted values are
already rounded by the format to the specified number of decimal places.) For both

The PRINT Procedure 4 PROC PRINT Statement 789

formatted and unformatted variables, PROC PRINT uses these rounded values to
calculate any sums in the report.

If you omit ROUND, PROC PRINT adds the actual values of the rows to obtain
the sum even though it displays the formatted (rounded) values. Any sums are also
rounded by the format, but they include only one rounding error, that of rounding the
sum of the actual values. The ROUND option, on the other hand, rounds values
before summing them, so there may be multiple rounding errors. The results without
ROUND are more accurate, but ROUND is useful for published reports where it is
important for the total to be the sum of the printed (rounded) values.

Be aware that the results from PROC PRINT with the ROUND option may differ
from the results of summing the same data with other methods such as PROC
MEANS or the DATA step. Consider a simple case in which

� the data set contains three values for X: .003, .004, and .009.
� X has a format of 5.2.
Depending on how you calculate the sum, you can get three different answers:

0.02, 0.01, and 0.016. Figure 28.1 on page 789 shows the results of calculating the
sum with PROC PRINT (without and with the ROUND option) and PROC MEANS.

Figure 28.1 Three Methods of Summing Variables

OBS X

1 0.00
2 0.00
3 0.01

=====
0.02

PROC PRINT without PROC PRINT with
Actual Values the ROUND option the ROUND option PROC MEANS

.003

.004

.009
=====

.016

Analysis Variable : X

Sum

0.0160000

OBS X

1 0.00
2 0.00
3 0.01

=====
0.01

===

===

| |
| |
| |
| |
| |
| |
| |
| |
| |

| |
| |
| |
| |
| |
| |
| |
| |
| |

| |
| |
| |
| |
| |
| |
| |
| |
| |

Notice that the sum produced without the ROUND option (.02) is closer to the
actual result (0.16) than the sum produced with ROUND (0.01). However, the sum
produced with ROUND reflects the numbers displayed in the report.
Alias: R

CAUTION:
Do not use ROUND with PICTURE formats. ROUND is for use with numeric values.
SAS procedures treat variables that have picture formats as character variables.
Using ROUND with such variables may lead to unexpected results. 4

ROWS=page-format
formats rows on a page. Currently, PAGE is the only value that you can use for
page-format:

PAGE
prints only one row of variables for each observation per page. When you use
ROWS=PAGE, PROC PRINT does not divide the page into sections; it prints as
many observations as possible on each page. If the observations do not fill the last
page of the output, PROC PRINT divides the last page into sections and prints all
the variables for the last few observations.

790 PROC PRINT Statement 4 Chapter 28

Restriction: Physical page size does not mean the same thing in HTML output as it
does in traditional procedure output. Therefore, HTML output from PROC PRINT
appears the same whether or not you use ROWS=.

Tip: The PAGE value can reduce the number of pages in the output if the data set
contains large numbers of variables and observations. However, if the data set
contains a large number of variables but few observations, the PAGE value can
increase the number of pages in the output.

See also: “Page Layout” on page 795 for discussion of the default layout.
Featured in: Example 7 on page 810

SPLIT=’split-character’
specifies the split character, which controls line breaks in column headers. It also
uses labels as column headers. PROC PRINT breaks a column heading when it
reaches the split character and continues the header on the next line. The split
character is not part of the column heading although each occurrence of the split
character counts toward the 256-character maximum for a label.

Alias: S=

Interaction: You do not need to use both LABEL and SPLIT= because SPLIT=
implies the use of labels.

Interaction: The OBS= option honors the split character. (See the discussion of
OBS= on page 788).

Featured in: Example 2 on page 799

Note: PROC PRINT does not split labels of BY variables in the heading preceding
each BY group even if you specify SPLIT=. Instead, PROC PRINT treats the split
character as part of the label. Therefore, you probably want to avoid using a split
character when you are using the BY statement. 4

UNIFORM
See WIDTH=UNIFORM on page 790.

WIDTH=column-width
determines the column width for each variable. The value of column-width must be
one of the following:

FULL
uses a variable’s formatted width as the column width. If the variable does not
have a format that explicitly specifies a field width, PROC PRINT uses the default
width. For a character variable, the default width is the length of the variable.
For a numeric variable, the default width is 12. When you use WIDTH=FULL, the
column widths do not vary from page to page.
Tip: Using WIDTH=FULL can reduce execution time.

MINIMUM
uses for each variable the minimum column width that accommodates all values of
the variable.

Alias: MIN

UNIFORM
uses each variable’s formatted width as its column width on all pages. If the
variable does not have a format that explicitly specifies a field width, PROC
PRINT uses the widest data value as the column width. When you specify
WIDTH=UNIFORM, PROC PRINT normally needs to read the data set twice.
However, if all the variables in the data set have formats that explicitly specify a
field width (for example, BEST12. but not BEST.), PROC PRINT reads the data
set only once.

The PRINT Procedure 4 BY Statement 791

Alias: U

Tip: If the data set is large and you want a uniform report, you can save computer
resources by using formats that explicitly specify a field width so that PROC
PRINT reads the data only once.

Tip: WIDTH=UNIFORM is the same as UNIFORM.

