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Chapter 15
Details of the FACTEX Procedure

Syntax

You can specify the following statements with the FACTEX procedure. Items within
the brackets<> are optional.

PROC FACTEX <options> ;
FACTORS factor-names< / option> ;
SIZE size-specification;
MODEL model-specification<MINABS<(d)>>;
BLOCKS block-specification;
EXAMINE <options> ;
OUTPUT OUT=SAS-data-set<options> ;

To generate a design and save it in a data set, you use at least the PROC FACTEX,
FACTORS, and OUTPUT statements. The FACTORS statement should immediately
follow the PROC FACTEX statement. You use the MODEL and SIZE statements for
designs that are less than a full replicate (for example, fractional factorial designs).
You can use the BLOCKS statement for designs that involve blocking. The EXAM-
INE statement can be used as needed.
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Part 3. The CAPABILITY Procedure

Summary of Functions

Table 15.1 to Table 15.4 classify the FACTEX statements and options by function.

Table 15.1. Summary of Options for Specifying the Design

Function Statement Option

Factor Specification
Factor names FACTORS factor 1 : : : factor f
Number of levels FACTORS factor 1 : : : factor f / NLEV=q

Design Size Specification
(one of the following)
Number of runs SIZE DESIGN=n
Fraction of one full replicate SIZE FRACTION=h
Number ofrun indexing factors SIZE NRUNFACS=m
Minimum number of runs SIZE DESIGN=MINIMUM

or FRACTION=MAXIMUM
or NRUNFACS=MINIMUM

Block Specification
(one of the following)
Number of blocks BLOCKS NBLOCKS=b
Block size BLOCKS SIZE=k
Number ofblock pseudo-factors BLOCKS NBLKFACS=s
Minimum block size BLOCKS NBLOCKS=MAXIMUM

or SIZE=MINIMUM
or NBLKFACS=MAXIMUM

Model Specification
(one of the following)
Estimated effects MODEL ESTIMATE=(effects)
Estimated effects and MODEL ESTIMATE=(effects)

non-negligible effects NONNEG=(nonnegligible-effects)
Design resolution number MODEL RESOLUTION=r
Design with highest resolution MODEL RESOLUTION=MAXIMUM
Minimum aberration design MODEL EST=(: : :) <NONNEG=(: : :)> or RES=: : :
(up todth order interactions) / MINABS<(d)>

Table 15.2. Summary of Options for Searching the Design

Function Statement Option

Search for the Design
Allow maximum time oft seconds PROC FACTEX SECONDS=t or TIME=t
Limit the design searches PROC FACTEX NOCHECK
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Chapter 15. Syntax

Table 15.3. Summary of Options for Replicating and Randomizing the Design

Function Statement Option

Replication
Replicate entire designc times OUTPUT OUT=SAS-data-set DESIGNREP=c
Replicate design for each point OUTPUT OUT=SAS-data-set DESIGNREP=SAS-data-set

in the data set
Replicate each point in design OUTPUT OUT=SAS-data-set POINTREP=p

p times
Replicate data set for each point OUTPUT OUT=SAS-data-set POINTREP=SAS-data-set

in the design

Randomization
Randomize the design OUTPUT OUT=SAS-data-set RANDOMIZE
Randomize the design but not the OUTPUT OUT=SAS-data-set RANDOMIZE NOVALRAN

assignment of factor levels
Specify seed number OUTPUT OUT=SAS-data-set RANDOMIZE (u)

Table 15.4. Summary of Options for Examining and Saving the Design

Function Statement Option

List the Design
Coded factor and block levels EXAMINE DESIGN

List the Design Characteristics
Alias structure (up todth EXAMINE ALIASING<( d)>

order interactions)
Confounding rules EXAMINE CONFOUNDING

Save the Design
Coded factor levels OUTPUT OUT=SAS-data-set
Decoded factor levels OUTPUT OUT=SAS-data-set factor-name
(numeric type) NVALS=(level1: : : levelq)
Decoded factor levels OUTPUT OUT=SAS-data-set factor-name
(character type) CVALS=(’level1’ : : : ’levelq’ )
Block variable name OUTPUT OUT=SAS-data-set BLOCKNAME=block-name
Decoded block levels OUTPUT OUT=SAS-data-set BLOCKNAME=block-name
(numeric type) NVALS=(level1: : : levelb)
Decoded block levels OUTPUT OUT=SAS-data-set BLOCKNAME=block-name
(character type) CVALS=(’level1’ : : : ’levelb’ )
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Part 3. The CAPABILITY Procedure

Summary of Designs

Table 15.5 summarizes basic design types that you can construct with the FACTEX
procedure by providing example code for each type.

Table 15.5. Basic Designs Constructed by the FACTEX Procedure

Design Type Example Statements

A full factorial design in three fac-
tors, each at two levels coded as�1
and+1.

proc factex;
factors pressure temp time;
examine design;

run;

A full factorial design in three fac-
tors, each at three levels coded as
�1, 0, and+1.

proc factex;
factors pressure temp time/nlev= 3 ;
examine design;

run;

A full factorial design in three fac-
tors, each at two levels. The entire
design is replicated twice, and the
design with recoded factor levels is
saved in a SAS data set.

proc factex;
factors pressure temp time;
output out= savdesgn designrep= 2

pressure cvals=( ’low’ ’high’ )
temp nvals=( 200 300)
time nvals=( 10 20 );

run;

A full factorial design in three fac-
tors, each at two levels coded as
�1 and +1. Each run in the de-
sign is replicated three times, and the
replicated design is randomized and
saved in a SAS data set.

proc factex;
factors pressure temp time;
output out= savdesgn

pointrep= 3 randomize;

run;

A full factorial design in three con-
trol factors, each at two levels coded
as�1 and+1. A noise factor design
(outer array) read from a SAS data
set is replicated for each run in the
control factor design (inner array),
and the product design is saved in a
SAS data set.

proc factex;
factors pressure temp time;
output out = savdesgn

pointrep= outarray;

run;
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Design Type Example Statements

A full factorial blocked design in
three factors, each at two levels
coded as�1 and+1. The design is
arranged in two blocks and saved in
a SAS data set. By default, the block
variable is named BLOCK and the
two block levels are numbered 1 and
2.

proc factex;
factors pressure temp time;
blocks nblocks= 2 ;
output out= savdesgn;

run;

A full factorial blocked design in
three factors, each at two levels
coded as�1 and +1. Each block
contains four runs; the block vari-
able is renamed and the block levels
of character type are recoded. The
design is saved in a SAS data set.

proc factex;
factors pressure temp time;
blocks size= 4 ;
output out= savdesgn

blockname= machine cvals=( ’A’ ’B’ );

run;

A fractional factorial design of reso-
lution 4 in four factors, each at two
levels coded as�1 and+1. The size
of the design is eight runs.

proc factex;
factors pressure temp time catalyst;
size design= 8 ;
model resolution= 4 ;
examine design;

run;

A one-half fraction of a factorial de-
sign in four factors, each at two lev-
els coded as�1 and+1. The design
is of maximum resolution. The de-
sign points, the alias structure, and
the confounding rules are listed.

proc factex;
factors pressure temp time catalyst;
size fraction= 2 ;
model resolution=maximum;
examine design aliasing confounding;

run;

A one-quarter fraction of a factorial
design in six factors, each at two lev-
els coded as�1 and+1. Main ef-
fects are estimated, and some two-
factor interactions are considered
nonnegligible. The design is saved
in a SAS data set.

proc factex;
factors x1-x6;
size fraction= 4 ;
model estimate=( x1 x2 x3 x4 x5 x6)

nonneg =( x1*x5 x1*x6 x5*x6);
output out = savdesgn;

run;
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Part 3. The CAPABILITY Procedure

Statement Descriptions

This section provides detailed syntax information for the FACTEX procedure state-
ments, beginning with the PROC FACTEX statement. The remaining statements are
presented in alphabetical order.

PROC FACTEX Statement

PROC FACTEX <options> ;

You use the PROC FACTEX statement to invoke the FACTEX procedure. The fol-
lowing optionsare available:

NAMELEN
specifies the length of effect names in tables and output data sets to be n characters
long, where n is a value between 20 and 200 characters. The default length is 20
characters.

NOCHECK
suppresses a technique for limiting the amount of search required to find a de-
sign. The technique dramatically reduces the search time by pruning branches of
the search tree that are unlikely to contain the specified design, but in rare cases it
can keep the FACTEX procedure from finding a design that does, in fact, exist. The
NOCHECK option turns off this technique at the potential cost of an increase in run
time. Note, however, that the run time is always bounded by the TIME= option or its
default value. For more on the NOCHECK option, see “Speeding up the Search” on
page 507.

TIME=t
SECONDS=t

specifies the maximum number of seconds to spend on the search. The default is 60
seconds.

BLOCKS Statement

BLOCKS block-specification;
You use the BLOCKS statement to specify the number of blocks in the design or
the size of each block in the design. By default, the FACTEX procedure constructs
designs that do not contain blocks. If you use the BLOCKS statement, you also
need to use the MODEL statement or SIZE statement. In particular, if you use the
BLOCKS statement and your design is a fractional factorial design, you must use the
MODEL statement.

The two simplest explicitblock-specificationsthat you can use are

� NBLOCKS=b, which specifies the number of blocks (b) in the design
� SIZE=k, which specifies the number of runs (k) in each block
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Use only one of these two options. In all, there are six mutually exclusiveblock-
specificationsthat you can use, as described by the following list:

NBLKFACS= s
specifies the number ofblock pseudo-factorsfor the design. The design contains
a different block for each possible combination of the levels of the block pseudo-
factors. Values ofs are the integers 1, 2, and so on. See “Block Size Restrictions” on
page 448 for details.

If each factor in the design hasq levels, then NBLKFACS=s specifies a design with
qs blocks. The size of each block depends on the number of runs in the design, as
specified in the SIZE statement. If the design hasn runs, then each block hasn=qs

runs.

The following statement illustrates how to request a two-level factorial design ar-
ranged in eight (23) blocks:

blocks nblkfacs=3;

For more on pseudo-factors, see “Types of Factors” on page 488.

NBLOCKS= b
specifies the number of blocks in the design. The values ofb must be a power ofq,
the number of levels of each factor in the design. See “Block Size Restrictions” on
page 448 for details. The size of each block depends on the number of runs in the
design, as specified in the SIZE statement. If the design hasn runs, then each block
hasn=b runs. See page 433 for an illustration of this option.

The following statement illustrates how to specify a design arranged in four blocks:

blocks nblocks=4;

SIZE=k
specifies the number of runs per block in the design. The valuek must be a power of
q, the number of levels for each factor in the design. The number of blocks depends
on the number of runs in the design, as specified in the SIZE statement. If the design
hasn runs, then it hasn=k blocks.

CAUTION: Do not confuse the SIZE= option in the BLOCKS statement with the
SIZE statement, which you use to specify the overall size of the design. See page 455
for details of the SIZE statement.

The following statement illustrates how to specify blocks of size two:

blocks size=2;

NBLKFACS=MAXIMUM
NBLOCKS=MAXIMUM
SIZE=MINIMUM

constructs a blocked design with the minimum number of runs per block, given all the
other characteristics of the design. In other words, the block size is optimized. You
cannot specify this option if you specify any of the design size optimization options
in the SIZE statement (see DESIGN=MINIMUM on page 456).
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Equivalence of Specifications
The three explicitblock-specificationsare related to each other, as demonstrated by
the following example.

Suppose you want to construct a design for 11 two-level factors in 128 runs in blocks
of size 8. Since128=24 = 128=16 = 8, three equivalent block specifications are

blocks nblkfacs=4;
blocks nblocks=16;
blocks size=8;

Block Size Restrictions
The number of blocks and the number of runs in each block must be less than the
total number of runs in the design. Hence, there are some restrictions on the block
size.

� If you use SIZE=k or NBLOCKS=b, the numbers you specify fork andb must
be less than or equal to the size of the design, as specified in the SIZE statement.
Or, if you do not use a SIZE statement,k andb must be less than or equal to the
number of runs for a full replication of all possible combinations of the factors.

For example, for a23 design you cannot specify a design arranged in 8 blocks
(NBLOCKS=8). Likewise, you cannot construct a design with block size
greater than 8 (SIZE=8).

