
1269

C H A P T E R

39
The TRANSPOSE Procedure

Overview 1269
Procedure Syntax 1271

PROC TRANSPOSE Statement 1272

BY Statement 1273

COPY Statement 1275

ID Statement 1275
IDLABEL Statement 1276

VAR Statement 1277

Results 1277

Output Data Set 1277

Attributes of Transposed Variables 1278

Names of Transposed Variables 1278
Examples 1278

Example 1: Performing a Simple Transposition 1278

Example 2: Naming Transposed Variables 1280

Example 3: Labeling Transposed Variables 1281

Example 4: Transposing BY Groups 1282
Example 5: Naming Transposed Variables When the ID Variable Has Duplicate Values 1284

Example 6: Transposing Data for Statistical Analysis 1286

Overview

The TRANSPOSE procedure creates an output data set by restructuring the values
in a SAS data set, transposing selected variables into observations. The TRANSPOSE
procedure can often eliminate the need to write a lengthy DATA step to achieve the
same result. Further, the output data set can be used in subsequent DATA or PROC
steps for analysis, reporting, or further data manipulation.

PROC TRANSPOSE does not produce printed output. To print the output data set
from the PROC TRANSPOSE step, use PROC PRINT, PROC REPORT, or another SAS
reporting tool.

A transposed variable is a variable the procedure creates by transposing the values of
an observation in the input data set into values of a variable in the output data set.

Output 39.1 on page 1270 illustrates a simple transposition. In the input data set,
each variable represents the scores from one tester. In the output data set, each
observation now represents the scores from one tester. Each value of _NAME_ is the
name of a variable in the input data set that the procedure transposed. Thus, the value
of _NAME_ identifies the source of each observation in the output data set. For example,
the values in the first observation in the output data set come from the values of the
variable Tester1 in the input data set. The statements that produce the output follow.

1270 Overview 4 Chapter 39

proc print data=proclib.product noobs;
title ’The Input Data Set’;

run;

proc transpose data=proclib.product
out=proclib.product_transposed;

run;

proc print data=proclib.product_transposed noobs;
title ’The Output Data Set’;

run;

Output 39.1 A Simple Transposition

The Input Data Set 1

Tester1 Tester2 Tester3 Tester4

22 25 21 21
15 19 18 17
17 19 19 19
20 19 16 19
14 15 13 13
15 17 18 19
10 11 9 10
22 24 23 21

The Output Data Set 2

NAME COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8

Tester1 22 15 17 20 14 15 10 22
Tester2 25 19 19 19 15 17 11 24
Tester3 21 18 19 16 13 18 9 23
Tester4 21 17 19 19 13 19 10 21

Output 39.2 on page 1270 is a more complex example that uses BY groups. The
input data set represents measurements of fish weight and length at two lakes. The
statements that create the output data set

� transpose only the variables that contain the length measurements
� create six BY groups, one for each lake and date
� use a data set option to name the transposed variable.

The TRANSPOSE Procedure 4 Procedure Syntax 1271

Output 39.2 A Transposition with BY Groups

Input Data Set 1

L
o L W L W L W L W
c e e e e e e e e
a n i n i n i n i
t D g g g g g g g g
i a t h t h t h t h
o t h t h t h t h t
n e 1 1 2 2 3 3 4 4

Cole Pond 02JUN95 31 0.25 32 0.30 32 0.25 33 0.30
Cole Pond 03JUL95 33 0.32 34 0.41 37 0.48 32 0.28
Cole Pond 04AUG95 29 0.23 30 0.25 34 0.47 32 0.30
Eagle Lake 02JUN95 32 0.35 32 0.25 33 0.30 . .
Eagle Lake 03JUL95 30 0.20 36 0.45
Eagle Lake 04AUG95 33 0.30 33 0.28 34 0.42 . .

