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Chapter 24
Details of the OPTEX Procedure

Syntax

You can specify the following statements with the OPTEX procedure. Items within
the brackets<> are optional.

PROC OPTEX < options> ;
CLASS class-variables;
MODEL effects< / options> ;
BLOCKS block-specification<options> ;
EXAMINE <options> ;
GENERATE <options> ;
ID variables;
OUTPUT OUT= SAS-data-set<options> ;

To generate a design, you use the PROC OPTEX and MODEL statements. You can
use the other statements as needed. The OPTEX procedure is interactive and allows
you to use all statements (except the PROC OPTEX statement) after the first RUN
statement.

Statement Ordering for Covariate Designs
You use the CLASS and MODEL statements to define a linear model for the runs in
the candidate data set. You can also use these statements to define a general covariate
model. In this case, list the CLASS and MODEL statements that define the model
for the candidate points directly after the PROC OPTEX statement. Then list the
CLASS and MODEL statements that define the covariate model after the BLOCKS
DESIGN= specification. Thus, in this case, the ordering for these statements should
be

1. PROC OPTEX statement

2. CLASS and MODEL statements for the candidate points

3. BLOCKS DESIGN= statement

4. CLASS and MODEL statements for the covariates

Note also that a CLASS statement naming classification variables must precede the
MODEL statement that uses those variables.
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Part 6. The CAPABILITY Procedure

Summary of Functions

Table 24.1, Table 24.2, and Table 24.3 classify the OPTEX statements and options by
function.

Table 24.1. Summary of Options for Specifying the Design

Function Statement Option

Design Characteristics
Number of design points GENERATE N=number
Saturated design GENERATE N=SATURATED
Augmented design GENERATE AUGMENT=SAS-data-set
Bayesian optimal design MODEL / PRIOR=p1; p2; : : :

Optimality Criteria
Minimize trace of(X 0X)�1 GENERATE CRITERION=A
Maximize jX 0Xj GENERATE CRITERION=D
Minimize mean minimum GENERATE CRITERION=U
distance to design

Maximize mean distance GENERATE CRITERION=S
between nearest design points

Model Specification
Specify independent effects MODEL effects
Exclude intercept term MODEL effectsNOINT
Specify class variables CLASS variables
Static coding PROC OPTEX CODING=STATIC
Orthogonal coding PROC OPTEX CODING=ORTH
Orthogonal coding with PROC OPTEX CODING=ORTHCAN
respect to candidates only

Suppress coding of effects PROC OPTEX NOCODE

Block Specification
Specify general covariance BLOCKS COVAR=SAS-data-set<options>
matrix for runs VAR=variables

Specify general covariate model BLOCKS DESIGN=SAS-data-set<options>
Specifyb blocks of sizek BLOCKS STRUCTURE=(b)k <options>
Options for block specifications
Repeat the searchn times ITER=n
Retain bestm searches KEEP=m
Select initial design at random INIT=RANDOM
Select initial design in order INIT=CHAIN

Initial Design Characteristics
Random and sequential methods GENERATE INITDESIGN=PARTIAL< (m) >
Random initial design GENERATE INITDESIGN=RANDOM
Sequential initial design GENERATE INITDESIGN=SEQUENTIAL
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Chapter 24. Syntax

Function Statement Option

Specify initial design GENERATE INITDESIGN=SAS-data-set

Table 24.2. Summary of Options for Searching for the Design

Function Statement Option

Design Search Specification
Retain bestn searches GENERATE KEEP=n
Searchn times GENERATE ITER=n
Specify candidate points PROC OPTEX DATA=SAS-data-set
Specify random seed PROC OPTEX SEED=number
Specify effective zero PROC OPTEX EPSILON=�

Design Search Methods
DETMAX algorithm with GENERATE METHOD=DETMAX<(level)>
maximum excursionlevel

Exchange algorithm GENERATE METHOD=EXCHANGE
k-Exchange algorithm GENERATE METHOD=EXCHANGE< (k) >
Sequential algorithm GENERATE METHOD=SEQUENTIAL
Fedorov algorithm GENERATE METHOD=FEDOROV
Modified Fedorov algorithm GENERATE METHOD=M–FEDOROV

Table 24.3. Summary of Options for Examining and Saving the Design

Function Statement Option

Save the Design
Best design OUTPUT OUT=SAS-data-set
Specific design OUTPUT OUT=SAS-data-set NUMBER=design-number
Block variable name OUTPUT OUT=SAS-data-set BLOCK=variable-name
Specify transfer variables ID variables

List the Design
Design characteristics EXAMINE
Design points EXAMINE DESIGN
Information matrixX 0X EXAMINE INFORMATION
Specific optimal design EXAMINE NUMBER=design-number
Variance matrix(X 0X)�1 EXAMINE VARIANCE
Suppress all output PROC OPTEX NOPRINT
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Part 6. The CAPABILITY Procedure

Statement Descriptions
This section provides detailed syntax information for the OPTEX procedure state-
ments, beginning with the PROC OPTEX statement. The remaining statements are
presented in alphabetical order.

PROC OPTEX Statement

PROC OPTEX <options> ;

You use the PROC OPTEX statement to invoke the procedure. The followingoptions
can be used:

CODING=NONE
CODING=STATIC
CODING=ORTH
CODING=ORTHCAN

specifies which type of coding to use for modeling effects in the design. Coding
equalizes all model effects as far as the optimization is concerned. The default is
CODING=STATIC, which specifies that the values of all effects are to be coded to
have maximum and minimum values of+1 and�1, respectively. The options COD-
ING=ORTH and CODING=ORTHCAN specify orthogonal coding with respect to
the input points. The option CODING=NONE suppresses coding of effects; it is
equivalent to the NOCODE option. For more details on coding, see “Design Coding”
on page 774.

Note that while CODING=STATIC is the default, CODING=ORTH will usually give
more appropriate efficiency values, especially if all possible combinations of factor
levels occur in the candidate data set.

DATA=SAS-data-set
specifies the input SAS data set that contains the candidate points for the design.
By default, the OPTEX procedure uses the most recently created SAS data set. For
details, see “DATA= Data Set” on page 768.

EPSILON=�
specifies the smallest value� that is considered to be nonzero for determining when
the search is no longer yielding an improved design and when the information matrix
for the design is singular. By default,� = 0.00001.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters
long, where n is a value between 20 and 200 characters. The default length is 20
characters.

NOCODE
suppresses the coding of effects in the model for the design. This option is equivalent
to CODING=NONE.

NOPRINT
suppresses all output. This is useful when you only want the final design to be saved
in a data set.
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SEED=s
specifies a numbers used to start the pseudo-random number generator (see “Search
Methods” on page 780). The numbers can be any positive integer up to231�1. The
default value ofs is generated from the time of day.

STATUS=status-level
specifies that the status of the search be checked at the given level, wherestatus-level
is an integer between 1 and 4, inclusive. If you specify astatus-levelthen a table of
the status at each check point is displayed. You can use this table to track the progress
of long searches. The allowablestatus-levelsare listed in the following table:

Status-level Checks status after each:

1 design search; the number of searches specified by the NITER= option

2 search loop

3 internal search loop

4 extra internal search loop for METHOD=M–FEDOROV

Each search method loops to produce successively better designs; these are the search
loops for STATUS=2. STATUS=3 and STATUS=4 refer to deeper loops within the
search methods. You will only need to specify STATUS=3 or STATUS=4 very rarely,
since unless simply evaluating a potential switch is very expensive (as it can occa-
sionally be with the space-filling criteria). Evaluating and displaying the status at this
level will make the search much, much slower.

BLOCKS Statement

BLOCKS block-specification< options> ;

You use the BLOCKS statement to find a D-optimal design in the presence of fixed
covariates (for example, blocks) or covariance. The technique is an extension of the
optimal blocking technique of Cook and Nachtsheim (1989); see “Optimal Blocking”
on page 782.

For the purposes of optimal blocking, the model for the original candidate points is
referred to as thetreatment model; the candidate points for the part of the design
matrix corresponding to the treatment model form thetreatment set. If the GENER-
ATE statement is not specified, then the full candidate set is used as the treatment
set; otherwise, an optimal design for the treatment model ignoring the blocks is first
generated, and the result is used as the treatment set for optimal blocking.

The following are three mutually exclusiveblock-specificationsthat you can provide:

COVAR=SAS-data-setVAR=( variables)
specifies a data set to use in providing a general covariance matrix for the runs.
The argument to VAR= names the variables in this data set that contain the
columns of the covariance matrix for the runs. For an example, see Exam-
ple 24.9 on page 760.

DESIGN=SAS-data-set
specifies a data set to use in providing a general covariate model. In addi-
tion to this data set, you must specify a covariate model with the CLASS and
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Part 6. The CAPABILITY Procedure

MODEL statements. Covariate models are specified in the same way as the
treatment model; CLASS and MODEL statements that come after a BLOCKS
statement involving the DESIGN= specification are interpreted as applying to
the covariate model. For an example, see Example 24.8 on page 758.

STRUCTURE=(b) k
specifies a block design withb blocks of sizek. For an example, see Exam-
ple 24.7 on page 755.

The followingoptionscan also be used:

INIT=RANDOM
specifies the initialization method for constructing the starting design. The op-
tion INIT=RANDOM specifies that the starting design is to be constructed by
selecting candidates at random without replacement. The option INIT=CHAIN
selects candidate points in the order in which they occur in the original data set.

ITER=n
specifies the number of times to repeat the search from different initial designs.
Because local optima are common in difficult search problems, it is often a
good idea to make several tries for the optimal design with a random or partially
random method of initialization (see the preceding INIT= option). By default,
n = 10. You can specify ITER=0 to evaluate the initial design itself.

KEEP=m
specifies that only the bestm designs are to be retained. The valuem must be
less than or equal to the valuen of the ITER= option; by defaultm = n, so
that all iterations are kept. This option is useful when you want to make many
searches to overcome the problem of local optima but you are only interested
in the results of the bestm designs.

NOEXCHANGE
suppresses the part of the optimal blocking algorithm that exchanges treatment
design points for candidate treatment points. When this option is specified,
only interchanges between design points are performed. Use this option when
you do not want to change which treatment points are included in the design
and you only want to find their optimal ordering.

CLASS Statement

CLASS class-variables;

You use the CLASS statement to identify classification variables, which are factors
that separate the observations into groups. For example, a completely randomized
design has a singleclass-variablethat identifies the groups of observations. A ran-
domized complete block design has twoclass-variables; one identifies the blocks and
one identifies the treatments.