� If you use NBLKFACS=s, the value ofs can be no greater than the number of
run-indexing factors, which give the number of runs needed to index the design.
For details, see “Types of Factors” on page 488 and Chapter 16, “Theory of
Orthogonal Designs” on page 503.

EXAMINE Statement

EXAMINE <options> ;

You use the EXAMINE statement to specify the characteristics of the design that are
to be listed in the output.

Theoptionsare remembered by the procedure; once specified, they remain in effect
until you submit a new EXAMINE statement with different options or until you turn
off all EXAMINE options by submitting just

examine;

The followingoptionsare available.

ALIASING< (d) >
A< (d) >

lists the alias structure of the design, which identifies effects that are confounded with
one another and are thus indistinguishable.

You can specify(d) immediately after the ALIASING option for a listing of the
alias structure with effects up to and including orderd. For example, the following
statement requests aliases for up to fourth-order effects (for example, A*B*C*D):
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examine aliasing(4);

Each line of the alias structure is listed in the form

effect=effect= : : : =effect

for as many effects as are aliased with one another.

The default value ford is determined automatically from the model as follows:

� If you specify the model with a resolution numberr in the MODEL statement,
thend is the integer part of(r + 1)=2.

� If you specify the model with a list of effects in the MODEL statement, thend
is the larger of

– one plus the largest order of an effect to be estimated

– the largest order of an effect considered to be nonnegligible

where main effects have order 1, two-factor interactions have order 2, and so on. For
details on aliasing, see “Alias Structure” on page 496.

CONFOUNDING
C

lists the confounding rules used to construct the design. For the definition of con-
founding rules, see “Confounding Rules” on page 496 and “Suitable Confounding
Rules” on page 504.

DESIGN
D

lists the points in the design in standard order with the factor levels coded. For
a description of the randomization and coding rules, see “OUTPUT Statement” on
page 452.

FACTORS Statement

FACTORS factor-names< = option> ;

You use the FACTORS statement to start the construction of a new design by naming
the factors in the design. The FACTORS statement clears all previous specifications
for the design (number of runs, block size, and so on). Use it when you want to start
a new design.Note that the FACTORS statement should be the first statement
following the PROC FACTEX statement.

In the FACTORS statement,

factor-names
lists names for the factors in the design. These names must be valid SAS variable
names. See “Types of Factors” on page 488 for details.

The followingoption is available:

449
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Part 3. The CAPABILITY Procedure

NLEV=q
specifies the number of levels for each factor in the design. The value ofq must be an
integer greater than or equal to 2.The default value for q is 2. In order to construct a
design that involves either fractionation or blocking,q must be either a prime number
or an integer power of a prime number. For the reason behind this restriction, see
“Structure of General Factorial Designs” on page 503.

MODEL Statement

MODEL model-specification<MINABS < (d) >> ;

You use the MODEL statement to provide the model for the construction of the fac-
torial design. The model can be specified either directly by specifying the effects to
be estimated with the ESTIMATE= option or indirectly by specifying the resolution
of the design with the RESOLUTION= option.If you create a fractional factorial
design or if you create a design that involves blocking, the MODEL statement is
required.

The twomodel-specificationsare described as follows:

ESTIMATE=(effects) <option>
identifies theeffectsthat you want to estimate with the design. To specifyeffects,
simply list the names of main effects, and join terms in interactions with asterisks.
Theeffectslisted must be enclosed within parentheses. See “Specifying Effects in the
MODEL Statement” on page 489 for details. You can use EST or E for the keyword
ESTIMATE.

After the ESTIMATE=option, you can specify the followingoption:

NONNEGLIGIBLE=( nonnegligible-effects)
identifies nonnegligible effects. These are the effects whose magnitudes are
unknown, but you do not necessarily want to estimate them with the design. If
you do not want certain effects to be aliased with ESTIMATE= effects, then
list them in the NONNEGLIGIBLE= effects. Thenonnegligible-effectslisted
must be enclosed within parentheses.

You can use NONNEG or N for the keyword NONNEGLIGIBLE.

For example, suppose that you want to construct a fraction of a24 design in order
to estimate the main effects of the four factors. To specify the model, simply list
the main effects with the EFFECTS= option, since these are the effects of interest.
Furthermore, if you consider the two-factor interactions to be significant but are not
interested in estimating them, then list these interactions with the NONNEGLIGI-
BLE= option.

See Example 15.8 on page 468 for an example using the ESTIMATE= option. See
page 503 for details on how the FACTEX procedure interprets the model and derives
an appropriate confounding scheme.
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RESOLUTION=r
RESOLUTION=MAXIMUM

specifies the resolution of the design. The resolution numberr must be a positive
integer greater than or equal to 3. The interpretation ofr is as follows:

� If r is odd, then the effects of interest are taken to be those of order(r � 1)=2
or less.

� If r is even, then the effects of interest are taken to be those of order(r� 2)=2
or less, and the nonnegligible effects are taken to be those of orderr=2 or less.

If you specify RESOLUTION=MAXIMUM, the FACTEX procedure searches for a
design with the highest resolution that satisfies the SIZE statement requirements.

You can use RES or R for the keyword RESOLUTION and MAX for MAXIMUM.

For more on design resolution, see “Resolution” on page 491. For an example of
model specificationusing the RESOLUTION=r option, see page 435. For an exam-
ple of the RESOLUTION=MAX option, see page 433.

MINABS < (d) >
requests a search for a design that has minimum aberration. Specifying(d) imme-
diately after the MINABS option requests a search for a minimum aberration de-
sign involving interactions up to orderd. The default value ford is the same as for
the ALIASING option in the EXAMINE statement. See “Minimum Aberration” on
page 497 for more information. For an example of the MINABS option, see Exam-
ple 15.11 on page 472.

Examples of the MODEL Statement
Suppose you specify a design with the following FACTORS statement, where the
number of factorsf can be replaced with a number:

factors x1-x f;

Then Table 15.6 lists equivalent ways to specify common models.

Table 15.6. Equivalent of Model Specifications

RES= option EST= and NONNEG= options
model res=3 model est=(x1-x f);
model res=4 model est=(x1-x f) nonneg=(x1|x2|x3| : : :|x f@2);

model res=5 model est=(x1|x2|x3| : : :|x f@2);

The resolution specification is more concise than the effects specification and is also
more efficient in an algorithmic sense. To decrease the time required to find a design,
particularly for designs with a large number of factors, you should specify your model
using the RESOLUTION= option rather than listing the effects. For more information
on interpreting the resolution number, see “Resolution” on page 491.

451
SAS OnlineDoc: Version 8



Part 3. The CAPABILITY Procedure

OUTPUT Statement

OUTPUT OUT= SAS-data-set<options> ;

You use the OUTPUT statement to save a design in an output data set. Optionally,
you can use the OUTPUT statement to modify the design by specifying values to be
output for factors, creating new factors, randomizing the design, and replicating the
design. You specify the output data set as follows:

OUT=SAS-data-set
gives the name of the output data set in which the design is saved. Note that OUT=
is required.

options
You can use theoptionsto

� recode the values for design factors
� recode the values for the block variable
� replicate the entire design
� replicate each point of the design
� randomize the design
� create derived factors based on the original factors

The following list describes the precedingoptions:

Recode Design Factors
By default, the output data set contains a variable for each factor in the design coded
with standard values, as follows:

� For factors with 2 levels (q = 2), the values are�1 and +1.

� For factors with 3 levels (q = 3), the values are�1, 0, and +1.

� For factors withq levels (q > 3), the values are0; 1; 2; : : : q � 1.

You can recode the levels of the factor from the standard levels to levels appropriate
for your situation.

For example, suppose that you want to recode a three-level factorial design from the
standard levels�1, 0, and +1 to the actual levels. Suppose the factors are pressure
(PRESSURE) with character levels, agitation rate (RATE) with numeric levels, and
temperature (TEMP) with numeric levels. You can use the following statement to
recode the factor levels and save the design in a SAS data set named RECODE:

output out=recode pressure cvals=(’low’ ’medium’ ’high’)
rate nvals=(20 40 60 )
temp cvals=(100 150 200 );
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The general form ofoptionsto recode factors is as follows:

factor-nameNVALS= (level1 level2: : : levelq)
or

factor-nameCVALS= (’level1’ ’level2’ : : : ’levelq’)
where

factor-name gives the name of the design factor.

NVALS= lists new numeric levels for design factors.

CVALS= lists new character levels for design factors. Each string can be up
to 40 characters long.

When recoding a factor, the NVALS= and CVALS= options map the first value listed
to the lowest value for the factor, the second value listed to the next lowest value, and
so on. If you rename and recode a factor, the type and length of the new variable are
determined by whether you use the CVALS= option (character variable with length
equal to the longest string) or the NVALS= option (numeric variable). For more on
recoding a factor, see “Factor Variable Characteristics in the Output Data Set” on
page 490.

Recode Block Factor
If the design uses blocking, the output data set automatically contains a block vari-
able named BLOCK, and for a design withb blocks, the default values of the block
variable are1; 2; : : : b. You can rename the block variable and optionally recode the
block levels from the default levels to levels appropriate for your situation.

For example, for a design arranged in four blocks, suppose that the block variable is
day of the week (DAY) and that the four block levels of character type areMon, Tue,
Wed, andThu. You can use the following statement to rename the block variable,
recode the block levels, and save the design in a SAS data set named RECODE:

output out=recode
blockname=day cvals=(’Mon’ ’Tue’ ’Wed’ ’Thu’);

The general form ofoptionsto change the block variable name or change the block
levels is as follows:

BLOCKNAME= block-name<NVALS= (level1 level2: : : levelb)>
or

BLOCKNAME= block-name<CVALS= (’level1’ ’level2’ : : : ’levelb’)>

where

block-name gives a new name for the block factor.

NVALS= lists new numeric levels for the block factor. For details, see “Re-
code Design Factors” on page 452.

CVALS= lists new character levels for the block factor. For details, see “Re-
code Design Factors” on page 452.
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Note that you can simply rename the block variable using only the BLOCKNAME=
option, without using the NVALS= and CVALS= options.

Replicate Entire Design
DESIGNREP=c
DESIGNREP=SAS-data-set

replicates the entire design. Specify DESIGNREP=c to replicate the designc times,
wherec is an integer. Alternatively, you can specify a SAS data set with the DE-
SIGNREP option. In this case, the design is replicated once for each point in the
DESIGNREP= data set, and the OUT= data set contains the variables in the DE-
SIGNREP= data set as well as the design variables.

In mathematical notation, the OUT= data set is the direct product of the
DESIGNREP= data set and the design. If the design is A and the
DESIGNREP= data set is B, then the OUT= data set is B
 A, where
 denotes the
direct product.

For details, see “Replication” on page 494. For illustrations of the difference between
the DESIGNREP= and POINTREP= options, see Example 15.6 on page 464 and
Example 15.7 on page 467.

Replicate Design Point
POINTREP=p
POINTREP=SAS-data-set

replicates each point of the design. Specify POINTREP=p to replicate each design
point p times, wherep is an integer. Alternatively, you can specify a SAS data set
with the POINTREP= option. In this case, the POINTREP= data set is replicated
once for each point in the design and the OUT= data set contains the variables in the
POINTREP= data set as well as the design variables.

In mathematical notation, the OUT= data set is the direct product of the design and
the POINT= data set. If the design is A and the POINTREP= data set is B, then the
OUT= data set is A
 B, where
 denotes the direct product.

For details, see “Replication” on page 494. For illustrations of the difference between
the DESIGNREP= and POINTREP= options, see Example 15.6 on page 464 and
Example 15.7 on page 467.

Randomize Design
RANDOMIZE < (u) > < NOVALRAN >

randomizes the design. See “Randomization” on page 492 for details. The following
optionsare available:

(u)
specifies a numberu to start the pseudo-random number generator. The value
of u must be enclosed in parentheses immediately after the keyword RAN-
DOMIZE, and it can be any positive integer up to231 � 1. The default value
of u is generated from the time of day.