Restriction: When not all variables have formats that explicitly specify a width,
you cannot use WIDTH=UNIFORM with an engine that supports concurrent
access if another user is updating the data set at the same time.

UNIFORMBY
formats all columns uniformly within a BY group, using each variable’s formatted
width as its column width. If the variable does not have a format that explicitly
specifies a field width, PROC PRINT uses the widest data value as the column
width.

Alias: UBY

Restriction: You cannot use UNIFORMBY with a sequential data set.

Default: If you omit WIDTH= and do not specify the UNIFORM option, PROC
PRINT individually constructs each page of output. The procedure analyzes the
data for a page and decides how best to display them. Therefore, column widths
may differ from one page to another.

Tip: Column width is affected not only by variable width but also by the length of
column headings. Long column headings may lessen the usefulness of WIDTH=.

See also: For a discussion of default column widths, see “Column Width” on page
797.

BY Statement

Produces a separate section of the report for each BY group.

Main discussion: “BY” on page 68

Featured in: Example 3 on page 801, Example 4 on page 803, Example 5 on page 805,
Example 6 on page 808, and Example 8 on page 813

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>

<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

792 ID Statement 4 Chapter 28

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

Using the BY Statement with an ID Statement
PROC PRINT uses a special layout if all BY variables appear in the same order at

the beginning of the ID statement. (See Example 8 on page 813.)

Using the BY Statement with the NOBYLINE Option
If you use the BY statement with the SAS system option NOBYLINE, which

suppresses the BY line that normally appears in output produced with BY-group
processing, PROC PRINT always starts a new page for each BY group. This behavior
ensures that if you create customized BY lines by putting BY-group information in the
title and suppressing the default BY lines with NOBYLINE, the information in the
titles matches the report on the pages. (See “Creating Titles That Contain BY-Group
Information” on page 54.)

ID Statement
Identifies observations by using the formatted values of the variables that you list instead of by
using observation numbers.

Featured in: Example 7 on page 810 and Example 8 on page 813

ID variable(s);

Required Arguments

variable(s)
specifies one or more variables to print instead of the observation number at the
beginning of each row of the report.
Restriction: If the ID variables occupy so much space that no room remains on the

line for at least one other variable, PROC PRINT writes a warning to the SAS log
and does not treat all ID variables as ID variables.

The PRINT Procedure 4 SUM Statement 793

Interaction: If a variable in the ID statement also appears in the VAR statement,
the output contains two columns for that variable.

Using the BY Statement with an ID Statement
PROC PRINT uses a special layout if all BY variables appear in the same order at

the beginning of the ID statement. (See Example 8 on page 813.)

PAGEBY Statement

Controls page ejects that occur before a page is full.

Requirements: BY statement
Featured in: Example 3 on page 801

PAGEBY BY-variable;

Required Arguments

BY-variable
identifies a variable appearing in the BY statement in the PROC PRINT step. If the
value of the BY variable changes, or if the value of any BY variable that precedes it
in the BY statement changes, PROC PRINT begins printing a new page.
Interaction: If you use the BY statement with the SAS system option NOBYLINE,

which suppresses the BY line that normally appears in output produced with
BY-group processing, PROC PRINT always starts a new page for each BY group.
This behavior ensures that if you create customized BY lines by putting BY-group
information in the title and suppressing the default BY lines with NOBYLINE, the
information in the titles matches the report on the pages. (See “Creating Titles
That Contain BY-Group Information” on page 54.)

SUM Statement

Totals values of numeric variables.

Featured in: Example 4 on page 803, Example 5 on page 805, Example 6 on page 808,
and Example 8 on page 813

SUM variable(s);

Required Arguments

794 SUMBY Statement 4 Chapter 28

variable(s)
identifies the numeric variables to total in the report.

Using the SUM and BY Statements Together
When you use a SUM statement and a BY statement with one BY variable, PROC

PRINT sums the SUM variables for each BY group that contains more than one
observation and totals them over all BY groups (see Example 4 on page 803).

When you use a SUM statement and a BY statement with multiple BY variables,
PROC PRINT sums the SUM variables for each BY group that contains more than one
observation, just as it does if you use only one BY variable. However, it provides sums
only for those BY variables whose values change when the BY group changes. (See
Example 5 on page 805.)

Note: When the value of a BY variable changes, the SAS System considers that the
values of all variables listed after it in the BY statement also change. 4

SUMBY Statement

Limits the number of sums that appear in the report.

Requirements: BY statement
Featured in: Example 6 on page 808

SUMBY BY-variable;

Required Arguments

BY-variable
identifies a variable that appears in the BY statement in the PROC PRINT step. If
the value of the BY variable changes, or if the value of any BY variable that precedes
it in the BY statement changes, PROC PRINT prints the sums of all variables listed
in the SUM statement.

What Variables Are Summed?
If you use a SUM statement, PROC PRINT subtotals only the SUM variables.

Otherwise, PROC PRINT subtotals all the numeric variables in the data set except
those listed in the ID and BY statements.

The PRINT Procedure 4 Page Layout 795

VAR Statement
Selects variables that appear in the report and determines their order.