Class-variablescan be either numeric or character. The OPTEX procedure uses the
formatted values ofclass-variablesin forming model effects. Any variable in the
model that is not listed in the CLASS statement is assumed to be continuous. Con-
tinuous variables must be numeric.
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Note: If you specify a data set containing fixed covariate effects with a DESIGN=
data set in the BLOCKS statement, then a CLASS or MODEL statement that follows
the BLOCKS statement refers to the model for the fixed covariates. A CLASS or
MODEL statement that defines the model for the candidate points (treatment model)
should be specifiedbeforethe BLOCKS statement.

EXAMINE Statement

EXAMINE <options> ;

You use the EXAMINE statement to display the characteristics of a selected design.
By default, the EXAMINE statement lists certain measures of design efficiency for
the best design. (See the “Output” section on page 783.) The followingoptionscan
be used to modify the output:

DESIGN
lists the actual points in the selected design.

INFORMATION
INFO
I

lists the information matrixX 0X for the selected design.

NUMBER=design-number
selects a design to examine by specifying itsdesign-number. Designs are ordered by
the value of the efficiency criterion that is being optimized. Thus, adesign-number
of 1 corresponds to the best design found, adesign-numberof 2 corresponds to the
second best design, and so on. The defaultdesign-numberis 1. To modify the number
of designs created, see the ITER= option on page 740.

VARIANCE
VAR
V

lists the variance matrix(X 0X)�1 for the parameter estimates for the selected design.

For details on design efficiencies, see “Design Efficiency Measures” on page 773.

If you use the OPTEX procedure interactively, you must enter the options for every
EXAMINE statement. For example, the following statements list default information
and the design points for the best design but only default information for the second-
best design:

examine number=1 design;

examine number=2;

The following statements list default information and design points for both the best
and second-best designs:

examine number=1 design;

examine number=2 design;
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Part 6. The CAPABILITY Procedure

GENERATE Statement

GENERATE <options> ;

You use the GENERATE statement to customize the search for a design. By default,
the OPTEX procedure searches for a design as follows:

� using the exchange algorithm (METHOD=EXCHANGE)

� using D-optimality as the optimality criterion (CRITERION=D)

� using a completely random initial design to start the search
(INITDESIGN=RANDOM)

� selecting candidate points only from the DATA= data set (modified by using
AUGMENT= or INITDESIGN= data sets)

� performing 10 iterations in the search (ITER=10)

� finding a design with10+ p points, wherep is the number of parameters in the
model (modified by using the N= or INITDESIGN= option)

The followingoptionscan be used to modify these defaults:

AUGMENT=SAS-data-set
specifies a data set that contains a design to be augmented, in other words, a set of
points that must be contained in the design generated. When creating designs, the
OPTEX procedure adds points from the DATA= data set (or the last data set created,
if DATA= is not specified) to points from the AUGMENT= data set. The number of
points in the design to be augmented must be less than the number of points specified
with the N= option. For details, see “AUGMENT= Data Set” on page 768.

CRITERION=crit
specifies the optimality criterion used in the search. You can specify any one of the
following:

CRITERION=D
specifies D-optimality; the optimal design maximizes the determinantjX 0Xj
of the information matrix for the design. This is the default criterion.

CRITERION=A
specifies A-optimality; the optimal design minimizes the sum of the variances
of the estimated parameters for the model, which is the same as minimizing the
trace of(X 0X)�1.

CRITERION=U
specifies U-optimality; the optimal design minimizes the sum of the minimum
distances from each candidate point to the design. That is, ifC is the set of
candidate points,D is the set of design points, andd(x;D) is the minimum
distance fromx to any point inD, then a U-optimal design minimizesX

x2C

d(x;D)

SAS OnlineDoc: Version 8
738



Chapter 24. Statement Descriptions

This measures how well the design “covers” the candidate set; thus, a U-
optimal design is also called auniform coverage design.

CRITERION=S
specifies S-optimality; the optimal design maximizes the harmonic mean of the
minimum distance from each design point to any other design point. Mathe-
matically, an S-optimal design maximizes

NDP
y2D

1=d(y;D � y)

whereD is the set of design points, andND is the number of points inD. This
measures how spread out the design points are; thus, an S-optimal design is
also called amaximum spread design.

For more information on the different criteria, see “Optimality Criteria” on
page 776.

INITDESIGN=initialization-method
specifies a method of obtaining an initial design for the search procedure. Valid values
of initialization-methodare as follows:

SEQUENTIAL
specifies an initial design chosen by a sequential search. The design
given by INITDESIGN=SEQUENTIAL is the same as the design given by
METHOD=SEQUENTIAL. You can use the INITDESIGN=SEQUENTIAL
option with other values of the METHOD= option to specify a sequential de-
sign as the initial design for various search methods. For details, see “Search
Methods” on page 780.

RANDOM
specifies a completely random initial design. The initial design generated con-
sists of a random selection of observations from the DATA= data set.

PARTIAL<(m )>
specifies an initial design using a mixture of RANDOM and SEQUENTIAL
methods. A small numbernr of points for the initial design are chosen at
random from the candidates, and the rest of the design points are chosen by
a sequential search. (For a definition of the sequential search, see “Search
Methods” on page 780.)

By default,nr is randomly chosen between 0 and half the number of parameters
in the linear model. You can specify the optional integerm to modify the
selection ofnr. If m > 0, thennr is randomly chosen between 0 andm for
each try. Ifm < 0, thennr = jmj for each try. The maximum value forjmj is
the number of points in the design. Refer to Galil and Kiefer (1980) for notes
on choosingnr.

SAS-data-set
specifies a data set that holds the initial design. Use thisinitialization-method
when you have a specific design that you want to improve or when you want
to evaluate an existing design. For details, see “INITDESIGN= Data Set” on
page 768.
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Part 6. The CAPABILITY Procedure

The default initialization method depends on the search procedure as shown in Ta-
ble 24.4.

Table 24.4. Default Initialization Methods

Search Procedure Default Initialization Method
(METHOD= option) (INITDESIGN= option)
DETMAX PARTIAL
EXCHANGE RANDOM
FEDOROV RANDOM
M–FEDOROV PARTIAL
SEQUENTIAL none

If you specify INITDESIGN=SAS-data-set and METHOD=SEQUENTIAL, no
search is performed; the INITDESIGN= data set is taken as the final design. By
specifying these options, you can use the procedure to evaluate an existing design.

ITER=n
specifies the numbern of searches to make. Because local optima are common in
difficult search problems, it is often a good idea to make several tries for the optimal
design with a random or partially random method of initialization (see the preceding
INITDESIGN= option). By default,n = 10.

Then designs found are sorted by their respective efficiencies according to the current
optimality criterion (see the CRITERION= option on page 738.) The most efficient
design is assigned adesign-numberof 1, the second most efficient design is assigned a
design-numberof 2, and so on. You can then use thedesign-numberin the EXAMINE
and OUTPUT statements to display the characteristics of a design or to save a design
in a data set.

KEEP=m
specifies that only the bestm designs are to be retained. The valuem must be less
than or equal to the valuen of the ITER= option; by defaultm = n, so that all
iterations are kept. This option is useful when you want to make many searches to
overcome the problem of local optima but are interested only in the results of the best
m designs.

METHOD=DETMAX<(level)>
METHOD=EXCHANGE< (k) >
METHOD=FEDOROV
METHOD=M–FEDOROV
METHOD=SEQUENTIAL

specifies the procedure used to search for the optimal design. The default is
METHOD=EXCHANGE.

With METHOD=DETMAX, the optionallevel gives the maximum excursion level
for the search, wherelevel is an integer greater than or equal to 1. Enclose the value
of level in parentheses immediately following the word DETMAX. The default value
for level is 4. In general, larger values oflevelresult in longer search times.
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When METHOD=EXCHANGE, the optionalk specifies thek-exchange search
method of Johnson and Nachtsheim (1983), which generalizes the modified Fedorov
search algorithm of Cook and Nachtsheim (1980). Enclose the value ofk in paren-
theses immediately following the word EXCHANGE.

From fastest to slowest, the methods are

SEQUENTIAL! EXCHANGE! DETMAX ! M–FEDOROV! FEDOROV

In general, slower methods result in more efficient designs. While the default method
EXCHANGE always works relatively quickly, you may want to specify a more re-
liable method, such as M–FEDOROV, with fast computers or small- to moderately-
sized problems.

See “Search Methods” on page 780 for details on the algorithms.

N=n
N=SATURATED

specifies the number of points in the final design. The default design size is10 + p,
wherep is the number of parameters in the model. If you use the INITDESIGN=
option, the default number is the number of points in the initial design. Specify N=n
to search for a design withn points. Specify N=SATURATED to search for a design
with the same number of points as there are parameters in the model. A saturated
design has no degrees of freedom to estimate error and should be used with caution.

ID Statement

ID variables;

You use the ID statement to name thevariablesin the DATA= data set that are not
involved in the model but are to be transferred from the input data set to the output
data set.

Variableslisted in the ID statement must be contained in the DATA= data set. They
can also be contained in other input data sets. If an ID variable is also contained in an
AUGMENT= or INITDESIGN= data set and an observation from that data set is used
in the final design, the values of the ID variables for that observation are transferred
to the OUT= data set. For details, see “Input Data Sets” on page 767.

MODEL Statement

MODEL effects< / options> ;

You use the MODEL statement to specify the independent effects used to model data
that are to be collected with the design that is being constructed. Theeffectscan be
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Part 6. The CAPABILITY Procedure

� simple continuous regressor effects
� polynomial continuous effects
� main effects of classification variables
� interactions of classification variables
� continuous-by-class effects

The variables used to formeffects in the MODEL statement must be present in all
input data sets. For details on input data sets, see “Input Data Sets” on page 767. For
details on the specification of different types of effects and on how the design matrix
is defined with respect to the effects, see “Specifying Effects in MODEL Statements”
on page 770.

If you specify a data set containing fixed covariate effects with a DESIGN= data
set in the BLOCKS statement, then a CLASS or MODEL statement thatfollows
the BLOCKS statement refers to the model for the fixed covariates. A CLASS or
MODEL statement that defines the model for the candidate points (treatment model)
should occurbeforethe BLOCKS statement.

The following options can be used in the MODEL statement:

NOINT
excludes the intercept parameter from the model. By default, the OPTEX procedure
includes the intercept parameter in the model.

PRIOR=num-list
specifies prior precision values corresponding to groups of effects in the model.
Groups of effects in the MODEL statement with the same prior precision must be
separated by commas. Then use the PRIOR= option, listing as many prior precision
values as there are groups of effects. See Example 24.6 on page 753 for an example.