NOVALRAN
prevents the randomization of theoretical factor levels to actual levels. The
randomization of run order is still performed.
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Create Derived Factors
You can createderived factorsbased on the joint values of a set of the design factors.
Each distinct combination of levels of the design factors corresponds to a single level
for the derived factor. Thus, when you create a derived factor fromk design factors,
each withq levels, the derived factor hasqk levels. Derived factors are useful when
you create mixed-level designs; see Example 15.8 on page 468 for an example. See
“Structure of General Factorial Designs” on page 503 for information on how the
levels of design factors are mapped into levels of the derived factor. The general form
of theoption for creating derived factors is

[ design-factors]= derived-factor< NVALS= ( list-of-numbers)>
or

[ design-factors]= derived-factor< CVALS= ( ’string1’ ’string2’ : : : ’stringn’)>
where

design-factors gives names of factors currently in the design. These factors are
combined to create the new derived factor.

derived-factor gives a name to the new derived factor. This name must not be used
in the design.

NVALS= lists new numeric levels for the derived factor.

CVALS= lists new character levels for the derived factor. See “Recode De-
sign Factors” on page 452 for details.

If you create a derived factor and do not use the NVALS= or CVALS= option to assign
levels to the derived factor, the FACTEX procedure assigns the values0; 1; : : : ; qk�1,
where the derived factor is created fromk design factors, each withq levels. In
general, the CVALS= or NVALS= list for a derived factor must containqk values.

The following statement gives an example of creating a derived factor and then re-
naming the levels of the factor:

output out=new [a1 a2]=a cvals=(’A’ ’B’ ’C’ ’D’);

This statement converts two two-level factors (A1 and A2) into one four-level factor
(A), which has the levels A, B, C, and D.

SIZE Statement

SIZE size-specification;

You use the SIZE statement to specify the size of the design, which is the number
of runs in the design. The SIZE statement is required for designs of less than a full
replicate (for example, fractional factorial designs). By default, the design consists
of one full replication of all possible combinations of the factors.
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The two simplest explicitsize-specificationsthat you can use are

� DESIGN=n, which specifies the number of runs (n) in the design
� FRACTION=h, which specifies1=h of one full replicate

Use only one of these two options. In all, there are six mutually exclusivesize-
specificationsthat you can use, as described by the following list:

DESIGN=n
specifies the actual number of runs in the design. The number of runs must be a
power of the number of levelsq for the factors in the design. (See the NLEV= option
on page 450). If the last FACTORS statement does not contain the NLEV= option,
thenq = 2 by default, and as a result,n must be a power of 2. For an example, see
page 457.

FRACTION=h
specifies the fraction of one full replication of all possible combinations of the factors.
For instance, FRACTION=2 specifies a half-fraction, and FRACTION=4 specifies a
quarter-fraction, and so on. In general, FRACTION=h specifies a design with 1/h of
the runs in a full replicate. If the design hasf factors, each withq levels, then the
size of the design isqf=h. If you use FRACTION=h, h must be a power ofq. See
Example 15.4 on page 461.

NRUNFACS=m
specifies the number ofrun-indexing factorsin the design. The design contains one
run for each possible combination of the levels of the run-indexing factors. Run-
indexing factors are the firstm factors for a design inqm runs. All possible com-
binations of the levels of the run-indexing factors occur in the design. As a result,
if each factor hasq levels, the number of runs in the design isqm. For details on
run-indexing factors, see “Types of Factors” on page 488 and “Structure of General
Factorial Designs” on page 503.

DESIGN=MINIMUM
FRACTION=MAXIMUM
NRUNFACS=MINIMUM

constructs a design with the minimum number of runs (no larger than one full repli-
cate) given all of the other characteristics of the design. In other words, the design
size is optimized. You cannot specify this option if you specify any of the block size
optimization features in the BLOCKS statement (see NBLKFACS=MAXIMUM on
page 447).

Equivalence of Specifications
The three explicitsize-specificationsare related to each other, as demonstrated by the
following example. Suppose you want to construct a design for 11 two-level factors
in 128 runs. Since128 = 211=16 = 27, three equivalent size specifications for this
design are

size design=128;
size fraction=16;
size nrunfacs=7;
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Advanced Examples

Example 15.1. Completely Randomized Design

An experimenter wants to study the effect of cutting speed (SPEED) on the surfaceSee FACTEX8
in the SAS/QC
Sample Library

finish of a component. He considers testing the components at five levels of cutting
speed (100, 125, 150, 175, and 200) and decides to test five components at each level.

The design used is a single-factorcompletely randomized designwith five levels and
25 runs. The following statements generate the required design:

proc factex;
factors speed / nlev=5;
size design=25;
output out=surfexpt randomize /* Randomly assign run order */

speed nvals=(100 125 150 175 200);
run;

proc print data=surfexpt;
run;

The design saved in the data set SURFEXPT is displayed in Output 15.1.1.

Output 15.1.1. A Completely Randomized Design

Obs speed

1 150
2 200
3 150
4 125
5 125
6 175
7 200
8 125
9 100

10 175
11 100
12 100
13 100
14 150
15 125
16 200
17 150
18 150
19 175
20 100
21 175
22 200
23 125
24 175
25 200
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If you are working through this example on your computer, you might find a different
run order in your output. This is due to the difference in the seed value of the random
number generator. You can specify a seed value with the RANDOMIZE option. For
syntax, see “Randomize Design” on page 454.

Example 15.2. Resolution IV Augmented Design

Box, Hunter, and Hunter (1978) describe an injection molding experiment involvingSee RCBD
in the SAS/QC
Sample Library

eight two-level factors: mold temperature (TEMP), moisture content (MOIST), hold-
ing pressure (HOLDPR), cavity thickness (THICK), booster pressure (BOOSTPR),
cycle time (TIME), screw speed (SPEED), and gate size (GATE).

The design used has 16 runs and is of resolution 4; it is often denoted as28�4

IV
. You

can generate this design, shown in Output 15.2.1, with the following statements:

proc factex;
factors temp moist holdpr thick /* List factor names */

boostpr time speed gate;
size design=16; /* Construct 16-run design */
model resolution=4; /* of resolution 4 */
examine design aliasing; /* List points and aliasing */

run;

Output 15.2.1. A 28�4

IV
Design

Design Points

Experiment
Number temp moist holdpr thick boostpr time speed gate

--------------------------------------------------------------------------
1 -1 -1 -1 -1 -1 -1 -1 -1
2 -1 -1 -1 1 1 1 1 -1
3 -1 -1 1 -1 1 1 -1 1
4 -1 -1 1 1 -1 -1 1 1
5 -1 1 -1 -1 1 -1 1 1
6 -1 1 -1 1 -1 1 -1 1
7 -1 1 1 -1 -1 1 1 -1
8 -1 1 1 1 1 -1 -1 -1
9 1 -1 -1 -1 -1 1 1 1

10 1 -1 -1 1 1 -1 -1 1
11 1 -1 1 -1 1 -1 1 -1
12 1 -1 1 1 -1 1 -1 -1
13 1 1 -1 -1 1 1 -1 -1
14 1 1 -1 1 -1 -1 1 -1
15 1 1 1 -1 -1 -1 -1 1
16 1 1 1 1 1 1 1 1

The alias structure is shown in Output 15.2.2.
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Output 15.2.2. Alias Structure for a 28�4

IV
Design

Aliasing Structure

temp
moist
holdpr
thick
boostpr
time
speed
gate
temp*moist = holdpr*gate = thick*speed = boostpr*time
temp*holdpr = moist*gate = thick*time = boostpr*speed
temp*thick = moist*speed = holdpr*time = boostpr*gate
temp*boostpr = moist*time = holdpr*speed = thick*gate
temp*time = moist*boostpr = holdpr*thick = speed*gate
temp*speed = moist*thick = holdpr*boostpr = time*gate
temp*gate = moist*holdpr = thick*boostpr = time*speed

Subsequent analysis of the data collected for the design suggests that HOLDPR and
BOOSTPR have statistically significant effects. There also seems to be significant ef-
fect associated with the sum of the aliased two-factor interactions TEMP*BOOSTPR,
MOIST*TIME, HOLDPR*SPEED, and THICK*GATE. This chain of confounded
interactions is identified in Output 15.2.2.

A few runs can be added to the design to distinguish between the effects due to these
four interactions. You simply need a design in which any three of these effects are
estimable, regardless of all other main effects and interactions. For example, the
following statements generate a suitable set of runs (see Output 15.2.3):

proc factex;
factors temp moist holdpr thick

boostpr time speed gate;
model estimate=(moist*time

holdpr*speed
thick*gate );

size design=4;
examine design aliasing(2);

run;

Output 15.2.3. Additional Runs to Resolve Ambiguities

Design Points

Experiment
Number temp moist holdpr thick boostpr time speed gate

--------------------------------------------------------------------------
1 -1 -1 1 1 1 1 -1 1
2 -1 1 -1 -1 -1 -1 -1 1
3 1 -1 -1 -1 -1 -1 1 1
4 1 1 1 1 1 1 1 1
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Output 15.2.4 shows the alias structure of the additional four-run experiment. Note
that the alias link

TEMP*BOOSTPR = MOIST*TIME = HOLDPR*SPEED = THICK*GATE

found in the original design is broken. When these four runs are added to the original
16 runs, the four two-factor interactions can be estimated separately with the 20 runs.

Output 15.2.4. Alias Structure of the Additional Experiment

Aliasing Structure

0 = gate = temp*speed = holdpr*thick = holdpr*boostprs = holdpr*time
= thick*boostprs = thick*time = boostprs*time

temp = speed = temp*gate = moist*holdpr = moist*thick = moist*boostprs
= moist*time = speed*gate

moist = temp*holdpr = temp*thick = temp*boostprs = temp*time = moist*gate
= holdpr*speed = thick*speed = boostprs*speed = time*speed

holdpr = thick = boostprs = time = temp*moist = moist*speed = holdpr*gate
= thick*gate = boostprs*gate = time*gate

Example 15.3. Factorial Design with Center Points

Factorial designs involving two levels are the most popular experimental designs.See FACTEX9
in the SAS/QC
Sample Library

For two-level designs, it is assumed that the response is close to linear over the range
of the factor levels. To check for curvature and to obtain an independent estimate
of error, you can replicate points at the center of a two-level design. Adding center
points to the design does not affect the estimates of factorial effects.

To construct a design with center points, you first create a data set with factorial
points using the FACTEX procedure and then augment it with center points by using
a simple DATA step. The following example illustrates this technique.

A researcher is studying the effect of three two-level factors—current (CURRENT),
voltage (VOLTAGE), and time (TIME)—by conducting an experiment using a com-
plete factorial design. The researcher is interested in studying the overallcurvature
over the range of factor levels by adding four center points.

You can construct this design in two stages. First, create the basic23 design with the
following statements:

proc factex;
factors current voltage time;
output out=factdat

current nvals=(12 28 )
voltage nvals=(100 200)
time nvals=(50 60 );

run;
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Next, create the center points and append to the basic design as follows:

data center(drop=i);
do i = 1 to 4;

current = 20;
voltage = 150;
time = 55;
output;

end;
data cpdesgn;

set factdat center;
run;

proc print data=cpdesgn;
run;

The design saved in the data set CPDESIGN is displayed in Output 15.3.1. Observa-
tions 1 to 8 are the factorial points, and observations 9 to 12 are the center points.

Output 15.3.1. A 23 Design with Four Center Points

Obs current voltage time

1 12 100 50
2 12 100 60
3 12 200 50
4 12 200 60
5 28 100 50
6 28 100 60
7 28 200 50
8 28 200 60
9 20 150 55

10 20 150 55
11 20 150 55
12 20 150 55

Example 15.4. Fold-Over Design

Folding overa fractional factorial design is a method for breaking the links betweenSee FACTEX10
in the SAS/QC
Sample Library

aliased effects in a design. Folding over a design means adding a new fraction iden-
tical to the original fraction except that the signs of all the factors are reversed. The
new fraction is called afold-overdesign. Combining a fold-over design with the orig-
inal fraction converts a design of odd resolutionr into a design of resolutionr + 1.�

For example, folding over a resolution 3 design yields a resolution 4 design. You can
use the FACTEX procedure to construct the original design fraction and a DATA step
to generate the fold-over design.

�This is not true if the original design has even resolution.
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Consider a 1/8 fraction of a26 factorial design with factors A, B, C, D, E, and F. The
following statements construct a26�3

III
design:

proc factex;
factors a b c d e f;
size fraction=8; /* Specify 1/8 fraction design */
model resolution=3; /* of resolution 3 */
examine aliasing;
output out=original;

run;

title ’Original Design’;
proc print data=original;
run;

The design, which is saved in the data set ORIGINAL, is displayed in Output 15.4.1.