Tip: If you omit the VAR statement, PROC PRINT prints all variables in the data set.
Featured in: Example 1 on page 798 and Example 8 on page 813

VAR variable(s);

Required Arguments

variable(s)
identifies the variables to print. PROC PRINT prints the variables in the order that
you list them.
Interaction: In the PROC PRINT output, variables that are listed in the ID

statement precede variables that are listed in the VAR statement. If a variable in
the ID statement also appears in the VAR statement, the output contains two
columns for that variable.

Results

Procedure Output
PROC PRINT always produces a printed report. You control the appearance of the

report with statements and options. See “Examples” on page 798 for a sampling of the
types of reports that the procedure produces.

Page Layout
By default, PROC PRINT uses an identical layout for all observations on a page of

output. First, it attempts to print observations on a single line (see Figure 28.2 on page
795).

Figure 28.2 Printing Observations on a Single Line

1
Obs Var_1 Var_2 Var_3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

796 Page Layout 4 Chapter 28

If PROC PRINT cannot fit all the variables on a single line, it splits the observations
into two or more sections and prints the observation number or the ID variables at the
beginning of each line. For example, in Figure 28.3 on page 796, PROC PRINT prints
the values for the first three variables in the first section of each page and the values
for the second three variables in the second section of each page.

Figure 28.3 Splitting Observations into Multiple Sections on One Page

2
Obs Var_1 Var_2 Var_3

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Obs Var_4 Var_5 Var_6

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

1
Obs Var_1 Var_2 Var_3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

Obs Var_4 Var_5 Var_6

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

If PROC PRINT cannot fit all the variables on one page, the procedure prints
subsequent pages with the same observations until it has printed all the variables. For
example, in Figure 28.4 on page 796, PROC PRINT uses the first two pages to print
values for the first three observations and the second two pages to print values for the
rest of the observations.

Figure 28.4 Splitting Observations across Multiple Pages

2

Obs Var_7 Var_8 Var_9

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

Obs Var_10 Var_11 Var_12

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

1

Obs Var_1 Var_2 Var_3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

Obs Var_4 Var_5 Var_6

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

4

Obs Var_7 Var_8 Var_9

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Obs Var_10 Var_11 Var_12

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

3

Obs Var_1 Var_2 Var_3

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Obs Var_4 Var_5 Var_6

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

The PRINT Procedure 4 Page Layout 797

Note: You can alter the page layout with the ROWS= option in the PROC PRINT
statement (see the discussion of ROWS= on page 789). 4

Note: PROC PRINT may produce slightly different output if the data set is not
RADIX addressable. Version 6 compressed files are not RADIX addressable, while,
beginning with Version 7, compressed files are RADIX addressable. (The integrity of the
data is not compromised; the procedure simply numbers the observations differently.) 4

Column Headings
By default, spacing dictates whether PROC PRINT prints column headings

horizontally or vertically. Figure 28.2 on page 795, Figure 28.3 on page 796, and Figure
28.4 on page 796 all illustrate horizontal headings. Figure 28.5 on page 797 illustrates
vertical headings.

Figure 28.5 Using Vertical Headings

1
V V V
a a a

O r r r
b – – –
s 1 2 3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Note: If you use LABEL and at least one variable has a label, PROC PRINT prints
all column headings horizontally unless you specify HEADING=VERTICAL. 4

Column Width
By default, PROC PRINT uses a variable’s formatted width as the column width.

(The WIDTH= option overrides this default behavior.) If the variable does not have a
format that explicitly specifies a field width, PROC PRINT uses the widest data value
for that variable on that page as the column width.

If the formatted value of a character variable or the data width of an unformatted
character variable exceeds the linesize minus the length of all the ID variables, PROC
PRINT may truncate the value. Consider the following situation:

� The linesize is 80.
� IdNumber is a character variable with a length of 10. It is used as an ID variable.
� State is a character variable with a length of 2. It is used as an ID variable.
� Comment is a character variable with a length of 200.

When PROC PRINT prints these three variables on a line, it uses 14 print positions
for the two ID variables and the space after each one. This leaves 80–14, or 66, print
positions for COMMENT. Longer values of COMMENT are truncated.

WIDTH= controls the column width.

Note: Column width is affected not only by variable width but also by the length of
column headings. Long column headings may lessen the usefulness of WIDTH=. 4

798 Examples 4 Chapter 28

Examples

Example 1: Selecting Variables to Print

Procedure features:
PROC PRINT statement options:

DOUBLE
VAR statement

This example
� selects three variables for the report
� uses variable labels as column headings

� double spaces between rows of the report.

Program

options nodate pageno=1 linesize=70 pagesize=60;

The data set EXPREV contains information on a company’s monthly expenses and revenues for
two regions of the United States.

data exprev;
input Region $ State $ Month monyy5.

Expenses Revenues;
format month monyy5.;
datalines;

Southern GA JAN95 2000 8000
Southern GA FEB95 1200 6000
Southern FL FEB95 8500 11000
Northern NY FEB95 3000 4000
Northern NY MAR95 6000 5000
Southern FL MAR95 9800 13500
Northern MA MAR95 1500 1000
;

DOUBLE writes a blank line between observations. (This option has no effect on the HTML
output.)

proc print data=exprev double;

The VAR statement creates columns for Month, State, and Expenses, in that order.

