
1021

C H A P T E R

34
The SQL Procedure

Overview 1022
What Are PROC SQL Tables? 1023

What Are Views? 1023

SQL Procedure Coding Conventions 1024

Procedure Syntax 1024

PROC SQL Statement 1027
ALTER TABLE Statement 1031

CONNECT Statement 1033

CREATE INDEX Statement 1033

CREATE TABLE Statement 1035

CREATE VIEW Statement 1037

DELETE Statement 1039
DESCRIBE Statement 1039

DISCONNECT Statement 1040

DROP Statement 1041

EXECUTE Statement 1042

INSERT Statement 1043
RESET Statement 1044

SELECT Statement 1044

UPDATE Statement 1055

VALIDATE Statement 1056

Component Dictionary 1056
BETWEEN condition 1057

CALCULATED 1057

CASE expression 1058

column-definition 1059

column-modifier 1060

column-name 1061
CONNECTION TO 1062

CONTAINS condition 1062

DICTIONARY tables 1062

EXISTS condition 1066

IN condition 1067
IS condition 1067

joined-table 1068

LIKE condition 1074

query-expression 1075

sql-expression 1081
summary-function 1088

table-expression 1094

Concepts 1094

1022 Overview 4 Chapter 34

Using SAS Data Set Options with PROC SQL 1094
Connecting to a DBMS Using the SQL Procedure Pass-Through Facility 1095

Return Codes 1095

Connecting to a DBMS using the LIBNAME Statement 1095

Using Macro Variables Set by PROC SQL 1096

Updating PROC SQL and SAS/ACCESS Views 1097
PROC SQL and the ANSI Standard 1098

SQL Procedure Enhancements 1098

Reserved Words 1098

Column Modifiers 1099

Alternate Collating Sequences 1099

ORDER BY Clause in a View Definition 1099
In-Line Views 1099

Outer Joins 1099

Arithmetic Operators 1099

Orthogonal Expressions 1099

Set Operators 1100
Statistical Functions 1100

SAS System Functions 1100

SQL Procedure Omissions 1100

COMMIT Statement 1100

ROLLBACK Statement 1100
Identifiers and Naming Conventions 1100

Granting User Privileges 1100

Three-Valued Logic 1101

Embedded SQL 1101

Examples 1101

Example 1: Creating a Table and Inserting Data into It 1101
Example 2: Creating a Table from a Query’s Result 1103

Example 3: Updating Data in a PROC SQL Table 1104

Example 4: Joining Two Tables 1106

Example 5: Combining Two Tables 1108

Example 6: Reporting from DICTIONARY Tables 1111
Example 7: Performing an Outer Join 1112

Example 8: Creating a View from a Query’s Result 1116

Example 9: Joining Three Tables 1118

Example 10: Querying an In-Line View 1121

Example 11: Retrieving Values with the SOUNDS-LIKE Operator 1122
Example 12: Joining Two Tables and Calculating a New Value 1124

Example 13: Producing All the Possible Combinations of the Values in a Column 1126

Example 14: Matching Case Rows and Control Rows 1129

Example 15: Counting Missing Values with a SAS Macro 1131

Overview
The SQL procedure implements Structured Query Language (SQL) for the SAS

System. SQL is a standardized, widely used language that retrieves and updates data
in tables and views based on those tables.

The SAS System’s SQL procedure enables you to
� retrieve and manipulate data that are stored in tables or views.
� create tables, views, and indexes on columns in tables.
� create SAS macro variables that contain values from rows in a query’s result.

The SQL Procedure 4 What Are Views? 1023

� add or modify the data values in a table’s columns or insert and delete rows. You
can also modify the table itself by adding, modifying, or dropping columns.

� send DBMS-specific SQL statements to a database management system (DBMS)
and to retrieve DBMS data.

Figure 34.1 on page 1023 summarizes the variety of source material that you can use
with PROC SQL and what the procedure can produce.

Figure 34.1 PROC SQL Input and Output

PROC SQL tables
(SAS data files)

SAS data views
(PROC SQL views)
(DATA step views)
(SAS/ACCESS views)

DBMS tables

DBMS tables

reports

PROC SQL views

PROC
SQL

PROC SQL tables
(SAS data files)

What Are PROC SQL Tables?
A PROC SQL table is synonymous with a SAS data file and has a member type of

DATA. You can use PROC SQL tables as input into DATA steps and procedures.
You create PROC SQL tables from SAS data files, from SAS data views, or from

DBMS tables using PROC SQL’s Pass-Through Facility. The Pass-Through Facility is
described in “Connecting to a DBMS Using the SQL Procedure Pass-Through Facility”
on page 1095.

In PROC SQL terminology, a row in a table is the same as an observation in a SAS
data file. A column is the same as a variable.

What Are Views?
A SAS data view defines a virtual data set that is named and stored for later use. A

view contains no data but describes or defines data that are stored elsewhere. There
are three types of SAS data views:

� PROC SQL views

� SAS/ACCESS views
� DATA step views.

You can refer to views in queries as if they were tables. The view derives its data
from the tables or views that are listed in its FROM clause. The data accessed by a
view are a subset or superset of the data in its underlying table(s) or view(s).

A PROC SQL view is a SAS data set of type VIEW created by PROC SQL. A PROC
SQL view contains no data. It is a stored query expression that reads data values from
its underlying files, which can include SAS data files, SAS/ACCESS views, DATA step
views, other PROC SQL views, or DBMS data. When executed, a PROC SQL view’s
output can be a subset or superset of one or more underlying files.

SAS/ACCESS views and DATA step views are similar to PROC SQL views in that
they are both stored programs of member type VIEW. SAS/ACCESS views describe data
in DBMS tables from other software vendors. DATA step views are stored DATA step
programs.

1024 SQL Procedure Coding Conventions 4 Chapter 34

You can update data through a PROC SQL or SAS/ACCESS view with certain
restrictions. See “Updating PROC SQL and SAS/ACCESS Views” on page 1097.

You can use all types of views as input to DATA steps and procedures.

Note: In this chapter, the term view collectively refers to PROC SQL views, DATA
step views, and SAS/ACCESS views, unless otherwise noted. 4

SQL Procedure Coding Conventions
Because PROC SQL implements Structured Query Language, it works somewhat

differently from other base SAS procedures, as described here:
� You do not need to repeat the PROC SQL statement with each SQL statement.

You need only to repeat the PROC SQL statement if you execute a DATA step or
another SAS procedure between statements.

� SQL procedure statements are divided into clauses. For example, the most basic
SELECT statement contains the SELECT and FROM clauses. Items within
clauses are separated with commas in SQL, not with blanks as in the SAS System.
For example, if you list three columns in the SELECT clause, the columns are
separated with commas.

� The SELECT statement, which is used to retrieve data, also outputs the data
automatically unless you specify the NOPRINT option in the PROC SQL
statement. This means you can display your output or send it to a list file without
specifying the PRINT procedure.

� The ORDER BY clause sorts data by columns. In addition, tables do not need to
be presorted by a variable for use with PROC SQL. Therefore, you do not need to
use the SORT procedure with your PROC SQL programs.

� A PROC SQL statement runs when you submit it; you do not have to specify a
RUN statement. If you follow a PROC SQL statement with a RUN statement, the
SAS System ignores the RUN statement and submits the statements as usual.

Procedure Syntax
Tip: Supports the Output Delivery System. (See Chapter 2, "Fundamental Concepts
for Using Base SAS Procedures" for information on the Output Delivery System.)
Reminder: See Chapter 3, "Statements with the Same Function in Multiple Procedures,"
for details. You can also use any global statements as well. See Chapter 2,
"Fundamental Concepts for Using Base SAS Procedures," for a list.
Note:

Regular type indicates the name of a component that is described in “Component
Dictionary” on page 1056.

view-name indicates a SAS data view of any type.

PROC SQL <option(s)>;
ALTER TABLE table-name

<constraint-clause> <,constraint-clause>…>;
<ADD column-definition <,column-definition>…>
<MODIFY column-definition

<,column-definition>…>

The SQL Procedure 4 Procedure Syntax 1025

<DROP column <,column>…>;

CREATE <UNIQUE> INDEX index-name
ON table-name (column <,column>…);

CREATE TABLE table-name (column-definition <,column-definition>…);
(column-specification , ...<constraint-specification > ,...) ;

CREATE TABLE table-name LIKE table-name;

CREATE TABLE table-name AS query-expression
<ORDER BY order-by-item <,order-by-item>…>;

CREATE VIEW proc-sql-view AS query-expression
<ORDER BY order-by-item <,order-by-item>…>;
<USING libname-clause<, libname-clause>...>;

DELETE
FROM table-name|proc-sql-view |sas/access-view <AS alias>

<WHERE sql-expression>;

DESCRIBE TABLEtable-name<,table-name>… ;

DESCRIBE TABLE CONSTRAINTS table-name <, table-name>… ;

DESCRIBE VIEW proc-sql-view <,proc-sql-view>… ;

DROP INDEX index-name <,index-name>…
FROM table-name;

DROP TABLE table-name <,table-name>…;

DROP VIEW view-name <,view-name>…;

INSERT INTO table-name|sas/access-view|proc-sql-view <(column<,column>…) >
SET column=sql-expression

<,column=sql-expression>…
<SET column=sql-expression
<,column=sql-expression>…>;

INSERT INTO table-name|sas/access-view|proc-sql-view<(column<,column>…)>
VALUES (value<,value>…)

<VALUES (value <,value>…)>…;

INSERT INTO table-name|sas/access-view|proc-sql-view
<(column<,column>…)> query-expression;

RESET <option(s)>;

SELECT <DISTINCT> object-item <,object-item>…
<INTO :macro-variable-specification

<, :macro-variable-specification>…>
FROM from-list
<WHERE sql-expression>
<GROUP BY group-by-item

<,group-by-item>…>
<HAVING sql-expression>
<ORDER BY order-by-item

<,order-by-item>…>;

UPDATE table-name|sas/access-view|proc-sql-view <AS alias>
SET column=sql-expression

<,column=sql-expression>…
<SETcolumn=sql-expression

<,column=sql-expression>…>
<WHERE sql-expression>;

VALIDATEquery-expression;

1026 Procedure Syntax 4 Chapter 34

To connect to a DBMS and send it a DBMS-specific nonquery SQL statement, use
this form:

PROC SQL;
<CONNECT TO dbms-name <AS alias><

<(connect-statement-argument-1=value
…<connect-statement-argument-n=value>)>>
<(dbms-argument-1=value
…<dbms-argument-n=value>)>>;

EXECUTE (dbms-SQL-statement)
BY dbms-name|alias;

<DISCONNECT FROM dbms-name|alias;>

<QUIT;>

To connect to a DBMS and query the DBMS data, use this form:

PROC SQL;
<CONNECT TO dbms-name <AS alias><

<(connect-statement-argument-1=value
…<connect-statement-argument-n=value>)>>
<(dbms-argument-1=value
…<dbms-argument-n=value>)>>;

SELECT column-list
FROM CONNECTION TO dbms-name|alias

(dbms-query)
optional PROC SQL clauses;

<DISCONNECT FROM dbms-name|alias;>
<QUIT;>

To do this Use this statement

Modify, add, or drop columns ALTER TABLE

Establish a connection with a DBMS CONNECT

Create an index on a column CREATE INDEX

Create a PROC SQL table CREATE TABLE

Create a PROC SQL view CREATE VIEW

Delete rows DELETE

Display a definition of a table or view DESCRIBE

Terminate the connection with a DBMS DISCONNECT

Delete tables, views, or indexes DROP

Send a DBMS-specific nonquery SQL statement to a
DBMS

EXECUTE

Add rows INSERT

Reset options that affect the procedure environment
without restarting the procedure

RESET

The SQL Procedure 4 PROC SQL Statement 1027

To do this Use this statement

Select and execute rows SELECT

Query a DBMS CONNECTION TO

Modify values UPDATE

Verify the accuracy of your query VALIDATE

PROC SQL Statement

PROC SQL <option(s)>;

To do this Use this option

Control output

Double-space the report DOUBLE|NODOUBLE

Write a statement to the SAS log that
expands the query

FEEDBACK|NOFEEDBACK

Flow characters within a column FLOW|NOFLOW

Include a column of row numbers NUMBER|NONUMBER

Specify whether PROC SQL prints the
query’s result

PRINT|NOPRINT

Specify whether PROC SQL should display
sorting information

SORTMSG|NOSORTMSG

Specify a collating sequence SORTSEQ=

Control execution

Allow PROC SQL to use names other than
SAS names

DQUOTE=

Specify whether PROC SQL should stop
executing after an error

ERRORSTOP|NOERRORSTOP

Specify whether PROC SQL should execute
statements

EXEC|NOEXEC

Restrict the number of input rows INOBS=

Restrict the number of output rows OUTOBS=

Restrict the number of loops LOOPS=

Specify whether PROC SQL prompts you
when a limit is reached with the INOBS=,
OUTOBS=, or LOOPS= options

PROMPT|NOPROMPT

1028 PROC SQL Statement 4 Chapter 34

To do this Use this option

Specify whether PROC SQL writes timing
information to the SAS log

STIMER|NOSTIMER

Specify how PROC SQL handles updates
when there is an interruption

UNDO_POLICY=

Options

DOUBLE|NODOUBLE
double-spaces the report.
Default: NODOUBLE

Featured in: Example 5 on page 1108

DQUOTE=ANSI|SAS
specifies whether PROC SQL treats values within double-quotes as variables or
strings. With DQUOTE=ANSI, PROC SQL treats a quoted value as a variable. This
enables you to use the following as table names, column names, or aliases:

� reserved words such as AS, JOIN, GROUP, and so on.
� DBMS names and other names not normally permissible in SAS.

The quoted value can contain any character.
With DQUOTE=SAS, values within quotes are treated as strings.

Default: SAS

ERRORSTOP|NOERRORSTOP
specifies whether PROC SQL stops executing if it encounters an error. In a batch or
noninteractive session, ERRORSTOP instructs PROC SQL to stop executing the
statements but to continue checking the syntax after it has encountered an error.

NOERRORSTOP instructs PROC SQL to execute the statements and to continue
checking the syntax after an error occurs.

Default: NOERRORSTOP in an interactive SAS session; ERRORSTOP in a batch
or noninteractive session

Interaction: This option is useful only when the EXEC option is in effect.
Tip: ERRORSTOP has an effect only when SAS is running in the batch or

noninteractive execution mode.

Tip: NOERRORSTOP is useful if you want a batch job to continue executing SQL
procedure statements after an error is encountered.

EXEC | NOEXEC
specifies whether a statement should be executed after its syntax is checked for
accuracy.
Default: EXEC

Tip: NOEXEC is useful if you want to check the syntax of your SQL statements
without executing the statements.

See also: ERRORSTOP on page 1028 option

FEEDBACK|NOFEEDBACK
specifies whether PROC SQL displays a statement after it expands view references
or makes certain transformations on the statement.

This option expands any use of an asterisk (for example, SELECT *) into the list of
qualified columns that it represents. Any PROC SQL view is expanded into the

The SQL Procedure 4 PROC SQL Statement 1029

underlying query, and parentheses are shown around all expressions to further
indicate their order of evaluation.

Default: NOFEEDBACK

FLOW<=n <m>>|NOFLOW
specifies that character columns longer than n are flowed to multiple lines. PROC
SQL sets the column width at n and specifies that character columns longer than n
are flowed to multiple lines. When you specify FLOW=n m, PROC SQL floats the
width of the columns between these limits to achieve a balanced layout. FLOW is
equivalent to FLOW=12 200.

Default: NOFLOW

INOBS=n
restricts the number of rows (observations) that PROC SQL retrieves from any single
source.

Tip: This option is useful for debugging queries on large tables.

LOOPS=n
restricts PROC SQL to n iterations through its inner loop. You use the number of
iterations reported in the SQLOOPS macro variable (after each SQL statement is
executed) to discover the number of loops. Set a limit to prevent queries from
consuming excessive computer resources. For example, joining three large tables
without meeting the join-matching conditions could create a huge internal table that
would be inefficient to execute.

See also: “Using Macro Variables Set by PROC SQL” on page 1096

NODOUBLE
See DOUBLE|NODOUBLE on page 1028.

NOERRORSTOP
See ERRORSTOP|NOERRORSTOP on page 1028.

NOEXEC
See EXEC|NOEXEC on page 1028.

NOFEEDBACK
See FEEDBACK|NOFEEDBACK on page 1028.

NOFLOW
See FLOW|NOFLOW on page 1029.

NONUMBER
See NUMBER|NONUMBER on page 1029.

NOPRINT
See PRINT|NOPRINT on page 1030.

NOPROMPT
See PROMPT|NOPROMPT on page 1030.

NOSORTMSG
See SORTMSG|NOSORTMSG on page 1030.

NOSTIMER
See STIMER|NOSTIMER on page 1030.

NUMBER|NONUMBER
specifies whether the SELECT statement includes a column called ROW, which is the
row (or observation) number of the data as they are retrieved.

Default: NONUMBER

1030 PROC SQL Statement 4 Chapter 34

Featured in: Example 4 on page 1106

OUTOBS=n
restricts the number of rows (observations) in the output. For example, if you specify
OUTOBS=10 and insert values into a table using a query-expression, the SQL
procedure inserts a maximum of 10 rows. Likewise, OUTOBS=10 limits the output to
10 rows.

PRINT|NOPRINT
specifies whether the output from a SELECT statement is printed.
Default: PRINT
Tip: NOPRINT is useful when you are selecting values from a table into macro

variables and do not want anything to be displayed.

PROMPT|NOPROMPT
modifies the effect of the INOBS=, OUTOBS=, and LOOPS= options. If you specify
the PROMPT option and reach the limit specified by INOBS=, OUTOBS=, or
LOOPS=, PROC SQL prompts you to stop or continue. The prompting repeats if the
same limit is reached again.
Default: NOPROMPT

SORTMSG|NOSORTMSG
Certain operations, such as ORDER BY, may sort tables internally using PROC
SORT. Specifying SORTMSG requests information from PROC SORT about the sort
and displays the information in the log.
Default: NOSORTMSG

SORTSEQ=sort-table
specifies the collating sequence to use when a query contains an ORDER BY clause.
Use this option only if you want a collating sequence other than your system’s or
installation’s default collating sequence.
See also: SORTSEQ= option in SAS Language Reference: Dictionary.

STIMER|NOSTIMER
specifies whether PROC SQL writes timing information to the SAS log for each
statement, rather than as a cumulative value for the entire procedure. For this
option to work, you must also specify the SAS system option STIMER. Some
operating environments require that you specify this system option when you invoke
SAS. If you use the system option alone, you receive timing information for the entire
SQL procedure, not on a statement-by-statement basis.
Default: NOSTIMER

UNDO_POLICY=NONE|OPTIONAL|REQUIRED
specifies how PROC SQL handles updated data if errors occur while you are
updating data. You can use UNDO_POLICY= to control whether your changes will
be permanent:

NONE
keeps any updates or inserts.

OPTIONAL
reverses any updates or inserts that it can reverse reliably.

REQUIRED
undoes all inserts or updates that have been done to the point of the error. In
some cases, the UNDO operation cannot be done reliably. For example, when a
program uses a SAS/ACCESS view, it may not be able to reverse the effects of the

The SQL Procedure 4 ALTER TABLE Statement 1031

INSERT and UPDATE statements without reversing the effects of other changes
at the same time. In that case, PROC SQL issues an error message and does not
execute the statement. Also, when a SAS data set is accessed through a SAS/
SHARE server and is opened with the data set option CNTLLEV=RECORD, you
cannot reliably reverse your changes.

This option may enable other users to update newly inserted rows. If an error
occurs during the insert, PROC SQL can delete a record that another user updated.
In that case, the statement is not executed, and an error message is issued.

Default: REQUIRED
Note: Options can be added, removed, or changed between PROC SQL statements

with the RESET statement. 4

ALTER TABLE Statement

Adds columns to, drops columns from, and changes column attributes in an existing table. Adds,
modifies, and drops integrity constraints from an existing table.

Restriction: You cannot use any type of view in an ALTER TABLE statement.
Restriction: You cannot use ALTER TABLE on a table that is accessed via an engine that
does not support UPDATE processing.
Featured in: Example 3 on page 1104

ALTER TABLE table-name
<constraint-clause> <, constraint-clause>...>;

<ADD column-definition <,column-definition>…>
<MODIFY column-definition

<,column-definition>…>
<DROP column <,column>…>;

where each constraint-clause is one of the following:

ADD <CONSTRAINT constraint-name> constraint

DROP CONSTRAINT constraint-name

DROP FOREIGN KEY constraint-name [Note: This is a DB2 extension.]

DROP PRIMARY KEY [Note: This is a DB2 extension.]

where constraint can be one of the following:

NOT NULL (column)

CHECK (WHERE-clause)

PRIMARY KEY (columns)

DISTINCT (columns)

UNIQUE (columns)

FOREIGN KEY (columns)
REFERENCES table-name
<ON DELETE referential-action > <ON UPDATE referential-action>

1032 ALTER TABLE Statement 4 Chapter 34

Arguments

column
names a column in table-name.

column-definition
See “column-definition” on page 1059.

constraint-name
specifies the name for the constraint being specified.

referential-action
specifies the type of action to be performed on all matching foreign key values.

RESTRICT
occurs only if there are matching foreign key values. This is the default referential
action.

SET NULL
sets all matching foreign key values to NULL.

table-name
refers to the name of table containing the primary key referenced by the foreign key.

WHERE-clause
specifies a SAS WHERE-clause.

Specifying Initial Values of New Columns
When the ALTER TABLE statement adds a column to the table, it initializes the

column’s values to missing in all rows of the table. Use the UPDATE statement to add
values to the new column(s).

Changing Column Attributes
If a column is already in the table, you can change the following column attributes

using the MODIFY clause: length, informat, format, and label. The values in a table
are either truncated or padded with blanks (if character data) as necessary to meet the
specified length attribute.

You cannot change a character column to numeric and vice versa. To change a
column’s data type, drop the column and then add it (and its data) again, or use the
DATA step.