When you specify prior precision values, the information matrix for estimating the
linear parameters isX 0X +P , whereX is the design matrix andP is a diagonal ma-
trix with the prior precision values that you specify on the diagonal. Thus, in terms
of a prior distribution, the inverses of the prior precision values can be interpreted as
prior variances for the linear parameters corresponding to each effect. As an alter-
native interpretation, note that with orthogonal coding the value of the prior for an
effect says roughly how many prior “observations’ worth” of information you have
for that effect. See “Design Coding” on page 774 for details on orthogonal coding.

OUTPUT Statement

OUTPUT OUT= SAS-data-set< options> ;

You use the OUTPUT statement to save a design in an output data set. By default,
the saved design is the best design found. You specify the data set name as follows:

OUT=SAS-data-set
gives a name for the output data set. The OUT= data set is required in the OUTPUT
statement.

The followingoptionscan be used:
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BLOCKNAME= variable-name
specifies the name to be given to the blocking variable in the output data set. The de-
fault name is BLOCK. You can use thisoption in conjunction with a STRUCTURE=
option in the BLOCKS statement. See Example 24.7 on page 755 for an example.

NUMBER=design-number
selects a design to output by specifying itsdesign-number. Designs are ordered by
the value of the efficiency criterion that is being optimized. Thus, adesign-number
of 1 corresponds to the best design found, adesign-numberof 2 corresponds to the
second best design, and so on. The defaultdesign-numberis 1. To modify the number
of designs created, see the ITER= option on page 740.

Alternatively, you can specify one of the following:

NUMBER=DBEST
selects the design that has the highest D-efficiency value.

NUMBER=ABEST
selects the design that has the highest A-efficiency value.

NUMBER=GBEST
selects the design that has the highest G-efficiency value.

NUMBER=VBEST
selects the design that has the minimum average standard error for prediction.

These options can be used to find designs that are efficient for more than one criterion
For example, you can use the default CRITERION=D option in the GENERATE
statement with the NUMBER=GBEST option in the OUTPUT statement to find the
D-optimal design that has maximal G-efficiency. In fact, this is the best way to use the
OPTEX procedure to find G-efficient designs; see “G- and I-optimality” on page 777
for more details.
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Part 6. The CAPABILITY Procedure

Advanced Examples

Example 24.1. Nonstandard Linear Model

The following example is based on an example in Mitchell (1974a). An animal sci-See OPTEX3
in the SAS/QC
Sample Library

entist wants to compare wildlife densities in four different habitats over a year. How-
ever, due to the cost of experimentation, only 12 observations can be made. The
following model is postulated for the densityyj(t) in habitat j during month t:

yj(t) = �j + �t+

4X
i=1

ai cos(i�t=4) +

3X
i=1

bi sin(i�t=4):

This model includes the habitat as a classification variable, the effect of time with an
overall linear drift term�t, and cyclic behavior in the form of a Fourier series. There
is no intercept term in the model.

The OPTEX procedure is used since there are no standard designs that cover this
situation. The candidate set is the full factorial arrangement of four habitats by 12
months, which can be generated with a DATA step, as follows:

data a;
drop theta pi;
array c{4} c1-c4;
array s{3} s1-s3;
pi = arcos(-1);
do habitat=1 to 4;

do month=1 to 12;
theta = pi * month / 4;
do i=1 to 4; c{i} = cos(i*theta); end;
do i=1 to 3; s{i} = sin(i*theta); end;
output;

end;
end;

run;

Data set A contains the 48 candidate points and includes the cosine variables (C1, C2,
C3, and C4) and sine variables (S1, S2, S3, S4). The following statements produce
Output 24.1.1:

proc optex seed=193030034 data=a;
class habitat;
model habitat month c1-c4 s1-s3 / noint;
generate n=12;

run;
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Output 24.1.1. Sampling Wildlife Habitats Over Time

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 31.6103 19.7379 57.7350 1.3229
2 31.6103 19.7379 57.7350 1.3229
3 31.6103 19.3793 57.7350 1.3229
4 31.6103 19.2916 57.7350 1.3229
5 31.6103 19.2626 57.7350 1.3229
6 31.6103 19.0335 57.7350 1.3229
7 30.1304 14.8837 44.7214 1.4907
8 30.1304 14.2433 44.7214 1.5092
9 30.1304 13.1687 44.7214 1.5456

10 28.1616 9.8842 40.8248 1.7559

The best determinant (D-efficiency) was found in 6 out of the 10 tries. Thus, you
can be confident that this is the best achievable determinant. Only the A-efficiency
distinguishes among the designs listed in Output 24.1.1. The best design has an A-
efficiency of 19.74%, whereas another design has the same D-efficiency but a slightly
smaller A-efficiency of 19.03%, or about 96% relative A-efficiency. To explore the
differences, you can save the designs in data sets and print them. Since the OPTEX
procedure is interactive, you need to submit only the following statements (immedi-
ately after the preceding statements) to produce Output 24.1.2 and Output 24.1.3:

output out=d1 number=1;
run;

output out=d6 number=6;
run;

proc sort data=d1;
by month habitat;

proc print data=d1;
var month habitat;

run;

proc sort data=d6;
by month habitat;

proc print data=d6;
var month habitat;

run;
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Output 24.1.2. The Best Design

Obs month habitat

1 1 3
2 2 2
3 3 4
4 4 1
5 5 4
6 6 1
7 7 2
8 8 3
9 9 4

10 10 1
11 11 2
12 12 3

Output 24.1.3. Design with Lower A-Efficiency

Obs month habitat

1 1 4
2 2 2
3 3 3
4 4 1
5 5 1
6 6 4
7 7 4
8 8 1
9 9 2

10 10 1
11 11 4
12 12 3

Note the structure of the best design in Output 24.1.2. One habitat is sampled
in each month, each habitat is sampled three times, and the habitats are sampled
in consecutive complete blocks. Even though the design in Output 24.1.3 is as
D-efficient as the best, it has almost none of this structure; one habitat is sampled each
month, but habitats are not sampled an equal number of times. This demonstrates the
importance of choosing a final design on the basis of more than one criterion.

You can try searching for the A-optimal design directly. This takes more time but
(with only 48 candidate points) is not too large a problem. The following statements
produce Output 24.1.4:

proc optex seed=193030034 data=a;
class habitat;
model habitat month c1-c4 s1-s3 / noint;
generate n=12 criterion=A;

run;
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Output 24.1.4. Searching Directly for an A-efficient Design

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 31.6103 19.7379 57.7350 1.3229
2 30.1304 17.8273 52.2233 1.3894
3 30.1304 17.7943 52.2233 1.3944
4 30.1304 17.6471 52.2233 1.4093
5 28.1616 15.7055 44.7214 1.4860
6 28.1616 14.5289 44.7214 1.5343
7 28.1616 13.8603 39.2232 1.5811
8 25.0891 11.6152 37.7964 1.8143
9 25.0891 10.7563 37.7964 1.8143

10 25.0891 10.5437 33.3333 1.8930

The best design found is no more A-efficient than the one found previously.

Example 24.2. Comparing DETMAX Algorithm to Sequential
Algorithm

An automotive engineer wants to fit a quadratic model to fuel consumption data inSee OPTEX4
in the SAS/QC
Sample Library

order to find the values of the control variables that minimize fuel consumption (refer
to Vance 1986). The three control variables and their possible settings are shown in
the following table:

Variable Values
AF 15 16 17 18

EGR 0.020 0.177 0.377 0.566 0.921 1.117
SA 10 16 22 28 34 40 46 52

Rather than run all 192 (4� 6� 8) combinations of these factors, the engineer would
like to see whether the total number of runs can be reduced to 50 in an optimal
fashion.

Since the factors have different numbers of levels, you can use the PLAN procedure
(refer to theSAS/STAT User’s Guide) to generate the full factorial set to serve as a
candidate data set for the OPTEX procedure.

proc plan;
factors af=4 ordered egr=6 ordered sa=8 ordered

/ noprint;
output out=a

af nvals=(15,16,17,18)
egr nvals=(.020,.177,.377,.566,.921,1.117)
sa nvals=(10,16,22,28,34,40,46,52);

run;
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The DETMAX algorithm of Mitchell (1974a) is very commonly used for computer-
generated optimal design. Although it is not the default search method for the OP-
TEX procedure, you can specify that it be used with the METHOD=DETMAX op-
tion in the GENERATE statement. For example, the following statements produce
Output 24.2.1.

proc optex data=a seed=61552;
model af|egr|sa@2 af*af egr*egr sa*sa;
generate n=50 method=detmax;

run;

Output 24.2.1. Efficiencies with DETMAX Algorithm

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 46.4922 24.8987 95.2281 0.4202
2 46.4864 24.8562 95.5744 0.4205
3 46.4797 24.8830 95.3137 0.4203
4 46.4635 25.6461 94.8125 0.4175
5 46.4495 24.5376 95.5559 0.4237
6 46.4459 25.0749 94.8536 0.4197
7 46.4428 24.5111 95.3704 0.4240
8 46.4333 25.0321 95.1371 0.4199
9 46.4333 25.0321 95.1371 0.4199

10 46.4333 25.0321 95.1371 0.4199

The DETMAX search method can require considerable run time. For comparison,
you can use the METHOD=SEQUENTIAL option in the GENERATE statement, as
shown in the following statements, which produce Output 24.2.2.

proc optex data=a seed=33805;
model af|egr|sa@2 af*af egr*egr sa*sa;
generate n=50 method=sequential;

run;

Output 24.2.2. Efficiencies with Sequential Algorithm

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 46.4009 25.0472 93.8673 0.4200

In a fraction of the run time required by DETMAX, the sequential algorithm finds
a design with a relative D-efficiency of46:4009=46:4922 = 99:8% compared to the
best design found by the DETMAX procedure and withbetterA-efficiency. As this
demonstrates, if absolute D-optimality is not required, a faster, simpler search may
be sufficient.
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Example 24.3. Using an Initial Design to Search an Optimal
Design

This example is a continuation of Example 24.2 on page 747. See OPTEX4
in the SAS/QC
Sample LibraryYou can customize the runs used to initialize the search in the OPTEX procedure.

For example, you can use the INITDESIGN=SEQUENTIAL option to use an initial
design chosen by the sequential search. Or you can place specific points in a data set
and use the INITDESIGN=SAS-data-setoption. In both cases, the search time can
be significantly reduced, since the search only has to be done once. This example
illustrates both of these options.