Output 15.4.1. A 26�3

III
Design

Original Design

Obs a b c d e f

1 -1 -1 -1 -1 1 1
2 -1 -1 1 1 -1 -1
3 -1 1 -1 1 -1 1
4 -1 1 1 -1 1 -1
5 1 -1 -1 1 1 -1
6 1 -1 1 -1 -1 1
7 1 1 -1 -1 -1 -1
8 1 1 1 1 1 1

Since the design is of resolution 3, the alias structure in Output 15.4.2 indicates that
all the main effects are confounded with the two-factor interactions.

Output 15.4.2. Alias Structure for a 26�3

III
Design

Aliasing Structure

a = c*f = d*e
b = c*e = d*f
c = a*f = b*e
d = a*e = b*f
e = a*d = b*c
f = a*c = b*d
a*b = c*d = e*f

To separate the main effects and the two-factor interactions, augment the original
design with a 1/8 fraction in which the signs of all the factors are reversed. The
combined design (original design and fold-over design) of resolution 4 breaks the
alias links between the main effects and the two-factor interactions. The fold-over
design can be created using the following DATA step:
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data foldover; /* Create the fold-over design with */
set original; /* the factor signs reversed */
a=-a; b=-b; c=-c;
d=-d; e=-e; f=-f;

run;

title ’Fold-Over Design’;
proc print data=foldover;
run;

The fold-over design is displayed in Output 15.4.3.

Output 15.4.3. A 26�3

III
Design with Signs Reversed

Fold-Over Design

Obs a b c d e f

1 1 1 1 1 -1 -1
2 1 1 -1 -1 1 1
3 1 -1 1 -1 1 -1
4 1 -1 -1 1 -1 1
5 -1 1 1 -1 -1 1
6 -1 1 -1 1 1 -1
7 -1 -1 1 1 1 1
8 -1 -1 -1 -1 -1 -1

Example 15.5. Randomized Complete Block Design

In a randomized complete block design (RCBD), each level of a “treatment” ap-See FACTEX11
in the SAS/QC
Sample Library

pears once in each block, and each block contains all the treatments. The order of
treatments is randomized separately for each block. You can create RCBDs with the
FACTEX procedure.

Suppose you want to construct an RCBD with six treatments in four blocks. To test
each treatment once in each block, you need 24 experimental units. The following
statements construct the randomized complete block design shown in Output 15.5.1:

proc factex;
factors block / nlev=4;
output out=blocks

block nvals=(1 2 3 4);
run;

factors trt / nlev=6;
output out=rcbd

designrep=blocks
randomize (101)
trt cvals=(’A’ ’B’ ’C’

’D’ ’E’ ’F’);
run;

proc print data=rcbd;
run;
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Note that the order of the runs within each block is randomized and that the blocks
(1, 2, 3, and 4) are in a random order.

Output 15.5.1. A Randomized Complete Block Design

Obs blocks trt

1 1 B
2 1 A
3 1 D
4 1 E
5 1 F
6 1 C
7 4 B
8 4 D
9 4 C

10 4 A
11 4 E
12 4 F
13 2 B
14 2 C
15 2 F
16 2 E
17 2 D
18 2 A
19 3 C
20 3 A
21 3 B
22 3 E
23 3 F
24 3 D

Example 15.6. Two-Level Design with Design Replication and
Point Replication

You can replicate a design to obtain an independent estimate of experimental errorSee FACTEX12
in the SAS/QC
Sample Library

or to estimate effects more precisely. There are two ways you can replicate a design
using the FACTEX procedure: you can replicate the entire design with the DESIGN-
REP= option, or you can replicate each point in the design with the POINTREP=
option. The following example illustrates the difference.

A process engineer is conducting an experiment to study the shrinkage of an
injection-molded plastic component. The engineer chooses to determine the effect of
the following four factors, each at two levels: holding pressure (PRESSURE), mold-
ing temperature (TEMP), cooling time (TIME), and injection velocity (VELOCITY).

The design used is a half-fraction of a24 factorial design, denoted as24�1

IV
. The

following statements construct the design:

proc factex;
factors pressure temp time velocity;
size fraction=2;
model res=max;
output out=savunrep;

run;

proc print data=savunrep;
run;
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The design, saved in the data set SAVUNREP, is shown in Output 15.6.1.

Output 15.6.1. Unreplicated Design

Obs pressure temp time velocity

1 -1 -1 -1 -1
2 -1 -1 1 1
3 -1 1 -1 1
4 -1 1 1 -1
5 1 -1 -1 1
6 1 -1 1 -1
7 1 1 -1 -1
8 1 1 1 1

To obtain a more precise estimate of the experimental error, the engineer decides to
replicate the entire design three times. The following statements generate a24�1

IV

design with three replicates in 24 runs:

proc factex;
factors pressure temp time velocity;
size fraction=2;
model res=max;
output out=savedrep designrep=3;

run;

proc print data=savedrep;
run;

The design, saved in the data set SAVEDREP, is displayed in Output 15.6.2.

Output 15.6.2. Design Replication

Obs pressure temp time velocity

1 -1 -1 -1 -1
2 -1 -1 1 1
3 -1 1 -1 1
4 -1 1 1 -1
5 1 -1 -1 1
6 1 -1 1 -1
7 1 1 -1 -1
8 1 1 1 1
9 -1 -1 -1 -1

10 -1 -1 1 1
11 -1 1 -1 1
12 -1 1 1 -1
13 1 -1 -1 1
14 1 -1 1 -1
15 1 1 -1 -1
16 1 1 1 1
17 -1 -1 -1 -1
18 -1 -1 1 1
19 -1 1 -1 1
20 -1 1 1 -1
21 1 -1 -1 1
22 1 -1 1 -1
23 1 1 -1 -1
24 1 1 1 1
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The first replicate comprises observations 1 to 8, the second replicate comprises ob-
servations 9 to 16, and the third replicate comprises observations 17 to 24.

Now, instead of replicating the entire design, suppose the engineer decides to replicate
each run in the design three times. The following statements construct a24�1

IV
design

in 24 runs with point replication:

proc factex;
factors pressure temp time velocity;
size fraction=2;
model res=max;
output out=saveprep pointrep=3;

run;

proc print data=saveprep;
run;

The design, saved in the data set SAVEPREP, is displayed in Output 15.6.3. The first
design point is replicated three times (observations 1–3), the second design point is
replicated three times (observations 4–6), and so on.

Output 15.6.3. Point Replication

Obs pressure temp time velocity

1 -1 -1 -1 -1
2 -1 -1 -1 -1
3 -1 -1 -1 -1
4 -1 -1 1 1
5 -1 -1 1 1
6 -1 -1 1 1
7 -1 1 -1 1
8 -1 1 -1 1
9 -1 1 -1 1

10 -1 1 1 -1
11 -1 1 1 -1
12 -1 1 1 -1
13 1 -1 -1 1
14 1 -1 -1 1
15 1 -1 -1 1
16 1 -1 1 -1
17 1 -1 1 -1
18 1 -1 1 -1
19 1 1 -1 -1
20 1 1 -1 -1
21 1 1 -1 -1
22 1 1 1 1
23 1 1 1 1
24 1 1 1 1

Note the difference in the arrangement of the designs created using design replication
(Output 15.6.2) and point replication (Output 15.6.3). In design replication, the orig-
inal design is replicated a specified number of times; but in point replication, each
run in the original design is replicated a specified number of times. See page 494 for
more information on design replication.
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Example 15.7. Mixed-Level Design Using Design Replication
and Point Replication

Orthogonal factorial designs are most commonly used at the initial stages of experi-See FACTEX13
in the SAS/QC
Sample Library

mentation. At these stages, it is best to experiment with as few levels of each factor as
possible in order to minimize the number of runs required. Thus, these designs usu-
ally involve only two levels of each factor. Occasionally some factors will naturally
have more than two levels of interest—different types of seed, for instance.

You can create designs for factors with different numbers of levels simply by tak-
ing the cross product of component designs in which the factors all have the same
numbers of levels, that is, replicating every run of one design for each run of the
other. (See Example 15.14 on page 482.) All estimable effects in each of the com-
ponent designs, as well as all generalized interactions between estimable effects in
different component designs, are estimable in the cross-product; refer to Section 3 of
Chakravarti (1956).

This example illustrates how you can construct a mixed level design using the OUT-
PUT statement with the POINTREP= option or the DESIGNREP= option to take the
cross product between two designs.

Suppose you want to construct a mixed-level factorial design for two two-level factors
(A and B) and one three-level factor (C) with 12 runs. The following SAS statements
produce a complete3� 22 factorial design using design replication:

proc factex;
factors a b;
output out=ab;

run;
factors c / nlev=3;
output out=drepdesn

designrep=ab;
run;

proc print data=drepdesn;
run;

Output 15.7.1 lists the mixed-level design saved in the data set DREPDESN.

Output 15.7.1. 3� 22 Mixed-Level Design Using Design Replication

Obs a b c

1 -1 -1 -1
2 -1 -1 0
3 -1 -1 1
4 -1 1 -1
5 -1 1 0
6 -1 1 1
7 1 -1 -1
8 1 -1 0
9 1 -1 1

10 1 1 -1
11 1 1 0
12 1 1 1
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You can also create a mixed-level design for the preceding factors using the point
replication feature of the FACTEX procedure. The following SAS statements pro-
duce a complete22 � 3 factorial design using point replication:

proc factex;
factors a b;
output out=ab;

run;
factors c / nlev=3;
output out=prepdesn

pointrep=ab;
run;

proc print data=prepdesn;
run;

Output 15.7.2 lists the mixed-level design saved in the data set PREPDESN.

Output 15.7.2. 22 � 3 Mixed-Level Design Using Point Replication

Obs c a b

1 -1 -1 -1
2 -1 -1 1
3 -1 1 -1
4 -1 1 1
5 0 -1 -1
6 0 -1 1
7 0 1 -1
8 0 1 1
9 1 -1 -1

10 1 -1 1
11 1 1 -1
12 1 1 1

Note the difference between the designs in Output 15.7.1 and Output 15.7.2. In design
replication, the mixed-level design is given by AB
 C, while for point replication
the mixed-level design is given by C
 AB, where
 denotes the direct product. In
design replication, you can view the DESIGNREP= data set as nestedoutsidethe
design, while in point replication, you can view the POINTREP= data set as nested
insidethe design.

Example 15.8. Mixed-Level Design Using Pseudo-Factors

If the numbers of levels for the factors of the mixed-level design are all powers of theSee FACTEX6A
in the SAS/QC
Sample Library

same prime powerq, you can construct the design usingpseudo-factors, where the
levels ofk q-level pseudo-factors are associated with the levels of a singlederived
factor with qk levels. Refer to Section 5 of Chakravarti (1956) and see “Types of
Factors” on page 488 for details.

For example, the following statements create a design for one four-level factor (A)
and three two-level factors (B, C, and D) in 16 runs (a half replicate):
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proc factex;
factors a1 a2 b c d;
model estimate =(b c d a1|a2 )

nonnegligible=(b|c|d@2 a1|a2|b a1|a2|c a1|a2|d);
size design=16;
output out=designa [a1 a2]=a cvals = (’A’ ’B’ ’C’ ’D’);

proc print;
var a b c d;

run;

The levels of two two-level pseudo-factors (A1 and A2) are used to represent the four
levels of A. Hence the three degrees of freedom associated with A will be given by
the main effects of A1 and A2 and their interaction A1*A2, and you can thus refer to
(A1jA2) as the main effect of A.

The MODEL statement specifies that the main effects of all factors are to be es-
timable, and that all of the two-factor interactions between B, C, and D, as well as
the interactions between each of these and (A1jA2), are to be nonnegligible. As a
result, the mixed-level design has resolution 4. The design is saved in the data set
DESIGNA, combining the levels of the two pseudo-factors, A1 and A2, to obtain the
levels of the four-level factor A. The data set DESIGNA is listed in Output 15.8.1.