Fish Length Data for Each Location and Date 2

Location Date _NAME_ Measurement

Cole Pond 02JUN95 Length1 31
Cole Pond 02JUN95 Length2 32
Cole Pond 02JUN95 Length3 32
Cole Pond 02JUN95 Length4 33
Cole Pond 03JUL95 Length1 33
Cole Pond 03JUL95 Length2 34
Cole Pond 03JUL95 Length3 37
Cole Pond 03JUL95 Length4 32
Cole Pond 04AUG95 Length1 29
Cole Pond 04AUG95 Length2 30
Cole Pond 04AUG95 Length3 34
Cole Pond 04AUG95 Length4 32
Eagle Lake 02JUN95 Length1 32
Eagle Lake 02JUN95 Length2 32
Eagle Lake 02JUN95 Length3 33
Eagle Lake 02JUN95 Length4 .
Eagle Lake 03JUL95 Length1 30
Eagle Lake 03JUL95 Length2 36
Eagle Lake 03JUL95 Length3 .
Eagle Lake 03JUL95 Length4 .
Eagle Lake 04AUG95 Length1 33
Eagle Lake 04AUG95 Length2 33
Eagle Lake 04AUG95 Length3 34
Eagle Lake 04AUG95 Length4 .

For a complete explanation of the SAS program that produces Output 39.2 on page
1270, see Example 4 on page 1282.

Procedure Syntax
Tip: Does not support the Output Delivery System
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, "Statements with the Same Function in Multiple Procedures," for details.
You can also use any global statements as well. See Chapter 2, "Fundamental Concepts
for Using Base SAS Procedures," for a list.

1272 PROC TRANSPOSE Statement 4 Chapter 39

PROC TRANSPOSE <DATA=input-data-set> <LABEL=label> <LET>
<NAME=name> <OUT=output-data-set> <PREFIX=prefix>;

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

COPY variable(s);
ID variable;

IDLABEL variable;
VAR variable(s);

To do this Use this statement

Transpose each BY group BY

Copy variables directly without transposing them COPY

Specify a variable whose values name the transposed
variables

ID

Create labels for the transposed variables IDLABEL

List the variables to transpose VAR

PROC TRANSPOSE Statement
Reminder: You can use data set options with the DATA= and OUT= options. See
Chapter 2, "Fundamental Concepts for Using Base SAS Procedures," for a list.

PROC TRANSPOSE <DATA=input-data-set> <LABEL=label> <LET>
<NAME=name> <OUT=output-data-set> <PREFIX=prefix>;

Options

DATA= input-data-set
names the SAS data set to transpose.
Default: most recently created SAS data set

LABEL= label
specifies a name for the variable in the output data set that contains the label of the
variable that is being transposed to create the current observation.
Default: _LABEL_

LET
allows duplicate values of an ID variable. PROC TRANSPOSE transposes the
observation containing the last occurrence of a particular ID value within the data
set or BY group.
Featured in: Example 5 on page 1284

NAME= name
specifies the name for the variable in the output data set that contains the name of
the variable being transposed to create the current observation.

The TRANSPOSE Procedure 4 BY Statement 1273

Default: _NAME_
Featured in: Example 2 on page 1280

OUT= output-data-set
names the output data set. If output-data-set does not exist, PROC TRANSPOSE
creates it using the DATAn naming convention.
Default: DATAn
Featured in: Example 1 on page 1278

PREFIX= prefix
specifies a prefix to use in constructing names for transposed variables in the output
data set. For example, if PREFIX=VAR, the names of the variables are VAR1, VAR2,
. . . ,VARn.
Interaction: when you use PREFIX= with an ID statement, the value prefixes to

the ID value.
Featured in: Example 2 on page 1280

BY Statement

Defines BY groups.

Main discussion: “BY” on page 68
Featured in: Example 4 on page 1282
Restriction: You cannot use PROC TRANSPOSE with a BY statement or an ID
statement with an engine that supports concurrent access if another user is updating
the data set at the same time.

Required Arguments

variable
specifies the variable that PROC TRANSPOSE uses to form BY groups. You can
specify more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations must be either sorted by all the variables that you
specify, or they must be indexed appropriately. Variables in a BY statement are
called BY variables.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED

1274 BY Statement 4 Chapter 39

option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

Transpositions with BY Groups

PROC TRANSPOSE does not transpose BY groups. Instead, for each BY group,
PROC TRANSPOSE creates one observation for each variable that it transposes.

Figure 39.1 on page 1274 shows what happens when you transpose a data set with
BY groups. TYPE is the BY variable, and SOLD, NOTSOLD, REPAIRED, and
JUNKED are the variables to transpose.