The previous example compared the results of the DETMAX and sequential search
algorithms. You can use the design chosen by the sequential search as thestarting
point for the DETMAX algorithm. The following statements specify the DETMAX
search method, replacing the default initialization method with the sequential search:

proc optex data=a seed=33805;
model af|egr|sa@2 af*af egr*egr sa*sa;
generate n=50 method=detmax initdesign=sequential;

run;

The results, which are displayed in Output 24.3.1, show an improvement over the
sequential design itself (Output 24.2.2) but not over the DETMAX algorithm with
the default initialization method (Output 24.2.1). Evidently the sequential design
represents a local optimum that is not the global optimum, which is a common phe-
nomenon in combinatorial optimization problems such as this one.

Output 24.3.1. Initializing with a Sequential Design

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 46.4333 25.0321 95.1371 0.4199

Prior knowledge of the design problem at hand may also provide a specific set of
factor combinations to use as the initial design. For example, many D-optimal designs
are composed of replications of the optimal saturated design—that is, the optimal
design with exactly as many points as there are parameters to be estimated. In this
case, there are 10 parameters in the model. Thus, you can find the optimal saturated
design in 10 points, replicate it five times, and use the resulting design as an initial
design, as follows:

proc optex data=a seed=33805;
model af|egr|sa@@2

af*af egr*egr sa*sa;
generate n=saturated

method=detmax;
output out=b;
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data c; set b; drop i;
do i=1 to 5; output; end;

proc optex data=a seed=33805;
model af|egr|sa@@2

af*af egr*egr sa*sa;
generate n=50

method=detmax
initdesign=c;

run;

The results are displayed in Output 24.3.2 and Output 24.3.3. The resulting design
is 99.9% D-efficient and 98.3% A-efficient relative to the best design found by the
straight-forward approach (Output 24.2.1), and it takes considerably less time to pro-
duce.

Output 24.3.2. Efficiencies for the Unreplicated Saturated Design

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 41.6990 24.8480 67.6907 0.9508
2 41.4931 22.2840 70.8532 0.9841
3 40.9248 20.7672 62.2177 1.0247
4 40.7447 21.6253 52.7537 1.0503
5 39.9563 20.1557 46.4244 1.0868
6 39.9287 19.5856 45.9023 1.0841
7 39.9287 19.5856 45.9023 1.0841
8 38.9078 13.5976 37.7964 1.2559
9 38.9078 13.5976 37.7964 1.2559

10 37.6832 12.5540 45.3315 1.3036

Output 24.3.3. Initializing with a Data Set

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 46.4388 24.4951 96.0717 0.4242

Example 24.4. Optimal Design Using an Augmented Best
Design

This example is a continuation of Example 24.2 on page 747.See OPTEX4
in the SAS/QC
Sample Library You can specify a set of points that you want included in the final design found by

the OPTEX procedure, using the AUGMENT= option in the GENERATE statement
to specify a data set that contains a design to be augmented.
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In this case, you can try to speed up the search for a 50-run design by first finding
an optimal 25-run design and then augmenting that design with another 25 runs, as
shown in the following statements:

proc optex data=a seed=36926;
model af|egr|sa@2 af*af egr*egr sa*sa;
generate n=25 method=detmax;
output out=b;

proc optex data=a seed=37034;
model af|egr|sa@2 af*af egr*egr sa*sa;
generate n=50 method=detmax augment=b;

run;

The result (see Output 24.4.1 and Output 24.4.2) is a design with almost 100% D-
efficiency and A-efficiency relative to the best design found by the first attempt. How-
ever, this approach is not much faster than the original approach, since the run time
for the DETMAX algorithm is essentially linear in the size of the design (see “Mem-
ory and Run-Time Considerations” on page 779.)

Output 24.4.1. Efficiencies for the 25-point Design to be Augmented

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 46.2975 26.0374 91.1822 0.5849
2 46.2171 25.9733 86.4608 0.5859
3 46.1720 25.9378 88.3293 0.5860
4 46.1374 25.9128 86.1895 0.5866
5 46.0808 22.6647 86.1502 0.6169
6 46.0620 24.7326 89.7179 0.6012
7 45.9992 25.4549 90.3330 0.5946
8 45.9630 24.7610 88.2701 0.5991
9 45.9627 25.5310 88.5737 0.5894

10 45.7994 24.5645 87.7544 0.6005

Output 24.4.2. Efficiencies for the Augmented 50-point Design

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 46.4957 25.0858 94.8160 0.4195
2 46.4773 25.0696 95.0646 0.4195
3 46.4684 24.5519 96.1259 0.4234
4 46.4676 24.5002 95.6830 0.4238
5 46.4587 25.0709 94.6650 0.4196
6 46.4555 24.8087 95.7768 0.4209
7 46.4471 24.5460 95.0073 0.4240
8 46.4373 25.0740 94.4640 0.4194
9 46.3899 25.0007 95.2162 0.4201

10 46.3662 24.4013 94.9539 0.4242
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Example 24.5. Optimal Design Using a Small Candidate Set

This example is a continuation of Example 24.4 on page 750.See OPTEX4
in the SAS/QC
Sample Library A well-chosen initial design can speed up the search procedure, as illustrated in Ex-

ample 24.2 on page 747. Another way to speed up the search is to reduce the candi-
date set. The following statements generate the optimal design with a fast, sequential
search and then use the FREQ procedure to examine the frequency of different factor
levels in the final design:

proc optex data=a seed=33805 noprint;
model af|egr|sa@2 af*af egr*egr sa*sa;
generate n=50 method=sequential;
output out=b;

proc freq;
table af egr sa / nocum;

run;

Output 24.5.1. Factor Level Frequencies for Sequential Design

af Frequency Percent
---------------------------
15 19 38.00
16 6 12.00
17 6 12.00
18 19 38.00

egr Frequency Percent
------------------------------

0.02 20 40.00
0.566 9 18.00
1.117 21 42.00

sa Frequency Percent
---------------------------
10 19 38.00
28 6 12.00
34 5 10.00
52 20 40.00

From Output 24.5.1, it is evident that most of the factor values lie in the middle or at
the extremes of their respective ranges. This suggests looking for an optimal design
with a candidate set that includes only those points in which the factors have values
in the middle or at the extremes of their respective ranges. The following statements
illustrate this approach (see Output 24.5.2):
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proc plan;
factors af=4 ordered egr=4 ordered sa=4 ordered

/ noprint;
output out=a af nvals=( 15, 16, 17, 18)

egr nvals=(.020,.377,.566,1.117)
sa nvals=( 10, 28, 34, 52);

proc optex seed=61552;
model af|egr|sa@2 af*af egr*egr sa*sa;
generate n=50 method=detmax;

run;

Output 24.5.2. Optimal Design Using a Smaller Candidate Set

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 46.5151 24.9003 96.7226 0.4442
2 46.4997 24.5549 96.1157 0.4478
3 46.4920 24.5530 95.9941 0.4480
4 46.4657 24.8653 95.5627 0.4446
5 46.4547 24.5071 96.0385 0.4481
6 46.4333 25.0321 95.1371 0.4448
7 46.4333 25.0321 95.1371 0.4448
8 46.4333 25.0321 95.1371 0.4448
9 46.3916 24.3617 95.0041 0.4489

10 46.3379 24.8695 94.3115 0.4458

Once again, the resulting design is almost as good as the best one derived by
a straightforward search (> 99:9% relative D-efficiency and> 98:5% relative
A-efficiency) and takes much less time to find. Moreover, designs with fewer fac-
tor levels can be much easier to implement.

See “Handling Many Variables” on page 727 for another example of reducing the
candidate set for the optimal design search.

Example 24.6. Bayesian Optimal Design

Suppose you want a design in 20 runs for seven two-level factors. There are 29 termsSee OPTEX7
in the SAS/QC
Sample Library

in a full second-order model, so you will not be able to estimate all main effects and
two-factor interactions. If the number of runs were a power of 2, a design of resolu-
tion 4 could be used to estimate all main effects free of the two-factor interactions, as
well as to provide partial information on the interactions. However, when the number
of runs is not a power of two, as in this case, DuMouchel and Jones (1994) suggest
searching for aBayesian optimal designby specifying nonzero prior precision val-
ues for the interactions. You can specify these values in the OPTEX procedure with
the PRIOR= option in the MODEL statement. This says that you want to consider all
main effects and interactions as potential effects, but you are willing to sacrifice infor-
mation on the interactions to obtain maximal information on the main effects. When
an orthogonal design of resolution 4 exists, it is optimal according to this Bayesian
criterion.
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You can use the following statements to generate the Bayesian D-optimal design:

proc factex;
factors x1-x7;
output out=can;

run;

proc optex data=can seed=57922
coding=orth;

model x1-x7,
x1|x2|x3|x4|x5|x6|x7@@2
/ prior=0,16;

generate n=20 method=m_fedorov;
output out=des;

run;

With orthogonal coding, the value of the prior for an effect says roughly how many
prior “observations’ worth” of information you have for that effect. In this case, the
PRIOR= precision values and the use of commas to group effects in the MODEL
statement says that there is no prior information for the main effects and 16 runs’
worth of information for each two-factor interaction. See “Design Coding” on
page 774 for details on orthogonal coding.

The efficiencies are shown in Output 24.6.1.

Output 24.6.1. Efficiencies for Bayesian Optimal Designs

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 85.1815 74.6705 85.2579 1.1476
2 85.1815 74.6705 85.2579 1.1476
3 85.1815 74.6705 85.2579 1.1476
4 85.0424 73.3109 81.0800 1.1582
5 85.0424 73.3109 81.0800 1.1582
6 84.5680 73.5053 84.1376 1.1566
7 84.4931 72.1671 81.7855 1.1673
8 84.4239 72.4979 81.7431 1.1646
9 84.3919 74.6097 89.3631 1.1480

10 84.3919 74.6097 89.3631 1.1480

Notice that the best design was found in three tries out of ten. It may be a good idea
to repeat the search with more tries (see the ITER= option on page 740.) You can
use the ALIASING option of the GLM procedure to list the aliasing structure for the
design:

data des; set des;
y = ranuni(654231);

proc glm data=des;
model

y = x1-x7
x1|x2|x3|x4|x5|x6|x7@@2
/ e aliasing;

run;
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The relevant part of the output is shown in Output 24.6.2. Most of the main effects
are indeed unconfounded with two-factor interactions, although many two-factor in-
teractions are confounded with each other.

