
1005

C H A P T E R

33
The SORT Procedure

Overview 1005
Procedure Syntax 1007

PROC SORT Statement 1007

BY Statement 1012

Concepts 1012

Sorting Orders for Numeric Variables 1012
Sorting Orders for Character Variables 1012

EBCDIC Order 1012

ASCII Order 1013

Stored Sort Information 1013

Integrity Constraints 1014

Results 1014
Procedure Output 1014

Output Data Set 1014

Examples 1014

Example 1: Sorting by the Values of Multiple Variables 1014

Example 2: Reversing the Order of the Sorted Values 1016
Example 3: Displaying the First Observation of Each BY Group 1018

Overview
The SORT procedure sorts observations in a SAS data set by one or more character

or numeric variables, either replacing the original data set or creating a new, sorted
data set. PROC SORT by itself produces no printed output.

Output 33.1 on page 1005 shows the results of sorting a data set with the most basic
form of a PROC SORT step. In this example, PROC SORT replaces the original data
set, sorted alphabetically by last name, with a data set that is sorted by employee
identification number. The statements that produce the output follow:

proc sort data=employee;
by idnumber;

run;

proc print data=employee;
run;

1006 Overview 4 Chapter 33

Output 33.1 Observations Sorted by the Values of One Variable

The SAS System 1

Obs Name IDnumber

1 Belloit 1988
2 Wesley 2092
3 Lemeux 4210
4 Arnsbarger 5466
5 Pierce 5779
6 Capshaw 7338

Output 33.2 on page 1006 shows the results of a more complicated sort by three
variables. The businesses in this example are sorted by town, then by debt from highest
amount to lowest amount, then by account number. For an explanation of the program
that produces this output, see Example 2 on page 1016.

Output 33.2 Observations Sorted by the Values of Multiple Variables

Customers with Past-Due Accounts 1
Listed by Town, Amount, Account Number

Account
Obs Company Town Debt Number

1 Paul’s Pizza Apex 83.00 1019
2 Peter’s Auto Parts Apex 65.79 7288
3 Watson Tabor Travel Apex 37.95 3131
4 Tina’s Pet Shop Apex 37.95 5108
5 Apex Catering Apex 37.95 9923
6 Deluxe Hardware Garner 467.12 8941
7 Boyd & Sons Accounting Garner 312.49 4762
8 World Wide Electronics Garner 119.95 1122
9 Elway Piano and Organ Garner 65.79 5217

10 Ice Cream Delight Holly Springs 299.98 2310
11 Tim’s Burger Stand Holly Springs 119.95 6335
12 Strickland Industries Morrisville 657.22 1675
13 Pauline’s Antiques Morrisville 302.05 9112
14 Bob’s Beds Morrisville 119.95 4998

Note: The sorting capabilities that are described in this chapter are available on all
operating environments. In addition, if you use the HOST value of the SAS system
option SORTPGM=, you may be able to use other sorting options available only in your
operating environment. Refer to the SAS documentation for your operating
environment for information on other sorting capabilities. For more information about
the SAS system option SORTPGM=, see the chapter on SAS system options in SAS
Language Reference: Dictionary. 4

The SORT Procedure 4 PROC SORT Statement 1007

Procedure Syntax
Requirements: BY statement

Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, "Statements with the Same Function in Multiple Procedures," for details.
You can also use any global statements as well. See Chapter 2, "Fundamental Concepts
for Using Base SAS Procedures," for a list.