Figure 39.1 Transposition with BY Groups

TYPE MONTH SOLD NOTSOLD REPAIRED JUNKED

sedan
sedan
sports
sports
trucks
trucks

jan
feb
jan
feb
jan
feb

SOLD
NOTSOLD
REPAIRED
JUNKED
SOLD
NOTSOLD
REPAIRED
JUNKED
SOLD
NOTSOLD
REPAIRED
JUNKED

26
28
16
19
29
35

6
9
6
7
1
3

41
48
15
20
20
22

4
2
0
1
3
4

26
6

41
4

16
6

15
0

29
1

20
3

28
9

48
2

19
7

20
1

35
3

22
4

sedan
sedan
sedan
sedan
sports
sports
sports
sports
trucks
trucks
trucks
trucks

TYPE _NAME_ COL1 COL2

input
data set

output
data set

� The number of observations in the output data set (12) is the number of BY groups
(3) multiplied by the number of variables that are transposed (4).

� The BY variable is not transposed.

� _NAME_ contains the name of the variable in the input data set that was
transposed to create the current observation in the output data set. You can use
the NAME= option to specify another name for the _NAME_ variable.

� The maximum number of observations in any BY group in the input data set is
two; therefore, the output data set contains two variables, COL1 and COL2. COL1
and COL2 contain the values of SOLD, NOTSOLD, REPAIRED, and JUNKED.

Note: If a BY group in the input data set has more observations than other BY
groups, PROC TRANSPOSE assigns missing values in the output data set to the
variables that have no corresponding input observations. 4

The TRANSPOSE Procedure 4 ID Statement 1275

COPY Statement

Copies variables directly from the input data set to the output data set without transposing them.

Featured in: Example 6 on page 1286

COPY variable(s);

Required Argument

variable(s)
names one or more variables that the COPY statement copies directly from the input
data set to the output data set without transposing them.

Details
Because the COPY statement copies variables directly to the output data set, the

number of observations in the output data set is equal to the number of observations in
the input data set.

The procedure pads the output data set with missing values if the number of
observations in the input data set and the number of variables it transposes are not
equal.

ID Statement

Specifies a variable in the input data set whose formatted values name the transposed variables
in the output data set.

Featured in: Example 2 on page 1280
Restriction: You cannot use PROC TRANSPOSE with an ID statement or a BY
statement with an engine that supports concurrent access if another user is updating
the data set at the same time.

ID variable;

Required Argument

variable
names the variable whose formatted values name the transposed variables.

Duplicate ID Values
Typically, each formatted ID value occurs only once in the input data set or, if you

use a BY statement, only once within a BY group. Duplicate values cause PROC
TRANSPOSE to issue a warning message and stop. However, if you use the LET option

1276 IDLABEL Statement 4 Chapter 39

in the PROC TRANSPOSE statement, the procedure issues a warning message about
duplicate ID values and transposes the observation containing the last occurrence of the
duplicate ID value.

Making Variable Names Out of Numeric Values
When you use a numeric variable as an ID variable, PROC TRANSPOSE changes

the formatted ID value into a valid SAS name.
However, SAS variable names cannot begin with a number. Thus, when the first

character of the formatted value is numeric, the procedure prefixes an underscore to the
value, truncating the last character of an 32-character value. Any remaining invalid
characters are replaced by underscores. The procedure truncates to 32 characters any
ID value that is longer than 32 characters when it uses that value to name a
transposed variable.

If the formatted value looks like a numeric constant, PROC TRANSPOSE changes
the characters ’+’, ’−’, and ’.’ to ’P’,’N’, and ’D’, respectively. If the formatted value has
characters that are not numerics, PROC TRANSPOSE changes the characters ’+’, ’−’,
and ’.’ to underscores.

Note: If the value of the VALIDVARNAME system option is V6, PROC
TRANSPOSE truncates transposed variable names to eight characters. 4

Missing Values
If you use an ID variable that contains a missing value, PROC TRANSPOSE writes

an error message to the log. The procedure does not transpose observations that have a
missing value for the ID variable.

IDLABEL Statement

Creates labels for the transposed variables.

Restriction: Must appear after an ID statement.

Featured in: Example 3 on page 1281

IDLABEL variable;

Required Argument

variable
names the variable whose values the procedure uses to label the variables that the
ID statement names. variable can be character or numeric.

Note: To see the effect of the IDLABEL statement, print the output data set with
the PRINT procedure using the LABEL option, or print the contents of the output data
set using the CONTENTS statement in the DATASETS procedure. 4

The TRANSPOSE Procedure 4 Output Data Set 1277

VAR Statement

Lists the variables to transpose.