Note: You cannot change the length of a numeric column with the ALTER TABLE
statement. Use the DATA step instead. 4

Renaming Columns
To change a column’s name, you must use the SAS data set option RENAME=. You

cannot change this attribute with the ALTER TABLE statement. RENAME= is
described in the section on SAS data set options in SAS Language Reference: Dictionary.

Indexes on Altered Columns
When you alter the attributes of a column and an index has been defined for that

column, the values in the altered column continue to have the index defined for them.
If you drop a column with the ALTER TABLE statement, all the indexes (simple and

The SQL Procedure 4 CREATE INDEX Statement 1033

composite) in which the column participates are also dropped. See “CREATE INDEX
Statement” on page 1033 for more information on creating and using indexes.

Integrity Constraints
Use ALTER TABLE to modify integrity constraints for existing tables. Use the

CREATE TABLE statement to attach integrity constraints to new tables. For more
information on integrity constraints, see the section on SAS files in SAS Language
Reference: Concepts.

CONNECT Statement
Establishes a connection with a DBMS that is supported by SAS/ACCESS software.

Requirement: SAS/ACCESS software is required. For more information on this
statement, refer to your SAS/ACCESS documentation.
See also: “Connecting to a DBMS Using the SQL Procedure Pass-Through Facility” on
page 1095

CONNECT TO dbms-name <AS alias> <(<connect-statement-arguments>
<database-connection-arguments>)>;

Arguments

alias
specifies an alias that has 1 to 32 characters. The keyword AS must precede alias.
Some DBMSs allow more than one connection. The optional AS clause enables you to
name the connections so that you can refer to them later.

connect-statement-arguments
specifies arguments that indicate whether you can make multiple connections,
shared or unique connections, and so on to the database. These arguments are
optional, but if they are included, they must be enclosed in parentheses.

database-connection-arguments
specifies the DBMS-specific arguments that are needed by PROC SQL to connect to
the DBMS. These arguments are optional for most databases, but if they are
included, they must be enclosed in parentheses.

dbms-name
identifies the DBMS that you want to connect to (for example, ORACLE or DB2).

CREATE INDEX Statement
Creates indexes on columns in tables.

Restriction: You cannot use CREATE INDEX on a table accessed via an engine that does
not support UPDATE processing.

1034 CREATE INDEX Statement 4 Chapter 34

CREATE <UNIQUE> INDEX index-name

ON table-name (column <, column>…);

Arguments

column
specifies a column in table-name.

index-name
names the index that you are creating. If you are creating an index on one column
only, index-name must be the same as column. If you are creating an index on more
than one column, index-name cannot be the same as any column in the table.

table-name
specifies a PROC SQL table.

Indexes in PROC SQL
An index stores both the values of a table’s columns and a system of directions that

enable access to rows in that table by index value. Defining an index on a column or set
of columns enables SAS, under certain circumstances, to locate rows in a table more
quickly and efficiently. Indexes enable PROC SQL to execute the following classes of
queries more efficiently:

� comparisons against a column that is indexed

� an IN subquery where the column in the inner subquery is indexed

� correlated subqueries, where the column being compared with the correlated
reference is indexed

� join-queries, where the join-expression is an equals comparison and all the
columns in the join-expression are indexed in one of the tables being joined.

SAS maintains indexes for all changes to the table, whether the changes originate
from PROC SQL or from some other source. Therefore, if you alter a column’s definition
or update its values, the same index continues to be defined for it. However, if an
indexed column in a table is dropped, the index on it is also dropped.

You can create simple or composite indexes. A simple index is created on one column
in a table. A simple index must have the same name as that column. A composite index
is one index name that is defined for two or more columns. The columns can be
specified in any order, and they can have different data types. A composite index name
cannot match the name of any column in the table. If you drop a composite index, the
index is dropped for all the columns named in that composite index.

UNIQUE Keyword
The UNIQUE keyword causes the SAS System to reject any change to a table that

would cause more than one row to have the same index value. Unique indexes
guarantee that data in one column, or in a composite group of columns, remain unique
for every row in a table. For this reason, a unique index cannot be defined for a column
that includes NULL or missing values.

Managing Indexes
You can use the CONTENTS statement in the DATASETS procedure to display a

table’s index names and the columns for which they are defined. You can also use the

The SQL Procedure 4 CREATE TABLE Statement 1035

DICTIONARY tables INDEXES, TABLES, and COLUMNS to list information about
indexes. See “DICTIONARY tables” on page 1062.

See the section on SAS files in SAS Language Reference: Dictionary for a further
description of when to use indexes and how they affect SAS statements that handle
BY-group processing.

CREATE TABLE Statement

Creates PROC SQL tables.

Featured in: Example 1 on page 1101 and Example 2 on page 1103

uCREATE TABLE table-name (column-definition <,column-definition>…);

(column-specification ,…<constraint-specification> ,…) ;

where column-specification is

column-definition <column-attribute>

where constraint-specification is

CONSTRAINT constraint-name constraint

column-attribute is one of the following:

UNIQUE

DISTINCT [Note: This is a DB2 extension. DISTINCT is the same as UNIQUE.]

NOT NULL

CHECK (WHERE-clause)

PRIMARY KEY

REFERENCES table-name
<ON DELETE referential-action > <ON UPDATE referential-action >

constraint is one of the following:

NOT NULL (column)

CHECK (WHERE-clause)

PRIMARY KEY (columns)

DISTINCT (columns)

UNIQUE (columns)

FOREIGN KEY (columns)
REFERENCES table-name
<ON DELETE referential-action> <ON UPDATE referential-action>

vCREATE TABLEtable-name LIKE table-name;

wCREATE TABLE table-name AS query-expression
<ORDER BY order-by-item <,order-by-item>…>;

1036 CREATE TABLE Statement 4 Chapter 34

Arguments

column-definition
See “column-definition” on page 1059.

constraint-name
is the name for the constraint being specified.

order-by-item
See ORDER BY Clause on page 1053.

query-expression
See “query-expression” on page 1075.

referential-action
specifies the type of action to be performed on all matching foreign key values.

RESTRICT
occurs only if there are matching foreign key values. This is the default referential
action.

SET NULL
sets all matching foreign key values to NULL.

table-name
is the name of the table containing the primary key referenced by the foreign key.

WHERE clause
specifies a SAS WHERE-clause.

Creating a Table without Rows

1 The first form of the CREATE TABLE statement creates tables that automatically
map SQL data types to those supported by the SAS System. Use this form when
you want to create a new table with columns that are not present in existing
tables. It is also useful if you are running SQL statements from an SQL
application in another SQL-based database.

2 The second form uses a LIKE clause to create a table that has the same column
names and column attributes as another table. To drop any columns in the new
table, you can specify the DROP= data set option in the CREATE TABLE
statement. The specified columns are dropped when the table is created. Indexes
are not copied to the new table.

Both of these forms create a table without rows. You can use an INSERT
statement to add rows. Use an ALTER statement to modify column attributes or
to add or drop columns.

Creating a Table from a Query Expression

3 The third form of the CREATE TABLE statement stores the results of any
query-expression in a table and does not display the output. It is a convenient way
to create temporary tables that are subsets or supersets of other tables.

When you use this form, a table is physically created as the statement is
executed. The newly created table does not reflect subsequent changes in the
underlying tables (in the query-expression). If you want to continually access the

The SQL Procedure 4 CREATE VIEW Statement 1037

most current data, create a view from the query expression instead of a table. See
“CREATE VIEW Statement” on page 1037.

Integrity Constraints
You can attach integrity constraints when you create a new table. To modify integrity

constraints, use the ALTER TABLE statement. For more information on integrity
constraints, see the section on SAS files in SAS Language Reference: Concepts.

CREATE VIEW Statement

Creates a PROC SQL view from a query-expression.

See also: “What Are Views?” on page 1023
Featured in: Example 8 on page 1116

CREATE VIEW proc-sql-view AS query-expression
<ORDER BY order-by-item <,order-by-item>…>

<USING statement<, libname-clause> ... > ;

where each libname-clause is one of the following:

LIBNAME libref <engine> ’SAS-data-library’ <option(s)> <engine-host-option(s)>

LIBNAME libref SAS/ACCESS-engine-name <SAS/
ACCESS-engine-connection-option(s)> <SAS/
ACCESS-engine-LIBNAME-option(s)>

Arguments

order-by-item
See ORDER BY Clause on page 1053.

query-expression
See “query-expression” on page 1075.

proc-sql-view
specifies the name for the PROC SQL view that you are creating. See “What Are
Views?” on page 1023 for a definition of a PROC SQL view.

Sorting Data Retrieved by Views
PROC SQL allows you to specify the ORDER BY clause in the CREATE VIEW

statement. Every time a view is accessed, its data are sorted and displayed as specified
by the ORDER BY clause. This sorting on every access has certain performance costs,
especially if the view’s underlying tables are large. It is more efficient to omit the
ORDER BY clause when you are creating the view and specify it as needed when you
reference the view in queries.

Note: If you specify the NUMBER option in the PROC SQL statement when you
create your view, the ROW column appears in the output. However, you cannot order by

1038 CREATE VIEW Statement 4 Chapter 34

the ROW column in subsequent queries. See the description of the NUMBER option on
page 1030. 4

Librefs and Stored Views
You can refer to a table name alone (without the libref) in the FROM clause of a

CREATE VIEW statement if the table and view reside in the same SAS data library, as
in this example:

create view proclib.view1 as
select *

from invoice
where invqty>10;

In this view, VIEW1 and INVOICE are stored permanently in the SAS data library
referenced by PROCLIB. Specifying a libref for INVOICE is optional.

Updating Views
You can update a view’s underlying data with some restrictions. See “Updating

PROC SQL and SAS/ACCESS Views” on page 1097.

Embedded LIBNAME Statements
The USING clause allows you to store DBMS connection information in a view by

embedding the SAS/ACCESS LIBNAME statement inside the view. When PROC SQL
executes the view, the stored query assigns the libref and establishes the DBMS
connection using the information in the LIBNAME statement. The scope of the libref is
local to the view, and will not conflict with any identically named librefs in the SAS
session. When the query finishes, the connection to the DBMS is terminated and the
libref is deassigned.

The USING clause must be the last clause in the SELECT statement. Multiple
LIBNAME statements can be specified, separated by commas. In the following example,
a connection is made and the libref ACCREC is assigned to an ORACLE database.

create view proclib.view1 as
select *

from accrec.invoices as invoices
using libname accrec oracle

user=username pass=password
path=’dbms-path’;

For more information on the SAS/ACCESS LIBNAME statement, see the SAS/ACCESS
documentation for your DBMS.

You can also embed a SAS LIBNAME statement in a view with the USING clause.
This enables you to store SAS libref information in the view. Just as in the embedded
SAS/ACCESS LIBNAME statement, the scope of the libref is local to the view, and it
will not conflict with an identically named libref in the SAS session.

create view work.tableview as
select * from proclib.invoices

using libname proclib ’sas-data-library’;

The SQL Procedure 4 DESCRIBE Statement 1039

DELETE Statement

Removes one or more rows from a table or view that is specified in the FROM clause.

Restriction: You cannot use DELETE FROM on a table accessed via an engine that does
not support UPDATE processing.
Featured in: Example 5 on page 1108

DELETE
FROM table-name|sas/access-view|proc-sql-view <AS alias>

<WHEREsql-expression>;

Arguments

alias
assigns an alias to table-name, sas/access-view, or proc-sql-view.

sas/access-view
specifies a SAS/ACCESS view that you are deleting rows from.

proc-sql-view
specifies a PROC SQL view that you are deleting rows from.

sql-expression
See “sql-expression” on page 1081.

table-name
specifies the table that you are deleting rows from.

Deleting Rows Through Views
You can delete one or more rows from a view’s underlying table, with some

restrictions. See “Updating PROC SQL and SAS/ACCESS Views” on page 1097.

CAUTION:
If you omit a WHERE clause, the DELETE statement deletes all the rows from the specified
table or the table described by a view. 4

DESCRIBE Statement

Displays a PROC SQL definition in the SAS log.

Restriction: PROC SQL views are the only type of view allowed in a DESCRIBE VIEW
statement.
Featured in: Example 6 on page 1111

DESCRIBE TABLE table-name <,table-name>… ;

1040 DISCONNECT Statement 4 Chapter 34

DESCRIBE VIEW proc-sql-view <,proc-sql-view>… ;

DESCRIBE TABLE CONSTRAINTS table-name <, table-name>… ;

Arguments

table-name
specifies a PROC SQL table.

proc-sql-view
specifies a PROC SQL view.

Details

� The DESCRIBE TABLE statement writes a CREATE TABLE statement to the
SAS log for the table specified in the DESCRIBE TABLE statement, regardless of
how the table was originally created (for example, with a DATA step). If
applicable, SAS data set options are included with the table definition. If indexes
are defined on columns in the table, CREATE INDEX statements for those indexes
are also written to the SAS log.

When you are transferring a table to a DBMS that is supported by SAS/
ACCESS software, it is helpful to know how it is defined. To find out more
information on a table, use the FEEDBACK option or the CONTENTS statement
in the DATASETS procedure.

� The DESCRIBE VIEW statement writes a view definition to the SAS log. If you
use a PROC SQL view in the DESCRIBE VIEW statement that is based on or
derived from another view, you may want to use the FEEDBACK option in the
PROC SQL statement. This option displays in the SAS log how the underlying
view is defined and expands any expressions that are used in this view definition.
The CONTENTS statement in DATASETS procedure can also be used with a view
to find out more information.

� The DESCRIBE TABLE CONSTRAINTS statement lists the integrity constraints
that are defined for the specified table(s).

DISCONNECT Statement

Ends the connection with a DBMS that is supported by a SAS/ACCESS interface.

Requirement: SAS/ACCESS software is required. For more information on this
statement, refer to your SAS/ACCESS documentation.
See also: “Connecting to a DBMS Using the SQL Procedure Pass-Through Facility” on
page 1095

DISCONNECT FROM dbms-name|alias;

Arguments

The SQL Procedure 4 DROP Statement 1041

alias
specifies the alias that is defined in the CONNECT statement.

dbms-name
specifies the DBMS from which you want to end the connection (for example, DB2 or
ORACLE). The name you specify should match the name that is specified in the
CONNECT statement.

Details

� An implicit COMMIT is performed before the DISCONNECT statement ends the
DBMS connection. If a DISCONNECT statement is not submitted, implicit
DISCONNECT and COMMIT actions are performed and the connection to the
DBMS is broken when PROC SQL terminates.

� PROC SQL continues executing until you submit a QUIT statement, another SAS
procedure, or a DATA step.

DROP Statement

Deletes tables, views, or indexes.

Restriction: You cannot use DROP TABLE or DROP INDEX on a table accessed via an
engine that does not support UPDATE processing.

DROP TABLE table-name <,table-name>…;

DROP VIEW view-name <,view-name>…;

DROP INDEX index-name <,index-name>…
FROM table-name;

Arguments

index-name
specifies an index that exists on table-name.

table-name
specifies a PROC SQL table.

view-name
specifies a SAS data view of any type: PROC SQL view, SAS/ACCESS view, or DATA
step view.

Details

� If you drop a table that is referenced in a view definition and try to execute the
view, an error message is written to the SAS log stating that the table does not

1042 EXECUTE Statement 4 Chapter 34

exist. Therefore, remove references in queries and views to any table(s) and
view(s) that you drop.

� If you drop a table with indexed columns, all the indexes are automatically
dropped. If you drop a composite index, the index is dropped for all the columns
that are named in that index.

� You cannot use the DROP statement to drop a table or view in an external
database that is described by a SAS/ACCESS view.

EXECUTE Statement

Sends a DBMS-specific SQL statement to a DBMS that is supported by a SAS/ACCESS interface.

Requirement: SAS/ACCESS software is required. For more information on this
statement, refer to your SAS/ACCESS documentation.
See also: “Connecting to a DBMS Using the SQL Procedure Pass-Through Facility” on
page 1095 and the SQL documentation for your DBMS.

EXECUTE (dbms-SQL-statement)
BY dbms-name|alias;

Arguments

alias
specifies an optional alias that is defined in the CONNECT statement. Note that
alias must be preceded by the keyword BY.

dbms-name
identifies the DBMS to which you want to direct the DBMS statement (for example,
ORACLE or DB2).

dbms-SQL-statement
is any DBMS-specific SQL statement, except the SELECT statement, that can be
executed by the DBMS-specific dynamic SQL.

Details

� If your DBMS supports multiple connections, you can use the alias that is defined
in the CONNECT statement. This alias directs the EXECUTE statements to a
specific DBMS connection.

� Any return code or message that is generated by the DBMS is available in the
macro variables SQLXRC and SQLXMSG after the statement completes.

The SQL Procedure 4 INSERT Statement 1043

INSERT Statement

Adds rows to a new or existing table or view.

Restriction: You cannot use INSERT INTO on a table accessed via an engine that does
not support UPDATE processing.
Featured in: Example 1 on page 1101

uINSERT INTOtable-name|sas/access-view|proc-sql-view
<(column<,column>…)><,user-name>...;

SET column=sql-expression
<,column=sql-expression>…
<SET column=sql-expression
<,column=sql-expression>…>;

vINSERT INTO table-name|sas/access-view|proc-sql-view <(column<,column>…)>
VALUES (value <, value>…)

<VALUES (value <, value>…)>…;

wINSERT INTO table-name|sas/access-view|proc-sql-view
<(column<,column>…)> query-expression;

Arguments

column
specifies the column into which you are inserting rows.

sas/access-view
specifies a SAS/ACCESS view into which you are inserting rows.

proc-sql-view
specifies a PROC SQL view into which you are inserting rows.

sql-expression
See “sql-expression” on page 1081.

table-name
specifies a PROC SQL table into which you are inserting rows.

value
is a data value.

Methods for Inserting Values

1 The first form of the INSERT statement uses the SET clause, which specifies or
alters the values of a column. You can use more than one SET clause per INSERT
statement, and each SET clause can set the values in more than one column.
Multiple SET clauses are not separated by commas. If you specify an optional list
of columns, you can set a value only for a column that is specified in the list of
columns to be inserted.

2 The second form of the INSERT statement uses the VALUES clause. This clause
can be used to insert lists of values into a table. You can either give a value for

1044 RESET Statement 4 Chapter 34

each column in the table or give values just for the columns specified in the list of
column names. One row is inserted for each VALUES clause. Multiple VALUES
clauses are not separated by commas. The order of the values in the VALUES
clause matches the order of the column names in the INSERT column list or, if no
list was specified, the order of the columns in the table.

3 The third form of the INSERT statement inserts the results of a query-expression
into a table. The order of the values in the query-expression matches the order of
the column names in the INSERT column list or, if no list was specified, the order
of the columns in the table.

Note: If the INSERT statement includes an optional list of column names, only
those columns are given values by the statement. Columns that are in the table but not
listed are given missing values. 4

Inserting Rows through Views
You can insert one or more rows into a table through a view, with some restrictions.

See “Updating PROC SQL and SAS/ACCESS Views” on page 1097.

Adding Values to an Indexed Column
If an index is defined on a column and you insert a new row into the table, that value

is added to the index. You can display information about indexes with
� the CONTENTS statement in the DATASETS procedure. See “CONTENTS

Statement” on page 346.
� the DICTIONARY.INDEXES table. See “DICTIONARY tables” on page 1062 for

more information.

For more information on creating and using indexes, see “CREATE INDEX
Statement” on page 1033.

RESET Statement
Resets PROC SQL options without restarting the procedure.

Featured in: Example 5 on page 1108

RESET <option(s)>;

The RESET statement enables you to add, drop, or change the options in PROC SQL
without restarting the procedure. See “PROC SQL Statement” on page 1027 for a
description of the options.

SELECT Statement
Selects columns and rows of data from tables and views.

See also: “table-expression” on page 1094, “query-expression” on page 1075

The SQL Procedure 4 SELECT Clause 1045

SELECT <DISTINCT> object-item <,object-item>…
<INTO :macro-variable-specification

<, :macro-variable-specification>…>
FROM from-list
<WHERE sql-expression>
<GROUP BY group-by-item

<, group-by-item>…>
<HAVING sql-expression>
<ORDER BY order-by-item

<,order-by-item>…>;

SELECT Clause

Lists the columns that will appear in the output.

See Also: “column-definition” on page 1059
Featured in: Example 1 on page 1101 and Example 2 on page 1103

SELECT <DISTINCT> object-item < ,object-item>…

� object-item is one of the following:

*

case-expression <AS alias>

column-name <AS alias>
<column-modifier <column-modifier>…>

sql-expression <AS alias>
<column-modifier <column-modifier>…>

table-name.*

table-alias.*

view-name.*

view-alias.*

Arguments

case-expression
See “CASE expression” on page 1058.

column-modifier
See “column-modifier” on page 1060.

column-name
See “column-name” on page 1061.

DISTINCT
eliminates duplicate rows.

1046 INTO Clause 4 Chapter 34

Featured in: Example 13 on page 1126

sql-expression
See “sql-expression” on page 1081.

table-alias
is an alias for a PROC SQL table.

table-name
specifies a PROC SQL table.

view-name
specifies any type of SAS data view.

view-alias
specifies the alias for any type of SAS data view.

Asterisk(*) Notation
The asterisk (*) represents all columns of the table(s) listed in the FROM clause.

When an asterisk is not prefixed with a table name, all the columns from all tables in
the FROM clause are included; when it is prefixed (for example, table-name.* or
table-alias.*), all the columns from that table only are included.

Column Aliases
A column alias is a temporary, alternate name for a column. Aliases are specified in

the SELECT clause to name or rename columns so that the result table is clearer or
easier to read. Aliases are often used to name a column that is the result of an
arithmetic expression or summary function. An alias is one word only. If you need a
longer column name, use the LABEL= column-modifier, as described in
“column-modifier” on page 1060. The keyword AS is required with a column alias to
distinguish the alias from other column names in the SELECT clause.

Column aliases are optional, and each column name in the SELECT clause can have
an alias. After you assign an alias to a column, you can use the alias to refer to that
column in other clauses.

If you use a column alias when creating a PROC SQL view, the alias becomes the
permanent name of the column for each execution of the view.