PROC SORT <option(s)> <collating-sequence-option>;

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n>;

PROC SORT Statement

PROC SORT <option(s)> <collating-sequence-option>;

To do this Use this option

Specify the input data set DATA=

Create an output data set OUT=

Specify the collating sequence

Specify ASCII ASCII

Specify EBCDIC EBCDIC

Specify Danish DANISH

Specify Finnish FINNISH

Specify Norwegian NORWEGIAN

Specify Swedish SWEDISH

Specify a customized sequence NATIONAL

Specify any of these collating sequences: ASCII,
EBCDIC, DANISH, FINNISH, ITALIAN,
NORWEGIAN, SPANISH, SWEDISH

SORTSEQ=

Specify the output order

Reverse the order for character variables REVERSE

Maintain the order within BY groups EQUALS

Allow for variation within BY groups NOEQUALS

Eliminate duplicate observations

Delete observations with common BY values NODUPKEY

Delete observations that have duplicate values NODUPRECS

Specify the available memory SORTSIZE=

1008 PROC SORT Statement 4 Chapter 33

To do this Use this option

Force redundant sorting FORCE

Reduce temporary disk usage TAGSORT

Options

ASCII
sorts character variables using the ASCII collating sequence. You need this option
only when you sort by ASCII on a system where EBCDIC is the native collating
sequence.
Restriction: You can specify only one collating sequence option in a PROC SORT

step.
See also: “Sorting Orders for Character Variables” on page 1012
Default: NO

DANISH
NORWEGIAN

sort characters according to the Danish and Norwegian national standard.
The Danish and Norwegian collating sequence is shown in Figure 33.1 on page

1011.

Operating Environment Information: For information about operating
environment-specific behavior, see the SAS documentation for your operating
environment. 4

Restriction: You can specify only one collating sequence option in a PROC SORT
step.

DATA= SAS-data-set
identifies the input SAS data set.
Main discussion: “Input Data Sets” on page 18

EBCDIC
sorts character variables using the EBCDIC collating sequence. You need this option
only when you sort by EBCDIC on a system where ASCII is the native collating
sequence.
Restriction: You can specify only one collating sequence option in a PROC SORT

step.
See also: “Sorting Orders for Character Variables” on page 1012

EQUALS | NOEQUALS
specifies the order of the observations in the output data set. For observations with
identical BY-variable values, EQUALS maintains the order from the input data set
in the output data set. NOEQUALS does not necessarily preserve this order in the
output data set.
Default: EQUALS
Interaction: When you use NODUPRECS to remove consecutive duplicate

observations in the output data set, the choice of EQUALS or NOEQUALS can
have an effect on which observations are removed.

Tip: Using NOEQUALS can save CPU time and memory.

FINNISH
SWEDISH

sort characters according to the Finnish and Swedish national standard. The Finnish
and Swedish collating sequence is shown in Figure 33.1 on page 1011.

The SORT Procedure 4 PROC SORT Statement 1009

Operating Environment Information: For information about operating
environment-specific behavior, see the SAS documentation for your operating
environment. 4

Restriction: You can specify only one collating sequence option in a PROC SORT
step.

FORCE
sorts and replaces an indexed or subsetted data set when the OUT= option is not
specified. Without the FORCE option, PROC SORT does not sort and replace an
indexed data set because sorting destroys user-created indexes for the data set.
When you specify FORCE, PROC SORT sorts and replaces the data set and destroys
all user-created indexes for the data set. Indexes that were created or required by
integrity constraints are preserved.
Tip: Since, by default, PROC SORT does not sort a data set according to how it is

already sorted, you can use FORCE to override this behavior. This might be
necessary if the SAS System cannot verify the sort specification in the data set
option SORTEDBY=. For information about SORTEDBY=, see the section on SAS
system options in SAS Language Reference: Dictionary.

Restriction: You cannot use PROC SORT with the FORCE option and without the
OUT= option on data sets that were created with the Version 5 compatibility
engine or with a sequential engine such as a tape format engine.

NATIONAL
sorts character variables using an alternate collating sequence, as defined by your
installation, to reflect a country’s National Use Differences. To use this option, your
site must have a customized national sort sequence defined. Check with the SAS
Installation Representative at your site to determine if a customized national sort
sequence is available.
Restriction: You can specify only one collating sequence option in a PROC SORT

step.

NODUPKEY
checks for and eliminates observations with duplicate BY values. If you specify this
option, PROC SORT compares all BY values for each observation to those for the
previous observation written to the output data set. If an exact match is found, the
observation is not written to the output data set.