Featured in: Example 4 on page 1282 and Example 6 on page 1286

VAR variable(s);

Required Argument

variable(s)
names one or more variables to transpose.

Details

� If you omit the VAR statement, the TRANSPOSE procedure transposes all
numeric variables in the input data set that are not listed in another statement.

� You must list character variables in a VAR statement if you want to transpose
them.

Results

Output Data Set
The TRANSPOSE procedure always produces an output data set, regardless of

whether you specify the OUT= option in the PROC TRANSPOSE statement. PROC
TRANSPOSE does not print the output data set. Use PROC PRINT, PROC REPORT or
some other SAS reporting tool to print the output data set.

The output data set contains the following variables:
� variables that result from transposing the values of each variable into an

observation.
� a variable that PROC TRANSPOSE creates to identify the source of the values in

each observation in the output data set. This variable is a character variable
whose values are the names of the variables transposed from the input data set.
By default, PROC TRANSPOSE names this variable _NAME_. To override the
default name, use the NAME= option. The label for the _NAME_ variable is
NAME OF FORMER VARIABLE.

� variables that PROC TRANSPOSE copies from the input data set when you use
either the BY or COPY statement. These variables have the same names and
values as they do in the input data set.

� a character variable whose values are the variable labels of the variables being
transposed (if any of the variables the procedure is transposing have labels).
Specify the name of the variable with the LABEL= option. The default is _LABEL_.

1278 Examples 4 Chapter 39

Note: If the value of the LABEL= option or the NAME= option is the same as a
variable that appears in a BY or COPY statement, the output data set does not
contain a variable whose values are the names or labels of the transposed
variables. 4

Attributes of Transposed Variables

� All transposed variables are the same type and length.
� If all variables that the procedure is transposing are numeric, the transposed

variables are numeric. Thus, if the numeric variable has a character string as a
formatted value, its unformatted numeric value is transposed.

� If any variable that the procedure is transposing is character, all transposed
variables are character. Thus, if you are transposing a numeric variable that has a
character string as a formatted value, the formatted value is transposed.

� The length of the transposed variables is equal to the length of the longest
variable being transposed.

Names of Transposed Variables
PROC TRANSPOSE names transposed variables using the following rules:
1 An ID statement specifies a variable in the input data set whose formatted values

become names for the transposed variables.
2 The PREFIX= option specifies a prefix to use in constructing the names of

transposed variables.
3 If you do not use an ID statement or the PREFIX= option, PROC TRANSPOSE

looks for an input variable called _NAME_ from which to get the names of the
transposed variables.

4 If you do not use an ID statement or the PREFIX= option, and the input data set
does not contain a variable named _NAME_, PROC TRANSPOSE assigns the
names COL1, COL2, . . . , COLn to the transposed variables.

Examples

Example 1: Performing a Simple Transposition
Procedure features:

PROC TRANSPOSE statement option:
OUT=

This example performs a default transposition and uses no subordinate statements.

Program

The TRANSPOSE Procedure 4 Output 1279

options nodate pageno=1 linesize=80 pagesize=40;

The data set SCORE contains students’ names, their identification numbers, and their grades
on two tests and a final exam.

data score;
input Student $9. +1 StudentID $ Section $ Test1 Test2 Final;
datalines;

Capalleti 0545 1 94 91 87
Dubose 1252 2 51 65 91
Engles 1167 1 95 97 97
Grant 1230 2 63 75 80
Krupski 2527 2 80 76 71
Lundsford 4860 1 92 40 86
Mcbane 0674 1 75 78 72
;

PROC TRANSPOSE transposes only the numeric variables, Test1, Test2, and Final because no
VAR statement appears and none of the numeric variables appear in another statement. OUT=
puts the result of the transposition in the SCORE_TRANSPOSED data set.

proc transpose data=score out=score_transposed;
run;

PROC PRINT prints the output data set.

proc print data=score_transposed noobs;
title ’Student Test Scores in Variables’;

run;

Output

In the output data set SCORE_TRANSPOSED, variables COL1 through COL7 contain the
individual scores for the students. Each observation contains all the scores for one test. The
NAME variable contains the names of the variables from the input data set that were
transposed.