INTO Clause

Stores the value of one or more columns for use later in another PROC SQL query or SAS
statement.

Restriction: An INTO clause cannot be used in a CREATE TABLE statement.
See also: “Using Macro Variables Set by PROC SQL” on page 1096

INTO :macro-variable-specification
<, :macro-variable-specification>…

� :macro-variable-specification is one of the following:

:macro-variable <SEPARATED BY ’character’ <NOTRIM>>;

The SQL Procedure 4 INTO Clause 1047

:macro-variable-1 − :macro-variable-n <NOTRIM>;

Arguments

macro-variable
specifies a SAS macro variable that stores the values of the rows that are returned.

NOTRIM
protects the leading and trailing blanks from being deleted from the macro variable
value when the macro variables are created.

SEPARATED BY ’character’
specifies a character that separates the values of the rows.

Details

� Use the INTO clause only in the outer query of a SELECT statement and not in a
subquery.

� You can put multiple rows of the output into macro variables. You can check the
PROC SQL macro variable SQLOBS to see the number of rows produced by a
query-expression. See “Using Macro Variables Set by PROC SQL” on page 1096 for
more information on SQLOBS.

Examples
These examples use the PROCLIB.HOUSES table:

The SAS System 1

Style SqFeet

CONDO 900
CONDO 1000
RANCH 1200
RANCH 1400
SPLIT 1600
SPLIT 1800
TWOSTORY 2100
TWOSTORY 3000

With the macro-variable-specification, you can do the following:
� You can create macro variables based on the first row of the result.

proc sql noprint;
select style, sqfeet

into :style, :sqfeet
from proclib.houses;

%put &style &sqfeet;

1048 INTO Clause 4 Chapter 34

The results are written to the SAS log:

1 proc sql noprint;
2 select style, sqfeet
3 into :style, :sqfeet
4 from proclib.houses;
5
6 %put &style &sqfeet;
CONDO 900

� You can create one new macro variable per row in the result of the SELECT
statement. This example shows how you can request more values for one column
than for another. The hyphen (-) is used in the INTO clause to imply a range of
macro variables. You can use either the keywords THROUGH or THRU instead of
a hyphen.

The following PROC SQL step puts the values from the first four rows of the
PROCLIB.HOUSES table into macro variables:

proc sql noprint;
select distinct Style, SqFeet

into :style1 - :style3, :sqfeet1 - :sqfeet4
from proclib.houses;

%put &style1 &sqfeet1;
%put &style2 &sqfeet2;
%put &style3 &sqfeet3;
%put &sqfeet4;

The %PUT statements write the results to the SAS log:

1 proc sql noprint;
2 select distinct style, sqfeet
3 into :style1 - :style3, :sqfeet1 - :sqfeet4
4 from proclib.houses;
5
6 %put &style1 &sqfeet1;
CONDO 900
7 %put &style2 &sqfeet2;
CONDO 1000
8 %put &style3 &sqfeet3;
CONDO 1200
9 %put &sqfeet4;
1400

� You can concatenate the values of one column into one macro variable. This form
is useful for building up a list of variables or constants.

proc sql;
select distinct style

into :s1 separated by ’,’
from proclib.houses;

%put &s1;

The SQL Procedure 4 FROM Clause 1049

The results are written to the SAS log:

3 proc sql;
4 select distinct style
5 into :s1 separated by ’,’
6 from proclib.houses;
7
8 %put &s1

CONDO,RANCH,SPLIT,TWOSTORY

� The leading and trailing blanks are trimmed from the values before the macro
variables are created. If you do not want the blanks to be trimmed, add NOTRIM,
as shown in the following example:

proc sql noprint;
select style, sqfeet

into :style1 - :style4 notrim,
:sqfeet separated by ’,’ notrim

from proclib.houses;

%put *&style1* *&sqfeet*;
%put *&style2* *&sqfeet*;
%put *&style3* *&sqfeet*;
%put *&style4* *&sqfeet*;

The results are written to the SAS log, as shown in Output 34.1 on page 1049.

Output 34.1 Macro Variable Values

3 proc sql noprint;
4 select style, sqfeet
5 into :style1 - :style4 notrim,
6 :sqfeet separated by ’,’ notrim
7 from proclib.houses;
8
9 %put *&style1* *&sqfeet*;
*CONDO * * 900, 1000, 1200, 1400, 1600, 1800, 2100,

3000*
10 %put *&style2* *&sqfeet*;
*CONDO * * 900, 1000, 1200, 1400, 1600, 1800, 2100,

3000*
11 %put *&style3* *&sqfeet*;
*RANCH * * 900, 1000, 1200, 1400, 1600, 1800, 2100,

3000*
12 %put *&style4* *&sqfeet*;
*RANCH * * 900, 1000, 1200, 1400, 1600, 1800, 2100,

3000*

FROM Clause

Specifies source tables or views.

Featured in: Example 1 on page 1101, Example 4 on page 1106, Example 9 on page 1118,
and Example 10 on page 1121

FROM from-list

1050 FROM Clause 4 Chapter 34

� from-list is one of the following:

table-name <<AS> alias>

view-name <<AS> alias>

joined-table

(query-expression) <<AS> alias
<(column < ,column>…)>>

CONNECTION TO

Arguments

column
names the column that appears in the output. The column names that you specify
are matched by position to the columns in the output.

CONNECTION TO
See “CONNECTION TO” on page 1062.

joined-table
See “joined-table” on page 1068.

query-expression
See “query-expression” on page 1075.

table-name
specifies a PROC SQL table.

view-name
specifies any type of SAS data view.

Table Aliases
A table alias is a temporary, alternate name for a table that is specified in the FROM

clause. Table aliases are prefixed to column names to distinguish between columns that
are common to multiple tables. Table aliases are always required when joining a table
with itself. Column names in other kinds of joins must be prefixed with table aliases or
table names unless the column names are unique to those tables.

The optional keyword AS is often used to distinguish a table alias from other table
names.

In-Line Views
The FROM clause can itself contain a query-expression that takes an optional table

alias. This kind of nested query-expression is called an in-line view. An in-line view is
any query-expression that would be valid in a CREATE VIEW statement. PROC SQL
can support many levels of nesting, but it is limited to 32 tables in any one query. The
32–table limit includes underlying tables that may contribute to views that are
specified in the FROM clause.

An in-line view saves you a programming step. Rather than creating a view and
referring to it in another query, you can specify the view in-line in the FROM clause.

Characteristics of in-line views include the following:
� An in-line view is not assigned a permanent name, although it can take an alias.

The SQL Procedure 4 WHERE Clause 1051

� An in-line view can be referred to only in the query in which it is defined. It
cannot be referenced in another query.

� You cannot use an ORDER BY clause in an in-line view.

� The names of columns in an in-line view can be assigned in the object-item list of
that view or with a parenthesized list of names following the alias. This syntax
can be useful for renaming columns. See Example 10 on page 1121 for an example.

WHERE Clause

Subsets the output based on specified conditions.

Featured in: Example 4 on page 1106 and Example 9 on page 1118

WHERE sql-expression

Argument

sql-expression
See “sql-expression” on page 1081.

Details

� When a condition is met (that is, the condition resolves to true), those rows are
displayed in the result table; otherwise, no rows are displayed.

� You cannot use summary functions that specify only one column. For example:

where max(measure1) > 50;

However, this WHERE clause will work:

where max(measure1,measure2) > 50;

Writing Efficient WHERE Clauses
Here are some guidelines for writing efficient WHERE clauses that enable PROC

SQL to use indexes effectively:

� Avoid using LIKE predicates that begin with % or _:

/* inefficient:*/ where country like ’%INA’
/* efficient: */ where country like ’A%INA’

� Avoid using arithmetic expressions in a predicate:

/* inefficient:*/ where salary>12*4000
/* efficient: */ where salary>48000

� First put the expression that returns the fewest number of rows. In the following
query, there are fewer rows where miles>3800 than there are where boarded>100.

where miles>3800 and boarded>100

1052 GROUP BY Clause 4 Chapter 34

GROUP BY Clause

Specifies how to group the data for summarizing.

Featured in: Example 8 on page 1116 and Example 12 on page 1124

GROUP BY group-by-item < ,group-by-item>…

� group-by-item is one of the following:

integer

column-name

sql-expression

Arguments

integer
equates to a column’s position.

column-name
See “column-name” on page 1061.

sql-expression
See “sql-expression” on page 1081.

Details

� You can specify more than one group-by-item to get more detailed reports. Both
the grouping of multiple items and the BY statement of a PROC step are
evaluated in similiar ways. If more than one group-by-item is specified, the first
one determines the major grouping.

� Integers can be substituted for column names (that is, SELECT object-items) in
the GROUP BY clause. For example, if the group-by-item is 2, the results are
grouped by the values in the second column of the SELECT clause list. Using
integers can shorten your coding and enable you to group by the value of an
unnamed expression in the SELECT list.

� The data do not have to be sorted in the order of the group-by values because
PROC SQL handles sorting automatically. You can use the ORDER BY clause to
specify the order in which rows are displayed in the result table.

� If you specify a GROUP BY clause in a query that does not contain a summary
function, your clause is transformed into an ORDER BY clause and a message to
that effect is written to the SAS log.

� A group-by-item cannot be a summary function. For example, the following
GROUP BY clause is not valid:

group by sum(x)

The SQL Procedure 4 ORDER BY Clause 1053

HAVING Clause

Subsets grouped data based on specified conditions.

Featured in: Example 8 on page 1116 and Example 12 on page 1124

HAVING sql-expression

Argument

sql-expression
See “sql-expression” on page 1081.

Subsetting Grouped Data
The HAVING clause is used with at least one summary function and an optional

GROUP BY clause to summarize groups of data in a table. A HAVING clause is any
valid SQL expression that is evaluated as either true or false for each group in a query.
Or, if the query involves remerged data, the HAVING expression is evaluated for each
row that participates in each group. The query must include one or more summary
functions.

Typically, the GROUP BY clause is used with the HAVING expression and defines
the group(s) to be evaluated. If you omit the GROUP BY clause, the summary function
and the HAVING clause treat the table as one group.

The following PROC SQL step uses the PROCLIB.PAYROLL table (shown in
Example 2 on page 1103) and groups the rows by SEX to determine the oldest employee
of each sex. In SAS, dates are stored as integers. The lower the birthdate as an integer,
the greater the age. The expression birth=min(birth)is evaluated for each row in the
table. When the minimum birthdate is found, the expression becomes true and the row
is included in the output.

proc sql;
title ’Oldest Employee of Each Gender’;
select *

from proclib.payroll
group by sex
having birth=min(birth);

Note: This query involves remerged data because the values returned by a
summary function are compared to values of a column that is not in the GROUP BY
clause. See “Remerging Data” on page 1090 for more information about summary
functions and remerging data. 4

ORDER BY Clause

Specifies the order in which rows are displayed in a result table.

See also: “query-expression” on page 1075
Featured in: Example 11 on page 1122

1054 ORDER BY Clause 4 Chapter 34

ORDER BY order-by-item < ,order-by-item>…;

� order-by-item is one of the following:

integer <ASC|DESC>

column-name <ASC|DESC>

sql-expression <ASC|DESC>

Arguments

ASC
orders the data in ascending order. This is the default order.

column-name
See “column-name” on page 1061.

DESC
orders the data in descending order.

integer
equates to a column’s position.

sql-expression
See “sql-expression” on page 1081.

Details

� The ORDER BY clause sorts the result of a query expression according to the
order specified in that query. When this clause is used, the default ordering
sequence is ascending, from the lowest value to the highest. You can use the
SORTSEQ= option to change the collating sequence for your output. See “PROC
SQL Statement” on page 1027.

� If an ORDER BY clause is omitted, the SAS System’s default collating sequence
and your operating environment determine the order of a result table’s rows.
Therefore, if you want your result table to appear in a particular order, use the
ORDER BY clause.

� Using an ORDER BY clause has certain performance costs, as does any sorting
procedure. If you are querying large tables, and the order of their results is not
important, your queries will run faster without an ORDER BY clause.

� If more than one order-by-item is specified (separated by commas), the first one
determines the major sort order. For example, if the order-by-item is 2 (an integer),
the results are ordered by the values of the second column. If a query-expression
includes a set operator (for example, UNION), use integers to specify the order.
Doing so avoids ambiguous references to columns in the table expressions.

� In the ORDER BY clause, you can specify any column of a table or view that is
specified in the FROM clause of a query-expression, regardless of whether that
column has been included in the query’s SELECT clause. For example, this query
produces a report ordered by the descending values of the population change for
each country from 1990 to 1995:

proc sql;
select country

The SQL Procedure 4 UPDATE Statement 1055

from census
order by pop95-pop90 desc;

NOTE: The query as specified involves
ordering by an item that
doesn’t appear in its SELECT clause.

� You can order the output by the values that are returned by a function, for
example:

proc sql;
select *

from measure
order by put(pol_a,fmt_a.);

UPDATE Statement

Modifies a column’s values in existing rows of a table or view.

Restriction: You cannot use UPDATE on a table accessed via an engine that does not
support UPDATE processing.

Featured in: Example 3 on page 1104

UPDATE table-name|sas/access-view|proc-sql-view <AS alias>

SET column=sql-expression
<,column=sql-expression>…

<SETcolumn=sql-expression
<,column=sql-expression>…>

<WHEREsql-expression>;

Arguments

alias
assigns an alias to table-name, sas/access-view, or proc-sql-view.

column
specifies a column in table-name, sas/access-view, or proc-sql-view.

sas/access-view
specifies a SAS/ACCESS view.

sql-expression
See “sql-expression” on page 1081.

table-name
specifies a PROC SQL table.

proc-sql-view
specifies a PROC SQL view.

1056 VALIDATE Statement 4 Chapter 34

Updating Tables through Views
You can update one or more rows of a table through a view, with some restrictions.

See “Updating PROC SQL and SAS/ACCESS Views” on page 1097.

Details

� Any column that is not modified retains its original values, except in certain
queries using the CASE expression. See “CASE expression” on page 1058 for a
description of CASE expressions.

� To add, drop, or modify a column’s definition or attributes, use the ALTER TABLE
statement, described in “ALTER TABLE Statement” on page 1031.

� In the SET clause, a column reference on the left side of the equal sign can also
appear as part of the expression on the right side of the equal sign. For example,
you could use this expression to give employees a $1,000 holiday bonus:

set salary=salary + 1000

� If you omit the WHERE clause, all the rows are updated. When you use a
WHERE clause, only the rows that meet the WHERE condition are updated.

� When you update a column and an index has been defined for that column, the
values in the updated column continue to have the index defined for them.

VALIDATE Statement
Checks the accuracy of a query-expression’s syntax without executing the expression.

VALIDATE query-expression;

Argument

query-expression
See “query-expression” on page 1075.

Details

� The VALIDATE statement writes a message in the SAS log that states that the
query is valid. If there are errors, VALIDATE writes error messages to the SAS log.

� The VALIDATE statement can also be included in applications that use the macro
facility. When used in such an application, VALIDATE returns a value that
indicates the query-expression’s validity. The value is returned through the macro
variable SQLRC (a short form for SQL return code). For example, if a SELECT
statement is valid, the macro variable SQLRC returns a value of 0. See “Using
Macro Variables Set by PROC SQL” on page 1096 for more information.

Component Dictionary
This section describes the components that are used in SQL procedure statements.

Components are the items in PROC SQL syntax that appear in roman type.

The SQL Procedure 4 CALCULATED 1057

Most components are contained in clauses within the statements. For example, the
basic SELECT statement is composed of the SELECT and FROM clauses, where each
clause contains one or more components. Components can also contain other
components.

For easy reference, components appear in alphabetical order, and some terms are
referred to before they are defined. Use the index or the "See Also" references to refer
to other statement or component descriptions that may be helpful.

BETWEEN condition

Selects rows where column values are within a range of values.

sql-expression <NOT> BETWEEN sql-expression
AND sql-expression

� sql-expression is described in “sql-expression” on page 1081.

Details

� The sql-expressions must be of compatible data types. They must be either all
numeric or all character types.

� Because a BETWEEN condition evaluates the boundary values as a range, it is
not necessary to specify the smaller quantity first.

� You can use the NOT logical operator to exclude a range of numbers, for example,
to eliminate customer numbers between 1 and 15 (inclusive) so that you can
retrieve data on more recently acquired customers.

� PROC SQL supports the same comparison operators that the DATA step supports.
For example:

x between 1 and 3
x between 3 and 1
1<=x<=3
x>=1 and x<=3

CALCULATED

Refers to columns already calculated in the SELECT clause.

CALCULATED column-alias

� column-alias is the name assigned to the column in the SELECT clause.

1058 CASE expression 4 Chapter 34

Referencing a CALCULATED Column
CALCULATED enables you to use the results of an expression in the same SELECT

clause or in the WHERE clause. It is valid only when used to refer to columns that are
calculated in the immediate query expression.

CASE expression

Selects result values that satisfy specified conditions.

Featured in: Example 3 on page 1104 and Example 13 on page 1126

CASE <case-operand>

WHEN when-condition THEN result-expression

<WHEN when-condition THEN result-expression>…

<ELSE result-expression>

END

� case-operand, when-condition, and result-expression must be valid sql-expressions.
See “sql-expression” on page 1081.

Details
The CASE expression selects values if certain conditions are met. A CASE expression

returns a single value that is conditionally evaluated for each row of a table (or view).
Use the WHEN-THEN clauses when you want to execute a CASE expression for some
but not all of the rows in the table that is being queried or created. An optional ELSE
expression gives an alternative action if no THEN expression is executed.

When you omit case-operand, when-condition is evaluated as a Boolean (true or false)
value. If when-condition returns a nonzero, nonmissing result, the WHEN clause is
true. If case-operand is specified, it is compared with when-condition for equality. If
case-operand equals when-condition, the WHEN clause is true.

If the when-condition is true for the row being executed, the result-expression
following THEN is executed. If when-condition is false, PROC SQL evaluates the next
when-condition until they are all evaluated. If every when-condition is false, PROC
SQL executes the ELSE expression, and its result becomes the CASE expression’s
result. If no ELSE expression is present and every when-condition is false, the result of
the CASE expression is a missing value.

You can use CASE expressions in the SELECT, UPDATE, and INSERT statements.

Example
The following two PROC SQL steps show two equivalent CASE expressions that

create a character column with the strings in the THEN clause. The CASE expression
in the second PROC SQL step is a shorthand method that is useful when all the
comparisons are with the same column.

The SQL Procedure 4 column-definition 1059

Example Code 34.1

proc sql;
select *, case

when degrees > 80 then ’Hot’
when degrees < 40 then ’Cold’
else ’Mild’
end

from temperatures;

proc sql;
select *, case Degrees

when > 80 then ’Hot’
when < 40 then ’Cold’
else ’Mild’
end

from temperatures;

column-definition

Defines PROC SQL’s data types and dates.

See also: “column-modifier” on page 1060
Featured in: Example 1 on page 1101

column CHARACTER|VARCHAR <(width)>
<column-modifier <column-modifier>…>

column INTEGER|SMALLINT
<column-modifier <column-modifier>…>

column DECIMAL|NUMERIC|FLOAT <(width< ,ndec>)>
<column-modifier <column-modifier>…>

column REAL|DOUBLE PRECISION
<column-modifier <column-modifier>…>

column DATE <column-modifier>

� column-modifier is described in “column-modifier” on page 1060.
� ndec is the number of decimals. PROC SQL ignores ndec. It is included for

compatibility with SQL from other software.
� width is the width of the column. The width field on a character column specifies

the width of that column; it defaults to eight characters. PROC SQL ignores a
width field on a numeric column. All numeric columns are created with the
maximum precision allowed by the SAS System. If you want to create numeric
columns that use less storage space, use the LENGTH statement in the DATA step.

Details

1060 column-modifier 4 Chapter 34

� SAS supports many but not all of the data types that SQL-based databases
support. The SQL procedure defaults to the SAS data types NUM and CHAR.

� The CHARACTER, INTEGER, and DECIMAL data types can be abbreviated to
CHAR, INT, and DEC, respectively.

� A column declared with DATE is a SAS numeric variable with a date informat or
format. You can use any of the column-modifiers to set the appropriate attributes
for the column being defined. See SAS Language Reference: Dictionary for more
information on dates.

column-modifier

Sets column attributes.

See also: “column-definition” on page 1059 and SELECT Clause on page 1045
Featured in: Example 1 on page 1101 and Example 2 on page 1103

<INFORMAT=informatw.d>

<FORMAT=formatw.d>

<LABEL=’label’>

<LENGTH=length>

Specifying Informats for Columns (INFORMAT=)
INFORMAT= specifies the informat to be used when SAS accesses data from a table

or view. You can change one permanent informat to another by using the ALTER
statement. PROC SQL stores informats in its table definitions so that other SAS
procedures and the DATA step can use this information when they reference tables
created by PROC SQL.

Specifying Formats for Columns (FORMAT=)
FORMAT= determines how character and numeric values in a column are displayed

by the query-expression. If the FORMAT= modifier is used in the ALTER, CREATE
TABLE, or CREATE VIEW statements, it specifies the permanent format to be used
when SAS displays data from that table or view. You can change one permanent format
to another by using the ALTER statement.

See SAS Language Reference: Dictionary for more information on informats and
formats.

Specifying Labels for Columns (LABEL=)
LABEL= associates a label with a column heading. If the LABEL= modifier is used

in the ALTER, CREATE TABLE, or CREATE VIEW statements, it specifies the
permanent label to be used when displaying that column. You can change one
permanent label to another by using the ALTER statement.

If you refer to a labeled column in the ORDER BY or GROUP BY clause, you must
use either the column name (not its label), the column’s alias, or its ordering integer

The SQL Procedure 4 column-name 1061

(for example, ORDER BY 2). See the section on SAS statements in SAS Language
Reference: Dictionary for more information on labels.

A label can begin with the following characters: a through z, A through Z, 0 through
9, an underscore (_), or a blank space. If you begin a label with any other character,
such as pound sign (#), that character is used as a split character and it splits the label
onto the next line wherever it appears. For example:

select dropout label=
’#Percentage of#Students Who#Dropped Out’

from educ(obs=5);

If you need a special character to appear as the first character in the output, precede
it with a space or a forward slash (/).