Operating Environment Information: If you use the VMS operating environment
sort, the observation that is written to the output data set is not always the first
observation of the BY group. 4

See also: NODUPRECS
Featured in: Example 3 on page 1018

NODUPRECS
checks for and eliminates duplicate observations. If you specify this option, PROC
SORT compares all variable values for each observation to those for the previous
observation that was written to the output data set. If an exact match is found, the
observation is not written to the output data set.
Alias : NODUP
Interaction: When you are removing consecutive duplicate observations in the

output data set with NODUPRECS, the choice of EQUALS or NOEQUALS can
have an effect on which observations are removed.

Interaction: The action of NODUPRECS is directly related to the setting of the
SORTDUP data set option. When SORTDUP= is set to LOGICAL, NODUPRECS
removes only the duplicate variables that are present in the input data set after a

1010 PROC SORT Statement 4 Chapter 33

DROP or KEEP operation. Setting SORTDUP=LOGICAL increases the number of
duplicate records that are removed because it eliminates variables before record
comparisons takes place. Also, setting SORTDUP=LOGICAL can improve
performance because dropping variables before sorting reduces the amount of
memory required to perform the sort. When SORTDUP= is set to PHYSICAL,
NODUPRECS removes all duplicate variables in the data set, regardless if they
have been kept or dropped. For more information about the data set option
SORTDUP=, see SAS Language Reference: Dictionary.

Tip: Because NODUPRECS checks only consecutive observations, some
nonconsecutive duplicate observations may remain in the output data set. You can
remove all duplicates with this option by sorting on all variables.

See also: NODUPKEY

NOEQUALS
See EQUALS | NOEQUALS.

NORWEGIAN
See DANISH.

OUT=SAS-data-set
names the output data set. If SAS-data-set does not exist, PROC SORT creates it.

Default: Without OUT=, PROC SORT overwrites the original data set.

Tip : You can use data set options with OUT=.

Featured in: Example 1 on page 1014

REVERSE
sorts character variables using a collating sequence that is reversed from the normal
collating sequence.

Interaction: Using REVERSE with the DESCENDING option in the BY statement
restores the sequence to the normal order.

See also: The DESCENDING option in the BY statement. The difference is that the
DESCENDING option can be used with both character and numeric variables.

SORTSEQ= collating-sequence
specifies the collating sequence. The value of collating-sequence can be any one of the
individual options in the PROC SORT statement that specify a collating sequence, or
the value can be the name of a translation table, either a default translation table or
one that you have created in the TRANTAB procedure. For an example of using
PROC TRANTAB and PROC SORT with SORTSEQ=, see Example 6 on page 1311 .
The available translation tables are

Danish

Finnish

Italian

Norwegian

Spanish

Swedish
To see how the alphanumeric characters in each language will sort, refer to Figure

33.1 on page 1011.

Restriction: You can specify only one collating sequence, either by SORTSEQ= or
by one of the individual options that are available in the PROC SORT statement.

The SORT Procedure 4 PROC SORT Statement 1011

Figure 33.1 National Collating Sequences of Alphanumeric Characters

SORTSIZE=memory-specification
specifies the maximum amount of memory that is available to PROC SORT.
memory-specification is one of the following:

MAX
specifies that all available memory can be used.

n
specifies the amount of memory in bytes, where n is a real number.

nK
specifies the amount of memory in kilobytes, where n is a real number.

nM
specifies the amount of memory in megabytes, where n is a real number.

nG
specifies the amount of memory in gigabytes, where n is a real number.
Specifying the SORTSIZE= option in the PROC SORT statement temporarily

overrides the SAS system option SORTSIZE=. For information about the system
option, see the section on SAS system options in SAS Language Reference: Dictionary

Operating Environment Information: Some system sort utilities may treat this
option differently. Refer to the SAS documentation for your operating environment. 4

Default: the value of the SAS system option SORTSIZE=

Tip: This option can help improve sort performance by restricting the virtual
memory paging that the operating environment controls. If PROC SORT needs
more memory, it uses a temporary utility file. As a general rule, the value of
SORTSIZE should not exceed the amount of physical memory that will be
available to the sorting process.