The PRINT Procedure 4 Example 2: Customizing Text in Column Headers 799

var month state expenses;

The TITLE statement specifies a title for the report.

title ’Monthly Expenses for Offices in Each State’;
run;

Output

By default, PROC PRINT identifies each observation by number under the column heading Obs.

Monthly Expenses for Offices in Each State 1

Obs Month State Expenses

1 JAN95 GA 2000

2 FEB95 GA 1200

3 FEB95 FL 8500

4 FEB95 NY 3000

5 MAR95 NY 6000

6 MAR95 FL 9800

7 MAR95 MA 1500

Example 2: Customizing Text in Column Headers

Procedure features:
PROC PRINT statement options:

N
OBS=
SPLIT=

Other features:
LABEL statement

Data set: EXPREV on page 798

This example
� customizes and underlines the text in column headings for variables
� customizes the column header for the column that identifies observations by

number
� shows the number of observations in the report

800 Program 4 Chapter 28

� writes the values of Expenses with commas.

Program

options nodate pageno=1 linesize=70 pagesize=60;

SPLIT= identifies the asterisk as the character that starts a new line in column headers. The N
option prints the number of observations at the end of the report. OBS= specifies the column
header for the column that identifies each observation by number. The split character (*) starts
a new line in the column heading. Therefore, the equal signs (=) in the value of OBS= underline
the column header.

proc print data=exprev split=’*’ n obs=’Observation*Number*===========’;

The VAR statement creates columns for Month, State, and Expenses, in that order.

var month state expenses;

The LABEL statement associates a label with each variable for the duration of the PROC
PRINT step. When you use SPLIT= in the PROC PRINT statement, the procedure uses labels
for column headers. The split character (*) starts a new line in the column heading. Therefore,
the equal signs (=) in the labels underline the column headers.

label month=’Month**=====’
state=’State**=====’
expenses=’Expenses**========’;

The FORMAT statement assigns a format to use for Expenses in the report. The TITLE
statement specifies a title.

format expenses comma10.;
title ’Monthly Expenses for Offices in Each State’;

run;

The PRINT Procedure 4 Program 801

Output

Monthly Expenses for Offices in Each State 1

Observation Month State Expenses

Number

=========== ===== ===== ========

1 JAN95 GA 2,000

2 FEB95 GA 1,200

3 FEB95 FL 8,500

4 FEB95 NY 3,000

5 MAR95 NY 6,000

6 MAR95 FL 9,800

7 MAR95 MA 1,500

N = 7

Example 3: Creating Separate Sections of a Report for Groups of
Observations

Procedure features:
PROC PRINT statement options:

LABEL
N=
NOOBS

BY statement
PAGEBY statement

Other features:
SORT procedure
LABEL statement

Data set: EXPREV on page 798

This example
� suppresses the printing of observation numbers at the beginning of each row
� presents the data for each state in a separate section of the report
� begins a new page for each region.

Program

options pagesize=60 pageno=1 nodate linesize=70;

PROC SORT sorts the observations by Region, State, and Month.

proc sort data=exprev;
by region state month;

802 Program 4 Chapter 28

run;

N= prints the number of observations in a BY group at the end of that BY group. The
explanatory text that the N= option provides precedes the number. NOOBS suppresses the
printing of observation numbers at the beginning of the rows. LABEL uses variables’ labels as
column headings.

proc print data=exprev n=’Number of observations for the state: ’
noobs label;

The VAR statement creates columns for Month, Expenses, and Revenues, in that order.

var month expenses revenues;

The BY statement produces a separate section of the report for each BY group and prints a
heading above each one. The PAGEBY statement starts a new page each time the value of
Region changes.

by region state;
pageby region;

The LABEL statement associates a label with the variable Region for the duration of the PROC
PRINT step. When you use the LABEL option in the PROC PRINT statement, the procedure
uses labels for column headings.

label region=’Sales Region’;

The FORMAT statement assigns a format to Expenses and Revenues for this report. The TITLE
statement specifies a title.

format revenues expenses comma10.;
title ’Sales Figures Grouped by Region and State’;

run;

The PRINT Procedure 4 Example 4: Summing Numeric Variables with One BY Group 803

Output

Sales Figures Grouped by Region and State 1

------------------- Sales Region=Northern State=MA -------------------

Month Expenses Revenues

MAR95 1,500 1,000

Number of observations for the state: 1

------------------- Sales Region=Northern State=NY -------------------

Month Expenses Revenues

FEB95 3,000 4,000
MAR95 6,000 5,000

Number of observations for the state: 2

Sales Figures Grouped by Region and State 2

------------------- Sales Region=Southern State=FL -------------------

Month Expenses Revenues

FEB95 8,500 11,000
MAR95 9,800 13,500

Number of observations for the state: 2

------------------- Sales Region=Southern State=GA -------------------

Month Expenses Revenues

JAN95 2,000 8,000
FEB95 1,200 6,000

Number of observations for the state: 2

Example 4: Summing Numeric Variables with One BY Group
Procedure features:

PROC PRINT statement options:
N=

BY statement
SUM statement

Other features:
SORT procedure
TITLE statement

#BYVAL specification
SAS system options :

804 Program 4 Chapter 28

BYLINE
NOBYLINE

Data set: EXPREV on page 798

This example
� sums expenses and revenues for each region and for all regions
� shows the number of observations in each BY group and in the whole report

� creates a customized title, containing the name of the region. This title replaces
the default BY line for each BY group.