Output 15.8.1. 4� 23 Design of Resolution IV in 16 Runs

Obs a b c d

1 A -1 -1 1
2 A -1 1 -1
3 A 1 -1 -1
4 A 1 1 1
5 C -1 -1 -1
6 C -1 1 1
7 C 1 -1 1
8 C 1 1 -1
9 B -1 -1 -1

10 B -1 1 1
11 B 1 -1 1
12 B 1 1 -1
13 D -1 -1 1
14 D -1 1 -1
15 D 1 -1 -1
16 D 1 1 1

Example 15.9. Mixed-Level Design by Collapsing Factors

You can construct a mixed-level design bycollapsingfactors, that is, by replacingSee FACTEX6C
in the SAS/QC
Sample Library

a factor withn levels by a factor withm levels, wherem < n. Orthogonality is
retained in the sense that estimates of different effects are uncorrelated, although not
all estimates have equal variance; refer to Section 6 of Chakravarti (1956). This
method has been used by Addelman (1962) to derive main effects plans for factors
with mixed numbers of levels and by Margolin (1967) to construct plans that consider
two-factor interactions.
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You can use the value specification in the OUTPUT statement as a convenient tool
for collapsing factors. For example, the following statements create a 27-run design
for two two-level factors (X1 and X2) and two three-level factors (X3 and X4) such
that all main effects and two-factor interactions are uncorrelated:

proc factex;
factors x1-x4 / nlev = 3;
size design=27;
model r=4;
output out=savmixed x1 nvals=(-1 1 -1)

x2 nvals=(-1 1 -1);
proc print data=savmixed;
run;

The mixed-level design is a three-quarter fraction with resolution 5; refer to Margolin
(1967). The design is displayed in Output 15.9.1.

Output 15.9.1. 22 � 32 Design of Resolution V in 27 Runs

Obs x1 x2 x3 x4

1 -1 -1 -1 -1
2 -1 -1 0 1
3 -1 -1 1 0
4 -1 1 -1 1
5 -1 1 0 0
6 -1 1 1 -1
7 -1 -1 -1 0
8 -1 -1 0 -1
9 -1 -1 1 1

10 1 -1 -1 1
11 1 -1 0 0
12 1 -1 1 -1
13 1 1 -1 0
14 1 1 0 -1
15 1 1 1 1
16 1 -1 -1 -1
17 1 -1 0 1
18 1 -1 1 0
19 -1 -1 -1 0
20 -1 -1 0 -1
21 -1 -1 1 1
22 -1 1 -1 -1
23 -1 1 0 1
24 -1 1 1 0
25 -1 -1 -1 1
26 -1 -1 0 0
27 -1 -1 1 -1
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Example 15.10. Hyper-Graeco-Latin Square Design

A q � q Latin square is an arrangement ofq symbols, each repeatedq times, in a See FACTEX7A
in the SAS/QC
Sample Library

square of sideq such that each symbol appears exactly once in each row and in each
column. Such arrangements are useful as designs forrow-and-columnexperiments,
where it is necessary to balance the effects of twoq-level factors simultaneously.

A Graeco-Latin square is actually a pair of Latin squares; when superimposed, each
symbol in one square occurs exactly once with each symbol in the other square. The
following is an example of a5� 5 Graeco-Latin square, where Latin letters are used
for the symbols of one square and Greek letters are used for the symbols of the other:

A� B� C D� E�
B C� D� E� A�
C� D� E� A B�
D� E A� B� C�
E� A� B� C� D

Wheneverq is a power of a prime number, you can construct up toq � 1 squares,
each withq symbols that are balanced over all the other factors. The result is called a
hyper-Graeco-Latin Squareor a complete set ofmutually orthogonalLatin squares.
Such arrangements can be useful as designs (refer to Williams 1949), or they can be
used to construct other designs.

When q is a prime power, hyper-Graeco-Latin squares are straightforward to con-
struct with the FACTEX procedure. This is becausea complete set ofq � 1 mutually
orthogonalq� q Latin squares is equivalent to a resolution 3 design forq+1 q-level
factors inq2 runs, where two of the factors index rows and columns and each of the
remaining factors indexes the treatments of one of the squares.

For instance, the following statements generate a complete set of three mutually or-
thogonal4�4 Latin squares, with rows indexed by the factor ROW, columns indexed
by the factor COLUMN, and the treatment factors in the respective squares indexed
by T1, T2, and T3. The first step is to construct a resolution 3 design for five four-
level factors in 16 runs.

proc factex;
factors row column t1-t3 / nlev=4;
size design=16;
model resolution=3;
output out=graeco t1 cvals=(’A’ ’B’ ’C’ ’D’)

t2 cvals=(’A’ ’B’ ’C’ ’D’)
t3 cvals=(’A’ ’B’ ’C’ ’D’);

run;

In most cases, the form that appears in the output data set GRAECO is most useful.
The form that usually appears in textbooks is displayed in Output 15.10.1, which can
be produced using a simple DATA step (not shown here).
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Output 15.10.1. Hyper-Graeco-Latin Square

Square 1 :
A D B C
D A C B
B C A D
C B D A

Square 2 :
A D B C
C B D A
D A C B
B C A D

Square 3 :
A D B C
B C A D
C B D A
D A C B

Example 15.11. Resolution IV Design with Minimum
Aberration

If a design has resolution IV, then you can simultaneously estimate all main effectsSee FACTEX14
in the SAS/QC
Sample Library

andsometwo-factor interactions. However, not all resolution IV designs are equiv-
alent; you may be able to estimate more two-factor interactions with some than with
others. Among all resolution IV designs, a design that allows you to estimate the
maximum number of two-factor interactions is said to haveminimum aberration.

For example, if you use the FACTEX procedure to generate a resolution IV two-level
design in 32 runs for seven factors, you will be able to estimate all main effects and
15 of the 21 two-factor interactions with the design that is created by default. The fol-
lowing statements create this design and display its alias structure in Output 15.11.1:

proc factex;
factors a b c d e f g;
model resolution=4;
size design=32;
examine aliasing;

run;
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Output 15.11.1. Alias Structure for Default 27�2

IV
Design

Aliasing Structure

a
b
c
d
e
f
g
a*b = f*g
a*c
a*d
a*e
a*f = b*g
a*g = b*f
b*c
b*d
b*e
c*d = e*g
c*e = d*g
c*f
c*g = d*e
d*f
e*f

In constrast, the resolution 4 design given in Table 12.15 of Box, Hunter, and Hunter
(1978) is a minimum aberration design that allows estimation of 18 two-factor in-
teractions, three more than can be estimated with the default design. The FACTEX
procedure constructs the minimum aberration design if you specify the MINABS op-
tion to the MODEL statement, as in the following statements:

proc factex;
factors a b c d e f g;
model resolution=4 / minab
size design=32;
examine aliasing;

run;

The alias structure for the resulting design is shown in Output 15.11.2.
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Output 15.11.2. Alias Structure for Minimum Aberration 27�2

IV
Design

Aliasing Structure

a
b
c
d
e
f
g
a*b
a*c
a*d
a*e
a*f
a*g
b*c
b*d
b*e
b*f
b*g
c*d = e*f
c*e = d*f
c*f = d*e
c*g
d*g
e*g
f*g

All of the designs listed in Table 12.15 of Box, Hunter, and Hunter (1978) have
minimum aberration. For most of these cases, the default design constructed by the
FACTEX procedure has minimum aberration—that is, the MINABS option is not re-
quired. This is important because the MINABS option forces the FACTEX procedure
to check many more designs, and the search can, therefore, take longer to run. You
can limit the search time with the TIME= option in the PROC FACTEX statement.
In five of the cases (210�6

III
, 27�2

IV
, 28�3

IV
, 29�4

IV
, and210�3

V
), the MINABS option is re-

quired to construct a design with minimum aberration, and in two cases (29�5

III
, 29�3

IV
),

the NOCHECK option is required as well. If the FACTEX procedure is given a suffi-
ciently large amount of time to run, specifying both the MINABS and the NOCHECK
options will always result in a minimum aberration design. However, with the default
search time of 60 seconds, there are three cases (210�5

IV
, 210�4

IV
, and211�5

IV
) for which

the FACTEX procedure is unable to find the minimum aberration design, even with
both the MINABS and NOCHECK options specified.
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Example 15.12. Replicated Blocked Design with Partial
Confounding

In an unreplicated blocked design, the interaction effect that is confounded with theSee FACTEX15
in the SAS/QC
Sample Library

block effect cannot be estimated. You can replicate the experiment so that a different
interaction effect is confounded in each replicate. This enables you to obtain infor-
mation about an interaction effect from the replicate(s) in which it is not confounded.

For example, consider a23 design with factors A, B, and C arranged in two blocks.
Suppose you decide to run four replicates of the design. By constructing the design
sequentially, you can choose the effects to be estimated in each replicate depending
on the interaction confounded with the block effect in the other replicates.

In the first replicate, you specify only that the main effects are to be estimable. The
following statements generate an eight-run two-level design arranged in two blocks:

proc factex;
factors a b c;
blocks nblocks=2;
model est=(a b c);
examine confounding aliasing;
output out=rep1 blockname=block nvals=(1 2);

run;

The alias structure and the confounding scheme are listed in Output 15.12.1. The
highest order interaction A*B*C is confounded with the block effect. The design,
with recoded block levels, is saved in a dataset named REP1.

Output 15.12.1. Confounding Rule and Alias Structure for Replicate 1

Block Pseudo-factor Confounding Rules

[B1] = a*b*c

Aliasing Structure

a
b
c
a*b
a*c
b*c

If you were to analyze this replicate by itself, you could not determine whether an
effect is due to A*B*C or the block effect. You can construct a second replicate that
confounds a different interaction effect with the block effect. Since the FACTEX pro-
cedure is interactive, simply submit the following statements to generate the second
replicate:

model est=(a b c a*b*c);
output out=rep2

blockname=block nvals=(3 4);
run;
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The alias structure and the confounding scheme for the second replicate are listed in
Output 15.12.2. The interaction A*B*C is free of any aliases, but now the two-factor
interaction B*C is confounded with the block effect.

Output 15.12.2. Confounding Rule and Alias Structure for Replicate 2

Block Pseudo-factor Confounding Rules

[B1] = b*c

Aliasing Structure

a
b
c
a*b
a*c

[B] = b*c
a*b*c

To estimate the interaction B*C with the third replicate, submit the following state-
ments (immediately after the preceding statements):

model est=(a b c a*b*c b*c);
output out=rep3 blockname=block nvals=(5 6);

run;

The alias structure and confounding rules are shown in Output 15.12.3. The inter-
action B*C is free of aliases, but the interaction A*C is confounded with the block
effect.

Output 15.12.3. Confounding Rule and Alias Structure for Replicate 3

Block Pseudo-factor Confounding Rules

[B1] = a*c

Aliasing Structure

a
b
c
a*b

[B] = a*c
b*c
a*b*c

Finally, to estimate the interaction effect A*C with the fourth replicate, submit the
following statements:

model est=(a b c a*b*c b*c a*c);
output out=rep4 blockname=block nvals=(7 8);

run;

The alias structure and confounding rules are displayed in Output 15.12.4.

SAS OnlineDoc: Version 8
476



Chapter 15. Advanced Examples

Output 15.12.4. Confounding Rule and Alias Structure for Replicate 4

Block Pseudo-factor Confounding Rules

[B1] = a*b

Aliasing Structure

a
b
c

[B] = a*b
a*c
b*c
a*b*c

When combined, these four replicates give full information on the main effects and
three-quarter information on each of the interactions. The following statements com-
bine the four replicates:

data combine;
set rep1 rep2 rep3 rep4;

run;

proc print data=combine;
run;

The final design is saved in the data set COMBINE. A partial listing of this data set
is shown in Output 15.12.5.
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Output 15.12.5. Combined Design

Obs block a b c

1 1 -1 -1 -1
2 1 -1 1 1
3 1 1 -1 1
4 1 1 1 -1
5 2 -1 -1 1
6 2 -1 1 -1
7 2 1 -1 -1
8 2 1 1 1
9 3 -1 -1 1

10 3 -1 1 -1
11 3 1 -1 1
12 3 1 1 -1
13 4 -1 -1 -1
14 4 -1 1 1
15 4 1 -1 -1
16 4 1 1 1
17 5 -1 -1 1
18 5 -1 1 1
19 5 1 -1 -1
20 5 1 1 -1
21 6 -1 -1 -1
22 6 -1 1 -1
23 6 1 -1 1
24 6 1 1 1
25 7 -1 1 -1
26 7 -1 1 1
27 7 1 -1 -1
28 7 1 -1 1
29 8 -1 -1 -1
30 8 -1 -1 1
31 8 1 1 -1
32 8 1 1 1

Example 15.13. Incomplete Block Design

Several important series of balanced incomplete block designs can be derived fromSee FACTEX7B
in the SAS/QC
Sample Library

orthogonal factorial designs. One is the series onbalanced latticeof Yates (1936);
refer to page 396 of Cochran and Cox (1957). In this situation, the number of treat-
mentsv must be the square of a power of a prime number:v = q2; q = pk where
p is a prime number. These designs are based on a complete set ofq � 1 mutually
orthogonalq� q Latin squares, which is equivalent to a resolution 3 design forq+1

q-level factors inq2 runs.