SWEDISH
See FINNISH.

TAGSORT
stores only the BY variables and the observation numbers in temporary files. The BY
variables and the observation numbers are called tags. At the completion of the
sorting process, PROC SORT uses the tags to retrieve records from the input data set
in sorted order.

Tip: When the total length of BY variables is small compared with the record
length, TAGSORT reduces temporary disk usage considerably. However,
processing time may be much higher.

1012 BY Statement 4 Chapter 33

BY Statement

Specifies the sorting variables.

Featured in: Example 1 on page 1014, Example 2 on page 1016, and Example 3 on page
1018

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n>;

Required Arguments

variable
specifies the variable by which PROC SORT sorts the observations. PROC SORT
first arranges the data set by the values in ascending order, by default, of the first
BY variable. PROC SORT then arranges any observations that have the same value
of the first BY variable by the values in ascending order of the second BY variable.
This sorting continues for every specified BY variable.

Option

DESCENDING
reverses the sort order for the variable that immediately follows in the statement so
that observations are sorted from the largest value to the smallest value.
Featured in: Example 2 on page 1016

Concepts

Sorting Orders for Numeric Variables
For numeric variables, the smallest-to-largest comparison sequence is
1 SAS System missing values (shown as a period or special missing value)
2 negative numeric values
3 zero
4 positive numeric values.

Sorting Orders for Character Variables
PROC SORT uses either the EBCDIC or the ASCII collating sequence when it

compares character values, depending on the environment under which the procedure is
running.

EBCDIC Order
The operating environments that use the EBCDIC collating sequence include CMS

and OS/390.

The SORT Procedure 4 Stored Sort Information 1013

The sorting order of the English-language EBCDIC sequence is

blank . < (+ | & ! $ *); - / , % _ > ?: # @ ’= "

a b c d e f g h i j k l m n o p q r ~ s t u v w x y z

{ A B C D E F G H I } J K L M N O P Q R \S T

U V W X Y Z

0 1 2 3 4 5 6 7 8 9

The main features of the EBCDIC sequence are that lowercase letters are sorted
before uppercase letters, and uppercase letters are sorted before digits. Note also that
some special characters interrupt the alphabetic sequences. The blank is the smallest
displayable character.

ASCII Order
The operating environments that use the ASCII collating sequence include

Macintosh PC DOS

MS-DOS UNIX and its derivatives

OpenVMS Windows

OS/2

From the smallest to largest displayable character, the English-language ASCII
sequence is

blank ! " # $ % & ’()* + , - . /0 1 2 3 4 5 6 7 8 9 : ; < = > ? @

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z[\] _ˆ

a b c d e f g h i j k l m n o p q r s t u v w x y z { } ~

The main features of the ASCII sequence are that digits are sorted before uppercase
letters, and uppercase letters are sorted before lowercase letters. The blank is the
smallest displayable character.

Stored Sort Information
PROC SORT records the BY variables, collating sequence, and character set that it

uses to sort the data set. This information is stored with the data set to help avoid
unnecessary sorts.

Before PROC SORT sorts a data set, it checks the stored sort information. If you try
to sort a data set the way that it is currently sorted, PROC SORT does not perform the
sort and writes a message to the log to that effect. To override this behavior, use the
FORCE option. If you try to sort a data set the way that it is currently sorted and you
specify an OUT= data set, PROC SORT simply makes a copy of the DATA= data set.

To override the sort information that PROC SORT stores, use the _NULL_ value
with the SORTEDBY= data set option. For information about SORTEDBY=, see the
section on data set options in SAS Language Reference: Dictionary.

If you want to change the sort information for an existing data set, use the
SORTEDBY= data set option in the MODIFY statement in the DATASETS procedure.