Program

The SAS system option NOBYLINE suppresses the printing of the default BY line. When you
use PROC PRINT with NOBYLINE, each BY group starts on a new page.

options nodate pageno=1 linesize=70 pagesize=60 nobyline;

PROC SORT sorts the observations by Region.

proc sort data=exprev;
by region;

run;

NOOBS suppresses the printing of observation numbers at the beginning of the rows. N= prints
the number of observations in a BY group at the end of that BY group and (because of the SUM
statement) prints the number of observations in the data set at the end of the report. The first
piece of explanatory text that N= provides precedes the number for each BY group. The second
piece of explanatory text that N= provides precedes the number for the entire data set.

proc print data=exprev noobs
n=’Number of observations for the state: ’

’Number of observations for the data set: ’;

The SUM statement alone sums the values of Expenses and Revenues for the entire data set.
Because the PROC PRINT step contains a BY statement, the SUM statement also sums the
values of Expenses and Revenues for each region that contains more than one observation.

sum expenses revenues;
by region;

The FORMAT statement assigns the COMMA10. format to Expenses and Revenues for this
report.

format revenues expenses comma10.;

The PRINT Procedure 4 Example 5: Summing Numeric Variables with Multiple BY Variables 805

The TITLE statement specifies a title. The #BYVAL specification places the current value of the
BY variable Region in the title. Because NOBYLINE is in effect, each BY group starts on a new
page, and the title serves as a BY line.

title ’Revenue and Expense Totals for the
#byval(region) Region’;
run;

The SAS system option BYLINE resets the printing of the default BY line.

options byline;

Output

Revenue and Expense Totals for the Northern Region 1

State Month Expenses Revenues

NY FEB95 3,000 4,000
NY MAR95 6,000 5,000
MA MAR95 1,500 1,000
------ ---------- ----------
Region 10,500 10,000

Number of observations for the state: 3

Revenue and Expense Totals for the Southern Region 2

State Month Expenses Revenues

GA JAN95 2,000 8,000
GA FEB95 1,200 6,000
FL FEB95 8,500 11,000
FL MAR95 9,800 13,500
------ ---------- ----------
Region 21,500 38,500

========== ==========
32,000 48,500

Number of observations for the state: 4
Number of observations for the data set: 7

Example 5: Summing Numeric Variables with Multiple BY Variables
Procedure features:

BY statement
SUM statement

Other features: SORT procedure

806 Program 4 Chapter 28

Data set: EXPREV on page 798

This example

� sums expenses and revenues for

� each region

� each state with more than one row in the report

� all rows in the report.

� shows the number of observations in each BY group and in the whole report.

Program

options nodate pageno=1 linesize=70 pagesize=60;

PROC SORT sorts the observations by Region and State.

proc sort data=exprev;
by region state;

run;

The N option prints the number of observations in a BY group at the end of that BY group and
prints the total number of observations used in the report at the bottom of the report. NOOBS
suppresses the printing of observation numbers at the beginning of the rows.

proc print data=exprev n noobs;

The BY statement produces a separate section of the report for each BY group. The SUM
statement alone sums the values of Expenses and Revenues for the entire data set. Because the
program contains a BY statement, the SUM statement also sums the values of Expenses and
Revenues for each BY group that contains more than one observation.

by region state;
sum expenses revenues;

The LABEL statement associates a label with the variable Region for the duration of the PROC
PRINT step. The BY line at the beginning of each BY group uses the label. The FORMAT
statement assigns a format to Expenses and Revenues for this report. The TITLE statement
specifies a title.

label region=’Sales Region’;
format revenues expenses comma10.;
title ’Revenue and Expense Totals for Each State and Region’;

run;

The PRINT Procedure 4 Output 807

Output

The report uses default column headers (variable names) because neither the SPLIT= nor the
LABEL option is used. Nevertheless, the BY line at the top of each section of the report shows
the BY variables’ labels and their values. The name of a BY variable identifies the subtotals in
the report.

PROC PRINT sums Expenses and Revenues for each BY group that contains more than one
observation. However, sums are shown only for the BY variables whose values change from one
BY group to the next. For example, in the third BY group, where the sales region is Southern
and the state is FL, expenses and revenues are summed only for the state because the next BY
group is for the same region.

Revenue and Expense Totals for Each State and Region 1

------------------- Sales Region=Northern State=MA -------------------

Month Expenses Revenues

MAR95 1,500 1,000

N = 1

------------------- Sales Region=Northern State=NY -------------------

Month Expenses Revenues

FEB95 3,000 4,000
MAR95 6,000 5,000

------ ---------- ----------
State 9,000 9,000

Region 10,500 10,000

N = 2

------------------- Sales Region=Southern State=FL -------------------

Month Expenses Revenues

FEB95 8,500 11,000
MAR95 9,800 13,500

------ ---------- ----------
State 18,300 24,500

N = 2

------------------- Sales Region=Southern State=GA -------------------

Month Expenses Revenues

JAN95 2,000 8,000
FEB95 1,200 6,000

------ ---------- ----------
State 3,200 14,000

Region 21,500 38,500
========== ==========

32,000 48,500

N = 2
Total N = 7

808 Example 6: Limiting the Number of Sums in a Report 4 Chapter 28

Example 6: Limiting the Number of Sums in a Report

Features:
BY statement
SUM statement
SUMBY statement

Other features:
SORT procedure
LABEL statement

Data set: EXPREV on page 798

This example

� creates a separate section of the report for each combination of state and region
� sums expenses and revenues only for each region and for all regions, not for

individual states.