You can omit the LABEL= part of the column-modifier and still specify a label. Be
sure to enclose the label in quotes. For example:

select empname "Names of Employees"
from sql.employees;

If you need an apostrophe in the label, type it twice so that the SAS System reads
the apostrophe as a literal. Or, you can use single and double quotes alternately (for
example, “Date Rec’d”).

column-name

Specifies the column to select.

See also: “column-modifier” on page 1060 and SELECT Clause on page 1045

column-name is one of the following:

column

table-name.column

table-alias.column

view-name.column

view-alias.column

Qualifying Column Names
A column can be referred to by its name alone if it is the only column by that name

in all the tables or views listed in the current query-expression. If the same column
name exists in more than one table or view in the query expression, you must qualify
each use of the column name by prefixing a reference to the table that contains it.
Consider the following examples:

SALARY /* name of the column */
EMP.SALARY /* EMP is the table or view name */
E.SALARY /* E is an alias for the table

or view that contains the
SALARY column */

1062 CONNECTION TO 4 Chapter 34

CONNECTION TO

Retrieves and uses DBMS data in a PROC SQL query or view.

Tip: You can use CONNECTION TO in the SELECT statement’s FROM clause as part
of the from-list.
See also: “Connecting to a DBMS Using the SQL Procedure Pass-Through Facility” on
page 1095 and your SAS/ACCESS documentation.

CONNECTION TO dbms-name (dbms-query)

CONNECTION TO alias (dbms-query)

� alias specifies an alias, if one was defined in the CONNECT statement.
� dbms-name identifies the DBMS you are using.
� dbms-query specifies the query to send to a DBMS. The query uses the DBMS’s

dynamic SQL. You can use any SQL syntax that the DBMS understands, even if
that is not valid for PROC SQL. However, your DBMS query cannot contain a
semicolon because that represents the end of a statement to the SAS System.

The number of tables that you can join with dbms-query is determined by the
DBMS. Each CONNECTION TO component counts as one table toward the
32-table PROC SQL limit for joins.

CONTAINS condition

Tests whether a string is part of a column’s value.

Restriction: The CONTAINS condition is used only with character operands.
Featured in: Example 7 on page 1112

sql-expression<NOT> CONTAINS sql-expression

For more information, see “sql-expression” on page 1081.

DICTIONARY tables

Retrieve information about elements associated with the current SAS session.

Restriction: You cannot use SAS data set options with DICTIONARY tables.
Restriction: DICTIONARY tables are read-only objects.

Featured in: Example 6 on page 1111

The SQL Procedure 4 DICTIONARY tables 1063

DICTIONARY. table-name

� table-name is one of the following:

CATALOGS MEMBERS

COLUMNS OPTIONS

EXTFILES TABLES

INDEXES TITLES

MACROS VIEWS

Querying DICTIONARY Tables

The DICTIONARY tables component is specified in the FROM clause of a SELECT
statement. DICTIONARY is a reserved libref for use only in PROC SQL. Data from
DICTIONARY tables are generated at run time.

You can use a PROC SQL query to retrieve or subset data from a DICTIONARY
table. You can save that query as a PROC SQL view for use later. Or, you can use the
existing SASHELP views that are created from the DICTIONARY tables.

To see how each DICTIONARY table is defined, submit a DESCRIBE TABLE
statement. After you know how a table is defined, you can use its column names in a
subsetting WHERE clause to get more specific information. For example:

proc sql;
describe table dictionary.indexes;

The results are written to the SAS log:

1 proc sql;
2 describe table dictionary.indexes;
NOTE: SQL table DICTIONARY.INDEXES was created like:

create table DICTIONARY.INDEXES
(

libname char(8) label=’Library Name’,
memname char(32) label=’Member Name’,
memtype char(8) label=’Member Type’,
name char(32) label=’Column Name’,
idxusage char(9) label=’Column Index Type’,
indxname char(32) label=’Index Name’,
indxpos num label=’Position of Column in Concatenated Key’,
nomiss char(3) label=’Nomiss Option’,
unique char(3) label=’Unique Option’

);

You specify a DICTIONARY table in a PROC SQL query or view to retrieve
information about its objects. For example, the following query returns a row for each
index in the INDEXES DICTIONARY table:

proc sql;
title ’DICTIONARY.INDEXES Table’;
select * from dictionary.indexes;

1064 DICTIONARY tables 4 Chapter 34

Subsetting Data from DICTIONARY Tables

DICTIONARY tables are often large. Therefore, if you are looking for specific
information, use a WHERE clause to retrieve a subset of the rows in a DICTIONARY
table. In the following example, only the rows with the member name ADBDBI are
displayed from the DICTIONARY.CATALOGS table:

proc sql ;
title ’Subset of the DICTIONARY.CATALOGS Table’;
title2 ’Rows with Member Name ADBDBI ’;

select * from dictionary.catalogs
where memname =’ADBDBI’;

Creating PROC SQL Views from DICTIONARY Tables

To use DICTIONARY tables in other SAS procedures or in the DATA step, use PROC
SQL views that are based on the DICTIONARY tables.

You can either create a PROC SQL view on a DICTIONARY table or you can use the
SASHELP views, as described in “Accessing DICTIONARY Tables with SASHELP
Views” on page 1065. You can then use the view in a DATA or PROC step. The
following example creates a PROC SQL view on the DICTIONARY.OPTIONS table.
Output 34.2 on page 1064 displays the view with PROC PRINT:

options linesize=120 nodate pageno=1;

proc sql;
create view work.options as

select * from dictionary.options;

proc print data=work.options(obs=10) noobs;
title ’Listing of the View WORK.OPTIONS’;
title2 ’First 10 Rows Only’;

run;

Output 34.2 DICTIONARY.OPTIONS Table (partial output)

Listing of the View WORK.OPTIONS 1

First 10 Rows Only

optname setting optdesc level

BATCH NOBATCH Use the batch set of default values for SAS system options Portable

BINDING DEFAULT Controls the binding edge for duplexed output Portable

BOTTOMMARGIN Bottom margin for printed output Portable

BUFNO 1 Number of buffers for each SAS data set Portable

BUFSIZE 0 Size of buffer for page of SAS data set Portable

BYERR BYERR Set the error flag if a null data set is input to the SORT procedure Portable

BYLINE BYLINE Print the by-line at the beginning of each by-group Portable

CAPS NOCAPS Translate SAS source and data lines to uppercase Portable

CARDIMAGE NOCARDIMAGE Process SAS source and data lines as 80-byte records Portable

CATCACHE 0 Number of SAS catalogs to keep in cache memory Portable

The SQL Procedure 4 DICTIONARY tables 1065

Accessing DICTIONARY Tables with SASHELP Views

You can use the permanent PROC SQL views that are available in the SASHELP
data library to access DICTIONARY tables. Table 34.1 on page 1065 lists all of the
permanent PROC SQL views in the SASHELP library as well as the CREATE VIEW
statement that defines each view. You can reference these views and display their
results using a PROC SQL query, other SAS procedure, or the DATA step.

Table 34.1 Views in DICTIONARY Tables

PROC SQL Views in the SASHELP LIBRARY PROC SQL Statements to Create the Views

SASHELP.VCATALG create
view sashelp.vcatalg as

select * from dictionary.catalogs;

SASHELP.VCOLUMN create
view sashelp.vcolumn as

select * from dictionary.columns;

SASHELP.VEXTFL create
view sashelp.vextfl as

select * from dictionary.extfiles;

SASHELP.VINDEX create
view sashelp.vindex as

select * from dictionary.indexes;

SASHELP.VMACRO create
view sashelp.vmacro as

select * from dictionary.macros;

SASHELP.VMEMBER create
view sashelp.vmember as

select * from dictionary.members;

SASHELP.VOPTION create
view sashelp.voption as

select * from dictionary.options;

SASHELP.VTABLE create
view sashelp.vtable as

select * from dictionary.tables;

SASHELP.VTITLE create
view sashelp.vtitle as

select * from dictionary.titles;

SASHELP.VVIEW create
view sashelp.vview as

select * from dictionary.views;

SASHELP.VSACCES create
view sashelp.vsacces as

select libname, memname
from dictionary.members
where memtype=’ACCESS’
order by libname, memname;

SASHELP.VSCATLG create
view sashelp.vscatlg as

select libname, memname
from dictionary.members
where memtype=’CATALOG’
order by libname, memname;

1066 EXISTS condition 4 Chapter 34

PROC SQL Views in the SASHELP LIBRARY PROC SQL Statements to Create the Views

SASHELP.VSLIB create

view sashelp.vslib as
select distinct libname, path
from dictionary.members
order by libname;

SASHELP.VSTABLE create
view sashelp.vstable as

select libname, memname
from dictionary.members
where memtype=’DATA’
order by libname, memname;

SASHELP.VSTABVW create
view sashelp.vstabvw as

select libname, memname, memtype
from dictionary.members
where memtype=’VIEW’ or memtype=’DATA’
order by libname, memname;

SASHELP.VSVIEW create
view sashelp.vsview as

select libname, memname
from dictionary.members
where memtype=’VIEW’
order by libname, memname;

EXISTS condition

Tests if a subquery returns one or more rows.

See also: “Query Expressions (Subqueries)” on page 1083

<NOT> EXISTS (query-expression)

� query-expression is described in “query-expression” on page 1075.

Details
The EXISTS condition is an operator whose right operand is a subquery. The result

of an EXISTS condition is true if the subquery resolves to at least one row. The result
of a NOT EXISTS condition is true if the subquery evaluates to zero rows. For example,
the following query subsets PROCLIB.PAYROLL (which is shown in Example 2 on page
1103) based on the criteria in the subquery. If the value for STAFF.IDNUM is on the
same row as the value CT in PROCLIB.STAFF (which is shown in Example 4 on page
1106), the matching IDNUM in PROCLIB.PAYROLL is included in the output. Thus,
the query returns all the employees from PROCLIB.PAYROLL who live in CT.

proc sql;
select *

The SQL Procedure 4 IS condition 1067

from proclib.payroll p
where exists (select *

from proclib.staff s
where p.idnumber=s.idnum

and state=’CT’);

IN condition

Tests set membership.

Featured in: Example 4 on page 1106

sql-expression <NOT> IN (constant <,constant>…)

sql-expression <NOT> IN (query-expresssion)

� constant is a number or a quoted character string (or other special notation) that
indicates a fixed value. Constants are also called literals.

� query-expression is described in “query-expression” on page 1075.

� sql-expression is described in “sql-expression” on page 1081.

Details
An IN condition tests if the column value that is returned by the sql-expression on

the left is a member of the set (of constants or values returned by the query-expression)
on the right. If so, it selects rows based upon the column value. That is, the IN
condition is true if the value of the left-hand operand is in the set of values that are
defined by the right-hand operand.

IS condition

Tests for a missing value.

Featured in: Example 5 on page 1108

sql-expression IS <NOT> NULL

sql-expression IS <NOT> MISSING

� sql-expression is described in “sql-expression” on page 1081.

1068 joined-table 4 Chapter 34

Details
IS NULL and IS MISSING are predicates that test for a missing value. IS NULL and

IS MISSING are used in the WHERE, ON, and HAVING expressions. Each predicate
resolves to true if the sql-expression’s result is missing and false if it is not missing.

SAS stores a numeric missing value as a period (.) and a character missing value as
a blank space. Unlike missing values in some versions of SQL, missing values in SAS
always appear first in the collating sequence. Therefore, in Boolean and comparison
operations, the following expressions resolve to true in a predicate:

3>null
-3>null
0>null

The SAS System way of evaluating missing values differs from that of the ANSI
Standard for SQL. According to the Standard, these expressions are NULL. See
“sql-expression” on page 1081 for more information on predicates and operators. See
“PROC SQL and the ANSI Standard” on page 1098 for more information on the ANSI
Standard.

joined-table

Joins a table with itself or with other tables.

Restrictions: Joins are limited to 32 tables.
See also: FROM Clause on page 1049 and “query-expression” on page 1075
Featured in: Example 4 on page 1106, Example 7 on page 1112, Example 9 on page 1118,
Example 13 on page 1126, and Example 14 on page 1129

table-name <<AS> alias>, table-name <<AS> alias>
<, table-name <<AS> alias>…>

table-name <INNER> JOIN table-name
ON sql-expression

table-name LEFT JOIN table-name ON sql-expression

table-name RIGHT JOIN table-name ON sql-expression

table-name FULL JOIN table-name ON sql-expression

� alias specifies an alias for table-name.
� sql-expression is described in “sql-expression” on page 1081.
� table-name can be one of the following:

� the name of a PROC SQL table.
� the name of a SAS data view.
� a query-expression. A query-expression in the FROM clause is usually

referred to as an in-line view. See FROM Clause on page 1049 for more
information on in-line views.

� a connection to a DBMS in the form of the CONNECTION TO component.
See “CONNECTION TO” on page 1062 for more information.

The SQL Procedure 4 joined-table 1069

Joining Tables
When multiple tables, views, or query-expressions are listed in the FROM clause,

they are processed to form one table. The resulting table contains data from each
contributing table. These queries are referred to as joins.

Conceptually, when two tables are specified, each row of table A is matched with all
the rows of table B to produce an internal or intermediate table. The number of rows in
the intermediate table (Cartesian product) is equal to the product of the number of rows
in each of the source tables. The intermediate table becomes the input to the rest of the
query in which some of its rows may be eliminated by the WHERE clause or
summarized by a summary function.

A common type of join is an equijoin, in which the values from a column in the first
table must equal the values of a column in the second table.

Table Limit
PROC SQL can process a maximum of 32 tables for a join. If you are using views in a

join, the number of tables on which the views are based count toward the 32-table limit.
Each CONNECTION TO component in the Pass-Through Facility counts as one table.

Specifying the Rows to Be Returned
The WHERE clause or ON clause contains the conditions (sql-expression) under

which the rows in the Cartesian product are kept or eliminated in the result table.
WHERE is used to select rows from inner joins. ON is used to select rows from inner or
outer joins.

The expression is evaluated for each row from each table in the intermediate table
described earlier in “Joining Tables” on page 1069. The row is considered to be matching
if the result of the expression is true (a nonzero, nonmissing value) for that row.

Note: You can follow the ON clause with a WHERE clause to further subset the
query result. See Example 7 on page 1112 for an example. 4

Table Aliases
Table aliases are used in joins to distinguish the columns of one table from those in

the other table(s). A table name or alias must be prefixed to a column name when you
are joining tables that have matching column names. See FROM Clause on page 1049
for more information on table aliases.

Joining a Table with Itself
A single table can be joined with itself to produce more information. These joins are

sometimes called reflexive joins. In these joins, the same table is listed twice in the
FROM clause. Each instance of the table must have a table alias or you will not be able
to distinguish between references to columns in either instance of the table. See
Example 13 on page 1126 and Example 14 on page 1129 for examples.

Inner Joins
An inner join returns a result table for all the rows in a table that have one or more

matching rows in the other table(s), as specified by the sql-expression. Inner joins can
be performed on up to 32 tables in the same query-expression.

You can perform an inner join by using a list of table-names separated by commas or
by using the INNER, JOIN, and ON keywords.

1070 joined-table 4 Chapter 34

The LEFTTAB and RIGHTTAB tables are used to illustrate this type of join:

Left Table - LEFTTAB

Continent Export Country

NA wheat Canada
EUR corn France
EUR rice Italy
AFR oil Egypt

Right Table- RIGHTTAB

Continent Export Country

NA sugar USA
EUR corn Spain
EUR beets Belgium
ASIA rice Vietnam

The following example joins the LEFTTAB and RIGHTTAB tables to get the Cartesian
product of the two tables. The Cartesian product is the result of combining every row
from one table with every row from another table. You get the Cartesian product when
you join two tables and do not subset them with a WHERE clause or ON clause.

proc sql;
title ’The Cartesian Product of’;
title2 ’LEFTTAB and RIGHTTAB’;
select *

from lefttab, righttab;

The Cartesian Product of
LEFTTAB and RIGHTTAB

Continent Export Country Continent Export Country
--
NA wheat Canada NA sugar USA
NA wheat Canada EUR corn Spain
NA wheat Canada EUR beets Belgium
NA wheat Canada ASIA rice Vietnam
EUR corn France NA sugar USA
EUR corn France EUR corn Spain
EUR corn France EUR beets Belgium
EUR corn France ASIA rice Vietnam
EUR rice Italy NA sugar USA
EUR rice Italy EUR corn Spain
EUR rice Italy EUR beets Belgium
EUR rice Italy ASIA rice Vietnam
AFR oil Egypt NA sugar USA
AFR oil Egypt EUR corn Spain
AFR oil Egypt EUR beets Belgium
AFR oil Egypt ASIA rice Vietnam

The LEFTTAB and RIGHTTAB tables can be joined by listing the table names in the
FROM clause. The following query represents an equijoin because the values of
Continent from each table are matched. The column names are prefixed with the table
aliases so that the correct columns can be selected.

proc sql;
title ’Inner Join’;

The SQL Procedure 4 joined-table 1071

select *
from lefttab as l, righttab as r
where l.continent=r.continent;

Inner Join

Continent Export Country Continent Export Country
--
NA wheat Canada NA sugar USA
EUR corn France EUR corn Spain
EUR corn France EUR beets Belgium
EUR rice Italy EUR corn Spain
EUR rice Italy EUR beets Belgium

The following PROC SQL step is equivalent to the previous one and shows how to write
an equijoin using the INNER JOIN and ON keywords.

proc sql;
title ’Inner Join’;
select *

from lefttab as l inner join
righttab as r

on l.continent=r.continent;

See Example 4 on page 1106, Example 13 on page 1126, and Example 14 on page
1129 for more examples.

Outer Joins

Outer joins are inner joins that have been augmented with rows that did not match
with any row from the other table in the join. The three types of outer joins are left,
right, and full.

A left outer join, specified with the keywords LEFT JOIN and ON, has all the rows
from the Cartesian product of the two tables for which the sql-expression is true, plus
rows from the first (LEFTTAB) table that do not match any row in the second
(RIGHTTAB) table.

proc sql;
title ’Left Outer Join’;
select *

from lefttab as l left join
righttab as r

on l.continent=r.continent;

Left Outer Join

Continent Export Country Continent Export Country
--
AFR oil Egypt
EUR rice Italy EUR beets Belgium
EUR corn France EUR beets Belgium
EUR rice Italy EUR corn Spain
EUR corn France EUR corn Spain
NA wheat Canada NA sugar USA

1072 joined-table 4 Chapter 34

A right outer join, specified with the keywords RIGHT JOIN and ON, has all the rows
from the Cartesian product of the two tables for which the sql-expression is true, plus
rows from the second (RIGHTTAB) table that do not match any row in the first
(LEFTTAB) table.

proc sql;
title ’Right Outer Join’;
select *

from lefttab as l right join
righttab as r

on l.continent=r.continent;

Right Outer Join

Continent Export Country Continent Export Country
--

ASIA rice Vietnam
EUR rice Italy EUR beets Belgium
EUR rice Italy EUR corn Spain
EUR corn France EUR beets Belgium
EUR corn France EUR corn Spain
NA wheat Canada NA sugar USA

A full outer join, specified with the keywords FULL JOIN and ON, has all the rows
from the Cartesian product of the two tables for which the sql-expression is true, plus
rows from each table that do not match any row in the other table.

proc sql;
title ’Full Outer Join’;
select *

from lefttab as l full join
righttab as r

on l.continent=r.continent;

Full Outer Join

Continent Export Country Continent Export Country
--
AFR oil Egypt

ASIA rice Vietnam
EUR rice Italy EUR beets Belgium
EUR rice Italy EUR corn Spain
EUR corn France EUR beets Belgium
EUR corn France EUR corn Spain
NA wheat Canada NA sugar USA

See Example 7 on page 1112 for another example.

Joining More Than Two Tables

Inner joins are usually performed on two or three tables, but they can be performed
on up to 32 tables in PROC SQL. A join on three tables is described here to explain how
and why the relationships work among the tables.

The SQL Procedure 4 joined-table 1073

In a three-way join, the sql-expression consists of two conditions: one relates the first
table to the second table and the other relates the second table to the third table. It is
possible to break this example into stages, performing a two-way join into a temporary
table and then joining that table with the third one for the same result. However,
PROC SQL can do it all in one step as shown in the next example.

The example shows the joining of three tables: COMM, PRICE, and AMOUNT. To
calculate the total revenue from exports for each country, you need to multiply the
amount exported (AMOUNT table) by the price of each unit (PRICE table), and you
must know the commodity that each country exports (COMM table).

COMM Table

Continent Export Country

NA wheat Canada
EUR corn France
EUR rice Italy
AFR oil Egypt

PRICE Table

Export Price

rice 3.56
corn 3.45
oil 18
wheat 2.98

AMOUNT Table

Country Quantity

Canada 16000
France 2400
Italy 500
Egypt 10000

proc sql;
title ’Total Export Revenue’;
select c.Country, p.Export, p.Price,

a.Quantity,a.quantity*p.price
as Total

from comm c, price p, amount a
where c.export=p.export

and c.country=a.country;

Total Export Revenue

Country Export Price Quantity Total
--
Italy rice 3.56 500 1780
France corn 3.45 2400 8280
Egypt oil 18 10000 180000
Canada wheat 2.98 16000 47680

1074 LIKE condition 4 Chapter 34

See Example 9 on page 1118 for another example.

Comparison of Joins and Subqueries
You can often use a subquery and a join to get the same result. However, it is often

more efficient to use a join if the outer query and the subquery do not return duplicate
rows. For example, the following queries produce the same result. The second query is
more efficient:

proc sql;
select IDNumber, Birth

from proclib.payroll
where IDNumber in (select idnum

from proclib.staff
where lname like ’B%’);

proc sql;
select p.IDNumber, p.Birth

from proclib.payroll p, proclib.staff s
where p.idnumber=s.idnum

and s.lname like ’B%’;

Note: PROCLIB.PAYROLL is shown in Example 2 on page 1103. 4

LIKE condition

Tests for a matching pattern.

sql-expression <NOT> LIKE sql-expression

� sql-expression is described in “sql-expression” on page 1081.