1014 Integrity Constraints 4 Chapter 33

To access the sort information that is stored with a data set, use the CONTENTS
statement in PROC DATASETS. For details, see Chapter 14, “The DATASETS
Procedure,” on page 329.

Integrity Constraints
Sorting the data set in place without OUT= preserves both referential and general

integrity constraints, as well as any indexes that they may require. A sort using the
OUT= option will not preserve any integrity constraints or indexes. For more
information on integrity constraints, see the section on SAS files in SAS Language
Reference: Concepts.

Results

Procedure Output
PROC SORT produces only an output data set. To see the output data set, you can

use PROC PRINT, PROC REPORT, or another of the many available methods of
printing in the SAS System.

Output Data Set
When you specify the OUT= option, PROC SORT creates a new data set that

contains the sorted observations. Without OUT=, PROC SORT replaces the original
data set with the sorted observations as soon as the procedure executes without errors.
Even when a data set is replaced, there must be at least enough space in the data
library for a second copy of the original data set.

You can also sort compressed data sets. If you specify a compressed data set as the
input data set and omit the OUT= option, the input data set is sorted and remains
compressed. If you specify an OUT= data set, the resulting data set is compressed only
if you choose a compression method with the COMPRESS= data set option. For more
information about the data set option COMPRESS=, see the section on SAS data set
options in SAS Language Reference: Dictionary.

Note: If the SAS system option NOREPLACE is in effect, you cannot replace the
original data set with the sorted version. You must either use the OUT= option or
specify the SAS system option REPLACE in an OPTIONS statement. 4

Examples

Example 1: Sorting by the Values of Multiple Variables
Procedure features:

PROC SORT statement option:

The SORT Procedure 4 Program 1015

OUT=
BY statement

Other features:
PROC PRINT

This example
� sorts the observations by the values of two variables
� creates an output data set for the sorted observations
� prints the results.

Program

options nodate pageno=1 linesize=80 pagesize=60;

The data set ACCOUNT contains the name of each business that owes money, the amount of
money that it owes on its account, the account number, and the town where the business is
located.

data account;
input Company $ 1-22 Debt 25-30 AccountNumber 33-36

Town $ 39-51;
datalines;

Paul’s Pizza 83.00 1019 Apex
World Wide Electronics 119.95 1122 Garner
Strickland Industries 657.22 1675 Morrisville
Ice Cream Delight 299.98 2310 Holly Springs
Watson Tabor Travel 37.95 3131 Apex
Boyd & Sons Accounting 312.49 4762 Garner
Bob’s Beds 119.95 4998 Morrisville
Tina’s Pet Shop 37.95 5108 Apex
Elway Piano and Organ 65.79 5217 Garner
Tim’s Burger Stand 119.95 6335 Holly Springs
Peter’s Auto Parts 65.79 7288 Apex
Deluxe Hardware 467.12 8941 Garner
Pauline’s Antiques 302.05 9112 Morrisville
Apex Catering 37.95 9923 Apex
;

OUT= creates a new data set for the sorted observations.

proc sort data=account out=bytown;

The BY statement first sorts the observations alphabetically by town, then by company.

by town company;
run;

1016 Output 4 Chapter 33

PROC PRINT prints the data set BYTOWN.

proc print data=bytown;

The VAR statement specifies the variables and their order in the output.

var company town debt accountnumber;
title ’Customers with Past-Due Accounts’;
title2 ’Listed Alphabetically within Town’;

run;

Output

Customers with Past-Due Accounts 1
Listed Alphabetically within Town

Account
Obs Company Town Debt Number

1 Apex Catering Apex 37.95 9923
2 Paul’s Pizza Apex 83.00 1019
3 Peter’s Auto Parts Apex 65.79 7288
4 Tina’s Pet Shop Apex 37.95 5108
5 Watson Tabor Travel Apex 37.95 3131
6 Boyd & Sons Accounting Garner 312.49 4762
7 Deluxe Hardware Garner 467.12 8941
8 Elway Piano and Organ Garner 65.79 5217
9 World Wide Electronics Garner 119.95 1122