Program

options nodate pageno=1 linesize=70 pagesize=60;

PROC SORT sorts the observations by Region and State.

proc sort data=exprev;
by region state;

run;

NOOBS suppresses the printing of observation numbers at the beginning of the rows.

proc print data=exprev noobs;

The SUM and BY statements work together to sum the values of Revenues and Expenses for
each BY group as well as for the whole report. The SUMBY statement limits the subtotals to
one for each region.

by region state;
sum revenues expenses;
sumby region;

The LABEL statement associates a label with the variable Region for the duration of the PROC
PRINT step. This label is used in the BY lines.

label region=’Sales Region’;

The PRINT Procedure 4 Output 809

The FORMAT statement assigns the COMMA10. format to Expenses and Revenues for this
report. The TITLE statement specifies the title.

format revenues expenses comma10.;
title ’Revenue and Expense Figures for Each Region’;

run;

Output

The report uses default column headers (variable names) because neither the SPLIT= nor the
LABEL option is used. Nevertheless, the BY line at the top of each section of the report shows
the BY variables’ labels and their values. The name of a BY variable identifies the subtotals in
the report.

Revenue and Expense Figures for Each Region 1

------------------- Sales Region=Northern State=MA -------------------

Month Expenses Revenues

MAR95 1,500 1,000

------------------- Sales Region=Northern State=NY -------------------

Month Expenses Revenues

FEB95 3,000 4,000
MAR95 6,000 5,000

------ ---------- ----------
Region 10,500 10,000

------------------- Sales Region=Southern State=FL -------------------

Month Expenses Revenues

FEB95 8,500 11,000
MAR95 9,800 13,500

------------------- Sales Region=Southern State=GA -------------------

Month Expenses Revenues

JAN95 2,000 8,000
FEB95 1,200 6,000

------ ---------- ----------
Region 21,500 38,500

========== ==========
32,000 48,500

810 Example 7: Controlling the Layout of a Report with Many Variables 4 Chapter 28

Example 7: Controlling the Layout of a Report with Many Variables
Procedure features:

PROC PRINT statement options:
ROWS=

ID statement
Other features:

SAS data set options:
OBS=

This example shows two ways of printing a data set with a large number of
variables: one is the default, and the other uses ROWS=. For detailed explanations of
the layouts of these two reports, see the ROWS= option on page 789 and see “Page
Layout” on page 795.

These reports use a pagesize of 24 and a linesize of 64 to help illustrate the different
layouts.

Note: When the two reports are written as HTML output, they do not differ. 4

Program

options nodate pageno=1 linesize=64 pagesize=24 ;

The data set EMPDATA contains personal and job-related information about a company’s
employees. A DATA step on page 1501 creates this data set.

data empdata;
input IdNumber $ 1-4 LastName $ 9-19 FirstName $ 20-29

City $ 30-42 State $ 43-44 /
Gender $ 1 JobCode $ 9-11 Salary 20-29 @30 Birth date7.
@43 Hired date7. HomePhone $ 54-65;

format birth hired date7.;
datalines;

1919 Adams Gerald Stamford CT
M TA2 34376 15SEP48 07JUN75 203/781-1255
1653 Alexander Susan Bridgeport CT
F ME2 35108 18OCT52 12AUG78 203/675-7715

. . . more lines of data . . .

1407 Grant Daniel Mt. Vernon NY
M PT1 68096 26MAR57 21MAR78 914/468-1616
1114 Green Janice New York NY
F TA2 32928 21SEP57 30JUN75 212/588-1092
;

The OBS= data set option uses only the first 12 observations to create the report. (This is just to
conserve space here.) The ID statement identifies observations with the formatted value of
IdNumber rather than with the observation number. This report is in Output 28.3 on page 811.

The PRINT Procedure 4 Output 811

proc print data=empdata(obs=12);
id idnumber;
title ’Personnel Data’;

run;

ROWS=PAGE prints only one row of variables for each observation on a page. This report is in
Output 28.4 on page 812.

proc print data=empdata(obs=12) rows=page;
id idnumber;
title ’Personnel Data’;

run;

Output

Output 28.3 Default Layout for a Report with Many Variables

In the traditional procedure output, each page of this report contains
values for all variables in each observation. In the HTML output, this
report is identical to the report that uses ROWS=PAGE.

Note that PROC PRINT automatically splits the variable names that
are used as column headers at a change in capitalization if the entire
name does not fit in the column. Compare, for example, the column
headers for LastName (which fits in the column) and FirstName (which
does not fit in the column).