The balanced lattice designs includeq + 1 replicates of the treatments. They are
constructed by associating each treatment with a run in the factorial design, each
replicate with one of the factors, and each block with one of theq values of that factor.
For example, the treatments in Block 3 within Replicate 2 are those treatments that
are associated with runs for which factor 2 is set at value 3.

The following statements use this method to construct a balanced lattice design for
16 treatments in five replicates of four blocks each. The construction procedure is
based on a resolution 3 design for five four-level factors in 16 runs.
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proc factex;
factors x1-x5 / nlev=4;
size design=16;
model r=3;
output out=a;

run;

In the following DATA step, the incomplete block design is built using the design
saved in the data set A by the FACTEX procedure:

data b;
keep rep block plot t;
array x{5} x1-x5;
do rep = 1 to 5;

do block = 1 to 4;
plot = 0;
do n = 1 to 16;

set a point=n;
if (x{rep}=block-1) then do;

t = n;
plot = plot + 1;
output;
end;

end;
end;

end;
stop;

run;

For each block within each replicate, the program loops through the run numbers in
the factorial design and chooses those which have the REPth factor equal to BLOCK-
1. These run numbers are the treatments that go into the particular block.
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The design is printed using a DATA step. Each block of each replicate is built into
the variables S1, S2, S3, and S4, and each block is printed with a PUT statement.

data _null_;
array s{4} s1-s4; /* Buffer for holding each block */
file print; /* Direct printing to output screen */
n = 1;
do r = 1 to 5;

put "Replication " r 1.0 ":";
do b = 1 to 4;

do p = 1 to 4;
set b point=n;
s{plot} = t;
n = n+1;
end;

put " Block " b 1.0 ":" (s1-s4) (3.0);
end;

put;
end;

stop;
run;

The design is displayed in Output 15.13.1.

You can use the PLAN procedure to randomize the block design, as shown by the
following statements:

proc plan seed=54321;
factors rep=5 block=4 plot=4;
output data=b out=c;

proc sort;
by rep block plot;

run;

The variable PLOT indexes the plots within each block. Refer to theSAS/STAT User’s
Guidefor a general discussion of randomizing block designs.

Finally, substituteset c for set b in the preceding DATA step. Running this DATA
step creates the randomized design displayed in Output 15.13.2.
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Output 15.13.1. A Balanced Lattice

Replication 1:
Block 1: 1 2 3 4
Block 2: 5 6 7 8
Block 3: 9 10 11 12
Block 4: 13 14 15 16

Replication 2:
Block 1: 1 5 9 13
Block 2: 2 6 10 14
Block 3: 3 7 11 15
Block 4: 4 8 12 16

Replication 3:
Block 1: 1 6 11 16
Block 2: 3 8 9 14
Block 3: 4 7 10 13
Block 4: 2 5 12 15

Replication 4:
Block 1: 1 8 10 15
Block 2: 3 6 12 13
Block 3: 4 5 11 14
Block 4: 2 7 9 16

Replication 5:
Block 1: 1 7 12 14
Block 2: 3 5 10 16
Block 3: 4 6 9 15
Block 4: 2 8 11 13

Output 15.13.2. Randomized Design

Replication 1:
Block 1: 15 5 2 12
Block 2: 3 8 9 14
Block 3: 16 1 11 6
Block 4: 7 10 13 4

Replication 2:
Block 1: 2 4 3 1
Block 2: 5 7 8 6
Block 3: 9 11 10 12
Block 4: 15 16 13 14

Replication 3:
Block 1: 2 13 8 11
Block 2: 14 12 7 1
Block 3: 15 4 9 6
Block 4: 5 16 3 10

Replication 4:
Block 1: 13 1 5 9
Block 2: 14 2 10 6
Block 3: 11 15 3 7
Block 4: 16 12 4 8

Replication 5:
Block 1: 2 16 7 9
Block 2: 15 10 8 1
Block 3: 3 12 6 13
Block 4: 5 11 14 4
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Example 15.14. Design with Inner Array and Outer Array

Byrne and Taguchi (1986) report the use of a fractional factorial design to investigateSee FACTEX4
in the SAS/QC
Sample Library

fitting an elastomeric connector to a nylon tube as tightly as possible. Their experi-
ment applies the design philosophy of Genichi Taguchi, which distinguishes between
control factorsandnoise factors. Control factors are typically those that the engineer
is able to set under real conditions, while noise factors vary uncontrollably in practice
(though within a predictable range).

The experimental layout consists of two designs, one for the control factors and one
for the noise factors. The design for the control factors is called theinner array, and
the design for noise factors is called theouter array. The outer array is replicated for
each of the runs in the inner array, and a performance measure (“signal-to-noise ra-
tio”) is computed over the replicate. The performance measure thus reflects variation
due to changes in the noise factors. You can construct such a cross-product design
with the replication options in the OUTPUT statement of the FACTEX procedure, as
shown in this example.

Researchers identified the following four control factors that were thought to influ-
ence the amount of force required to pull the connector off the tube:

� the interference (INTERFER), defined as the difference between the outer
width of the tubing and the inner width of the connector

� the connector wall thickness (CONNWALL)

� the depth of insertion (IDEPTH) of the tubing into the connector

� the amount of adhesive (GLUE) in the connector pre-dip

Researchers also identified the following three noise factors related to the assembly:

� the amount of time (TIME) allowed for assembly
� the temperature (TEMPERAT)
� the relative humidity (HUMIDITY)

Three levels were selected for each of the control factors, and two levels were selected
for each of the noise factors.

The following statements construct the 72-run design used by Byrne and Taguchi
(1986). First, an eight-run outer array for the three noise factors is created and saved
in the data set OUTERARY.

proc factex;
factors time temperat humidity;
output out=outerary time nvals=( 24 120)

temperat nvals=( 72 150)
humidity nvals=(.25 .75);

run;
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Next, a nine-run inner array (design of resolution 3) is chosen for the control factors.
The POINTREP option in the OUTPUT statement replicates the eight-run outer array
in the data set OUTERARY for each of the nine runs in the inner array and saves the
final design containing 72 runs in the data set SAVEDESN.

proc factex;
factors interfer connwall idepth glue / nlev=3;
size design=9;
model resolution=3;
output out=savedesn pointrep=outerary

interfer cvals=(’Low’ ’Medium’ ’High’ )
connwall cvals=(’Thin’ ’Medium’ ’Thick’ )
idepth cvals=(’Shallow’ ’Deep’ ’Medium’)
glue cvals=(’Low’ ’High’ ’Medium’);

run;

proc print data=savedesn;
run;

The final design is listed in Output 15.14.1. Main effects of each factor can be
estimated free of each other but are confounded with two-factor interactions.

Output 15.14.1. Design for Control Factor and Noise Factors

Obs interfer connwall idepth glue time temperat humidity

1 Low Thin Shallow Low 24 72 0.25
2 Low Thin Shallow Low 24 72 0.75
3 Low Thin Shallow Low 24 150 0.25
4 Low Thin Shallow Low 24 150 0.75
5 Low Thin Shallow Low 120 72 0.25
6 Low Thin Shallow Low 120 72 0.75
7 Low Thin Shallow Low 120 150 0.25
8 Low Thin Shallow Low 120 150 0.75
9 Low Medium Medium Medium 24 72 0.25

10 Low Medium Medium Medium 24 72 0.75
11 Low Medium Medium Medium 24 150 0.25
12 Low Medium Medium Medium 24 150 0.75
13 Low Medium Medium Medium 120 72 0.25
14 Low Medium Medium Medium 120 72 0.75
15 Low Medium Medium Medium 120 150 0.25
16 Low Medium Medium Medium 120 150 0.75
17 Low Thick Deep High 24 72 0.25
18 Low Thick Deep High 24 72 0.75
19 Low Thick Deep High 24 150 0.25
20 Low Thick Deep High 24 150 0.75
21 Low Thick Deep High 120 72 0.25
22 Low Thick Deep High 120 72 0.75
23 Low Thick Deep High 120 150 0.25
24 Low Thick Deep High 120 150 0.75
25 Medium Thin Medium High 24 72 0.25
26 Medium Thin Medium High 24 72 0.75
27 Medium Thin Medium High 24 150 0.25
28 Medium Thin Medium High 24 150 0.75
29 Medium Thin Medium High 120 72 0.25
30 Medium Thin Medium High 120 72 0.75
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Output 15.14.1. (continued)

Obs interfer connwall idepth glue time temperat humidity

31 Medium Thin Medium High 120 150 0.25
32 Medium Thin Medium High 120 150 0.75
33 Medium Medium Deep Low 24 72 0.25
34 Medium Medium Deep Low 24 72 0.75
35 Medium Medium Deep Low 24 150 0.25
36 Medium Medium Deep Low 24 150 0.75
37 Medium Medium Deep Low 120 72 0.25
38 Medium Medium Deep Low 120 72 0.75
39 Medium Medium Deep Low 120 150 0.25
40 Medium Medium Deep Low 120 150 0.75
41 Medium Thick Shallow Medium 24 72 0.25
42 Medium Thick Shallow Medium 24 72 0.75
43 Medium Thick Shallow Medium 24 150 0.25
44 Medium Thick Shallow Medium 24 150 0.75
45 Medium Thick Shallow Medium 120 72 0.25
46 Medium Thick Shallow Medium 120 72 0.75
47 Medium Thick Shallow Medium 120 150 0.25
48 Medium Thick Shallow Medium 120 150 0.75
49 High Thin Deep Medium 24 72 0.25
50 High Thin Deep Medium 24 72 0.75
51 High Thin Deep Medium 24 150 0.25
52 High Thin Deep Medium 24 150 0.75
53 High Thin Deep Medium 120 72 0.25
54 High Thin Deep Medium 120 72 0.75
55 High Thin Deep Medium 120 150 0.25
56 High Thin Deep Medium 120 150 0.75
57 High Medium Shallow High 24 72 0.25
58 High Medium Shallow High 24 72 0.75
59 High Medium Shallow High 24 150 0.25
60 High Medium Shallow High 24 150 0.75
61 High Medium Shallow High 120 72 0.25
62 High Medium Shallow High 120 72 0.75
63 High Medium Shallow High 120 150 0.25
64 High Medium Shallow High 120 150 0.75
65 High Thick Medium Low 24 72 0.25
66 High Thick Medium Low 24 72 0.75
67 High Thick Medium Low 24 150 0.25
68 High Thick Medium Low 24 150 0.75
69 High Thick Medium Low 120 72 0.25
70 High Thick Medium Low 120 72 0.75
71 High Thick Medium Low 120 150 0.25
72 High Thick Medium Low 120 150 0.75

Note that the levels of IDEPTH and GLUE are listed in the OUTPUT statement in
a nonstandard order so that the design produced by the FACTEX procedure matches
the design of Byrne and Taguchi (1986). The order of assignment of levels does not
affect the properties of the resulting design. Furthermore, design can be randomized
with the RANDOMIZE option in the OUTPUT statement.

Byrne and Taguchi (1986) indicate that a smaller outer array with only four runs
would have been sufficient. You can generate this design (not shown here) by modi-
fying the statements on page 482; specifically, add the following SIZE and MODEL
statements:

size design=4;
model resolution=3;
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In their analysis of the data from the experiment based on the smaller design, Byrne
and Taguchi (1986) note several interesting interactions between control and noise
factors. However, since the inner array is of resolution 3, it is impossible to say
whether or not there exist interesting interactions between the control factors. In
other words, you cannot determine whether an effect is due to an interaction or to the
main effect with which it is confounded.