Details
The LIKE condition selects rows by comparing character strings with a

pattern-matching specification. It resolves to true and displays the matched string(s) if
the left operand matches the pattern specified by the right operand.

Patterns for Searching
Patterns are composed of three classes of characters:

underscore (_)
matches any single character.

percent sign (%)
matches any sequence of zero or more characters.

any other character
matches that character.

These patterns can appear before, after, or on both sides of characters that you want to
match. The LIKE condition is case-sensitive.

The SQL Procedure 4 query-expression 1075

The following list uses these values: Smith, Smooth, Smothers, Smart, and Smuggle.

’Sm%’
matches Smith, Smooth, Smothers, Smart, Smuggle.

’%th’
matches Smith, Smooth.

’S__gg%’
matches Smuggle.

’S_o’
matches a three-letter word, so it has no matches here.

’S_o%’
matches Smooth, Smothers.

’S%th’
matches Smith, Smooth.

’Z’
matches the single, uppercase character Z only, so it has no matches here.

Searching for Mixed-Case Strings
To search for mixed-case strings, use the UPCASE function to make all the names

uppercase before entering the LIKE condition:

upcase(name) like ’SM%’;

Note: When you are using the % character, be aware of the effect of trailing blanks.
You may have to use the TRIM function to remove trailing blanks in order to match
values. 4

query-expression

Retrieves data from tables.

See also: “table-expression” on page 1094, “Query Expressions (Subqueries)” on page
1083, and “In-Line Views” on page 1050

table-expression <set-operator table-expression>…

� table-expression is described in “table-expression” on page 1094.

� set-operator is one of the following:

INTERSECT <CORRESPONDING> <ALL>

OUTER UNION <CORRESPONDING>

UNION <CORRESPONDING> <ALL>

EXCEPT <CORRESPONDING> <ALL>

1076 query-expression 4 Chapter 34

Query Expressions and Table Expressions
A query-expression is one or more table-expressions. Multiple table expressions are

linked by set operators. The following figure illustrates the relationship between
table-expressions and query-expressions.

query-
expression

table-
expression

table-
expression

set operator

SELECT clause
FROM clause
(more clauses)

SELECT clause
FROM clause
(more clauses)

Set Operators
PROC SQL provides traditional set operators from relational algebra:

OUTER UNION
concatenates the query results.

UNION
produces all unique rows from both queries.

EXCEPT
produces rows that are part of the first query only.

INTERSECT
produces rows that are common to both query results.

A query-expression with set operators is evaluated as follows.

� Each table-expression is evaluated to produce an (internal) intermediate result
table.

� Each intermediate result table then becomes an operand linked with a set
operator to form an expression, for example, A UNION B.

� If the query-expression involves more than two table-expressions, the result from
the first two becomes an operand for the next set operator and operand, for
example, (A UNION B) EXCEPT C, ((A UNION B) EXCEPT C) INTERSECT D,
and so on.

� Evaluating a query-expression produces a single output table.

Set operators follow this order of precedence unless they are overridden by
parentheses in the expression(s): INTERSECT is evaluated first. OUTER UNION,
UNION, and EXCEPT have the same level of precedence.

PROC SQL performs set operations even if the tables or views that are referred to in
the table-expressions do not have the same number of columns. The reason for this is
that the ANSI Standard for SQL requires that tables or views involved in a set
operation have the same number of columns and that the columns have matching data
types. If a set operation is performed on a table or view that has fewer columns than
the one(s) with which it is being linked, PROC SQL extends the table or view with
fewer columns by creating columns with missing values of the appropriate data type.
This temporary alteration enables the set operation to be performed correctly.

The SQL Procedure 4 query-expression 1077

CORRESPONDING (CORR) Keyword
The CORRESPONDING keyword is used only when a set operator is specified.

CORR causes PROC SQL to match the columns in table-expressions by name and not
by ordinal position. Columns that do not match by name are excluded from the result
table, except for the OUTER UNION operator. See “OUTER UNION” on page 1077.

For example, when performing a set operation on two table-expressions, PROC SQL
matches the first specified column-name (listed in the SELECT clause) from one
table-expression with the first specified column-name from the other. If CORR is
omitted, PROC SQL matches the columns by ordinal position.

ALL Keyword
The set operators automatically eliminate duplicate rows from their output tables.

The optional ALL keyword preserves the duplicate rows, reduces the execution by one
step, and thereby improves the query-expression’s performance. You use it when you
want to display all the rows resulting from the table-expressions, rather than just the
rows that are output because duplicates have been deleted. The ALL keyword is used
only when a set operator is also specified.

OUTER UNION
Performing an OUTER UNION is very similar to performing the SAS DATA step

with a SET statement. The OUTER UNION concatenates the intermediate results from
the table-expressions. Thus, the result table for the query-expression contains all the
rows produced by the first table-expression followed by all the rows produced by the
second table-expression. Columns with the same name are in separate columns in the
result table.

For example, the following query expression concatenates the ME1 and ME2 tables
but does not overlay like-named columns. Output 34.3 on page 1078 shows the result.

proc sql;
title ’ME1 and ME2: OUTER UNION’;
select *

from me1
outer union
select *

from me2;

ME1

IDnum Jobcode Salary Bonus

1400 ME1 29769 587
1403 ME1 28072 342
1120 ME1 28619 986
1120 ME1 28619 986

ME2

IDnum Jobcode Salary

1653 ME2 35108
1782 ME2 35345
1244 ME2 36925

1078 query-expression 4 Chapter 34

Output 34.3 OUTER UNION of ME1 and ME2 Tables

ME1 and ME2: OUTER UNION

IDnum Jobcode Salary Bonus IDnum Jobcode Salary
--
1400 ME1 29769 587 .
1403 ME1 28072 342 .
1120 ME1 28619 986 .
1120 ME1 28619 986 .

. . 1653 ME2 35108

. . 1782 ME2 35345

. . 1244 ME2 36925

To overlay columns with the same name, use the CORRESPONDING keyword.

proc sql;
title ’ME1 and ME2: OUTER UNION CORRESPONDING’;
select *

from me1
outer union corr
select *

from me2;

ME1 and ME2: OUTER UNION CORRESPONDING

IDnum Jobcode Salary Bonus

1400 ME1 29769 587
1403 ME1 28072 342
1120 ME1 28619 986
1120 ME1 28619 986
1653 ME2 35108 .
1782 ME2 35345 .
1244 ME2 36925 .

In the resulting concatenated table, notice the following:

� OUTER UNION CORRESPONDING retains all nonmatching columns.

� For columns with the same name, if a value is missing from the result of the first
table-expression, the value in that column from the second table-expression is
inserted.

� The ALL keyword is not used with OUTER UNION because this operator’s default
action is to include all rows in a result table. Thus, both rows from the table ME1
where IDnum is 1120 appear in the output.

UNION

The UNION operator produces a table that contains all the unique rows that result
from both table-expressions. That is, the output table contains rows produced by the
first table-expression, the second table-expression, or both.

The SQL Procedure 4 query-expression 1079

Columns are appended by position in the tables, regardless of the column names.
However, the data type of the corresponding columns must match or the union will not
occur. PROC SQL issues a warning message and stops executing.

The names of the columns in the output table are the names of the columns from the
first table-expression unless a column (such as an expression) has no name in the first
table-expression. In such a case, the name of that column in the output table is the
name of the respective column in the second table-expression.

In the following example, PROC SQL combines the two tables:

proc sql;
title ’ME1 and ME2: UNION’;
select *

from me1
union
select *

from me2;

ME1 and ME2: UNION

IDnum Jobcode Salary Bonus

1120 ME1 28619 986
1244 ME2 36925 .
1400 ME1 29769 587
1403 ME1 28072 342
1653 ME2 35108 .
1782 ME2 35345 .

In the following example, ALL includes the duplicate row from ME1. In addition, ALL
changes the sorting by specifying that PROC SQL make one pass only. Thus, the values
from ME2 are simply appended to the values from ME1.

proc sql;
title ’ME1 and ME2: UNION ALL’;
select *

from me1
union all
select *

from me2;

ME1 and ME2: UNION ALL

IDnum Jobcode Salary Bonus

1400 ME1 29769 587
1403 ME1 28072 342
1120 ME1 28619 986
1120 ME1 28619 986
1653 ME2 35108 .
1782 ME2 35345 .
1244 ME2 36925 .

See Example 5 on page 1108 for another example.

1080 query-expression 4 Chapter 34

EXCEPT

The EXCEPT operator produces (from the first table-expression) an output table that
has unique rows that are not in the second table-expression. If the intermediate result
from the first table-expression has at least one occurrence of a row that is not in the
intermediate result of the second table-expression, that row (from the first
table-expression) is included in the result table.

In the following example, the IN_USA table contains flights to cities within and
outside the USA. The OUT_USA table contains flights only to cities outside the USA.
This example returns only the rows from IN_USA that are not also in OUT_USA:

proc sql;
title ’Flights from IN_USA’;
select * from in_usa
except
select * from out_usa;

IN_USA

Flight Dest

145 ORD
156 WAS
188 LAX
193 FRA
207 LON

OUT_USA

Flight Dest

193 FRA
207 LON
311 SJA

Flights from IN_USA

Flight Dest

145 ORD
156 WAS
188 LAX

INTERSECT

The INTERSECT operator produces an output table that has rows that are common
to both tables. For example, using the IN_USA and OUT_USA tables shown above, the
following example returns rows that are in both tables:

proc sql;
title ’Flights from IN_USA and OUT_USA’;
select * from in_usa
intersect
select * from out_usa;

The SQL Procedure 4 sql-expression 1081

Flights from IN_USA and OUT_USA

Flight Dest

193 FRA
207 LON

sql-expression

Produces a value from a sequence of operands and operators.

operand operator operand

� operand is one of the following:

� constant is a number or a quoted character string (or other special notation)
that indicates a fixed value. Constants are also called literals. Constants are
described in SAS Language Reference: Dictionary.

� column-name is described in “column-name” on page 1061.

� SAS-function is almost any SAS function. Functions are described in SAS
Language Reference: Dictionary.

� The ANSI SQL function COALESCE is supported.

� summary-function is described in “summary-function” on page 1088.

� query-expression is described in “query-expression” on page 1075.

� USER is a literal that references the userid of the person who submitted the
program. The userid that is returned is operating environment-dependent,
but PROC SQL uses the same value that the &SYSJOBID macro variable
has on the operating environment.

� operator is described in “Operators and the Order of Evaluation” on page 1082.

Note: SAS functions, including summary functions, can stand alone as SQL
expressions. For example

select min(x) from table;

select scan(y,4) from table;

4

SAS Functions
PROC SQL supports the same SAS functions as the DATA step, except for the

functions LAG, DIF, and SOUND. For example, the SCAN function is used in the
following query:

select style, scan(street,1) format=$15.
from houses;

1082 sql-expression 4 Chapter 34

See SAS Language Reference: Dictionary for complete documentation on SAS
functions. Summary functions are also SAS functions. See “summary-function” on page
1088 for more information.

COALESCE Function
PROC SQL also supports the ANSI SQL function COALESCE. COALESCE accepts

multiple column names of the same data type. The COALESCE function returns the
first argument whose value is not a SAS missing value. In some SQL DBMSs, the
COALESCE function is called the IFNULL function. See “PROC SQL and the ANSI
Standard” on page 1098 for more information.

For an example that uses COALESCE, see Example 7 on page 1112.

USER Literal
USER can be specified in a view definition, for example, to create a view that

restricts access to those in the user’s department:

create view myemp as
select * from dept12.employees

where manager=user;

This view produces a different set of employee information for each manager who
references it.

Operators and the Order of Evaluation
The order in which operations are evaluated is the same as in the DATA step with

this one exception: NOT is grouped with the logical operators AND and OR in PROC
SQL; in the DATA step, NOT is grouped with the unary plus and minus signs.

Unlike missing values in some versions of SQL, missing values in the SAS System
always appear first in the collating sequence. Therefore, in Boolean and comparison
operations, the following expressions resolve to true in a predicate:

3>null
-3>null

0>null

You can use parentheses to group values or to nest mathematical expressions.
Parentheses make expressions easier to read and can also be used to change the order
of evaluation of the operators. Evaluating expressions with parentheses begins at the
deepest level of parentheses and moves outward. For example, SAS evaluates A+B*C
as A+(B*C), although you can add parentheses to make it evaluate as (A+B)*C for a
different result.

Higher priority operations are performed first: that is, group 0 operators are
evaluated before group 5 operators. Table 34.2 on page 1082 shows the operators and
their order of evaluation, including their priority groups.

Table 34.2 Operators and Order of Evaluation

Group Operator Description

0 () forces the expression enclosed to
be evaluated first

1 case-expression selects result values that satisfy
specified conditions

The SQL Procedure 4 sql-expression 1083

Group Operator Description

2 ** raises to a power

unary +, unary - indicates a positive or negative
number

3 * multiplies

/ divides

4 + adds

− subtracts

5 || concatenates

6 <NOT> BETWEEN condition See “BETWEEN condition” on
page 1057.

<NOT> CONTAINS condition see “CONTAINS condition” on
page 1062.

<NOT> EXISTS condition See “EXISTS condition” on page
1066.

<NOT> IN condition See “IN condition” on page 1067.

IS <NOT> condition See “IS condition” on page 1067.

<NOT> LIKE condition See “LIKE condition” on page
1074.

7 =, eq equals

=, ^=, < >, ne does not equal

>, gt is greater than

<, lt is less than

>=, ge is greater than or equal to

<=, le is less than or equal to

=* sounds like (use with character
operands only). See Example 11
on page 1122.

8 &, AND indicates logical AND

9 |, OR indicates logical OR

10 , ^, NOT indicates logical NOT

Symbols for operators may vary, depending on the operating environment. See SAS
Language Reference: Dictionary for more information on operators and expressions.

Query Expressions (Subqueries)

Query-expressions are called subqueries when used in WHERE or HAVING clauses.
A subquery is a query-expression that is nested as part of another query-expression. A
subquery selects one or more rows from a table based on values in another table.

Depending on the clause that contains it, a subquery can return a single value or
multiple values. If more than one subquery is used in a query-expression, the innermost
query is evaluated first, then the next innermost query, and so on, moving outward.

1084 sql-expression 4 Chapter 34

PROC SQL allows a subquery (contained in parentheses) at any point in an
expression where a simple column value or constant can be used. In this case, a
subquery must return a single value, that is, one row with only one column. When a
subquery returns one value, you can name the value with a column alias and refer to it
by that name elsewhere in the query. This is useful for replacing values with other
values returned using a subquery.

The following is an example of a subquery that returns one value. This PROC SQL
step subsets the PROCLIB.PAYROLL table based on information in the
PROCLIB.STAFF table. (PROCLIB.PAYROLL is shown in Example 2 on page 1103, and
PROCLIB.STAFF is shown in Example 4 on page 1106.) PROCLIB.PAYROLL contains
employee identification numbers (IdNumber) and their salaries (Salary) but does not
contain their names. If you want to return only the row from PROCLIB.PAYROLL for
one employee, you can use a subquery that queries the PROCLIB.STAFF table, which
contains the employees’ identification numbers and their names (Lname and Fname).

options ls=64 nodate nonumber;
proc sql;

title ’Information for Earl Bowden’;
select *

from proclib.payroll
where idnumber=

(select idnum
from proclib.staff
where upcase(lname)=’BOWDEN’);

Information for Earl Bowden

Id
Number Sex Jobcode Salary Birth Hired
--
1403 M ME1 28072 28JAN69 21DEC91

Subqueries can return multiple values. The following example uses the tables
PROCLIB.DELAY and PROCLIB.MARCH. These tables contain information about the
same flights and have the Flight column in common. The following subquery returns all
the values for Flight in PROCLIB.DELAY for international flights. The values from the
subquery complete the WHERE clause in the outer query. Thus, when the outer query
is executed, only the international flights from PROCLIB.MARCH are in the output.

options ls=64 nodate nonumber;
proc sql outobs=5;

title ’International Flights from’;
title2 ’PROCLIB.MARCH’;
select Flight, Date, Dest, Boarded

from proclib.march
where flight in

(select flight
from proclib.delay
where destype=’International’);

The SQL Procedure 4 sql-expression 1085

International Flights from
PROCLIB.MARCH

Flight Date Dest Boarded

219 01MAR94 LON 198
622 01MAR94 FRA 207
132 01MAR94 YYZ 115
271 01MAR94 PAR 138
219 02MAR94 LON 147

Sometimes it is helpful to compare a value with a set of values returned by a subquery.
The keywords ANY or ALL can be specified before a subquery when the subquery is the
right-hand operand of a comparison. If ALL is specified, the comparison is true only if
it is true for all values returned by the subquery. If a subquery returns no rows, the
result of an ALL comparison is true for each row of the outer query.

If ANY is specified, the comparison is true if it is true for any one of the values
returned by the subquery. If a subquery returns no rows, the result of an ANY
comparison is false for each row of the outer query.

The following example selects all those in PROCLIB.PAYROLL who earn more than
the highest paid ME3:

options ls=64 nodate nonumber ;
proc sql;
title ‘‘Employees who Earn More than’’;
title2 ‘‘All ME’s’’;

select *
from proclib.payroll
where salary > all (select salary

from proclib.payroll
where jobcode=’ME3’);

Employees who Earn More than
All ME’s

Id
Number Sex Jobcode Salary Birth Hired
--
1333 M PT2 88606 30MAR61 10FEB81
1739 M PT1 66517 25DEC64 27JAN91
1428 F PT1 68767 04APR60 16NOV91
1404 M PT2 91376 24FEB53 01JAN80
1935 F NA2 51081 28MAR54 16OCT81
1905 M PT1 65111 16APR72 29MAY92
1407 M PT1 68096 23MAR69 18MAR90
1410 M PT2 84685 03MAY67 07NOV86
1439 F PT1 70736 06MAR64 10SEP90
1545 M PT1 66130 12AUG59 29MAY90
1106 M PT2 89632 06NOV57 16AUG84
1442 F PT2 84536 05SEP66 12APR88
1417 M NA2 52270 27JUN64 07MAR89
1478 M PT2 84203 09AUG59 24OCT90
1556 M PT1 71349 22JUN64 11DEC91

1086 sql-expression 4 Chapter 34

Employees who Earn More than
All ME’s

Id
Number Sex Jobcode Salary Birth Hired
--
1352 M NA2 53798 02DEC60 16OCT86
1890 M PT2 91908 20JUL51 25NOV79
1107 M PT2 89977 09JUN54 10FEB79
1830 F PT2 84471 27MAY57 29JAN83
1928 M PT2 89858 16SEP54 13JUL90
1076 M PT1 66558 14OCT55 03OCT91

Note: See the first item in “Subqueries and Efficiency” on page 1087 for a note
about efficiency when using ALL. 4

Correlated Subqueries
In a correlated subquery, the WHERE expression in a subquery refers to values in a

table in the outer query. The correlated subquery is evaluated for each row in the outer
query. With correlated subqueries, PROC SQL executes the subquery and the outer
query together.

The following example uses the PROCLIB.DELAY and PROCLIB.MARCH tables. A
DATA step“PROCLIB.DELAY” on page 1506 creates PROCLIB.DELAY.
PROCLIB.MARCH is shown in Example 13 on page 1126. PROCLIB.DELAY has the
Flight, Date, Orig, and Dest columns in common with PROCLIB.MARCH:

proc sql outobs=5;
title ’International Flights’;
select *

from proclib.march
where ’International’ in

(select destype
from proclib.delay
where march.Flight=delay.Flight);

The subquery resolves by substituting every value for MARCH.Flight into the
subquery’s WHERE clause, one row at a time. For example, when MARCH.Flight= 219,
the subquery resolves as follows:

1 PROC SQL retrieves all the rows from DELAY where Flight= 219 and passes their
DESTYPE values to the WHERE clause.

2 PROC SQL uses the DESTYPE values to complete the WHERE clause:

where ’International’ in
(’International’,’International’, ...)

3 The WHERE clause checks to see if International is in the list. Because it is, all
rows from MARCH that have a value of 219 for Flight become part of the output.

Output 34.4 on page 1086 contains the rows from MARCH for international flights
only.

The SQL Procedure 4 sql-expression 1087

Output 34.4 International Flights for March

International Flights

Flight Date Depart Orig Dest Miles Boarded Capacity

219 01MAR94 9:31 LGA LON 3442 198 250
622 01MAR94 12:19 LGA FRA 3857 207 250
132 01MAR94 15:35 LGA YYZ 366 115 178
271 01MAR94 13:17 LGA PAR 3635 138 250
219 02MAR94 9:31 LGA LON 3442 147 250

Subqueries and Efficiency

� Use the MAX function in a subquery instead of the ALL keyword before the
subquery. For example, the following queries produce the same result, but the
second query is more efficient:

proc sql;
select * from proclib.payroll
where salary> all(select salary

from proclib.payroll
where jobcode=’ME3’);

proc sql;
select * from proclib.payroll
where salary> (select max(salary)

from proclib.payroll
where jobcode=’ME3’);

� With subqueries, use IN instead of EXISTS when possible. For example, the
following queries produce the same result, but the second query is more efficient:

proc sql;
select *

from proclib.payroll p
where exists (select *

from staff s
where p.idnum=s.idnum

and state=’CT’);

proc sql;
select *

from proclib.payroll
where idnum in (select idnum

from staff
where state=’CT’);

1088 summary-function 4 Chapter 34

summary-function

Performs statistical summary calculations.

Restriction: A summary function cannot appear in an ON clause or a WHERE clause.
See also: GROUP BY on page 1052, HAVING Clause on page 1053, SELECT Clause on
page 1045, and “table-expression” on page 1094
Featured in: Example 8 on page 1116, Example 12 on page 1124, and Example 15 on
page 1131

summary-function (<DISTINCT|ALL> sql-expression)

� sql-expression is described in “sql-expression” on page 1081.