Output 24.6.2. Aliasing Structure for Bayesian Optimal Design

General Linear Models Procedure
General Form of Aliasing Structure

Intercept
x1 - 0.5*x3*x7
x2
x3
x4 + 0.5*x3*x7
x5
x6
x7
x1*x2 - x3*x6 + 0.5*x3*x7 - x4*x7
x1*x3 - x2*x6 - x5*x7
x2*x3 + x3*x7
x1*x4 - x5*x6 + x5*x7 + x6*x7
x2*x4 - x3*x6 + 0.5*x3*x7 - x4*x7
x3*x4 - x2*x6 - x5*x7
x1*x5 - x4*x6 - x3*x7
x2*x5 + x2*x6 + x5*x7 + x6*x7
x3*x5 + x3*x6 - x3*x7
x4*x5 - x1*x6 - x3*x7
x1*x7 - x4*x7
x2*x7 + x5*x7 + x6*x7

Example 24.7. Balanced Incomplete Block Design

This example uses the BLOCKS statement to construct an incomplete block design.See OPTEX8
in the SAS/QC
Sample Library

An incomplete block design is a design forv qualitative treatments inb blocks of
k runs each, wherek < v so that not all treatments can occur in each block. An
incomplete block design is said to bebalancedwhen all pairs of treatments occur
equally often in the same block. A balanced design is always optimal for any criterion
based on the information matrix, although there are many values of(v; b; k) for which
no balanced design exists.

One way to construct an incomplete block design with the OPTEX procedure is to
include the blocking factor in the candidate set and in the model. For example, the
following statements search for a BIBD for seven treatments in seven blocks of size
three—that is,(v; b; k) = (7; 7; 3)—using the full set of 49 treatment-by-block com-
binations for candidates:

data can;
do tmt = 1 to 7;

do blk = 1 to 7;
output;
end;

end;
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proc optex data=can seed=8327
coding=orth;

class tmt blk;
model tmt blk;
generate n=21;

run;

By default, the OPTEX procedure performs the search 10 times from different ran-
dom starting designs. The various efficiencies for each design are listed in Out-
put 24.7.1.

Output 24.7.1. Efficiency Factors for v = b = 7, k = 3 Designs

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 89.0483 79.1304 82.7170 0.8845
2 89.0483 79.1304 82.7170 0.8845
3 88.4669 76.9882 78.6796 0.8967
4 88.4669 76.9882 78.6796 0.8967
5 88.4669 76.9882 78.6796 0.8967
6 88.4669 76.9882 78.6796 0.8967
7 88.4669 76.9882 78.6796 0.8967
8 88.4669 76.9882 78.6796 0.8967
9 88.1870 76.0262 78.7612 0.9024

10 87.7681 74.2459 73.9544 0.9131

Since the efficiency factors compare the designs to a (hypothetical) orthogonal de-
sign, values of 100% are not possible in this case. The OPTEX procedure includes
facilities for examining the information matrix for the design; you can use these to
verify that the best design found here is, in fact, balanced.

Searching for an optimal design for both treatments and blocks simultaneously has
its limitations. Note that the balanced design was found on only two of the ten tries.
A more serious limitation is that this approach sometimes fails to find a design with
equal-sized blocks. A more efficient and flexible way to construct a block design with
the OPTEX procedure is to use the BLOCKS statement.

The following statements use the BLOCKS statement to solve the incomplete block
design problem described previously. In this case, the candidate set simply consists
of the seven treatment levels.

data can;
do tmt = 1 to 7;

output;
end;

proc optex data=can seed=73462
coding=orth;

class tmt;
model tmt;
blocks structure=(7)3;

run;
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The output again consists of efficiency factors for 10 different tries, but this time the
factors are computed from the information matrix for only the treatment effects. In
this special case (a single classification effect in the treatment model together with
the BLOCKS STRUCTURE= specification), the efficiency of each design as an in-
complete block design is also listed (Output 24.7.2).

Output 24.7.2. Efficiency Factors for v = b = 7, k = 3 Optimal Blocking Designs

Design Treatment Treatment Block Design
Number D-Efficiency A-Efficiency D-Efficiency
---------------------------------------------------------

1 77.7778 77.7778 100.0000
2 77.7778 77.7778 100.0000
3 77.7778 77.7778 100.0000
4 77.7778 77.7778 100.0000
5 77.7778 77.7778 100.0000
6 77.7778 77.7778 100.0000
7 77.7778 77.7778 100.0000
8 77.7778 77.7778 100.0000
9 77.7778 77.7778 100.0000

10 77.7778 77.7778 100.0000

The 100% efficiency in the fourth column of the output shows that the balanced de-
sign was found on all 10 tries.

Since the OPTEX procedure is interactive, you can save the final design in a data set
by submitting the OUTPUT statement immediately after the preceding statements.
The following statements use the BLOCKNAME= option to rename the block vari-
able:

output out=bibd blockname=blk;
proc print data=bibd;
run;

The final design is shown in Output 24.7.3.

Although there is no guarantee that the OPTEX procedure will find the globally
optimal block design by this method, it usually does find small- to medium-sized
balanced designs, and it always finds a very efficient design. For example, for the
designs given in Table 9.5 of Cochran and Cox (1957), the OPTEX procedure consis-
tently finds the theoretically optimal BIBD in all cases with 10 or fewer treatments.
Furthermore, in no case is the D-efficiency relative to the balanced design less than
99%.
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Output 24.7.3. Balanced Incomplete Block Design for v = b = 7, k = 3

Obs BLK tmt

1 1 1
2 1 4
3 1 7
4 2 6
5 2 3
6 2 1
7 3 2
8 3 5
9 3 1

10 4 6
11 4 2
12 4 7
13 5 5
14 5 4
15 5 6
16 6 5
17 6 7
18 6 3
19 7 4
20 7 3
21 7 2

Example 24.8. Optimal Design with Fixed Covariates

In addition to finding optimal block designs, you can use the BLOCKS statementSee OPTEX9
in the SAS/QC
Sample Library

to find designs that are optimal with respect to more general covariate models. You
can specify the data set containing the covariates with the DESIGN= option in the
BLOCKS statement. Covariate models are specified in the same way as the treatment
model.

The following example is based on an example in Harville (1974). Suppose you want
a design for five qualitative treatments in 10 runs. The value of a covariate thought
to be related to the response has been recorded for each of the experimental units.
For instance, if the treatments are different types of animal feed, a typical covariate
might be the initial weight of each animal. In the following, the data sets COV and
TMT are created, containing the covariate values and the candidate treatment levels,
respectively. Then the OPTEX procedure is invoked with a simple one-way model
for the treatment effect and a quadratic model for the covariate effect.

data cov; input u @@@@; datalines;
.46 .54 .58 .60 .73 .77 .82 .84 .89 .95
;
data tmt;

do t = 1 to 5;
output;
end;

proc optex data=tmt seed=17364
coding=orthcan;

class t;
model t;
blocks design=cov;
model u u*u;
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output out=tmtu;
proc print data=tmtu;
run;

In this case, the CODING=ORTHCAN option in the PROC OPTEX statement has the
same effect as CODING=ORTH, which is to produce orthogonal coding with respect
to the candidates. Note that

� the CLASS and MODEL statements that define the treatment model precede
the BLOCKS statement

� the MODEL statement that defines the covariate model follows the BLOCKS
statement

As a general rule, CLASS and MODEL statements that come before a BLOCKS
statement are interpreted as applying to the treatment model, while CLASS and
MODEL statements that come after a BLOCKS statement involving the DESIGN=
blocks-specification are interpreted as applying to the covariate model.

The listing of the efficiency values for the 10 designs found is shown in Output 24.8.1.
Note that the efficiencies are the same for all tries. A listing of the design is shown in
Output 24.8.2.

Output 24.8.1. Optimal Treatment Efficiency Factors with a Quadratic Covariate
Effect

Design Treatment Treatment
Number D-Efficiency A-Efficiency
----------------------------------------

1 91.6621 91.1336
2 91.6621 91.1336
3 91.6621 91.1336
4 91.6621 91.1336
5 91.6621 91.1336
6 91.6621 91.1336
7 91.6621 91.1336
8 91.6621 91.1336
9 91.6621 91.1336

10 91.6621 91.1336

Output 24.8.2. Optimal Design with a Quadratic Covariate Effect

Obs u t

1 0.46 4
2 0.54 3
3 0.58 1
4 0.60 2
5 0.73 5
6 0.77 4
7 0.82 3
8 0.84 1
9 0.89 2

10 0.95 5

759
SAS OnlineDoc: Version 8



Part 6. The CAPABILITY Procedure

When you use the BLOCKS statement without specifying the GENERATE state-
ment, the full candidate set is used as the treatment set for optimal blocking. If you
specify both statements, an optimal design for the treatments ignoring the blocks is
first generated, and the result is used as the treatment set for optimal blocking. This
allows several options to be combined to evaluate existing designs. For example,
the following statements evaluate the optimal design given in Harville (1974) for the
preceding situation:

data har; input t @@@@; datalines;
1 2 3 4 5 1 2 3 4 5
;
proc optex data=tmt coding=orthcan;

class t;
model t;
generate initdesign=har

method=sequential;
blocks design=cov init=chain iter=0;
model u u*u;

run;

The efficiency values for Harville’s design are shown in Output 24.8.3. They are the
same as for the design found by the OPTEX procedure.

Output 24.8.3. Treatment Efficiency Factors for Harville’s Design

Design Treatment Treatment
Number D-Efficiency A-Efficiency
----------------------------------------

1 91.6621 91.1336

In fact, the optimal design found by OPTEX can be derived from Harville’s design
simply by re-labeling treatments. In order of increasing U, both designs consist of two
consecutive replicates of the treatments, with treatments in both replicates occurring
in the same order.

Example 24.9. Optimal Design in the Presence of Covariance

The BLOCKS statement finds a design that maximizes the determinantjX 0AXj ofSee OPTEX10
in the SAS/QC
Sample Library

the treatment information matrix, whereA depends on the block or covariate model.
Alternatively, you can directly specify the matrixA to find the D-optimal design
whenA is the variance-covariance matrix for the runs. You can specify the data set
containing the covariance matrix with the COVAR= option in the BLOCKS state-
ment, listing the variables corresponding to the columns of the covariance matrix in
the VAR= option. If you specifyn variables in the VAR= option, the values of these
variables in the firstn observations in the data set will be used to defineA.