Student Test Scores in Variables 1

NAME COL1 COL2 COL3 COL4 COL5 COL6 COL7

Test1 94 51 95 63 80 92 75
Test2 91 65 97 75 76 40 78
Final 87 91 97 80 71 86 72

1280 Example 2: Naming Transposed Variables 4 Chapter 39

Example 2: Naming Transposed Variables
Procedure features:

PROC TRANSPOSE statement options:
NAME=
PREFIX=

ID statement
Data set: SCORE on page 1279

This example uses the values of a variable and a user-supplied value to name
transposed variables.

Program

options nodate pageno=1 linesize=80 pagesize=40;

PROC TRANSPOSE transposes only the numeric variables, Test1, Test2, and Final because no
VAR statement appears. OUT= puts the result of the transposition in the IDNUMBER data set.
NAME= specifies Test as the name for the variable that contains the names of the variables in
the input data set that the procedure transposes. The procedure names the transposed variables
by using the value from PREFIX=, sn, and the value of the ID variable StudentID

proc transpose data=score out=idnumber name=Test
prefix=sn;

id studentid;
run;

PROC PRINT prints the data set.

proc print data=idnumber noobs;
title ’Student Test Scores’;

run;

Output

The output data set, IDNUMBER

Student Test Scores 1

Test sn0545 sn1252 sn1167 sn1230 sn2527 sn4860 sn0674

Test1 94 51 95 63 80 92 75
Test2 91 65 97 75 76 40 78
Final 87 91 97 80 71 86 72

The TRANSPOSE Procedure 4 Output 1281

Example 3: Labeling Transposed Variables

Procedure features:
PROC TRANSPOSE statement option:

PREFIX=
IDLABEL statement

Data set: SCORE on page 1279

This example uses the values of the variable in the IDLABEL statement to label
transposed variables.

Program

options nodate pageno=1 linesize=80 pagesize=40;

PROC TRANSPOSE transposes only the numeric variables, Test1, Test2, and Final because no
VAR statement appears. OUT= puts the result of the transposition in the IDLABEL data set.
NAME= specifies Test as the name for the variable that contains the names of the variables in
the input data set that the procedure transposes. The procedure names the transposed variables
by using the value from PREFIX=, sn, and the value of the ID variable StudentID.

proc transpose data=score out=idlabel name=Test
prefix=sn;

id studentid;

PROC TRANSPOSE uses the values of the variable Student to label the transposed variables.
The procedure provides

NAME OF FORMER VARIABLE

as the label for the _NAME_ variable.

idlabel student;
run;

PROC PRINT prints the output data set and uses the variable labels as column headers. The
LABEL option causes PROC PRINT to print variable labels for column headers.

proc print data=idlabel label noobs;
title ’Student Test Scores’;

run;

Output

1282 Example 4: Transposing BY Groups 4 Chapter 39

The output data set, IDLABEL

Student Test Scores 1

NAME OF
FORMER

VARIABLE Capalleti Dubose Engles Grant Krupski Lundsford Mcbane

Test1 94 51 95 63 80 92 75
Test2 91 65 97 75 76 40 78
Final 87 91 97 80 71 86 72

Example 4: Transposing BY Groups
Procedure features:

BY statement
VAR statement

Other features: Data set option:
RENAME=

This example illustrates transposing BY groups and selecting variables to transpose.

Program

options nodate pageno=1 linesize=80 pagesize=40;

The input data represent length and weight measurements of fish caught at two ponds on three
separate days. The data are sorted by Location and Date.

data fishdata;
infile datalines missover;
input Location & $10. Date date7.

Length1 Weight1 Length2 Weight2 Length3 Weight3
Length4 Weight4;

format date date7.;
datalines;

Cole Pond 2JUN95 31 .25 32 .3 32 .25 33 .3
Cole Pond 3JUL95 33 .32 34 .41 37 .48 32 .28
Cole Pond 4AUG95 29 .23 30 .25 34 .47 32 .3
Eagle Lake 2JUN95 32 .35 32 .25 33 .30
Eagle Lake 3JUL95 30 .20 36 .45
Eagle Lake 4AUG95 33 .30 33 .28 34 .42
;

OUT= puts the result of the transposition in the FISHLENGTH data set. RENAME= renames
COL1 in the output data set to Measurement.