Personnel Data 1

Id First
Number LastName Name City State Gender

1919 Adams Gerald Stamford CT M
1653 Alexander Susan Bridgeport CT F
1400 Apple Troy New York NY M
1350 Arthur Barbara New York NY F
1401 Avery Jerry Paterson NJ M
1499 Barefoot Joseph Princeton NJ M
1101 Baucom Walter New York NY M

Id Job
Number Code Salary Birth Hired HomePhone

1919 TA2 34376 15SEP48 07JUN75 203/781-1255
1653 ME2 35108 18OCT52 12AUG78 203/675-7715
1400 ME1 29769 08NOV55 19OCT78 212/586-0808
1350 FA3 32886 03SEP53 01AUG78 718/383-1549
1401 TA3 38822 16DEC38 20NOV73 201/732-8787
1499 ME3 43025 29APR42 10JUN68 201/812-5665
1101 SCP 18723 09JUN50 04OCT78 212/586-8060

812 Output 4 Chapter 28

Personnel Data 2

Id First
Number LastName Name City State Gender

1333 Blair Justin Stamford CT M
1402 Blalock Ralph New York NY M
1479 Bostic Marie New York NY F
1403 Bowden Earl Bridgeport CT M
1739 Boyce Jonathan New York NY M

Id Job
Number Code Salary Birth Hired HomePhone

1333 PT2 88606 02APR49 13FEB69 203/781-1777
1402 TA2 32615 20JAN51 05DEC78 718/384-2849
1479 TA3 38785 25DEC56 08OCT77 718/384-8816
1403 ME1 28072 31JAN57 24DEC79 203/675-3434
1739 PT1 66517 28DEC52 30JAN79 212/587-1247

Output 28.4 Layout Produced by the ROWS=PAGE Option

Each page of this report contains values for only some of the variables
in each observation. However, each page contains values for more
observations than the default report does.

Personnel Data 1

Id First
Number LastName Name City State Gender

1919 Adams Gerald Stamford CT M
1653 Alexander Susan Bridgeport CT F
1400 Apple Troy New York NY M
1350 Arthur Barbara New York NY F
1401 Avery Jerry Paterson NJ M
1499 Barefoot Joseph Princeton NJ M
1101 Baucom Walter New York NY M
1333 Blair Justin Stamford CT M
1402 Blalock Ralph New York NY M
1479 Bostic Marie New York NY F
1403 Bowden Earl Bridgeport CT M
1739 Boyce Jonathan New York NY M

The PRINT Procedure 4 Program 813

Personnel Data 2

Id Job
Number Code Salary Birth Hired HomePhone

1919 TA2 34376 15SEP48 07JUN75 203/781-1255
1653 ME2 35108 18OCT52 12AUG78 203/675-7715
1400 ME1 29769 08NOV55 19OCT78 212/586-0808
1350 FA3 32886 03SEP53 01AUG78 718/383-1549
1401 TA3 38822 16DEC38 20NOV73 201/732-8787
1499 ME3 43025 29APR42 10JUN68 201/812-5665
1101 SCP 18723 09JUN50 04OCT78 212/586-8060
1333 PT2 88606 02APR49 13FEB69 203/781-1777
1402 TA2 32615 20JAN51 05DEC78 718/384-2849
1479 TA3 38785 25DEC56 08OCT77 718/384-8816
1403 ME1 28072 31JAN57 24DEC79 203/675-3434
1739 PT1 66517 28DEC52 30JAN79 212/587-1247

Example 8: Creating a Customized Layout with BY Groups and ID Variables
Procedure features:

BY statement
ID statement
SUM statement
VAR statement

Other features:
SORT procedure

Data set: EMPDATA on page 810

This customized report
� selects variables to include in the report and controls their order
� selects observations to include in the report
� groups the selected observations by JobCode
� sums the salaries for each job code and for all job codes
� displays numeric data with commas and dollar signs.

Program

PROC SORT creates a temporary data set in which the observations are sorted by JobCode and
Gender.

options nodate pageno=1 linesize=64 pagesize=60;
proc sort data=empdata out=tempemp;

by jobcode gender;
run;

814 Output 4 Chapter 28

SPLIT= identifies the asterisk as the character that starts a new line in column headers.

proc print data=tempemp split=’*’;

The VAR statement and the ID statement together select the variables to include in the report.
The ID statement and the BY statement produce the special format.

id jobcode;
by jobcode;
var gender salary;

The SUM statement totals the values of Salary for each BY group and for the whole report.

sum salary;

The LABEL statement associates a label with each variable for the duration of the PROC
PRINT step. When you use SPLIT= in the PROC PRINT statement, the procedure uses labels
for column headings.

label jobcode=’Job Code*========’
gender=’Gender*======’
salary=’Annual Salary*=============’;

The FORMAT statement assigns a format to Salary for this report. The WHERE statement
selects for the report only the observations for job codes that contain the letters ’FA’ or ’ME’.
The TITLE statements specify two titles.

format salary dollar11.2;
where jobcode contains ’FA’ or jobcode contains ’ME’;
title ’Expenses Incurred for’;
title2 ’Salaries for Flight Attendants and Mechanics’;

run;

Output

The PRINT Procedure 4 Example 9: Printing All the Data Sets in a SAS Library 815

The ID and BY statements work together to produce this layout. The
ID variable is listed only once for each BY group. The BY lines are
suppressed. Instead, the value of the ID variable, JobCode, identifies
each BY group.