For example, suppose you want to compare the effects of seven different fertilizers on
crop yield, using seven long, narrow blocks of four plots each, as depicted in Figure
24.1 on page 761.
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Figure 24.1. Block Structure for Neighbor Balance

In this case, it is reasonable to conjecture that closer plots within each block are
more correlated. In particular, suppose that the plots areautocorrelated, so that the
correlation matrix for the four plots in each block is of the form

R =

2
664

1 � �2 �3

� 1 � �2

�2 � 1 �
�3 �2 � 1

3
775

where�1 � � � 1. If there is also an overall fixed effect due to blocks, the informa-
tion matrix for the effect of fertilizer has the formX 0AX, where

A =
�
V �1 � V �1Z

�
Z 0V �1Z

��1
Z 0V �1

��

In this formula,V is the block diagonal matrix of the plot-by-plot correlation struc-
ture, with seven copies ofR4 on the diagonal. The matrixZ is the design matrix
corresponding to the block effect. The optimal design should take into account this
neighbor covariance structure as well as the block structure.

The following code uses the SAS/IML matrix language to constructA using� = 0:1
and saves it in a data set named A:

proc iml;
blks = int(((1:28)‘-1)/4) + 1;
z = j(28,1) || designf(blks);

r = toeplitz(0.1**(0:3));
v = r;
do i = 2 to 7; v = block(v,r); end;

iv = inv(v);
a = ginv(iv-iv*z*inv(z‘*iv*z)*z‘*iv);
create A from a;
append from a;

quit;

Note that the data set is created with variables named COL1, COL2, . . . , COL28, by
default.
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To find an allocation of fertilizers to plots that is optimal for detecting the fertilizer
effect in the presence of this autocorrelation, simply specify a one-way model for the
treatment effects and specify the data set A as the covariance matrix for the runs with
the COVAR= option in the BLOCKS statement, as follows:

data fert; do f = 1 to 7; output; end;
proc optex data=fert seed=56672 coding=orth;

class f;
model f;
blocks covar=A

var=(col1-col28);
output out=nbd;

run;

The SAS/IML matrix language also provides a convenient way of listing the design.

proc iml;
use nbd; Read in the selected levels
read all var {f}; of fertilizer
nbd = shape(f,7,4); Reshape them into 7 4-run
print nbd [format=2.]; blocks and print.

The resulting design is shown in Output 24.9.1. Note that it is not only a balanced
incomplete block design, but it is also balanced for first neighbors; that is, every pair
of treatments occur equally often on horizontally adjacent plots.

Output 24.9.1. Neighbor-Balanced BIBD for v = b = 7, k = 4, Found by Optimal
Blocking

NBD

7 2 1 5
6 1 7 3
4 7 6 2
1 4 6 5
6 3 5 2
1 3 2 4
7 5 4 3

Example 24.10. Adding Space-Filling Points to a Design

Suppose you want a 15-run experiment for three mixture factors X1, X2, and X3;See OPTEX11
in the SAS/QC
Sample Library

furthermore, suppose that X3 cannot account for any more than 75% of the mixture.
You can use the ADXXVERT macro (see page 1896) to construct a list of candidate
points for the design and then use the OPTEX procedure to select the design runs
optimally for a given model. However, information-based criteria such as D- and A-
efficiency tend to push the design to the edges of the candidate space, leaving large
portions of the interior relatively uncovered. For this reason, it is often a good idea
to augment a D-optimal design with some points chosen according to U-optimality,
which seeks to cover the candidate region as well as possible.
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The collection of macros for experimental designs described on page 1873 includes
several macro programs for working with mixture designs. For example, the follow-
ing statements invoke the ADXXVERT macro to construct and plot the candidate set:

%adxgen
%adxmix
%adxxvert(a,x1 / x2 / x3 0 - .75);
data a; set a;

w1 = -(x1 + x2);
w2 = (x1 - x2);

proc plot data=a;
plot w1*w2;

run;

The arguments to the ADXXVERT macro name the data set to contain the candidate
points and list the factors in the design. The form of the list of factors says that X1
and X2 have the default low and high levels of 0 and 1, while the value of X3 is
constrained to be between 0 and 0.75. The constraint that the factor levels sum to
1 means that the candidate points all lie on a certain (two-dimensional) plane. The
transformed variables W1 and W2 are the coordinates of each candidate point with
respect to two orthogonal axes in that plane.

The result, shown in Output 24.10.1, is a “quick-and-dirty” plot of the vertices, the
edge centroids, and the over-all centroid for the feasible region. TheX3 � 0:75
constraint effectively “cuts off” the top of the usual simplex.

Output 24.10.1. Vertices and Centroids for Constrained Mixture Design

-0.250 + A A A
|
|
|
|

w1 |
|
|
|
|
|

-0.625 + A A A
|
|
|
|
|
|
|
|
|
|

-1.000 + A A A
---+-------------+-------------+-------------+-------------+--

-1.0 -0.5 0.0 0.5 1.0

w2

You could easily use this plot to choose 15 runs both to span the extremes of the can-
didate region and to cover the interior. However, you can use the methods discussed
in this section with higher dimensional problems that are difficult or impossible to
visualize.
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You can use the OPTEX procedure to select 10 optimal points for estimating a
second-order model in the mixture factors.

proc optex data=a seed=60868 nocode;
model x1|x2|x3@@2 / noint;
generate n=10;
output out=b;

data b; set b;
w1 = -(x1 + x2);
w2 = (x1 - x2);

proc plot data=b;
plot w1*w2;

run;

As shown in Output 24.10.2, the D-optimal design omits some of the candidate points
and replicates others.

Output 24.10.2. D-optimal Constrained Mixture Design

-0.250 + A A
|
|
|
|

w1 |
|
|
|
|
|

-0.625 + A A
|
|
|
|
|
|
|
|
|
|

-1.000 + B B B
---+-------------+-------------+-------------+-------------+--

-1.0 -0.5 0.0 0.5 1.0

w2

The D-optimal design leaves large “holes” in the feasible region. The following state-
ments use the ADXFILL macro with the candidate set to produce a set of points
scattered throughout the feasible region:

%adxfill(a,x1 x2 x3);
data a; set a;

w1 = -(x1 + x2);
w2 = (x1 - x2);

proc plot data=a;
plot w1*w2;

run;
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The ADXFILL macro simply computes all pairwise averages of points in A and ap-
pends them to A; see page 1892 for more details. The results are shown in Out-
put 24.10.3.

Output 24.10.3. Filled Candidate Region for Constrained Mixture Design

w1 |
-0.250 + A A A A A

|
|
|
|

-0.438 + A A A A A AA A A
|
|
|
|

-0.625 + A A AA A A A A A A A
|
|
|
|

-0.813 + A A A A A A A A A
|
|
|
|

-1.000 + A A A A A
|
---+-------------+-------------+-------------+-------------+--

-1.0 -0.5 0.0 0.5 1.0

w2

The filled-in data set A has too many points (recall that the goal is a design with 15
runs), but you can use the OPTEX procedure to choose points from it. The following
statements “fill in the holes” in the optimal design saved in B by augmenting it with
points chosen from the filled-in data set A to optimize the U-criterion:

proc optex data=a seed=4321 nocode;
model x1 x2 x3 / noint;
generate n=15 augment=b

criterion=u;
output out=c;

data c; set c;
w1 = -(x1 + x2);
w2 = (x1 - x2);

proc plot data=c;
plot w1*w2;

run;

Output 24.10.4 shows that the U-optimal design fills in the candidate region in
much the same way that you might construct the design by visually assigning
points. That is, the general approach using the OPTEX procedure agrees with
visual intuition for this small problem. Moreover, the general approach yields
an appropriate design for higher dimensional problems that cannot be visualized.
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Output 24.10.4. D-optimal Constrained Mixture Design Filled In U-optimally

w1 |
-0.250 + A A

|
|
|
|

-0.438 + A A
|
|
|
|

-0.625 + A A A
|
|
|
|

-0.813 + A A
|
|
|
|

-1.000 + B B B
|
---+-------------+-------------+-------------+-------------+--

-1.0 -0.5 0.0 0.5 1.0

w2
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Data Details

Input Data Sets

This section discusses the five input data sets for the OPTEX procedure. Three of
the data sets provide points used to generate the design according to the effects you
specify in the MODEL statement. Two other data sets provide points used to generate
a model for fixed covariates.

Only the DATA= data set is required. If you do not specify a DATA= data set in
the PROC OPTEX statement, the procedure uses the last data set created as a set of
candidate points for the design. The AUGMENT= data set iqs optional and contains
points that must be included in the final design. The INITDESIGN= data set is also
optional and provides an initial design to be used by a search procedure. Variables
listed in the MODEL statement must be present in all three of these data sets, and the
variable characteristics (type and length) must match across data sets.

Figure 24.2 is a schematic diagram of the roles of the DATA=, AUGMENT=, and
INITDESIGN= data sets in constructing the design. Figure 24.3 presents the role of
the DESIGN= data set for block designs.

DATA= Candidate

       Points

 Points

Points

 Points

Choose from

 INITDESIGN= Selected 
Points

 AUGMENT=  AUGMENT=

Figure 24.2. Choosing from DATA= Points
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Figure 24.3. Choosing Treatment Candidates

DATA= Data Set
The DATA= data set provides a set of candidate points used to create a design. The
OPTEX procedure uses the variables listed in the MODEL statement when creating
a design.

The effects specified in a MODEL statement determine the variables used when gen-
erating a design. For example, if the DATA= data set contains the variables A, B,
and C, but the MODEL statement specifies effects involving only A and B, then the
variable C is not considered when generating designs.

Variables in the DATA= data set that are listed in the ID statement are transferred to
the OUT= data set (if one is created).

AUGMENT= Data Set
The AUGMENT= data set provides a set of points that must be included in the final
design. The OPTEX procedure adds candidate points from the DATA= data set to
the points from the AUGMENT= data set when generating designs. The number of
points in the AUGMENT= data set must be less than or equal to the number of points
for the design (either the default or the number specified with the N= option in the
GENERATE statement).

As with the DATA= data set, the effects specified in a MODEL statement determine
the variables used when generating a design. The types and lengths of variables in
an AUGMENT= data set that are used in the MODEL and ID statements must match
the types and lengths of the same variables in the DATA= data set. If you use an ID
statement and the AUGMENT= data set contains the ID variables, these variables are
transferred to the OUT= data set (if one is created). See “Including Specific Runs”
on page 724 for an example that uses an AUGMENT= data set.

INITDESIGN= Data Set
The INITDESIGN= data set provides a set of points that are used as an initial design
in the search for an optimal design. These points are not necessarily contained in
the final design. The OPTEX procedure uses these points to begin the search for an
optimal design. The number of points in the INITDESIGN= data set must be the
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same as the number of points in the design (either the default or the number specified
with the N= option in the GENERATE statement).