Summarizing Data
Summary functions produce a statistical summary of the entire table or view listed

in the FROM clause or for each group specified in a GROUP BY clause. If GROUP BY
is omitted, all the rows in the table or view are considered to be a single group. These
functions reduce all the values in each row or column in a table to one summarizing or
aggregate value. For this reason, these functions are often called aggregate functions.
For example, the sum (one value) of a column results from the addition of all the values
in the column.

Function Names and the Corresponding Statistics
Some functions have more than one name to accommodate both SAS and SQL

conventions:

AVG, MEAN
means or average of values

COUNT, FREQ, N
number of nonmissing values

CSS
corrected sum of squares

CV
coefficient of variation (percent)

MAX
largest value

MIN
smallest value

NMISS
number of missing values

PRT
probability of a greater absolute value of Student’s t

RANGE
range of values

The SQL Procedure 4 summary-function 1089

STD
standard deviation

STDERR
standard error of the mean

SUM
sum of values

SUMWGT
sum of the WEIGHT variable values*

T
Student’s t value for testing the hypothesis that the population mean is zero

USS
uncorrected sum of squares

VAR
variance

For a description and the formulas used for these statistics, see Appendix 1, “SAS
Elementary Statistics Procedures,” on page 1457

Counting Rows
The COUNT function counts rows. COUNT(*) returns the total number of rows in a

group or in a table. If you use a column name as an argument to COUNT, the result is
the total number of rows in a group or in a table that have a nonmissing value for that
column. If you want to count the unique values in a column, specify
COUNT(DISTINCT column).

If the SELECT clause of a table-expression contains one or more summary functions
and that table-expression resolves to no rows, then the summary function results are
missing values. The following are exceptions that return zeros:

COUNT(*)
COUNT(<DISTINCT> sql-expression)
NMISS(<DISTINCT> sql-expression)

See Example 8 on page 1116 and Example 15 on page 1131 for examples.

Calculating Statistics Based on the Number of Arguments
The number of arguments specified in a summary function affects how the

calculation is performed. If you specify a single argument, the values in the column are
calculated. If you specify multiple arguments, the arguments or columns listed are
calculated for each row. For example, consider calculations on the following table.

proc sql;
title ’Summary Table’;
select * from summary;

* Currently, there is no way to designate a WEIGHT variable for a table in PROC SQL. Thus, each row (or observation) has a
weight of 1.

1090 summary-function 4 Chapter 34

Summary Table

X Y Z

1 3 4
2 4 5
8 9 4
4 5 4

If you use one argument in the function, the calculation is performed on that column
only. If you use more than one argument, the calculation is performed on each row of
the specified columns. In the following PROC SQL step, the MIN and MAX functions
return the minimum and maximum of the columns they are used with. The SUM
function returns the sum of each row of the columns specified as arguments:

proc sql;
select min(x) as Colmin_x,

min(y) as Colmin_y,
max(z) as Colmax_z,
sum(x,y,z) as Rowsum

from summary;

Summary Table

Colmin_x Colmin_y Colmax_z Rowsum

1 3 5 8
1 3 5 11
1 3 5 21
1 3 5 13

Remerging Data
When you use a summary function in a SELECT clause or a HAVING clause, you

may see the following message in the SAS log:

NOTE: The query requires remerging summary
statistics back with the original
data.

The process of remerging involves two passes through the data. On the first pass,
PROC SQL

� calculates and returns the value of summary functions. It then uses the result to
calculate the arithmetic expressions in which the summary function participates.

� groups data according to the GROUP BY clause.

On the second pass, PROC SQL retrieves any additional columns and rows that it
needs to show in the output.

The following examples use the PROCLIB.PAYROLL table (shown in Example 2 on
page 1103) to show when remerging of data is and is not necessary.

The first query requires remerging. The first pass through the data groups the data
by Jobcode and resolves the AVG function for each group. However, PROC SQL must
make a second pass in order to retrieve the values of IdNumber and Salary.

The SQL Procedure 4 summary-function 1091

proc sql outobs=10;
title ’Salary Information’;
title2 ’(First 10 Rows Only)’;
select IdNumber, Jobcode, Salary,

avg(salary) as AvgSalary
from proclib.payroll
group by jobcode;

Salary Information
(First 10 Rows Only)

Id
Number Jobcode Salary AvgSalary

1845 BCK 25996 25794.22
1673 BCK 25477 25794.22
1834 BCK 26896 25794.22
1389 BCK 25028 25794.22
1100 BCK 25004 25794.22
1677 BCK 26007 25794.22
1663 BCK 26452 25794.22
1383 BCK 25823 25794.22
1704 BCK 25465 25794.22
1132 FA1 22413 23039.36

You can change the previous query to return only the average salary for each jobcode.
The following query does not require remerging because the first pass of the data does
the summarizing and the grouping. A second pass is not necessary.

proc sql outobs=10;
title ’Average Salary for Each Jobcode’;
select Jobcode, avg(salary) as AvgSalary
from proclib.payroll
group by jobcode;

Average Salary for Each Jobcode

Jobcode AvgSalary

BCK 25794.22
FA1 23039.36
FA2 27986.88
FA3 32933.86
ME1 28500.25
ME2 35576.86
ME3 42410.71
NA1 42032.2
NA2 52383
PT1 67908

When you use the HAVING clause, PROC SQL may have to remerge data to resolve the
HAVING expression.

First, consider a query that uses HAVING but that does not require remerging. The
query groups the data by values of Jobcode, and the result contains one row for each
value of Jobcode and summary information for people in each Jobcode. On the first

1092 summary-function 4 Chapter 34

pass, the summary functions provide values for the Number, Average Age, and Average
Salary columns. The first pass provides everything that PROC SQL needs to resolve
the HAVING clause, so no remerging is necessary.

proc sql outobs=10;
title ’Summary Information for Each Jobcode’;
title2 ’(First 10 Rows Only)’;

select Jobcode,
count(jobcode) as number

label=’Number’,
avg(int((today()-birth)/365.25))

as avgage format=2.
label=’Average Age’,

avg(salary) as avgsal format=dollar8.
label=’Average Salary’

from proclib.payroll
group by jobcode
having avgage ge 30;

Summary Information for Each Jobcode 1
(First 10 Rows Only)

Average Average
Jobcode Number Age Salary

BCK 9 33 $25,794
FA1 11 30 $23,039
FA2 16 34 $27,987
FA3 7 36 $32,934
ME1 8 31 $28,500
ME2 14 37 $35,577
ME3 7 39 $42,411
NA2 3 39 $52,383
PT1 8 35 $67,908
PT2 10 40 $87,925

In the following query, PROC SQL remerges the data because the HAVING clause uses
the SALARY column in the comparison and SALARY is not in the GROUP BY clause.

proc sql outobs=10;
title ’Employees who Earn More than the’;
title2 ’Average for Their Jobcode’;
title3 ’(First 10 Rows Only)’;

select Jobcode, Salary,
avg(salary) as AvgSalary

from proclib.payroll
group by jobcode
having salary > AvgSalary;

The SQL Procedure 4 summary-function 1093

Employees who Earn More than the
Average for Their Jobcode

(First 10 Rows Only)

Jobcode Salary AvgSalary

BCK 25996 25794.22
BCK 26896 25794.22
BCK 26007 25794.22
BCK 26452 25794.22
BCK 25823 25794.22
FA1 23738 23039.36
FA1 23916 23039.36
FA1 23644 23039.36
FA1 23979 23039.36
FA1 23177 23039.36

Keep in mind that PROC SQL remerges data when

� the values returned by a summary function are used in a calculation. For
example, the following query returns the values of X and the percent of the total
for each row. On the first pass, PROC SQL computes the sum of X, and on the
second pass PROC SQL computes the percentage of the total for each value of X:

proc sql;
title ’Percentage of the Total’;
select X, (100*x/sum(X)) as Pct_Total

from summary;

Percentage of the Total

x Pct_Total

32 14.81481
86 39.81481
49 22.68519
49 22.68519

� the values returned by a summary function are compared to values of a column
that is not specified in the GROUP BY clause. For example, the following query
uses the PROCLIB.PAYROLL table. PROC SQL remerges data because the
column Salary is not specified in the GROUP BY clause:

proc sql;
select jobcode, salary,

avg(salary) as avsal
from proclib.payroll
group by jobcode
having salary > avsal;

� a column from the input table is specified in the SELECT clause and is not
specified in the GROUP BY clause. This rule does not refer to columns used as
arguments to summary functions in the SELECT clause.

For example, in the following query, the presence of IdNumber in the SELECT
clause causes PROC SQL to remerge the data because IdNumber is not involved in

1094 table-expression 4 Chapter 34

grouping or summarizing during the first pass. In order for PROC SQL to retrieve
the values for IdNumber, it must make a second pass through the data.

proc sql;
select IdNumber, jobcode,

avg(salary) as avsal
from proclib.payroll
group by jobcode;

table-expression

Defines part or all of a query-expression.

See also: “query-expression” on page 1075

SELECT <DISTINCT> object-item<,object-item>…

<INTO :macro-variable-specification
<, :macro-variable-specification>…>

FROM from-list

<WHERE sql-expression>

<GROUP BY group-by-item <,group-by-item>…>

<HAVING sql-expression>

See “SELECT Statement” on page 1044 for complete information on the SELECT
statement.

Details
A table-expression is a SELECT statement. It is the fundamental building block of

most SQL procedure statements. You can combine the results of multiple
table-expressions with set operators, which creates a query-expression. Use one
ORDER BY clause for an entire query-expression. Place a semicolon only at the end of
the entire query-expression. A query-expression is often only one SELECT statement or
table-expression.

Concepts

Using SAS Data Set Options with PROC SQL
PROC SQL can apply most of the SAS data set options, such as KEEP= and DROP=,

to tables or SAS/ACCESS views. In the SQL procedure, SAS data set options that are
separated by spaces are enclosed in parentheses, and they follow immediately after the
table or SAS/ACCESS view name. You can also use SAS data set options on tables or
SAS/ACCESS views listed in the FROM clause of a query. In the following PROC SQL

The SQL Procedure 4 Connecting to a DBMS using the LIBNAME Statement 1095

step, RENAME= renames LNAME to LASTNAME for the STAFF1 table. OBS=
restricts the number of rows written to STAFF1 to 15:

proc sql;
create table

staff1(rename=(lname=lastname)) as
select *

from staff(obs=15);

You cannot use SAS data set options with DICTIONARY tables because
DICTIONARY tables are read-only objects.

The only SAS data set options that you can use with PROC SQL views are those that
assign and provide SAS passwords: READ=, WRITE=, ALTER=, and PW=.

See SAS Language Reference: Dictionary for a description of SAS data set options.

Connecting to a DBMS Using the SQL Procedure Pass-Through Facility
The SQL Procedure Pass-Through Facility enables you to send DBMS-specific SQL

statements directly to a DBMS for execution. The Pass-Through Facility uses a SAS/
ACCESS interface engine to connect to the DBMS. Therefore, you must have SAS/
ACCESS software installed for your DBMS.

You submit SQL statements that are DBMS-specific. For example, you pass
Transact-SQL statements to a SYBASE database. The Pass-Through Facility’s basic
syntax is the same for all the DBMSs. Only the statements that are used to connect to
the DBMS and the SQL statements are DBMS-specific.

With the Pass-Through Facility, you can perform the following tasks:
� establish a connection with the DBMS using a CONNECT statement and

terminate the connection with the DISCONNECT statement.
� send nonquery DBMS-specific SQL statements to the DBMS using the EXECUTE

statement.
� retrieve data from the DBMS to be used in a PROC SQL query with the

CONNECTION TO component in a SELECT statement’s FROM clause.

You can use the Pass-Through Facility statements in a query, or you can store them
in a PROC SQL view. When a view is stored, any options that are specified in the
corresponding CONNECT statement are also stored. Thus, when the PROC SQL view
is used in a SAS program, the SAS System can automatically establish the appropriate
connection to the DBMS.

See “CONNECT Statement” on page 1033, “DISCONNECT Statement” on page 1040,
“EXECUTE Statement” on page 1042, “CONNECTION TO” on page 1062, and your
SAS/ACCESS documentation.

Return Codes
As you use PROC SQL statements that are available in the Pass-Through Facility,

any errors are written to the SAS log. The return codes and messages that are
generated by the Pass-Through Facility are available to you through the SQLXRC and
SQLXMSG macro variables. Both macro variables are described in “Using Macro
Variables Set by PROC SQL” on page 1096.

Connecting to a DBMS using the LIBNAME Statement
For many DBMSs, you can directly access DBMS data by assigning a libref to the

DBMS using the SAS/ACCESS LIBNAME statement. Once you have associated a libref

1096 Using Macro Variables Set by PROC SQL 4 Chapter 34

with the DBMS, you can specify a DBMS table in a two-level SAS name and work with
the table like any SAS data set. You can also embed the LIBNAME statement in a
PROC SQL view (see “CREATE VIEW Statement” on page 1037).

PROC SQL will take advantage of the capabilities of a DBMS by passing it certain
operations whenever possible. For example, before implementing a join, PROC SQL
checks to see if the DBMS can do the join. If it can, PROC SQL passes the join to the
DBMS. This increases performance by reducing data movement and translation. If the
DBMS cannot do the join, PROC SQL processes the join. Using the SAS/ACCESS
LIBNAME statement can often provide you with the performance benefits of the SQL
Procedure Pass-Through Facility without having to write DBMS-specific code.

To use the SAS/ACCESS LIBNAME statement, you must have SAS/ACCESS
installed for your DBMS. For more information on the SAS/ACCESS LIBNAME
statement, refer to your SAS/ACCESS documentation.

Using Macro Variables Set by PROC SQL
PROC SQL sets up macro variables with certain values after it executes each

statement. These macro variables can be tested inside a macro to determine whether to
continue executing the PROC SQL step. SAS/AF software users can also test them in a
program after an SQL SUBMIT block of code, using the SYMGET function.

After each PROC SQL statement has executed, the following macro variables are
updated with these values:

SQLOBS
contains the number of rows executed by an SQL procedure statement. For
example, it contains the number of rows formatted and displayed in SAS output by
a SELECT statement or the number of rows deleted by a DELETE statement.

SQLRC
contains the following status values that indicate the success of the SQL procedure
statement:

0
PROC SQL statement completed successfully with no errors.

4
PROC SQL statement encountered a situation for which it issued a warning.
The statement continued to execute.

8
PROC SQL statement encountered an error. The statement stopped
execution at this point.

12
PROC SQL statement encountered an internal error, indicating a bug in
PROC SQL that should be reported to SAS Institute. These errors can occur
only during compile time.

16
PROC SQL statement encountered a user error. This error code is used, for
example, when a subquery (that can only return a single value) evaluates to
more than one row. These errors can only be detected during run time.

24
PROC SQL statement encountered a system error. This error is used, for
example, if the system cannot write to a PROC SQL table because the disk is
full. These errors can occur only during run time.

The SQL Procedure 4 Updating PROC SQL and SAS/ACCESS Views 1097

28
PROC SQL statement encountered an internal error, indicating a bug in
PROC SQL that should be reported to SAS Institute. These errors can occur
only during run time.

SQLOOPS
contains the number of iterations that the inner loop of PROC SQL executes. The
number of iterations increases proportionally with the complexity of the query. See
also the description of the LOOPS option on page 1029.

SQLXRC
contains the DBMS-specific return code that is returned by the Pass-Through
Facility.

SQLXMSG
contains descriptive information and the DBMS-specific return code for the error
that is returned by the Pass-Through Facility.

This example retrieves the data but does not display them in SAS output because of
the NOPRINT option in the PROC SQL statement. The %PUT macro statement
displays the macro variables values.

proc sql noprint;
select *

from proclib.payroll;

%put sqlobs=**&sqlobs**
sqloops=**&sqloops**
sqlrc=**&sqlrc**;

The message in Output 34.5 on page 1097 appears in the SAS log and gives you the
macros’ values.

Output 34.5 PROC SQL Macro Variable Values

1 options ls=80;
2 proc sql noprint;
3 select *
4 from proclib.payroll;
5
6 %put sqlobs=**&sqlobs**
7 sqloops=**&sqloops**
8 sqlrc=**&sqlrc**;
sqlobs=**1** sqloops=**11** sqlrc=**0**

Updating PROC SQL and SAS/ACCESS Views

You can update PROC SQL and SAS/ACCESS views using the INSERT, DELETE,
and UPDATE statements, under the following conditions.

� If the view accesses a DBMS table, you must have been granted the appropriate
authorization by the external database management system (for example, DB2).
You must have installed the SAS/ACCESS software for your DBMS. See the SAS/
ACCESS interface guide for your DBMS for more information on SAS/ACCESS
views.

1098 PROC SQL and the ANSI Standard 4 Chapter 34

� You can update only a single table through a view. The table cannot be joined to
another table or linked to another table with a set-operator. The view cannot
contain a subquery.

� You can update a column in a view using the column’s alias, but you cannot
update a derived column, that is, a column produced by an expression. In the
following example, you can update the column SS, but not WeeklySalary.

create view EmployeeSalaries as
select Employee, SSNumber as SS,

Salary/52 as WeeklySalary
from employees;

� You cannot update a view containing an ORDER BY.

PROC SQL and the ANSI Standard
PROC SQL follows most of the guidelines set by the American National Standards

Institute (ANSI) in its implementation of SQL. However, it is not fully compliant with
the current ANSI Standard for SQL.*

The SQL research project at SAS Institute has focused primarily on the expressive
power of SQL as a query language. Consequently, some of the database features of SQL
have not yet been implemented in the SAS System.

This section describes
� enhancements to SQL that SAS Institute has made through PROC SQL
� the ways in which PROC SQL differs from the current ANSI Standard for SQL.

SQL Procedure Enhancements
Most of the enhancements described here are required by the current ANSI Standard.

Reserved Words
PROC SQL reserves very few keywords and then only in certain contexts. The ANSI

Standard reserves all SQL keywords in all contexts. For example, according to the
Standard you cannot name a column GROUP because of the keywords GROUP BY.

The following words are reserved in PROC SQL:
� The keyword CASE is always reserved; its use in the CASE expression (an SQL2

feature) precludes its use as a column name.
If you have a column named CASE in a table and you want to specify it in a

PROC SQL step, you can use the SAS data set option RENAME= to rename that
column for the duration of the query. You can also surround CASE in double
quotes (“CASE”) and set the PROC SQL option DQUOTE=ANSI.

� The keywords AS, ON, FULL, JOIN, LEFT, FROM, WHEN, WHERE, ORDER,
GROUP, RIGHT, INNER, OUTER, UNION, EXCEPT, HAVING, and INTERSECT
cannot normally be used for table aliases. These keywords all introduce clauses
that appear after a table name. Since the alias is optional, PROC SQL deals with
this ambiguity by assuming that any one of these words introduces the
corresponding clause and is not the alias. If you want to use one of these keywords
as an alias, use the PROC SQL option DQUOTE=ANSI.

* International Organization for Standardization (ISO): Database SQL. Document ISO/IEC 9075:1992. Also available as
American National Standards Institute (ANSI) Document ANSI X3.135-1992.

The SQL Procedure 4 SQL Procedure Enhancements 1099

� The keyword USER is reserved for the current userid. If you have a column
named USER in a table and you want to specify it in a PROC SQL step, you can
use the SAS data set option RENAME= to rename that column for the duration of
the query. You can also surround USER in double quotes (“USER”) and set the
PROC SQL option DQUOTE=ANSI.

Column Modifiers
PROC SQL supports the SAS System’s INFORMAT=, FORMAT=, and LABEL=

modifiers for expressions within the SELECT clause. These modifiers control the format
in which output data are displayed and labeled.

Alternate Collating Sequences
PROC SQL allows you to specify an alternate collating (sorting) sequence to be used

when you specify the ORDER BY clause. See the description of the SORTSEQ= option
in “PROC SQL Statement” on page 1027 for more information.

ORDER BY Clause in a View Definition
PROC SQL permits you to specify an ORDER BY clause in a CREATE VIEW

statement. When the view is queried, its data are always sorted according to the
specified order unless a query against that view includes a different ORDER BY clause.
See “CREATE VIEW Statement” on page 1037 for more information.

In-Line Views
The ability to code nested query-expressions in the FROM clause is a requirement of

the ANSI Standard. PROC SQL supports such nested coding.

Outer Joins
The ability to include columns that both match and do not match in a join-expression

is a requirement of the ANSI Standard. PROC SQL supports this ability.

Arithmetic Operators
PROC SQL supports the SAS System exponentiation (**) operator. PROC SQL uses

the notation < > to mean not equal.

Orthogonal Expressions
PROC SQL permits the combination of comparison, Boolean, and algebraic

expressions. For example, (X=3)*7 yields a value of 7 if X=3 is true because true is
defined to be 1. If X=3 is false, it resolves to 0 and the entire expression yields a value
of 0.

PROC SQL permits a subquery in any expression. This feature is required by the
ANSI Standard. Therefore, you can have a subquery on the left side of a comparison
operator in the WHERE expression.

PROC SQL permits you to order and group data by any kind of mathematical
expression (except those including summary functions) using ORDER BY and GROUP
BY clauses. You can also group by an expression that appears on the SELECT clause
by using the integer that represents the expression’s ordinal position in the SELECT
clause. You are not required to select the expression by which you are grouping or

1100 SQL Procedure Omissions 4 Chapter 34

ordering. See ORDER BY Clause on page 1053 and GROUP BY Clause on page 1052
for more information.

Set Operators
The set operators UNION, INTERSECT, and EXCEPT are required by the ANSI

Standard. PROC SQL provides these operators plus the OUTER UNION operator.
The ANSI Standard also requires that the tables being operated upon all have the

same number of columns with matching data types. The SQL procedure works on
tables that have the same number of columns, as well as on those that do not, by
creating virtual columns so that a query can evaluate correctly. See “query-expression”
on page 1075 for more information.

Statistical Functions
PROC SQL supports many more summary functions than required by the ANSI

Standard for SQL.
PROC SQL supports the remerging of summary function results into the table’s

original data. For example, computing the percentage of total is achieved with 100*x/
SUM(x) in PROC SQL. See “summary-function” on page 1088 for more information on
the available summary functions and remerging data.