Expenses Incurred for 1
Salaries for Flight Attendants and Mechanics

Job Code Gender Annual Salary
======== ====== =============

FA1 F $23,177.00
F $22,454.00
M $22,268.00

-------- -------------
FA1 $67,899.00

FA2 F $28,888.00
F $27,787.00
M $28,572.00

-------- -------------
FA2 $85,247.00

FA3 F $32,886.00
F $33,419.00
M $32,217.00

-------- -------------
FA3 $98,522.00

ME1 M $29,769.00
M $28,072.00
M $28,619.00

-------- -------------
ME1 $86,460.00

ME2 F $35,108.00
F $34,929.00
M $35,345.00
M $36,925.00
M $35,090.00
M $35,185.00

-------- -------------
ME2 $212,582.00

ME3 M $43,025.00
=============

$593,735.00

Example 9: Printing All the Data Sets in a SAS Library
Features:

Macro facility
DATASETS procedure
PRINT procedure

Data set: EXPREV on page 798 and LIST on page 492

This example prints all the data sets in a SAS library. You can use the same
programming logic with any procedure. Just replace the PROC PRINT step near the

816 Program 4 Chapter 28

end of the example with whatever procedure step you want to execute. The example
uses the macro language. For details about the macro language, see SAS Guide to
Macro Processing, Version 6, Second Edition.

Program

libname printlib ’SAS-data-library’
options nodate pageno=1 linesize=80 pagesize=60;

PROC DATASETS copies two data sets out of the WORK library into the PRINTLIB library to
limit the number of data sets available to the example.

proc datasets library=work memtype=data nolist;
copy out=printlib;

select list exprev;
run;

The %MACRO statement creates the macro PRINTALL. When you call the macro, you can pass
it one or two parameters. The first parameter is the name of the library whose data set you
want to print. The second parameter is a library used by the macro. If you do not specify this
parameter, the WORK library is the default.

%macro printall(libname,worklib=work);

The %LOCAL statement creates two local macro variables, NUM and I, to use in a loop.

%local num i;

This PROC DATASETS step reads the library LIBNAME that you specify as a parameter when
you invoke the macro. The CONTENTS statement produces an output data set called TEMP1 in
WORKLIB. This data set contains an observation for each variable in each data set in the
library LIBNAME. By default, each observation includes the name of the data set that the
variable is in as well as other information about the variable. However, the KEEP= data set
option writes only the name of the data set to TEMP1.

proc datasets library=&libname memtype=data nodetails;
contents out=&worklib..temp1(keep=memname) data=_all_ noprint;

run;

This DATA step increments the value of N each time that it reads the last occurrence of a data
set name (when IF LAST.MEMNAME is true). The CALL SYMPUT statement uses the current
value of N to create a macro variable for each unique value of MEMNAME in the data set
TEMP1. The TRIM function removes extra blanks in the TITLE statement in the PROC PRINT
step that follows.

data _null_;
set &worklib..temp1 end=final;

The PRINT Procedure 4 Output 817

by memname notsorted;
if last.memname;
n+1;
call symput(’ds’||left(put(n,8.)),trim(memname));

When it reads the last observation in the data set (when FINAL is true), the DATA step assigns
the value of N to the macro variable NUM. At this point in the program, the value of N is the
number of observations in the data set.

if final then call symput(’num’,put(n,8.));

The RUN statement is crucial. It forces the DATA step to run, thus creating the macro variables
used in the CALL SYMPUT statements before the %DO loop, which uses them, executes.

run;

The %DO loop issues a PROC PRINT step for each data set. The %MEND statement ends the
macro.

%do i=1 %to #
proc print data=&libname..&&ds&i noobs;

title "Data Set &libname..&&ds&i";
run;

%end;
%mend printall;

This invocation of the PRINTALL macro prints all the data sets in the library PRINTLIB.

options nodate pageno=1 linesize=70 pagesize=60;
%printall(printlib)

Output

Data Set printlib.EXPREV 1

Region State Month Expenses Revenues

Northern MA MAR95 1500 1000
Northern NY FEB95 3000 4000
Northern NY MAR95 6000 5000
Southern FL FEB95 8500 11000
Southern FL MAR95 9800 13500
Southern GA JAN95 2000 8000
Southern GA FEB95 1200 6000

818 Output 4 Chapter 28

Data Set printlib.LIST 2

Name Street City State Zip

Gabrielli, Theresa 24 Ridgetop Rd. Westboro MA 01581
Clayton, Aria 314 Bridge St. Hanover NH 03755
Dix, Martin L. 4 Shepherd St. Norwich VT 05055
Slater, Emily C. 2009 Cherry St. York PA 17407
Ericson, Jane 211 Clancey Court Chapel Hill NC 27514
An, Ing 95 Willow Dr. Charlotte NC 28211
Jacobson, Becky 7 Lincoln St. Tallahassee FL 32312
Misiewicz, Jeremy 43-C Lakeview Apts. Madison WI 53704
Ahmadi, Hafez 5203 Marston Way Boulder CO 80302
Archuleta, Ruby Box 108 Milagro NM 87429

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Procedures Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 1729 pp.

SAS® Procedures Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–482–9
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