10 Ice Cream Delight Holly Springs 299.98 2310
11 Tim’s Burger Stand Holly Springs 119.95 6335
12 Bob’s Beds Morrisville 119.95 4998
13 Pauline’s Antiques Morrisville 302.05 9112
14 Strickland Industries Morrisville 657.22 1675

Example 2: Reversing the Order of the Sorted Values

Procedure features:
BY statement option:

DESCENDING

Other features
PROC PRINT

Data set: ACCOUNT on page 1015

This example

� sorts the observations by the values of three variables

� reverses the sorting order for one of the variables

� prints the results.

The SORT Procedure 4 Output 1017

Program

options nodate pageno=1 linesize=80 pagesize=60;

OUT= creates a new data set for the sorted observations.

proc sort data=account out=sorted;

The BY statement first sorts the observations alphabetically by town, then by descending values
of amount owed, then by ascending values of the account number.

by town descending debt accountnumber;
run;

PROC PRINT prints the data set SORTED.

proc print data=sorted;

The VAR statement specifies the variables and their order in the output.

var company town debt accountnumber;
title ’Customers with Past-Due Accounts’;
title2 ’Listed by Town, Amount, Account Number’;

run;

Output

1018 Example 3: Displaying the First Observation of Each BY Group 4 Chapter 33

Note that sorting last by AccountNumber puts the businesses in Apex with a debt of $37.95 in
order of account number.

Customers with Past-Due Accounts 1
Listed by Town, Amount, Account Number

Account
Obs Company Town Debt Number

1 Paul’s Pizza Apex 83.00 1019
2 Peter’s Auto Parts Apex 65.79 7288
3 Watson Tabor Travel Apex 37.95 3131
4 Tina’s Pet Shop Apex 37.95 5108
5 Apex Catering Apex 37.95 9923
6 Deluxe Hardware Garner 467.12 8941
7 Boyd & Sons Accounting Garner 312.49 4762
8 World Wide Electronics Garner 119.95 1122
9 Elway Piano and Organ Garner 65.79 5217

10 Ice Cream Delight Holly Springs 299.98 2310
11 Tim’s Burger Stand Holly Springs 119.95 6335
12 Strickland Industries Morrisville 657.22 1675
13 Pauline’s Antiques Morrisville 302.05 9112
14 Bob’s Beds Morrisville 119.95 4998

Example 3: Displaying the First Observation of Each BY Group
Procedure features:

PROC SORT statement option:
NODUPKEY

BY statement
Other features:

PROC PRINT
Data set: ACCOUNT on page 1015

In this example, PROC SORT creates an output data set that contains only the first
observation of each BY group. The NODUPKEY option removes an observation from
the output data set when its BY value is identical to the previous observation’s BY
value. The resulting report contains one observation for each town where the
businesses are located.

Program

options nodate pageno=1 linesize=80 pagesize=60;

NODUPKEY writes only the first observation of each BY group to the new data set TOWNS.

proc sort data=account out=towns nodupkey;

The SORT Procedure 4 Output 1019

The BY statement sorts the observations by town.

by town;
run;

PROC PRINT prints the data set TOWNS.

proc print data=towns;

The VAR statement specifies the variables and their order in the output.

var town company debt accountnumber;
title ’Towns of Customers with Past-Due Accounts’;

run;

Output

The output data set contains only four observations, one for each town in the input data set.

Towns of Customers with Past-Due Accounts 1

Account
Obs Town Company Debt Number

1 Apex Paul’s Pizza 83.00 1019
2 Garner World Wide Electronics 119.95 1122
3 Holly Springs Ice Cream Delight 299.98 2310
4 Morrisville Strickland Industries 657.22 1675

1020 Output 4 Chapter 33

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Procedures Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 1729 pp.

SAS® Procedures Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–482–9
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