SAS System Functions
PROC SQL supports all the functions available to the SAS DATA step, except for

LAG, DIF, and SOUND. Other SQL databases support their own set of functions.

SQL Procedure Omissions
PROC SQL differs from the ANSI Standard for SQL in the following ways.

COMMIT Statement
The COMMIT statement is not supported.

ROLLBACK Statement
The ROLLBACK statement is not supported. The UNDO_POLICY= option in the

PROC SQL statement addresses rollback. See the description of the UNDO_POLICY=
option in “PROC SQL Statement” on page 1027 for more information.

Identifiers and Naming Conventions
In the SAS System, table names, column names, and aliases are limited to 32

characters and can contain mixed case. For more information on SAS naming
conventions, see SAS Language Reference: Dictionary. The ANSI Standard for SQL
allows longer names.

Granting User Privileges
The GRANT statement, PRIVILEGES keyword, and authorization-identifier features

of SQL are not supported. You may want to use operating environment-specific means
of security instead.

The SQL Procedure 4 Program 1101

Three-Valued Logic
ANSI-compatible SQL has three-valued logic, that is, special cases for handling

comparisons involving NULL values. Any value compared with a NULL value
evaluates to NULL.

PROC SQL follows the SAS System convention for handling missing values: when
numeric NULL values are compared to non-NULL numbers, the NULL values are less
than or smaller than all the non-NULL values; when character NULL values are
compared to non-NULL characters, the character NULL values are treated as a string
of blanks.

Embedded SQL
Currently there is no provision for embedding PROC SQL statements in other SAS

programming environments, such as the DATA step or SAS/IML software.

Examples

Example 1: Creating a Table and Inserting Data into It

Procedure features:
CREATE TABLE statement

column-modifier
INSERT statement

VALUES clause
SELECT clause
FROM clause

Table: PROCLIB.PAYLIST

This example creates the table PROCLIB.PAYLIST and inserts data into it.

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=40;

The CREATE TABLE statement creates PROCLIB.PAYLIST with six empty columns. Each
column definition indicates whether the column is character or numeric. The number in
parentheses specifies the width of the column. INFORMAT= and FORMAT= assign date
informats and formats to the Birth and Hired columns.

1102 Output Table 4 Chapter 34

proc sql;
create table proclib.paylist

(IdNum char(4),
Gender char(1),
Jobcode char(3),
Salary num,
Birth num informat=date7.

format=date7.,
Hired num informat=date7.

format=date7.);

The INSERT statement inserts data values into PROCLIB.PAYLIST according to the position in
the VALUES clause. Therefore, in the first VALUES clause, 1639 is inserted into the first
column, F into the second column, and so forth. Dates in SAS are stored as integers with 0 equal
to January 1, 1960. Suffixing the date with a d is one way to use the internal value for dates.

insert into proclib.paylist
values(’1639’,’F’,’TA1’,42260,’26JUN70’d,’28JAN91’d)
values(’1065’,’M’,’ME3’,38090,’26JAN54’d,’07JAN92’d)
values(’1400’,’M’,’ME1’,29769.’05NOV67’d,’16OCT90’d)

The value null represents a missing value for the character column Jobcode. The period
represents a missing value for the numeric column Salary.

values(’1561’,’M’,null,36514,’30NOV63’d,’07OCT87’d)
values(’1221’,’F’,’FA3’,.,’22SEP63’d,’04OCT94’d);

The SELECT clause selects columns from PROCLIB.PAYLIST. The asterisk (*) selects all
columns. The FROM clause specifies PROCLIB.PAYLIST as the table to select from.

title ’PROCLIB.PAYLIST Table’;
select *

from proclib.paylist;

Output Table

PROCLIB.PAYLIST

PROCLIB.PAYLIST Table 1

Id
Num Gender Jobcode Salary Birth Hired

1639 F TA1 42260 26JUN70 28JAN91
1065 M ME3 38090 26JAN54 07JAN92
1400 M ME1 29769 05NOV67 16OCT90
1561 M 36514 30NOV63 07OCT87
1221 F FA3 . 22SEP63 04OCT94

The SQL Procedure 4 Program 1103

Example 2: Creating a Table from a Query’s Result

Procedure features:
CREATE TABLE statement

AS query-expression
SELECT clause

column alias
FORMAT= column-modifier
object-item

Other features:
data set option

OBS=

Tables:
PROCLIB.PAYROLL, PROCLIB.BONUS

This example builds a column with an arithmetic expression and creates the
PROCLIB.BONUS table from the query’s result.

Input Table

PROCLIB.PAYROLL (Partial Listing)

PROCLIB.PAYROLL
First 10 Rows Only

Id
Number Sex Jobcode Salary Birth Hired
--
1919 M TA2 34376 12SEP60 04JUN87
1653 F ME2 35108 15OCT64 09AUG90
1400 M ME1 29769 05NOV67 16OCT90
1350 F FA3 32886 31AUG65 29JUL90
1401 M TA3 38822 13DEC50 17NOV85
1499 M ME3 43025 26APR54 07JUN80
1101 M SCP 18723 06JUN62 01OCT90
1333 M PT2 88606 30MAR61 10FEB81
1402 M TA2 32615 17JAN63 02DEC90
1479 F TA3 38785 22DEC68 05OCT89

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=40;

1104 Output 4 Chapter 34

The CREATE TABLE statement creates the table PROCLIB.BONUS from the result of the
subsequent query.

proc sql;
create table proclib.bonus as

The SELECT clause specifies that three columns will be in the new table: IdNumber, Salary,
and Bonus. FORMAT= assigns the DOLLAR8. format to Salary. The Bonus column is built with
the SQL expression salary*.025.

select IdNumber, Salary format=dollar8.,
salary*.025 as Bonus format=dollar8.

from proclib.payroll;

The SELECT clause selects columns from PROCLIB.BONUS. The asterisk (*) selects all
columns. The FROM clause specifies PROCLIB.BONUS as the table to select from. The OBS=
data set option limits the printing of the output to 10 rows.

title ’BONUS Information’;
select *

from proclib.bonus(obs=10);

Output

PROCLIB.BONUS

BONUS Information 1

Id
Number Salary Bonus

1919 $34,376 $859
1653 $35,108 $878
1400 $29,769 $744
1350 $32,886 $822
1401 $38,822 $971
1499 $43,025 $1,076
1101 $18,723 $468
1333 $88,606 $2,215
1402 $32,615 $815
1479 $38,785 $970

Example 3: Updating Data in a PROC SQL Table
Procedure features:

ALTER TABLE statement
DROP clause

The SQL Procedure 4 Program 1105

MODIFY clause
UPDATE statement

SET clause
CASE expression

Table: EMPLOYEES

This example updates data values in the EMPLOYEES table and drops a column.

Input
data Employees;

input IdNum $4. +2 LName $11. FName $11. JobCode $3.
+1 Salary 5. +1 Phone $12.;

datalines;
1876 CHIN JACK TA1 42400 212/588-5634
1114 GREENWALD JANICE ME3 38000 212/588-1092
1556 PENNINGTON MICHAEL ME1 29860 718/383-5681
1354 PARKER MARY FA3 65800 914/455-2337
1130 WOOD DEBORAH PT2 36514 212/587-0013
;

Program

options nodate pageno=1 linesize=80 pagesize=40;

The SELECT clause displays the table before the updates. The asterisk (*) selects all columns
for display.The FROM clause specifies EMPLOYEES as the table to select from.

proc sql;
title ’Employees Table’;
select * from Employees;

The UPDATE statement updates the values in EMPLOYEES. The SET clause specifies that the
data in the Salary column be multiplied by 1.04 when the job code ends with a 1 and 1.025 for
all other job codes. (The two underscores represent any character.) The CASE expression
returns a value for each row that completes the SET clause.

update employees
set salary=salary*
case when jobcode like ’__1’ then 1.04

else 1.025
end;

The ALTER TABLE statement specifies EMPLOYEES as the table to alter. The MODIFY clause
permanently modifies the format of the Salary column. The DROP clause permanently drops the
Phone column.

1106 Output 4 Chapter 34

alter table employees
modify salary num format=dollar8.
drop phone;

The SELECT clause displays the EMPLOYEES table after the updates. The asterisk (*) selects
all columns.

title ’Updated Employees Table’;
select * from employees;

Output

Employees Table 1

Id Job
Num LName FName Code Salary Phone
--
1876 CHIN JACK TA1 42400 212/588-5634
1114 GREENWALD JANICE ME3 38000 212/588-1092
1556 PENNINGTON MICHAEL ME1 29860 718/383-5681
1354 PARKER MARY FA3 65800 914/455-2337
1130 WOOD DEBORAH PT2 36514 212/587-0013

Updated Employees Table 2

Id Job
Num LName FName Code Salary
--
1876 CHIN JACK TA1 $44,096
1114 GREENWALD JANICE ME3 $38,950
1556 PENNINGTON MICHAEL ME1 $31,054
1354 PARKER MARY FA3 $67,445
1130 WOOD DEBORAH PT2 $37,427

Example 4: Joining Two Tables

Procedure features:
FROM clause

table alias
inner join
joined-table component
PROC SQL statement option

NUMBER
WHERE clause

IN condition
Tables: PROCLIB.STAFF, PROCLIB.PAYROLL

The SQL Procedure 4 Program 1107

This example joins two tables in order to to get more information about data that are
common to both tables.

Input Tables

PROCLIB.STAFF (Partial Listing)

PROCLIB.STAFF
First 10 Rows Only

Id
Num Lname Fname City State Hphone
--
1919 ADAMS GERALD STAMFORD CT 203/781-1255
1653 ALIBRANDI MARIA BRIDGEPORT CT 203/675-7715
1400 ALHERTANI ABDULLAH NEW YORK NY 212/586-0808
1350 ALVAREZ MERCEDES NEW YORK NY 718/383-1549
1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787
1499 BAREFOOT JOSEPH PRINCETON NJ 201/812-5665
1101 BAUCOM WALTER NEW YORK NY 212/586-8060
1333 BANADYGA JUSTIN STAMFORD CT 203/781-1777
1402 BLALOCK RALPH NEW YORK NY 718/384-2849
1479 BALLETTI MARIE NEW YORK NY 718/384-8816

PROCLIB.PAYROLL (Partial Listing)

PROCLIB.PAYROLL
First 10 Rows Only

Id
Number Sex Jobcode Salary Birth Hired
--
1919 M TA2 34376 12SEP60 04JUN87
1653 F ME2 35108 15OCT64 09AUG90
1400 M ME1 29769 05NOV67 16OCT90
1350 F FA3 32886 31AUG65 29JUL90
1401 M TA3 38822 13DEC50 17NOV85
1499 M ME3 43025 26APR54 07JUN80
1101 M SCP 18723 06JUN62 01OCT90
1333 M PT2 88606 30MAR61 10FEB81
1402 M TA2 32615 17JAN63 02DEC90
1479 F TA3 38785 22DEC68 05OCT89

Program

libname proclib ’SAS-data-library’;

1108 Output 4 Chapter 34

options nodate pageno=1 linesize=120 pagesize=40;

NUMBER adds a column that contains the row number.

proc sql number;

The SELECT clause selects the columns to output.

title ’Information for Certain Employees Only’;
select Lname, Fname, City, State,

IdNumber, Salary, Jobcode

The FROM clause lists the tables to select from.

from proclib.staff, proclib.payroll

The WHERE clause specifies that the tables are joined on the ID number from each table.
WHERE also further subsets the query with the IN condition, which returns rows for only four
employees.

where idnumber=idnum and idnum in
(’1919’,’1400’, ’1350’, ’1333’);

Output

Information for Certain Employees Only 1

Id

Row Lname Fname City State Number

Salary Jobcode

--

1 ADAMS GERALD STAMFORD CT 1919

34376 TA2

2 ALHERTANI ABDULLAH NEW YORK NY 1400

29769 ME1

3 ALVAREZ MERCEDES NEW YORK NY 1350

32886 FA3

4 BANADYGA JUSTIN STAMFORD CT 1333

88606 PT2

Example 5: Combining Two Tables
Procedure features:

The SQL Procedure 4 Program 1109

DELETE statement
IS condition
RESET statement option

DOUBLE
UNION set operator

Tables: PROCLIB.NEWPAY, PROCLIB.PAYLIST, PROCLIB.PAYLIST2

This example creates a new table, PROCLIB.NEWPAY, by concatenating two other
tables: PROCLIB.PAYLIST and PROCLIB.PAYLIST2.

Input Tables

PROCLIB.PAYLIST

PROCLIB.PAYLIST Table

Id
Num Gender Jobcode Salary Birth Hired

1639 F TA1 42260 26JUN70 28JAN91
1065 M ME3 38090 26JAN54 07JAN92
1400 M ME1 29769 05NOV67 16OCT90
1561 M 36514 30NOV63 07OCT87
1221 F FA3 . 22SEP63 04OCT94

PROCLIB.PAYLIST2

PROCLIB.PAYLIST2 Table

Id
Num Gender Jobcode Salary Birth Hired

1919 M TA2 34376 12SEP66 04JUN87
1653 F ME2 31896 15OCT64 09AUG92
1350 F FA3 36886 31AUG55 29JUL91
1401 M TA3 38822 13DEC55 17NOV93
1499 M ME1 23025 26APR74 07JUN92

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=60;

1110 Output 4 Chapter 34

The SELECT clauses select all the columns from the tables listed in the FROM clauses. The
UNION set operator concatenates the query results that are produced by the two SELECT
clauses. UNION orders the result by IdNum.

proc sql;
create table proclib.newpay as

select * from proclib.paylist
union
select * from proclib.paylist2;

The DELETE statement deletes rows from PROCLIB.NEWPAY that satisfy the WHERE
expression. The IS condition specifies rows that contain missing values in the Jobcode or Salary
column.

delete
from proclib.newpay
where jobcode is missing or salary is missing;

RESET changes the procedure environment without stopping and restarting PROC SQL. The
DOUBLE option double-spaces the output. (The DOUBLE option has no effect on ODS output.)
The SELECT clause selects all columns from the newly created table, PROCLIB.NEWPAY.

reset double;
title ’Personnel Data’;
select *

from proclib.newpay;

Output

Personnel Data 1

Id
Num Gender Jobcode Salary Birth Hired

1065 M ME3 38090 26JAN54 07JAN92

1350 F FA3 36886 31AUG55 29JUL91

1400 M ME1 29769 05NOV67 16OCT90

1401 M TA3 38822 13DEC55 17NOV93

1499 M ME1 23025 26APR74 07JUN92

1639 F TA1 42260 26JUN70 28JAN91

1653 F ME2 31896 15OCT64 09AUG92

1919 M TA2 34376 12SEP66 04JUN87

The SQL Procedure 4 Program 1111

Example 6: Reporting from DICTIONARY Tables

Procedure features:
DESCRIBE TABLE statement
DICTIONARY.table-name component

Table: DICTIONARY.MEMBERS

This example uses DICTIONARY tables to show a list of the SAS files in a SAS data
library. If you do not know the names of the columns in the DICTIONARY table that
you are querying, use a DESCRIBE TABLE statement with the table.

Program

libname proclib ’SAS-data-library’;

SOURCE writes the programming statements to the SAS log.

options nodate pageno=1 source linesize=80 pagesize=60;

DESCRIBE TABLE writes the column names from DICTIONARY.MEMBERS to the SAS log.

proc sql;
describe table dictionary.members;

The SELECT clause selects the MEMNAME and MEMTYPE columns. The FROM clause
specifies DICTIONARY.MEMBERS as the table to select from. The WHERE clause subsets the
output to include only those rows that have a libref of PROCLIB in the LIBNAME column.

title ’SAS Files in the PROCLIB Library’;
select memname, memtype

from dictionary.members
where libname=’PROCLIB’;

1112 Log 4 Chapter 34

Log

2 options nodate pageno=1 source linesize=80 pagesize=60;
3 proc sql;
4 describe table dictionary.members;
NOTE: SQL table DICTIONARY.MEMBERS was created like:

create table DICTIONARY.MEMBERS
(

libname char(8) label=’Library Name’,
memname char(32) label=’Member Name’,
memtype char(8) label=’Member Type’,
engine char(8) label=’Engine Name’,
index char(32) label=’Indexes’,
path char(1024) label=’Path Name’

);

5 title ’SAS Files in the PROCLIB Library’;
6 select memname, memtype
7 from dictionary.members
8 where libname=’PROCLIB’;

Output

SAS Files in the PROCLIB Library 1

Member
Member Name Type
--
BONUS DATA
BONUS95 DATA
DELAY DATA
HOUSES DATA
INTERNAT DATA
JOBS VIEW
MARCH DATA
NEWPAY DATA
PAYDATA VIEW
PAYINFO VIEW
PAYLIST DATA
PAYLIST2 DATA
PAYROLL DATA
PAYROLL2 DATA
SCHEDULE DATA
SCHEDULE2 DATA
STAFF DATA
STAFF2 DATA
SUPERV DATA
SUPERV2 DATA

Example 7: Performing an Outer Join

Procedure features:
joined-table component
left outer join
SELECT clause

The SQL Procedure 4 Program 1113

COALESCE function
WHERE clause

CONTAINS condition
Tables: PROCLIB.PAYROLL, PROCLIB.PAYROLL2

This example illustrates a left outer join of the PROCLIB.PAYROLL and
PROCLIB.PAYROLL2 tables.

Input Tables

PROCLIB.PAYROLL (Partial Listing)

PROCLIB.PAYROLL
First 10 Rows Only

Id
Number Sex Jobcode Salary Birth Hired
--
1009 M TA1 28880 02MAR59 26MAR92
1017 M TA3 40858 28DEC57 16OCT81
1036 F TA3 39392 19MAY65 23OCT84
1037 F TA1 28558 10APR64 13SEP92
1038 F TA1 26533 09NOV69 23NOV91
1050 M ME2 35167 14JUL63 24AUG86
1065 M ME2 35090 26JAN44 07JAN87
1076 M PT1 66558 14OCT55 03OCT91
1094 M FA1 22268 02APR70 17APR91
1100 M BCK 25004 01DEC60 07MAY88

PROCLIB.PAYROLL2

PROCLIB.PAYROLL2

Id
Num Sex Jobcode Salary Birth Hired
--
1036 F TA3 42465 19MAY65 23OCT84
1065 M ME3 38090 26JAN44 07JAN87
1076 M PT1 69742 14OCT55 03OCT91
1106 M PT3 94039 06NOV57 16AUG84
1129 F ME3 36758 08DEC61 17AUG91
1221 F FA3 29896 22SEP67 04OCT91
1350 F FA3 36098 31AUG65 29JUL90
1369 M TA3 36598 28DEC61 13MAR87
1447 F FA1 22123 07AUG72 29OCT92
1561 M TA3 36514 30NOV63 07OCT87
1639 F TA3 42260 26JUN57 28JAN84
1998 M SCP 23100 10SEP70 02NOV92

Program

1114 Output 4 Chapter 34

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=60;

OUTOBS= limits the output to 10 rows. The SELECT clause lists the columns to select. Some
column names are prefixed with a table alias because they are in both tables. LABEL= and
FORMAT= are column modifiers.

proc sql outobs=10;
title ’Most Current Jobcode and Salary Information’;
select p.IdNumber, p.Jobcode, p.Salary,

p2.jobcode label=’New Jobcode’,
p2.salary label=’New Salary’ format=dollar8.

The FROM clause lists the tables to join and assigns table aliases. The keywords LEFT JOIN
specify the type of join. The order of the tables in the FROM clause is important.
PROCLIB.PAYROLL is listed first and is considered the "left" table, PROCLIB.PAYROLL2 is
the "right" table.

from proclib.payroll as p left join proclib.payroll2 as p2

The ON clause specifies that the join be performed based on the values of the ID numbers from
each table.

on p.IdNumber=p2.idnum;

Output

As the output shows, all rows from the left table, PROCLIB.PAYROLL, are returned. PROC
SQL assigns missing values for rows in the left table, PAYROLL, that have no matching values
for IdNum in PAYROLL2.

Most Current Jobcode and Salary Information 1

Id New New
Number Jobcode Salary Jobcode Salary
--
1009 TA1 28880 .
1017 TA3 40858 .
1036 TA3 39392 TA3 $42,465
1037 TA1 28558 .
1038 TA1 26533 .
1050 ME2 35167 .
1065 ME2 35090 ME3 $38,090
1076 PT1 66558 PT1 $69,742
1094 FA1 22268 .
1100 BCK 25004 .

The SQL Procedure 4 Output 1115

The SELECT clause lists the columns to select. COALESCE overlays the like-named columns.
For each row, COALESCE returns the first nonmissing value of either P2.JOBCODE or
P.JOBCODE. Because P2.JOBCODE is the first argument, if there is a nonmissing value for
P2.JOBCODE, COALESCE returns that value. Thus, the output contains the most recent
jobcode information for every employee. LABEL= assigns a column label.

title ’Most Current Jobcode and Salary Information’;
select p.idnumber, coalesce(p2.jobcode,p.jobcode)

label=’Current Jobcode’,

For each row, COALESCE returns the first nonmissing value of either P2.SALARY or
P.SALARY. Because P2.SALARY is the first argument, if there is a nonmissing value for
P2.SALARY, COALESCE returns that value. Thus, the output contains the most recent salary
information for every employee.

coalesce(p2.salary,p.salary) label=’Current Salary’
format=dollar8.