As with the DATA= data set, the effects specified in a MODEL statement determine
the variables used when generating a design. The types and lengths of variables in an
INITDESIGN= data set that are used in the MODEL and ID statements must match
the types and lengths of the same variables in the DATA= data set. If you use an ID
statement and the INITDESIGN= data set contains the ID variables, these variables
are transferred to the OUT= data set (if one is created). See Example 24.3 on page 749
for an example that uses an INITDESIGN= data set.

If you use an INITDESIGN= data set and also specify METHOD=SEQUENTIAL
in the GENERATE statement, no search is performed. The INITDESIGN= data set
is the final design. In this way, you can use the OPTEX procedure to evaluate an
existing design.

BLOCKS DESIGN= Data Set
The DESIGN= data set in the BLOCKS statement contains a set of points that are
used to generate a model for fixed covariates. These points are contained in the final
design and are transferred to the OUT= data set (if one is created). See Example 24.8
on page 758 for an example that uses a BLOCKS DESIGN= data set.

BLOCKS COVAR= Data Set
If you specify a COVAR= data set in the BLOCKS statement, the observations for
the variables listed in the VAR= option are used to define the assumed variance-
covariance matrix for the experimental runs. These observations arenot transferred
to the OUT= data set (if one is created). Note that since covariance matrices are
necessarily square, the number of observations in the COVAR= data set must be the
same as the number of variables listed in the VAR= option. See Example 24.9 on
page 760 for an example that uses a BLOCKS COVAR= data set.

Output Data Sets

You typically use the OPTEX procedure to create an output data set that contains the
design for your experiment. If you use an OUTPUT statement, the variables in the
output data set are the factors of the design as well as any ID variables. The values
for the ID variables are taken from the input data set (the DATA=, AUGMENT=,
or INITDESIGN= data set) that provided the design point. ID variables must be
contained in the DATA= data set and can also be contained in the AUGMENT= or
INITDESIGN= data sets. If an AUGMENT= or INITDESIGN= data set does not
contain the ID variables, and points from the data set are used in the final design,
values of ID variables for those points are missing.

Since the input data sets provide candidate points for the design, all the observations
in the OUT= data set originate in one of the input data sets. The OPTEX procedure
does not change the values of variables in the input data sets.

Since you can use multiple OUTPUT statements with the OPTEX procedure, you can
create multiple OUT= data sets in a given run of the procedure.
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Computational Details

Specifying Effects in MODEL Statements

This section discusses how to specify the linear model that you plan to fit with the
design. The OPTEX procedure provides for the same general linear models as the
GLM procedure, although it does not use the GLM procedure’sover-parameterized
technique for generating the design matrix (see “Static Coding” on page 774.)

Each term in a model, called aneffect, is a variable or combination of variables. To
specify effects, you use a special notation involving variables and operators. There
are two kinds of variables:classification variablesandcontinuous variables. Classi-
fication variablesseparate observations into groups, and the model depends on them
through these groups; on the other hand, the model depends on the actual (or coded)
values ofcontinuous variables. There are two primary operators:crossingandnest-
ing. A third operator, thebar operator, simplifies the specification for multiple
crossed terms, as in a factorial model. The@operator, used in combination with
the bar operator, further simplifies specification of crossed terms.

When specifying a model, you must list the classification variables in a CLASS state-
ment. Any variables in the model that are not listed in the CLASS statement are
assumed to be continuous. Continuous variables must be numeric.

Types of Effects
Five types of effects can be specified in the MODEL statement. Each row of the de-
sign matrix is generated by combining values for the independent variables according
to effects specified in the MODEL statement. This section discusses how to specify
different types of effects and explains how they relate to the columns of the design
matrix. In the following, assume that A, B, and C are classification variables and X1,
X2, and X3 are continuous variables.

Regressor Effects
Regressor effects are specified by writing continuous variables by themselves.

X1 X2 X3

For regressor effects, the actual values of the variable are used in the design
matrix.

Polynomial Effects
Polynomial effects are specified by joining two or more continuous variables
with asterisks.

X1*X1 X1*X1*X1 X1*X2 X1*X2*X3 X1*X1*X2

Polynomial effects are also referred to as interactions or cross products of con-
tinuous variables; when a variable is joined with itself, polynomial effects are
referred to as quadratic effects, cubic effects, and so on. In the preceding exam-
ples, the first two effects are the quadratic and cubic effects for X1, respectively.
The remaining effects are cross products.

For polynomial effects, the value used in the design matrix is the product of the
values of the constituent variables.
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Main Effects
If a classification variable A hask levels, then its main effect hask� 1 degrees
of freedom, corresponding tok� 1 independent differences between the mean
response at different levels. Main effects are specified by writing class variables
by themselves.

A B C

Most designs involve main effects since these correspond to the factors in your
experiment. For example, in a factorial design for a chemical process, the main
effects may be temperature, pressure, and the level of a catalyst.

For information on how the OPTEX procedure generates thek� 1 columns in
the design matrix corresponding to the main effect of a classification variable,
see “Design Coding” on page 774.

Crossed Effects
Crossed effects (or interactions) are specified by joining class variables with
asterisks.

A*B B*C A*B*C

The number of degrees of freedom for a crossed effect is the product of the
numbers of degrees of freedom for the constituent main effects. The columns in
the design matrix corresponding to a crossed effect are formed by the horizontal
direct products of the constituent main effects.

Continuous-by-Class Effects
Continuous-by-class effects are specified by joining continuous variables and
class variables with asterisks.

X1*A

The design columns for a continuous-by-class effect are constructed by mul-
tiplying the values in the design columns for the continuous variables and the
class variable.

Note that all design matrices start with a column of ones for the assumed intercept
term unless you use the NOINT option in the MODEL statement.

Bar and @Operators
You can shorten the specification of a factorial model using the bar operator. For
example, the following statements show two ways of specifying a full three-way fac-
torial model:

model a b c a*b a*c b*c a*b*c;
model a|b|c;

When the vertical bar (| ) is used, the right- and left-hand sides become effects, and
their cross becomes an effect. Multiple bars are permitted. The expressions are ex-
panded from left to right using rules given by Searle (1971). For example,A|B|C is
evaluated as follows:
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A|B|C ! fA|B g|C

! fA B A*Bg|C

! A B A*B C A*C B*C A*B*C

The bar operator does not cross a variable with itself. To produce a quadratic term,
you must specify it directly.

You can also specify the maximum number of variables involved in any effect that
results from bar evaluation by putting it at the end of a bar effect, preceded by an
@sign. For example, the specificationA|B|C@2 results in only those effects that
contain two or fewer variables (in this case A, B, A*B, C, A*C, and B*C.)

Examples of Models
Main Effects Model

For a three-factor main effects model with A, B, and C as the factors, the MODEL
statement is

model a b c;

Factorial Model with Interactions
To specify interactions in a factorial model, join effects with asterisks, as described
previously. For example, the following statements show two ways of specifying a
complete factorial model, which includes all the interactions:

model a b c a*b a*c b*c a*b*c;
model a|b|c;

Quadratic Model
The following statements show two ways of specifying a model with crossed and
quadratic effects (for a central composite design, for example):

model x1 x2 x1*x2 x3 x1*x3 x2*x3
x1*x1 x2*x2 x3*x3;

model x1|x2|x3@@2 x1*x1 x2*x2 x3*x3;
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Design Efficiency Measures

The output from the OPTEX procedure includes efficiency measures for the resulting
designs according to various criteria. This section gives the precise definitions for
these measures.

By default, the OPTEX procedure calculates the following efficiency measures for
each design found in its search for an optimum design:

D-efficiency = 100�

 
jX 0Xj1=p

ND

!

A-efficiency = 100�

�
p=ND

trace(X 0X)�1

�

G-efficiency = 100�

 s
p=ND

maxx2C x0(X 0X)�1x

!

wherep is the number of parameters in the linear model,ND is the number of de-
sign points, andC is the set of candidate points. The D- and A-efficiencies are the
relative number of runs (expressed as percents) required by a hypothetical orthogonal
design to achieve the samejX 0Xj andtrace(X 0X)�1, respectively; refer to Mitchell
(1974b).

When you specify a BLOCKS statement, the D- and A-efficiencies for the treatment
part of the model are calculated. These are calculated similarly to the preceding
efficiencies, except that they are based on the information matrix after correcting for
covariate effects. This matrix can be written asX 0AX for a symmetric, positive
definite matrixA that depends on the model for the covariate effect. If you specify
a block structure or a covariate model, thenA = I � Z(Z 0Z)�1Z 0, whereZ is
the design matrix for the block or covariate effect. Alternatively, you can use the
COVAR= option to specify the matrixA directly. GivenA, the efficiencies in the
presence of covariates are defined as follows:

D-efficiency = 100 � c�1D � jX 0AXj1=p=N; cD =
Qp

i=1 �
1=p
i

A-efficiency = 100 � cA � (p=N)=trace(X 0AX)�1; cA =
Pp

i=1 �i=p

where�1; : : : ; �p are thep largest eigenvalues ofA. If you use the STRUCTURE=
block model specification and there is only one class variable in the treatment model,
then the design fits into the traditional block design framework. In this case, the
D-efficiency relative to a balanced incomplete block design is also listed.

Because these efficiencies measure the goodness of the design relative to theoretical
designs that may be far from possible in many cases, they are typically not useful as
absolute measures of design goodness. Instead, efficiency measures should be used
relatively, to compare one design to another for the same situation.

For the distance-based criteria, there are no simple measures of design efficiency that
can be scaled from 0 to 100. See the “Output” section on page 783 for a definition of
the design measures tabulated for these criteria.

773
SAS OnlineDoc: Version 8



Part 6. The CAPABILITY Procedure

Design Coding

The way the independent effects of the model are interpreted to generate a linear
model is calledcoding. The OPTEX procedure provides for different types of coding.
For D-optimality, the type of coding affects only the absolute value of the computed
efficiency criteria, not the relative values for two different designs. Thus, different
codings do not affect the choice of D-optimal design. In this section, the details and
ramifications of the different types of coding are discussed.

Coding the points in a design involves selecting linearly independent columns corre-
sponding to each model term, turning particular values of the factors into a row vector
x. The OPTEX procedure requires anon-singularcoding for the design matrix. Be-
cause of this, any two coding schemes are related by a non-singular transformation.

Static Coding
The default coding for the design points is as follows:

� Unless you specify CODING=NONE (or NOCODE) in the PROC OPTEX
statement, continuous variables are centered and scaled so that their maximum
and minimum values are 1 and –1, respectively.