The TRANSPOSE Procedure 4 Output 1283

proc transpose data=fishdata
out=fishlength(rename=(col1=Measurement));

PROC TRANSPOSE transposes only the Length1-Length4 variables because they appear in the
VAR statement.

var length1-length4;

The BY statement creates BY groups for each unique combination of values of Location and
Date. The procedure does not transpose the BY variables.

by location date;
run;

PROC PRINT prints the output data set.

proc print data=fishlength noobs;
title ’Fish Length Data for Each Location and Date’;

run;

Output

1284 Example 5: Naming Transposed Variables When the ID Variable Has Duplicate Values 4 Chapter 39

The output data set, FISHLENGTH. For each BY group in the original data set, PROC
TRANSPOSE creates four observations, one for each variable it is transposing. Missing values
appear for the variable Measurement (renamed from COL1) when the variables being
transposed have no value in the input data set for that BY group. Several observations have a
missing value for Measurement. For example, in the last observation, a missing value appears
because there was no value for Length4 on 04AUG95 at Eagle Lake in the input data.

Fish Length Data for Each Location and Date 1

Location Date _NAME_ Measurement

Cole Pond 02JUN95 Length1 31
Cole Pond 02JUN95 Length2 32
Cole Pond 02JUN95 Length3 32
Cole Pond 02JUN95 Length4 33
Cole Pond 03JUL95 Length1 33
Cole Pond 03JUL95 Length2 34
Cole Pond 03JUL95 Length3 37
Cole Pond 03JUL95 Length4 32
Cole Pond 04AUG95 Length1 29
Cole Pond 04AUG95 Length2 30
Cole Pond 04AUG95 Length3 34
Cole Pond 04AUG95 Length4 32
Eagle Lake 02JUN95 Length1 32
Eagle Lake 02JUN95 Length2 32
Eagle Lake 02JUN95 Length3 33
Eagle Lake 02JUN95 Length4 .
Eagle Lake 03JUL95 Length1 30
Eagle Lake 03JUL95 Length2 36
Eagle Lake 03JUL95 Length3 .
Eagle Lake 03JUL95 Length4 .
Eagle Lake 04AUG95 Length1 33
Eagle Lake 04AUG95 Length2 33
Eagle Lake 04AUG95 Length3 34
Eagle Lake 04AUG95 Length4 .

Example 5: Naming Transposed Variables When the ID Variable Has
Duplicate Values

Procedure features:
PROC TRANSPOSE statement option:

LET

This example shows how to use values of a variable (ID) to name transposed
variables even when the ID variable has duplicate values.

Program

options nodate pageno=1 linesize=64 pagesize=40;

The TRANSPOSE Procedure 4 Output 1285

STOCKS contains stock prices for two competing kite manufacturers. The prices are recorded
three times a day: at opening, at noon, and at closing, on two days. Notice that the input data
set contains duplicate values for the Date variable.

data stocks;
input Company $14. Date $ Time $ Price;
datalines;

Horizon Kites jun11 opening 29
Horizon Kites jun11 noon 27
Horizon Kites jun11 closing 27
Horizon Kites jun12 opening 27
Horizon Kites jun12 noon 28
Horizon Kites jun12 closing 30
SkyHi Kites jun11 opening 43
SkyHi Kites jun11 noon 43
SkyHi Kites jun11 closing 44
SkyHi Kites jun12 opening 44
SkyHi Kites jun12 noon 45
SkyHi Kites jun12 closing 45
;

LET transposes only the last observation for each BY group. PROC TRANSPOSE transposes
only the Price variable. OUT= puts the result of the transposition in the CLOSE data set.

proc transpose data=stocks out=close let;

The BY statement creates two BY groups, one for each company.

by company;

The values of Date are used as names for the transposed variables.

id date;
run;

PROC PRINT prints the output data set.

proc print data=close noobs;
title ’Closing Prices for Horizon Kites and SkyHi Kites’;

run;

Output

1286 Example 6: Transposing Data for Statistical Analysis 4 Chapter 39

The output data set, CLOSE

Closing Prices for Horizon Kites and SkyHi Kites 1

Company _NAME_ jun11 jun12

Horizon Kites Price 27 30
SkyHi Kites Price 44 45

Example 6: Transposing Data for Statistical Analysis

Procedure features:
COPY statement
VAR statement

This example arranges data to make them suitable for either a multivariate or
univariate repeated-measures analysis.

The data are from Chapter 8, "Repeated-Measures Analysis of Variance" in SAS
System for Linear Models, Third Edition.