The FROM clause lists the tables to join and assigns table aliases. The keywords LEFT JOIN
specify the type of join. The ON clause specifies that the join is based on the ID numbers from
each table.

from proclib.payroll p left join proclib.payroll2 p2
on p.IdNumber=p2.idnum;

Output

Most Current Jobcode and Salary Information 1

Id Current Current
Number Jobcode Salary

1009 TA1 $28,880
1017 TA3 $40,858
1036 TA3 $42,465
1037 TA1 $28,558
1038 TA1 $26,533
1050 ME2 $35,167
1065 ME3 $38,090
1076 PT1 $69,742
1094 FA1 $22,268
1100 BCK $25,004

The WHERE clause subsets the left join to include only those rows containing the value TA.

title ’Most Current Information for Ticket Agents’;
select p.IdNumber,

1116 Output 4 Chapter 34

coalesce(p2.jobcode,p.jobcode) label=’Current Jobcode’,
coalesce(p2.salary,p.salary) label=’Current Salary’

from proclib.payroll p left join proclib.payroll2 p2
on p.IdNumber=p2.idnum
where p2.jobcode contains ’TA’;

Output

Most Current Information for Ticket Agents 1

Id Current Current
Number Jobcode Salary

1036 TA3 42465
1369 TA3 36598
1561 TA3 36514
1639 TA3 42260

Example 8: Creating a View from a Query’s Result

Procedure features:
CREATE VIEW statement
GROUP BY clause
SELECT clause

COUNT function
HAVING clause

Other features:
AVG summary function
data set option

PW=
Tables: PROCLIB.PAYROLL, PROCLIB.JOBS

This example creates the PROC SQL view PROCLIB.JOBS from the result of a
query-expression.

Input Table

The SQL Procedure 4 Program 1117

PROCLIB.PAYROLL (Partial Listing)

PROCLIB.PAYROLL
First 10 Rows Only

Id
Number Sex Jobcode Salary Birth Hired
--
1009 M TA1 28880 02MAR59 26MAR92
1017 M TA3 40858 28DEC57 16OCT81
1036 F TA3 39392 19MAY65 23OCT84
1037 F TA1 28558 10APR64 13SEP92
1038 F TA1 26533 09NOV69 23NOV91
1050 M ME2 35167 14JUL63 24AUG86
1065 M ME2 35090 26JAN44 07JAN87
1076 M PT1 66558 14OCT55 03OCT91
1094 M FA1 22268 02APR70 17APR91
1100 M BCK 25004 01DEC60 07MAY88

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=60;

CREATE VIEW creates the PROC SQL view PROCLIB.JOBS. The PW= data set option assigns
password protection to the data generated by this view.

proc sql;
create view proclib.jobs(pw=red) as

The SELECT clause specifies four columns for the view: Jobcode and three columns, Number,
AVGAGE, and AVGSAL, whose values are the products of functions. COUNT returns the
number of nonmissing values for each jobcode because the data are grouped by Jobcode.
LABEL= assigns a label to the column.

select Jobcode,
count(jobcode) as number label=’Number’,

The AVG summary function calculates the average age and average salary for each jobcode.

avg(int((today()-birth)/365.25)) as avgage
format=2. label=’Average Age’,

avg(salary) as avgsal
format=dollar8. label=’Average Salary’

The FROM clause specifies PAYROLL as the table to select from. PROC SQL assumes the libref
of PAYROLL to be PROCLIB because PROCLIB is used in the CREATE VIEW statement.

1118 Output 4 Chapter 34

from payroll

The GROUP BY clause groups the data by the values of Jobcode. Thus, any summary statistics
are calculated for each grouping of rows by value of Jobcode. The HAVING clause subsets the
grouped data and returns rows for job codes that contain an average age of greater than or
equal to 30.

group by jobcode
having avgage ge 30;

The SELECT statement selects all columns from PROCLIB.JOBS. PW=RED is necessary
because the view is password-protected.

title ’Current Summary Information for Each Job Category’;
title2 ’Average Age Greater Than Or Equal to 30’;
select * from proclib.jobs(pw=red);

Output

Current Summary Information for Each Job Category 1
Average Age Greater Than Or Equal to 30

Average Average
Jobcode Number Age Salary

BCK 9 33 $25,794
FA2 16 34 $27,987
FA3 7 35 $32,934
ME1 8 30 $28,500
ME2 14 36 $35,577
ME3 7 39 $42,411
NA2 3 38 $52,383
PT1 8 34 $67,908
PT2 10 39 $87,925
PT3 2 50 $10,505
SCP 7 34 $18,309
TA1 9 32 $27,721
TA2 20 33 $33,575
TA3 12 37 $39,680

Example 9: Joining Three Tables

Procedure features:
FROM clause
joined-table component
WHERE clause

Tables: PROCLIB.STAFF2, PROCLIB.SCHEDULE2, PROCLIB.SUPERV2

The SQL Procedure 4 Input Tables 1119

This example joins three tables and produces a report that contains columns from
each table.

Input Tables

PROCLIB.STAFF2

PROCLIB.STAFF2

Id
Num Lname Fname City State Hphone
--
1106 MARSHBURN JASPER STAMFORD CT 203/781-1457
1430 DABROWSKI SANDRA BRIDGEPORT CT 203/675-1647
1118 DENNIS ROGER NEW YORK NY 718/383-1122
1126 KIMANI ANNE NEW YORK NY 212/586-1229
1402 BLALOCK RALPH NEW YORK NY 718/384-2849
1882 TUCKER ALAN NEW YORK NY 718/384-0216
1479 BALLETTI MARIE NEW YORK NY 718/384-8816
1420 ROUSE JEREMY PATERSON NJ 201/732-9834
1403 BOWDEN EARL BRIDGEPORT CT 203/675-3434
1616 FUENTAS CARLA NEW YORK NY 718/384-3329

PROCLIB.SCHEDULE2

PROCLIB.SCHEDULE2

Id
Flight Date Dest Num

132 01MAR94 BOS 1118
132 01MAR94 BOS 1402
219 02MAR94 PAR 1616
219 02MAR94 PAR 1478
622 03MAR94 LON 1430
622 03MAR94 LON 1882
271 04MAR94 NYC 1430
271 04MAR94 NYC 1118
579 05MAR94 RDU 1126
579 05MAR94 RDU 1106

1120 Program 4 Chapter 34

PROCLIB.SUPERV2

PROCLIB.SUPERV2

Supervisor Job
Id State Category

1417 NJ NA
1352 NY NA
1106 CT PT
1442 NJ PT
1118 NY PT
1405 NJ SC
1564 NY SC
1639 CT TA
1126 NY TA
1882 NY ME

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=60;

The SELECT clause specifies the columns to select. IdNum is prefixed with a table alias because
it appears in two tables.

proc sql;
title ’All Flights for Each Supervisor’;

select s.IdNum, Lname, City ’Hometown’, Jobcat,
Flight, Date

The FROM clause lists the three tables for the join and assigns an alias to each table.

from proclib.schedule2 s, proclib.staff2 t, proclib.superv2 v

The WHERE clause specifies the columns that join the tables. The STAFF2 and SCHEDULE2
tables have an IdNum column, which has related values in both tables. The STAFF2 and
SUPERV2 tables have the IdNum and SUPID columns, which have related values in both tables.

where s.idnum=t.idnum and t.idnum=v.supid;

The SQL Procedure 4 Program 1121

Output

All Flights for Each Supervisor 1

Id Job
Num Lname Hometown Category Flight Date

1106 MARSHBURN STAMFORD PT 579 05MAR94
1118 DENNIS NEW YORK PT 132 01MAR94
1118 DENNIS NEW YORK PT 271 04MAR94
1126 KIMANI NEW YORK TA 579 05MAR94
1882 TUCKER NEW YORK ME 622 03MAR94

Example 10: Querying an In-Line View
Procedure features:

FROM clause
in-line view

Tables: PROCLIB.STAFF, PROCLIB.SCHEDULE, PROCLIB.SUPERV

This example uses the query explained in Example 9 on page 1118 as an in-line view.
The example also shows how to rename columns with an in-line view.

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=60;

The SELECT clause selects all columns returned by the query in the FROM clause.

proc sql outobs=10;
title ’All Flights for Each Supervisor’;
select *

The query that joins the three tables is used in the FROM clause instead of the name of a table
or view. In the in-line query, the SELECT clause lists the columns to select. IdNum is prefixed
with a table alias because it appears in two tables. The FROM clause lists the three tables for
the join and assigns an alias to each table. The WHERE clause specifies the columns that join
the tables. The STAFF2 and SCHEDULE2 tables have an IdNum column, which has related
values in both tables. The STAFF2 and SUPERV2 tables have the IdNum and SUPID columns,
which have related values in both tables.

from (select lname, s.idnum, city, jobcat,
flight, date

1122 Output 4 Chapter 34

from proclib.schedule2 s, proclib.staff2 t,
proclib.superv2 v

where s.idnum=t.idnum and t.idnum=v.supid)

The alias THREE refers to the entire query. The names in parentheses become the names for
the columns in the output. The label Job Category appears in the output instead of the name
Jobtype because PROC SQL prints a column’s label if the column has a label.

as three (Surname, Emp_ID, Hometown,
Jobtype, FlightNumber, FlightDate);

Output

All Flights for Each Supervisor 1

Job
Surname Emp_ID Hometown Category FlightNumber FlightDate
--
MARSHBURN 1106 STAMFORD PT 579 05MAR94
DENNIS 1118 NEW YORK PT 132 01MAR94
DENNIS 1118 NEW YORK PT 271 04MAR94
KIMANI 1126 NEW YORK TA 579 05MAR94
TUCKER 1882 NEW YORK ME 622 03MAR94

Example 11: Retrieving Values with the SOUNDS-LIKE Operator

Procedure features:
ORDER BY clause
SOUNDS-LIKE operator

Table: PROCLIB.STAFF

This example returns rows based on the functionality of the SOUNDS-LIKE operator
in a WHERE clause.

Input Table

The SQL Procedure 4 Output 1123

PROCLIB.STAFF

PROCLIB.STAFF
First 10 Rows Only

Id
Num Lname Fname City State Hphone
--
1919 ADAMS GERALD STAMFORD CT 203/781-1255
1653 ALIBRANDI MARIA BRIDGEPORT CT 203/675-7715
1400 ALHERTANI ABDULLAH NEW YORK NY 212/586-0808
1350 ALVAREZ MERCEDES NEW YORK NY 718/383-1549
1401 ALVAREZ CARLOS PATERSON NJ 201/732-8787
1499 BAREFOOT JOSEPH PRINCETON NJ 201/812-5665
1101 BAUCOM WALTER NEW YORK NY 212/586-8060
1333 BANADYGA JUSTIN STAMFORD CT 203/781-1777
1402 BLALOCK RALPH NEW YORK NY 718/384-2849
1479 BALLETTI MARIE NEW YORK NY 718/384-8816

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=60;

The SELECT clause selects all columns from the table in the FROM clause, PROCLIB.STAFF.

proc sql;
title "Employees Whose Last Name Sounds Like ’Johnson’";
select *

from proclib.staff

The WHERE clause uses the SOUNDS-LIKE operator to subset the table by those employees
whose last name sounds like Johnson. The ORDER BY clause orders the output by the second
column.

where lname=*"Johnson"
order by 2;

Output

Employees Whose Last Name Sounds Like ’Johnson’ 1

Id
Num Lname Fname City State Hphone
--
1411 JOHNSEN JACK PATERSON NJ 201/732-3678
1113 JOHNSON LESLIE NEW YORK NY 718/383-3003
1369 JONSON ANTHONY NEW YORK NY 212/587-5385

1124 Example 12: Joining Two Tables and Calculating a New Value 4 Chapter 34

SOUNDS-LIKE is useful, but there may be instances where it does not return every row that
seems to satisfy the condition. PROCLIB.STAFF has an employee with the last name SANDERS
and an employee with the last name SANYERS. The algorithm does not find SANYERS, but it
does find SANDERS and SANDERSON.

title "Employees Whose Last Name Sounds Like ’Sanders’";
select *

from proclib.staff
where lname=*"Sanders"
order by 2;

Employees Whose Last Name Sounds Like ’Sanders’ 2

Id
Num Lname Fname City State Hphone
--
1561 SANDERS RAYMOND NEW YORK NY 212/588-6615
1414 SANDERSON NATHAN BRIDGEPORT CT 203/675-1715
1434 SANDERSON EDITH STAMFORD CT 203/781-1333

Example 12: Joining Two Tables and Calculating a New Value
Procedure features:

GROUP BY clause
HAVING clause
SELECT clause

ABS function
FORMAT= column-modifier
LABEL= column-modifier
MIN summary function
** operator, exponentiation
SQRT function

Tables: STORES, HOUSES

This example joins two tables in order to compare and analyze values that are unique
to each table yet have a relationship with a column that is common to both tables.

options ls=80 ps=60 nodate pageno=1 ;
data stores;

input Store $ x y;
datalines;

store1 6 1
store2 5 2
store3 3 5
store4 7 5

The SQL Procedure 4 Program 1125

;
data houses;

input House $ x y;
datalines;

house1 1 1
house2 3 3
house3 2 3
house4 7 7
;

Input Tables

STORES and HOUSES

The tables contain X and Y coordinates that represent the location of the stores and houses.

STORES Table 1
Coordinates of Stores

Store x y

store1 6 1
store2 5 2
store3 3 5
store4 7 5

HOUSES Table 2
Coordinates of Houses

House x y

house1 1 1
house2 3 3
house3 2 3
house4 7 7

Program

options nodate pageno=1 linesize=80 pagesize=60;

The SELECT clause specifies three columns: HOUSE, STORE, and DIST. The arithmetic
expression uses the square root function (SQRT) to create the values of DIST, which contain the
distance from HOUSE to STORE for each row. The double asterisk (**) represents
exponentiation. LABEL= assigns a label to STORE and to DIST.

proc sql;
title ’Each House and the Closest Store’;
select house, store label=’Closest Store’,

sqrt((abs(s.x-h.x)**2)+(abs(h.y-s.y)**2)) as dist

1126 Output 4 Chapter 34

label=’Distance’ format=4.2
from stores s, houses h

The minimum distance from each house to all the stores is calculated because the data are
grouped by house. The HAVING clause specifies that each row be evaluated to determine if its
value of DIST is the same as the minimum distance for that house to any store.

group by house
having dist=min(dist);

Output

Each House and the Closest Store 1

Closest
House Store Distance

house1 store2 4.12
house2 store3 2.00
house3 store3 2.24
house4 store4 2.00

Example 13: Producing All the Possible Combinations of the Values in a
Column

Procedure features:
CASE expression
joined-table component
SELECT clause

DISTINCT keyword
Tables: PROCLIB.MARCH, FLIGHTS

This example joins a table with itself to get all the possible combinations of the
values in a column.

Input Table

The SQL Procedure 4 Output 1127

PROCLIB.MARCH (Partial Listing)

PROCLIB.MARCH
First 10 Rows Only

Flight Date Depart Orig Dest Miles Boarded Capacity

114 01MAR94 7:10 LGA LAX 2475 172 210
202 01MAR94 10:43 LGA ORD 740 151 210
219 01MAR94 9:31 LGA LON 3442 198 250
622 01MAR94 12:19 LGA FRA 3857 207 250
132 01MAR94 15:35 LGA YYZ 366 115 178
271 01MAR94 13:17 LGA PAR 3635 138 250
302 01MAR94 20:22 LGA WAS 229 105 180
114 02MAR94 7:10 LGA LAX 2475 119 210
202 02MAR94 10:43 LGA ORD 740 120 210
219 02MAR94 9:31 LGA LON 3442 147 250

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=60;

The CREATE TABLE statement creates the table FLIGHTS from the output of the query. The
SELECT clause selects the unique values of Dest. DISTINCT specifies that only one row for
each value of city be returned by the query and stored in the table FLIGHTS. The FROM clause
specifies PROCLIB.MARCH as the table to select from.

proc sql;
create table flights as

select distinct dest
from proclib.march;

title ’Cities Serviced by the Airline’;

select * from flights;

Output

1128 Output 4 Chapter 34

FLIGHTS Table

Cities Serviced by the Airline 1

Dest

FRA
LAX
LON
ORD
PAR
WAS
YYZ

The SELECT clause specifies three columns for the output. The prefixes on DEST are table
aliases to specify which table to take the values of Dest from. The CASE expression creates a
column that contains the character string to and from.

title ’All Possible Connections’;
select f1.Dest, case

when f1.dest ne ’ ’ then ’to and from’
end,

f2.Dest

The FROM clause joins FLIGHTS with itself and creates a table that contains every possible
combination of rows. The table contains two rows for each possible route, for example,
PAR <-> WAS and WAS <-> PAR.

from flights as f1, flights as f2

The WHERE clause subsets the internal table by choosing only those rows where the name in
F1.Dest sorts before the name in F2.Dest. Thus, there is only one row for each possible route.

where f1.dest < f2.dest

ORDER BY sorts the result by the values of F1.Dest.

order by f1.dest;

The SQL Procedure 4 Example 14: Matching Case Rows and Control Rows 1129

Output

All Possible Connections 2

Dest Dest

FRA to and from WAS
FRA to and from YYZ
FRA to and from LAX
FRA to and from ORD
FRA to and from LON
FRA to and from PAR
LAX to and from PAR
LAX to and from LON
LAX to and from WAS
LAX to and from ORD
LAX to and from YYZ
LON to and from WAS
LON to and from PAR
LON to and from YYZ
LON to and from ORD
ORD to and from WAS
ORD to and from PAR
ORD to and from YYZ
PAR to and from YYZ
PAR to and from WAS
WAS to and from YYZ

Example 14: Matching Case Rows and Control Rows

Procedure features:
joined-table component

Tables: MATCH_11 on page 1504, MATCH

This example uses a table that contains data for a case-control study. Each row
contains information for a case or a control. To perform statistical analysis, you need a
table with one row for each case-control pair. PROC SQL joins the table with itself in
order to match the cases with their appropriate controls. After the rows are matched,
differencing can be performed on the appropriate columns.

The input table MATCH_11 contains one row for each case and one row for each
control. Pair contains a number that associates the case with its control. Low is 0 for
the controls and 1 for the cases. The remaining columns contain information about the
cases and controls.

1130 Input Table 4 Chapter 34

Input Table

MATCH_11 Table

First 10 Rows Only

Pair Low Age Lwt Race Smoke Ptd Ht UI race1 race2

--

1 0 14 135 1 0 0 0 0 0 0

1 1 14 101 3 1 1 0 0 0 1

2 0 15 98 2 0 0 0 0 1 0

2 1 15 115 3 0 0 0 1 0 1

3 0 16 95 3 0 0 0 0 0 1

3 1 16 130 3 0 0 0 0 0 1

4 0 17 103 3 0 0 0 0 0 1

4 1 17 130 3 1 1 0 1 0 1

5 0 17 122 1 1 0 0 0 0 0

5 1 17 110 1 1 0 0 0 0 0

Program

options nodate pageno=1 linesize=80 pagesize=60;

The SELECT clause specifies the columns for the table MATCH. SQL expressions in the
SELECT clause calculate the differences for the appropriate columns and create new columns.

proc sql;
create table match as

select
one.Low,
one.Pair,
(one.lwt - two.lwt) as Lwt_d,
(one.smoke - two.smoke) as Smoke_d,
(one.ptd - two.ptd) as Ptd_d,
(one.ht - two.ht) as Ht_d,
(one.ui - two.ui) as UI_d

The FROM clause lists the table MATCH_11 twice. Thus, the table is joined with itself. The
WHERE clause returns only the rows for each pair that show the difference when the values for
control are subtracted from the values for case.

from match_11 one, match_11 two
where (one.pair=two.pair and one.low>two.low);

The SELECT clause selects all the columns from MATCH. The OBS= data set option limits the
printing of the output to five rows.

title ’Differences for Cases and Controls’;
select *

from match(obs=5);

The SQL Procedure 4 Program 1131

Output

MATCH Table

Differences for Cases and Controls 1

Low Pair Lwt_d Smoke_d Ptd_d Ht_d UI_d
--

1 1 -34 1 1 0 0
1 2 17 0 0 0 1
1 3 35 0 0 0 0
1 4 27 1 1 0 1
1 5 -12 0 0 0 0

Example 15: Counting Missing Values with a SAS Macro
Procedure feature:

COUNT function
Table: SURVEY

This example uses a SAS macro to create columns. The SAS macro is not explained
here. See the SAS Guide to Macro Processing for complete documentation on the SAS
COUNTM macro.

Input Table

SURVEY contains data from a questionnaire about diet and exercise habits. SAS enables you to
use a special notation for missing values. In the EDUC column, the .x notation indicates that
the respondent gave an answer that is not valid, and .n indicates that the respondent did not
answer the question. A period as a missing value indicates a data entry error.

data survey;
input id $ diet $ exer $ hours xwk educ;
datalines;

1001 yes yes 1 3 1
1002 no yes 1 4 2
1003 no no . . .n
1004 yes yes 2 3 .x
1005 no yes 2 3 .x
1006 yes yes 2 4 .x
1007 no yes .5 3 .
1008 no no . . .
;

Program

1132 Program 4 Chapter 34

options nodate pageno=1 linesize=80 pagesize=60;

The COUNTM macro uses the COUNT function to perform various counts for a column. Each
COUNT function uses a CASE expression to select the rows to be counted. The first COUNT
function uses only the column as an argument to return the number of nonmissing rows.

%macro countm(col);
count(&col) "Valid Responses for &col",

The IS MISSING keywords return the rows that have any type of missing value: .n, .x, or a
period. The PUT function returns a character string to be counted.

count(case
when &col is missing then put(&col, 2.)
end) "Missing or NOT VALID Responses for &col",

The last three COUNT functions use CASE expressions to count the occurrences of the three
notations for missing values.

count(case
when &col=.n then put(&col, 2.)
end) "Coded as NO ANSWER for &col",

count(case
when &col=.x then put(&col, 2.)
end) "Coded as NOT VALID answers for &col",

count(case
when &col=. then put(&col, 1.)
end) "Data Entry Errors for &col"

%mend;

The SELECT clause specifies the columns that are in the output. COUNT(*) returns the total
number of rows in the table. The COUNTM macro uses the values of the EDUC column to
create the columns defined in the macro.

proc sql;
title ’Counts for Each Type of Missing Response’;
select count(*) "Total No. of Rows",

%countm(educ)
from survey;

The SQL Procedure 4 Output 1133

Output

Counts for Each Type of Missing Response 1

Missing Coded as
or NOT Coded as NOT Data

Total Valid VALID NO VALID Entry
No. of Responses Responses ANSWER answers Errors

Rows for educ for educ for educ for educ for educ
--

8 2 6 1 3 2

1134 Output 4 Chapter 34

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Procedures Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 1729 pp.

SAS® Procedures Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–482–9
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