One alternative is to begin with a design of resolution 4. Two-factor interactions will
remain confounded with one another, but they will be free of main effects. Moreover,
further experimentation can be carried out to distinguish between confounded inter-
actions that seem important. To determine the optimal size of this design, submit the
following statements interactively:

proc factex;
factors interfer connwall idepth glue / nlev=3;
model resolution=4;
size design=minimum;

run;

This causes the following message to appear in the SAS log:

NOTE: Design has 27 runs, resolution = 4.

In other words, the smallest resolution 4 design for four three-level factors has 27
runs, which together with the eight-run outer array requires 216 runs. Even the
smaller four-run outer array requires 108 runs. Both of these designs are substan-
tially larger than the design originally reported, but the larger designs protect against
the effects of unsuspected interactions.

A second alternative is to begin with only two levels of the control factors. Further
experimentation can then be directed toward exploring the effects of factors deter-
mined to be important in this initial stage of experimentation. Note that NLEV=2 is
the default in the FACTORS statement. Submit the following additional statements:

factors interfer connwall idepth glue;
model resolution=4;
size design=minimum;

run;

This causes the following message to appear in the SAS log:

NOTE: Design has 8 runs, resolution = 4.

Thus, as few as eight runs can be used for the inner array. This design is amenable to
blocking, whereas the proposed nine-run design is not. Blocking is an important con-
sideration whenever experimental conditions can vary over the course of conducting
the experiment.

Now, submit the following statements:

size design=8;

blocks size=minimum;

run;

485
SAS OnlineDoc: Version 8



Part 3. The CAPABILITY Procedure

This causes the following message to appear in the SAS log:

NOTE: Design has 8 runs in 4 blocks of size 2,

resolution = 4.

Thus the experiment can be run in blocks as small as two runs.

Example 15.15. Design and Analysis of a Complete Factorial
Experiment

Yin and Jillie (1987) describe an experiment on a nitride etch process for a singleSee FACTEX16
in the SAS/QC
Sample Library

wafer plasma etcher. The experiment was run using four factors: cathode power
(POWER), gas flow (FLOW), reactor chamber pressure (PRESSURE), and electrode
gap (GAP). A single replicate of a24 design was run, and the etch rate (RATE) was
measured.

You can use the following statements to construct a 16-run design in the four factors:

proc factex;
factors power flow pressure gap;
output out=desgndat

power nvals=(0.80 1.20)
flow nvals=(4.50 550 )
pressure nvals=(125 200 )
gap nvals=(275 325 );

run;

The design with the actual (decoded) factor levels is saved in the data set
DESGNDAT. The experiment using the 16-run design is performed, and the etch
rate is measured. The following DATA step updates the data set DESGNDAT with
the values of RATE:

data desgndat;
set desgndat;
input rate @@;
datalines;
550 669 604 650 633 642 601 635
1037 749 1052 868 1075 860 1063 729
;

The data set DESGNDAT is listed in Output 15.15.1.
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Output 15.15.1. A 24 Design with Responses

Nitride Etch Process Experiment

Obs power flow pressure gap rate

1 0.8 4.5 125 275 550
2 0.8 4.5 125 325 669
3 0.8 4.5 200 275 604
4 0.8 4.5 200 325 650
5 0.8 550.0 125 275 633
6 0.8 550.0 125 325 642
7 0.8 550.0 200 275 601
8 0.8 550.0 200 325 635
9 1.2 4.5 125 275 1037

10 1.2 4.5 125 325 749
11 1.2 4.5 200 275 1052
12 1.2 4.5 200 325 868
13 1.2 550.0 125 275 1075
14 1.2 550.0 125 325 860
15 1.2 550.0 200 275 1063
16 1.2 550.0 200 325 729

To perform an analysis of variance on the responses, you can use the GLM procedure,
as follows:

proc glm data=desgndat;
class power flow pressure gap;
model rate=power|flow|pressure|gap@2 / ss1;

run;

The factors are listed in both the CLASS and MODEL statements, and the response
as a function of the factors is modeled using the MODEL statement. The MODEL
statement requests Type I sum of squares (SS1) and lists all effects that contain two
or fewer factors. It is assumed that three-factor and higher interactions are not signif-
icant.

Part of the output from the GLM procedure is shown in Output 15.15.2. The main
effect of the factors POWER and GAP and the interaction between POWER and GAP
are significant (theirp-values are less than 0.01).

Output 15.15.2. Analysis of Variance for the Nitride Etch Process Experiment

General Linear Models Procedure

Source DF Type I SS Mean Square F Value Pr > F

power 1 374850.0625 374850.0625 183.99 <.0001
flow 1 217.5625 217.5625 0.11 0.7571
power*flow 1 18.0625 18.0625 0.01 0.9286
pressure 1 10.5625 10.5625 0.01 0.9454
power*pressure 1 1.5625 1.5625 0.00 0.9790
flow*pressure 1 7700.0625 7700.0625 3.78 0.1095
gap 1 41310.5625 41310.5625 20.28 0.0064
power*gap 1 94402.5625 94402.5625 46.34 0.0010
flow*gap 1 2475.0625 2475.0625 1.21 0.3206
pressure*gap 1 248.0625 248.0625 0.12 0.7414
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Computational Details

Types of Factors

The factorsof a design are variables that an experimenter can set at several values.
In general, experiments are performed to study the effects of different levels of the
factors on theresponseof interest. For example, consider an experiment to maximize
the percentage of raw material that responds to a chemical reaction. The factors
might include the reaction temperature and the feed rate of the chemicals, while the
response is the yield rate. Factors of different types are used in different ways in
constructing a design. This section defines the different types of factors.

Block factorsare unavoidable factors that are known to affect the response, but in a
relatively uninteresting way. For example, in the chemical experiment, the technician
operating the equipment might have a noticeable effect on the yield of the process.
The operator effect might be unavoidable, but it is usually not very interesting. On the
other hand, factors whose effects are directly of interest are calleddesign factors. One
goal in designing an experiment is to avoid getting the effects of the design factors
mixed up, orconfounded, with the effects of any block factors.

When constructing a design by orthogonal confounding, all factors formally have the
same number of levelsq, whereq is a prime number or a power of a prime number.
Usually,q is two, and the factor levels are chosen to represent high and low values.

However, this does not mean, for example, that a design for two-level factors is re-
stricted to no more than two blocks. Instead, the values of several two-level factors
can be used to index the values of a single factor with more than two levels. As an
example, the values of three two-level factors (P1, P2, andP3) can be used to index
the values of an eight-level factor(F ), as follows:

P1 P2 P3 F

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

The factorsPi are used only to derive the levels of the factor F; thus, they are called
pseudo-factors, and F is called aderived factor. In general,k q-level pseudo-factors
give rise to a singleqk-level derived factor. Block factors can be derived factors, and
their associated formal factors (thePi factors) are calledblock pseudo-factors.
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The method for constructing an orthogonally confounded design forq-level factors
in qm runs distinguishes between the firstm factors and the remaining factors. Each
of theqm different combinations of the firstm factors occurs once in the design in an
order similar to the preceding table. For this reason, the firstm factors are called the
run-indexing factors.

Table 15.7 summarizes the different types of factors discussed in this section.

Table 15.7. Types of Factors

Term Definition

Block factor Unavoidable factor whose effect is not of direct interest
Block pseudo-factor Pseudo-factor used to derive levels of a block factor
Derived factor Factor whose levels are derived from pseudo-factors
Design factor Factor whose effect is of direct interest
Pseudo-factor Formal factor combined to derive the levels of a real factor
Run-indexing factors The firstm design factors, whoseqm combinations

index the runs in the design

Specifying Effects in the MODEL Statement

The FACTEX procedure accepts models that contain terms for main effects and in-
teractions.Main effectsare specified by writing variable names by themselves.

A B C

Interactionsare specified by joining variable names with asterisks.

A*B B*C A*B*C

In addition, thebar operator(| ) simplifies specification for interactions. The@op-
erator, used in combination with the bar operator, further simplifies specification of
interactions. For example, two ways of writing the complete set of effects for a model
with up to three-factor interactions are

model estimate=(a b c a*b a*c b*c a*b*c);

and

model estimate=(a|b|c);
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When the bar (| ) is used, the right- and left-hand sides become effects, and their
cross becomes an interaction effect. Multiple bars are permitted. The expressions are
expanded from left to right, using rules given by Searle (1971). For example,A|B|C
is evaluated as follows:

A|B|C ! fA|B g|C

! fA B A*Bg|C

! A B A*B C A*C B*C A*B*C

You can also specify the maximum number of variables involved in any effect that
results from bar evaluation by specifying the number, preceded by an @ sign, at the
end of the bar effect. For example, the specificationA|B|C@2 results in only those
effects that contain two or fewer factors. In this case, the effects A, B, A*B, C, A*C,
and B*C are generated.

Factor Variable Characteristics in the Output Data Set

When you use the OUTPUT statement to save a design in a data set, and you rename
and recode a factor, the type and length of the new variable are determined by whether
you use the NVALS= or CVALS= option. A factor variable whose values are coded
with the NVALS= specification is of numeric type. A factor variable whose values
are coded with the CVALS= option is of character type, and the length of the variable
is set to the length of the longest character string; shorter strings are padded with
trailing blanks.

For example, in the specifications

cvals=(’String 1’ ’A longer string’)
cvals=(’String 1’ ’String 2’)

the first value in the first CVALS= specification is padded with seven trailing blanks.
One consequence is that it no longer matches the ‘String 1’ of the second specifi-
cation. To match two such values (for example, when merging two designs), use
the TRIM function in the DATA step (seeSAS Language Reference: Dictionaryfor
details).
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Statistical Details

Resolution

The resolution of a design indicates which effects can be estimated free of other
effects. The resolution of a design is generally defined as the smallestorder� of the
interactions that are confounded with zero. Since having an effect of ordern + m
confounded with zero is equivalent to having an effect of ordern confounded with an
effect of orderm, the resolution can be interpreted as follows:

� If r is odd, then effects of ordere = (r � 1)=2 or less can be estimated free
of each other. However, at least some of the effects of ordere are confounded
with interactions of ordere + 1. A design of odd resolution is appropriate
when effects of interest are those of ordere or less, while those of ordere + 1
or higher are all negligible.

� If r is even, then effects of ordere = (r � 2)=2 or less can be estimated free
of each other and are also free of interactions of ordere + 1. A design of
even resolution is appropriate when effects of ordere or less are of interest,
effects of ordere + 1 are not negligible, and effects of ordere + 2 or higher
are negligible. If the design uses blocking, interactions of ordere+1 or higher
may be confounded with blocks.

In particular, for resolution 5 designs, all main effects and two-factor interactions can
be estimated free of each other. For resolution 4 designs, all main effects can be
estimated free of each other and free of two-factor interactions, but some two-factor
interactions are confounded with each other and/or with blocks. For resolution 3
designs, all main effects can be estimated free of each other, but some of them are
confounded with two-factor interactions.

In general, higher resolutions require larger designs. Resolution 3 designs are popular
because they handle relatively many factors in a minimal number of runs. However,
they offer no protection against interactions. If resources allow, you should use a
resolution 5 design so that all main effects and two-factor interactions will be inde-
pendently estimable. If a resolution 5 design is too large, you should use a design
of resolution 4, which ensures estimability of main effects free of any two-factor
interactions. In this case, if data from the initial design reveal significant effects as-
sociated with confounded two-factor interactions, further experiments can be run to
distinguish between effects that are confounded with each other in the design. See
page 458 for an example.

�The order of an effect is the number of factors involved in it. For example, main effects have order
one, two-factor interactions have order two, and so on.

491
SAS OnlineDoc: Version 8



Part 3. The CAPABILITY Procedure

Note that most references on fractional factorial designs use Roman numerals to de-
note resolution of a design—III, IV, V, and so on. A common notation for an orthog-
onally confounded design of resolutionr for k q-level factors inqk�p runs is

qk�pr

For example,25�1

V
denotes a design for five two-level factors in 16 runs that allows

estimation of all main effects and two-factor interactions. This chapter uses Arabic
numerals for resolution since these are specified with the RESOLUTION= option in
the MODEL statement.

Randomization

In many experiments, proper randomization is crucial to the validity of the conclu-
sions. Randomization neutralizes the effects of systematic biases that may be in-
volved in implementing the design and provides a basis for the assumptions underly-
ing the analysis. Refer to Kempthorne (1975) for a discussion.

The way in which randomization is handled depends on whether the design involves
blocking.