Program 1

options nodate pageno=1 linesize=80 pagesize=40;

The data represent the results of an exercise therapy study of three weight-lifting programs:
CONT is control, RI is a program in which the number of repetitions are increased, and WI is a
program in which the weight is increased.

data weights;
input Program $ s1-s7;
datalines;

CONT 85 85 86 85 87 86 87
CONT 80 79 79 78 78 79 78
CONT 78 77 77 77 76 76 77
CONT 84 84 85 84 83 84 85
CONT 80 81 80 80 79 79 80
RI 79 79 79 80 80 78 80
RI 83 83 85 85 86 87 87
RI 81 83 82 82 83 83 82
RI 81 81 81 82 82 83 81
RI 80 81 82 82 82 84 86
WI 84 85 84 83 83 83 84
WI 74 75 75 76 75 76 76
WI 83 84 82 81 83 83 82

The TRANSPOSE Procedure 4 Program 2 1287

WI 86 87 87 87 87 87 86
WI 82 83 84 85 84 85 86
;

The DATA step rearranges WEIGHTS to create the data set SPLIT. The DATA step transposes
the strength values and creates two new variables: Time and Subject. SPLIT contains one
observation for each repeated measure. SPLIT can be used in a PROC GLM step for a
univariate repeated-measures analysis.

data split;
set weights;
array s{7} s1-s7;
Subject + 1;
do Time=1 to 7;

Strength=s{time};
output;

end;
drop s1-s7;

run;

PROC PRINT prints the data set. The OBS= data set option limits the printing to the first 15
observations. SPLIT has 105 observations.

proc print data=split(obs=15) noobs;
title ’SPLIT Data Set’;
title2 ’First 15 Observations Only’;

run;

Output 1

SPLIT Data Set 1
First 15 Observations Only

Program Subject Time Strength

CONT 1 1 85
CONT 1 2 85
CONT 1 3 86
CONT 1 4 85
CONT 1 5 87
CONT 1 6 86
CONT 1 7 87
CONT 2 1 80
CONT 2 2 79
CONT 2 3 79
CONT 2 4 78
CONT 2 5 78
CONT 2 6 79
CONT 2 7 78
CONT 3 1 78

Program 2

1288 Output 2 4 Chapter 39

options nodate pageno=1 linesize=80 pagesize=40;

PROC TRANSPOSE transposes SPLIT to create TOTSPLIT. The TOTSPLIT data set contains
the same variables as SPLIT and a variable for each strength measurement (Str1-Str7).
TOTSPLIT can be used for either a multivariate repeated-measures analysis or for a univariate
repeated-measures analysis.

proc transpose data=split out=totsplit prefix=Str;

The variables in the BY and COPY statements are not transposed. TOTSPLIT contains the
variables Program, Subject, Time, and Strength with the same values that are in SPLIT. The
BY statement creates the first observation in each BY group, which contains the transposed
values of Strength. The COPY statement creates the other observations in each BY group by
copying the values of Time and Strength without transposing them.

by program subject;
copy time strength;

The VAR statement specifies the Strength variable as the only variable to be transposed.

var strength;
run;

PROC PRINT prints the output data set.

proc print data=totsplit(obs=15) noobs;
title ’TOTSPLIT Data Set’;
title2 ’First 15 Observations Only’;

run;

Output 2

The TRANSPOSE Procedure 4 Output 2 1289

The variables in TOTSPLIT with missing values are used only in a multivariate
repeated–measures analysis. The missing values do not preclude this data set from being used
in a repeated-measures analysis because the MODEL statement in PROC GLM ignores
observations with missing values.

TOTSPLIT Data Set 1
First 15 Observations Only

Program Subject Time Strength _NAME_ Str1 Str2 Str3 Str4 Str5 Str6 Str7

CONT 1 1 85 Strength 85 85 86 85 87 86 87
CONT 1 2 85
CONT 1 3 86
CONT 1 4 85
CONT 1 5 87
CONT 1 6 86
CONT 1 7 87
CONT 2 1 80 Strength 80 79 79 78 78 79 78
CONT 2 2 79
CONT 2 3 79
CONT 2 4 78
CONT 2 5 78
CONT 2 6 79
CONT 2 7 78
CONT 3 1 78 Strength 78 77 77 77 76 76 77

1290 Output 2 4 Chapter 39

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Procedures Guide, Version 8, Cary, NC: SAS Institute Inc., 1999. 1729 pp.

SAS® Procedures Guide, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–482–9
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