� For designs without block factors, proper randomization consists of randomly
permuting the overall order of the runs and randomly assigning the actual levels
of each factor to the theoretical levels it has for the purpose of constructing the
design.

� For designs with block factors, proper randomization calls for first performing
separate random permutations for the runs within each block, and then ran-
domly permuting the order in which the blocks are run.

For example, suppose you generate a full factorial design for three two-level factors
A, B, and C in eight runs. The following steps are involved in randomizing this
design:

1. Randomly permute the order of the runs.

Runs:f1; 2; 3; 4; 5; 6; 7; 8g ! f3; 8; 1; 2; 4; 7; 6; 5g

2. Randomly assign the actual levels to the theoretical levels for each factor.

Factor A levels:f0; 1g ! f1;�1g

Factor B levels:f0; 1g ! f1;�1g

Factor C levels:f0; 1g ! f�1; 1g
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Thus, the effect of the randomization is to transform the original design, as follows:

Run A B C
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

�!

Run A B C
3 1 -1 -1
8 -1 -1 1
1 1 1 -1
2 1 1 1
4 1 -1 1
7 -1 -1 -1
6 -1 1 1
5 -1 1 -1

If the original design is in two blocks, then the first step is replaced with the following:

1. Randomly permute the order of the runs within each block.

Block 1 runs:f1; 2; 3; 4g ! f4; 1; 2; 3g

Block 2 runs:f5; 6; 7; 8g ! f8; 7; 6; 5g

2. Randomly permute the order of the blocks.

Block levels:f1; 2g ! f2; 1g

The resulting transformation is shown in the following:

Run Block A B C
1 1 0 0 0
2 1 0 1 1
3 1 1 0 1
4 1 1 1 0
5 2 0 0 1
6 2 0 1 0
7 2 1 0 0
8 2 1 1 1

�!

Run Block A B C
8 2 -1 -1 1
7 2 -1 1 -1
6 2 1 -1 -1
5 2 1 1 1
4 1 -1 -1 -1
1 1 1 1 -1
2 1 1 -1 1
3 1 -1 1 1

If you use the RANDOMIZE option in the OUTPUT statement, the output data set
contains a randomized design. In some cases, it is appropriate to randomize the run
order but not the assignment of theoretical factor levels to actual levels. In these cases,
specify both the NOVALRAN and RANDOMIZE options in the OUTPUT statement.
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Replication

In quality improvement applications, it is often important to analyze both the mean
response of a process and the variability around the mean. To study variability with
an experimental design, you must take several measurements of the response for each
different combination of the factors of interest; that is, you mustreplicatethe design
runs.

Replicating a Fixed Number of Times
A simple method of replication is to take a given number of measurements for each
combination of factor levels in the basic design. You can replicate runs in the design
by specifying numbers for the POINTREP= and DESIGNREP= options in the OUT-
PUT statement. For example, the following code constructs a full22 design and uses
both of these options to replicate the design three times:

proc factex;
factors a b;
output out=one pointrep =3;

run;
output out=two designrep=3;

run;

The output data sets ONE and TWO have the same 12 runs, but they are in different
orders. in the data set ONE, the POINTREP= option causes all three replications of
each run to occur together, as shown in Figure 15.1.

OBS A B

1 -1 -1
2 -1 -1
3 -1 -1

9=
; 3 replicates of run 1

4 -1 1
5 -1 1
6 -1 1

9=
; 3 replicates of run 2

7 1 -1
8 1 -1
9 1 -1

9=
; 3 replicates of run 3

10 1 1
11 1 1
12 1 1

9=
; 3 replicates of run 4

Figure 15.1. Four-Run Design Replicated Using the POINTREP= Option

On the other hand, in the data set TWO, the DESIGNREP= option causes all four
runs of the design to occur together three times, as shown in Figure 15.2.
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OBS A B

Replicate 1

8>><
>>:

1 -1 -1
2 -1 1
3 1 -1
4 1 1

Replicate 2

8>><
>>:

5 -1 -1
6 -1 1
7 1 -1
8 1 1

Replicate 3

8>><
>>:

9 -1 -1
10 -1 1
11 1 -1
12 1 1

Figure 15.2. Four-Run Design Replicated Using the DESIGNREP= Option

Replicating with an Outer Array
Another method of design replication considers the range of environmental condi-
tions over which the process should maintain consistency. This method distinguishes
betweencontrol factorsandnoise factors. Control factors are factors that are under
the control of the designer or the process engineer. Noise factors cause the perfor-
mance of a product to vary when the nominal values of the control variables are fixed
(noise factors are controllable for the purposes of experimenting with the process).
Typical noise factors are variations in the manufacturing environment or the cus-
tomer’s environment due to temperature or humidity. The object of experimentation
is to find the best settings for the control factors for a variety of settings for the noise
factors. In other words, the goal is to develop a process that runs well in a variety of
environments. Refer to Dehnad (1989) and Phadke (1989) for further discussion.

To achieve this goal, a collection of environmental conditions (settings for the noise
factors) is determined. This collection is called theouter array. Each run in the
control factor design (inner array) is replicated within each of these environments.
The mean and variance of the process over the outer array are computed for each run
in the inner array. Either the outer array or the inner array may consist of all possible
different settings for the associated factors, or they may be fractions of all possible
settings.

You can replicate designs in this way by using data set names for the POINTREP=
and DESIGNREP= options in the OUTPUT statement. If you construct a design
for your control factors and you want to run a noise factor design for each run in
the control factor design, specify the data set that holds the noise factor design (that
is, theouter array) with the POINTREP= option in the OUTPUT statement. See
Example 15.14 on page 482 for an example.
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Confounding Rules

Confounding rules give the values of factors in terms of the values of therun-indexing
factors for a design. (See “Types of Factors” on page 488 for a discussion of run-
indexing factors.) The FACTEX procedure uses these rules to construct designs. The
confounding rules also determine the alias structure of the design. To display the
confounding rules for a design, use the CONFOUNDING option in the EXAMINE
statement.

For two-level factors, the rules are displayed in a multiplicative notation using the
default values of�1 and+1 for the factors. For example, the confounding rule

X8 = X1*X2*X3*X4*X5*X6*X7

means that the level of factor X8 is derived as the product of the levels of factors X1
through X7 for each run in the design. X8 will always have a value of +1 or -1 since
these are the values of X1 through X7. For factors withq > 2 levels, confounding
rules are printed in an additive notation, and the arithmetic is performed in the Galois
field of sizeq. For example, in a design for three-level factors, the confounding rule

F = B + (2*C) + D + (2*E)

means that the level of factor F is computed by adding the levels of B and D and two
times the levels of C and E, all modulo 3. Note that ifq is not a prime number, Galois
field arithmetic is not equivalent to arithmetic moduloq.

Blocks are introduced into designs by usingblock pseudo-factors. The confounding
rule for theith block pseudo-factor has[B i ] on the left-hand side.

For details on how confounding rules are constructed, see “Suitable Confounding
Rules” on page 504.

Alias Structure

The alias structure of a design identifies which effects are confounded (or aliased)
with each other in the design. Note the difference between alias structure and con-
founding rules: the confounding rules are used to construct the design, and the alias
structure is a result of using a given set of confounding rules. To display the alias
structure for a design, use the ALIAS option in the EXAMINE statement.

Examining the alias structure is important since aliased effects cannot be estimated
separately from one another. When several effects are listed as equal, the effects
are all jointly aliased with one another and form analias chainor alias string. For
example,

TEMP*MOIST = HPRESS*GATE = THICK*SCREW = BPRESS*TIME

is an alias chain that shows the relationship between four two-factor interactions. If
you want separate estimates of TEMP*MOIST and THICK*SCREW, for instance, a
design with this alias chain would not be acceptable. Designs of even resolution2k
contain one or more such chains of confoundedk-factor interactions.
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By default, the FACTEX procedure displays alias chains with effects up to a certain
orderd, where main effects are order 1, two-factor interactions are order 2, and so on.
The value ofd can be specified in the ALIAS option , or you can use the default cal-
culated by the procedure ; see page 448 for details. Alias chains that are confounded
with blocks are displayed with [B] on the left-hand side.

Minimum Aberration

As discussed in “Speeding up the Search” on page 507, the FACTEX procedure uses
a tree search algorithm to find the confounding rules of a design that matches the size
and resolution you specify. There may be more than one solution set of confounding
rules, and usually the FACTEX procedure chooses the first one it finds. However,
there can still be important differences between designs with the same resolution; to
deal with these differences, Fries and Hunter (1980) introduced the concept ofaber-
ration in confounded fractional factorial designs. This section defines aberration and
discusses how to request minimum aberration designs with the FACTEX procedure.

Recall that a design has resolutionr if r is the smallest order of the interactions that
are confounded with zero. The idea behind minimum aberration is that a resolution
r design that confoundsas fewrth-order interactions as possible is preferable. Tech-
nically, the aberration of a design is the vectork = fk1; k2; : : :g, whereki is the
number ofith-order interactions that are confounded with zero. A design with aber-
rationk hasminimum aberrationif k � k

0 for any other design with aberrationk0,
in the sense thatki < k0i for the firsti for whichki 6= k0i.

For example, consider the resolution 4 design for seven two-level factors in 32 runs
(27�2

IV
) discussed in Example 15.11 on page 472.

By specifying 5 for the orderd for the ALIASING option, you can see how many
fourth- and fifth-order interactions are confounded with zero. The default design
constructed by the FACTEX procedure confounds two fourth-order interactions and
no fifth-order interactions with zero.

0 = A*B*F*G = C*D*E*G

Thus, part of the aberration for this design is

fk3; k4; k5; : : :g = f0; 2; 0; : : :g

On the other hand, the design constructed using the MINABS option confounds only
one fourth-order interaction and two fifth-order interactions with zero.

0 = C*D*E*F = A*B*C*F*G = A*B*D*E*G
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Thus, part of the aberration for this design is

fk0
3
; k0

4
; k0

5
; : : :g = f0; 1; 2; : : :g

Since the two aberrations first differ fork4 andk0
4
, and sincek0

4
< k4, the aberration

for the second design is less than the aberration for the first design.

The definition of aberration requires evaluating the number ofith-order interactions
that are confounded with zero for alli � k, wherek is the number of factors. Since
there areqk generalized interactions betweenk q-level factors, this evaluation can be
prohibitive if there are many factors. Moreover, it is unnecessary if, as is usually the
case, you are interested only in small-order interactions. Therefore, when you specify
the MINABS option, by default the FACTEX procedure evaluates the aberration only
up to orderd, whered is the same as the default maximum order for listing the aliasing
(see the specifications for the EXAMINE statement on page 448). You can setd to
any level by specifying(d) immediately after the MINABS option ; see page 451 for
details.

The discussion so far has dealt only with fractional unblocked designs, but one more
point to consider is the definition of aberration for block designs. Define a vector
b = b1; b2; : : : similar to the aberration vectork, except thatbi is the number ofith-
order interactions that are confounded with blocks. A block design withk andb has
minimum aberration if

� k is minimum
� among all designs with minimumk, b is minimum

Output

By default, the FACTEX procedure does not display any output. For each design that
it constructs, the procedure displays a message in the SAS log that provides

� the number of runs in the design
� the number of blocks and the block size, if appropriate
� the maximum resolution of the design

If you use the DESIGN option in an EXAMINE statement, the procedure displays
the coded runs in the design using standard values, as described in the “OUTPUT
Statement” section on page 452. If you use the CONFOUNDING option in an EX-
AMINE statement, the procedure displays the confounding rules used to construct
the design. If you use the ALIAS option in an EXAMINE statement, the procedure
displays the alias structure for the design.

The FACTEX procedure also creates output data sets with the OUTPUT statement.
Since the procedure is interactive, you can use many OUTPUT statements in a given
run of the FACTEX procedure to produce many output data sets if you separate them
with run; statements.
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ODS Tables

The following table summarizes the ODS tables that you can request with the PROC
FACTEX statement.

Table 15.8. ODS Tables Produced in PROC FACTEX

ODS Table Name Description Statement Option
DesignPoints Design points EXAMINE DESIGN
FactorRules Treatment factor confounding rules EXAMINE CONFOUNDING
BlockRules Block factor confounding rules EXAMINE CONFOUNDING
Aliasing Alias structure EXAMINE ALIASING
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