� Thek� 1 columns corresponding to the main effect of a classification variable
A are computed as follows: For a design point with A at itsith level, for 1 �
i � k � 1, the columns of the design matrix associated with A are all 0 except
for the ith column, which is 1. When A is at itskth level, all k � 1 columns
associated with A are�1. Thus, if�i denotes the expected response at theith

level of A, thek�1 columns yield estimates of�1��k; �2��k; : : :; �k�1��k.

� Columns for crossed effects are computed by taking the horizontal direct prod-
uct of columns corresponding to the constituent effects.

This coding corresponds to modeling withoutover-parameterization, using the same
method as the CATMOD procedure in SAS/STAT software. This is different from
the method used by the GLM procedure, which uses an over-parameterized model.

Orthogonal Coding
If you specify CODING=ORTH or CODING=ORTHCAN, the points are first coded
as described in the previous section and then recoded so thatX 0

CXC = NC �I, where
XC is the design matrix for the candidate points,NC is the number of candidates, and
I is the identity matrix. This is required in order for the D- and A-efficiency measures
to make sense. For the option CODING=ORTHCAN, this recoding is accomplished
by computing a square matrixR such thatX 0

CXC = R0R and then transforming each
row vectorx as

x ! xR�1
p
NC

If you specify CODING=ORTH, the recoding is done in a similar fashion, except that
the matrixR is computed according toX 0

CXC +X 0
AXA+X 0

IXI = R0R, whereXA

andXI are the design matrices (coded as described in the previous section.) Thus,
these two orthogonal coding options only differ when there is an AUGMENT= or
INITDESIGN= data set (see pages 738–739); the option CODING=ORTH includes
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points from these data sets in computing the orthogonal coding, while the option
CODING=ORTHCAN uses only the candidates themselves.

Example of Coding
For example, consider a main effect model with one continuous variable X and one
three-level classification variable A. The results of the various coding options are
shown in Figure 24.4.

Original
Data

X A
1 1
2 2
3 3
4 1
5 2
6 3

Design Matrix With
CODING=NONE

X A1 A2
1 1 1 0
1 2 0 1
1 3 –1 –1
1 4 1 0
1 5 0 1
1 6 –1 –1

Design Matrix With
CODING=STATIC

X A1 A2
1 –1 1 0
1 –0.6 0 1
1 –0.2 –1 –1
1 0.2 1 0
1 0.6 0 1
1 1 –1 –1

Design Matrix With
CODING=ORTH

X A1 A2
1 –1.464 0.598 –0.707
1 –0.878 –0.478 1.414
1 –0.293 –1.554 –0.707
1 0.293 1.554 –0.707
1 0.878 0.478 1.414
1 1.464 –0.598 –0.707

Figure 24.4. Different Types of Design Coding

The first column in each design matrix is an all-ones vector corresponding to the
intercept, the next column corresponds to the linear effect of X, and the last two
columns correspond to the two degrees of freedom for the main effect of A.

General Recommendations
Coding does not affect the relative ordering of designs by D-efficiency, and the same
is true for G-efficiency and the average standard error of prediction. This is easy to
see for the latter two measures, which are based on the variance of prediction, since
how accurately a point is predicted should not be affected by how the independent
variables are coded. For D-optimality, note again that coding corresponds to multi-
plying the design matrix on the right by some non-singular transformation A, which
changes the determinant of the information matrix as follows:

jX 0Xj ! jA0X 0XAj = jA0AjjX 0Xj = jAj2jX 0Xj

Thus, recoding simply multiplies the D-criterion by a constant that is the same for all
designs. Note, however, that A-optimality isnot invariant to coding.
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Orthogonal coding will usually be the right one; it is not the default because it de-
pends on the candidate set. Note, however, that for the distance-based criteria, if the
distance between two points should be computed in terms of the actual values of the
model variables instead of centered and scaled values, then you should specify COD-
ING=NONE or NOCODE. The NOCODE option is also usually appropriate when
the NOINT option is specified.

Optimality Criteria

An optimality criterion is a single number that summarizes how good a design is, and
it is maximized or minimized by an optimal design. This section discusses in detail
the optimality criteria available in the OPTEX procedure.

Types of Criteria
Two general types of criteria are available:information-basedcriteria anddistance-
basedcriteria.

The information-based criteria that are directly available are D- and A-optimality;
they are both related to the information matrixX 0X for the design. This matrix is
important because it is proportional to the inverse of the variance-covariance matrix
for the least-squares estimates of the linear parameters of the model. Roughly, a good
design should “minimize” the variance(X 0X)�1, which is the same as “maximizing”
the informationX 0X. D- and A-efficiency are different ways of saying how large
(X 0X) or (X 0X)�1 are.

For the distance-based criteria, the candidates are viewed as comprising a point cloud
in p-dimensional Euclidean space, wherep is the number of terms in the model. The
goal is to choose a subset of this cloud that “covers” the whole cloud as uniformly as
possible (in the case of U-optimality) or that is as broadly “spread” as possible (in the
case of S-optimality). These ideas of coverage and spread are defined in detail on
page 778. The distance-based criteria thus correspond to the intuitive idea of filling
the candidate space as well as possible.

The rest of this section discusses different optimality criterion in detail.

D-optimality
D-optimality is based on the determinant of the information matrix for the design,
which is the same as the reciprocal of the determinant of the variance-covariance
matrix for the least-squares estimates of the linear parameters of the model.

jX 0Xj = 1=j(X 0X)�1j

The determinant is thus a general measure of the size of(X 0X)�1. D-optimality is
the most common criterion for computer-generated optimal designs, which is why it
is the default criterion for the OPTEX procedure.
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The D-optimality criterion has the following characteristics:

� D-optimality is the most computationally efficient criterion to optimize for the
low-rank update algorithms of the OPTEX procedure, since each update de-
pends only on the variance of prediction for the current design; see “Useful
Matrix Formulas” on page 780.

� jX 0Xj is inversely proportional to the size of a100(1 � �)% confidence ellip-
soid for the least-squares estimates of the linear parameters of the model.

� jX 0Xj1=p is equal to the geometric mean of the eigenvalues ofX 0X.

� The D-optimal design is invariant to non-singular recoding of the design ma-
trix.

jX 0Xj ! jA0X 0XAj = jA0AjjX 0Xj = jAj2jX 0Xj

A-optimality
A-optimality is based on the sum of the variances of the estimated parameters for the
model, which is the same as the sum of the diagonal elements, or trace, of(X 0X)�1.
Like the determinant, the A-optimality criterion is a general measure of the size of
(X 0X)�1. A-optimality is less commonly used than D-optimality as a criterion for
computer optimal design. This is partly because it is more computationally difficult to
update; see “Useful Matrix Formulas” on page 780. Also, A-optimality isnot invari-
ant to non-singular recoding of the design matrix; different designs will be optimal
with different codings.

G- and I-optimality
Both G-efficiency and the average prediction variance are well-known criteria for op-
timal design. Both are based on the variance of prediction of the candidate points,
which is proportional tox0(X 0X)�1x. As this formula shows, these two criteria are
also related to the information matrixX 0X. Minimizing the average prediction vari-
ance has also been calledI-optimality, the “I” denoting integration over the candidate
space.

It is possible to apply the search techniques available in the OPTEX procedure to
these two criteria, but this turns out to be a poor way to find G- and I-optimal designs.
One reason for this is that there are no efficient low-rank update rules (see “Useful
Matrix Formulas” on page 780), so that the searches can take a very long time. More
seriously, for G-optimality such a search often does not converge on a design with
good G-efficiency. G-efficiency is simply too “rough” a criterion to be optimized by
the relatively short steps of the search algorithms available in the OPTEX procedure.

However, the OPTEX procedure does offer an approach for finding G-efficient de-
signs. Begin by searching for designs according to the default D-optimality criterion.
Then, from the various designs found on the different tries, you can save the one that
has the best G-efficiency by specifying the NUMBER=GBEST option in the OUT-
PUT statement. Since D- and G-efficiency are highly correlated over the space of
all designs, this method usually results in adequately G-efficient designs, especially
when the number of tries is large. See the ITER= option on page 740 for details on
specifying the number of tries.
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To find I-optimal designs, note that if the design is orthogonally coded then
I-optimality is equivalent to the A-optimality, since the sum of the prediction vari-
ances of all pointsx in the candidate spaceC is

X
x2C

x0(X 0X)�1x =
X
x2C

trace
�
x0(X 0X)�1x

�

= trace

 
(X 0X)�1

X
x2C

xx0

!

= trace
�
(X 0X)�1X 0

CXC

�
= NC � trace

�
(X 0X)�1

�
whereNC is the number of candidate points andXC is the design matrix for the can-
didate points. Thus, you can use the option CODING=ORTH in the PROC OPTEX
statement together with the option CRITERION=A in the GENERATE statement to
search for I-optimal designs.

Note that both G- and I-optimality are invariant to non-singular recoding of the design
matrix, since the coding does not affect how well a point is predicted.

Distance-based Criteria
The distance-based criteria are based on the distanced(x;A) from a pointx in the
p-dimensional Euclidean spaceRp to a setA � Rp. This distance is defined as
follows:

d(x;A) = min
y2A

jjx� yjj

wherejjx� yjj is the usualp-dimensional Euclidean distance,

jjx� yjj =
q
(x1 � y1)2 + : : :+ (xp � yp)2

U-optimality seeks to minimize the sum of the distances from each candidate point
to the design. X

x2C

d(x;D)

whereC is the set of candidate points andD is the set of design points. You can visu-
alize the U criterion by associating with any design point those candidates to which
it is closest. Thus, the design defines aclusteringof the candidate set, and indeed
cluster analysis has been used in this context. Johnson, Moore, and Ylvisaker (1990)
consider a similar measure of design efficiency, but over infinite rather than finite
candidate spaces. Computationally, the U-optimality criterion can beverydifficult to
optimize, especially if the matrix of all pairwise distances between candidate points
does not fit in memory. In this case, the OPTEX procedure recomputes each distance
as needed. When searching for a U-optimal design, you should start with a small
version of the problem to get an idea of the computing resources required.
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S-optimality seeks to maximize the harmonic mean distance from each design point
to all the other points in the design.

NDP
y2D

1=d(y;D � y)

For an S-optimal design, the distancesd(y;D � y) are large, so the points are as
spread out as possible. Since the S-optimality criterion depends only on the distances
between design points, it is usually computationally easier to compute and optimize
than the U-optimality criterion, which depends on the distances between all pairs of
candidate points.

Memory and Run-Time Considerations

The OPTEX procedure provides a computationally intensive approach to designing
an experiment, and therefore some finesse is called for to make the most efficient use
of computer resources.

The OPTEX procedure must retain the entire set of candidate points in memory. This
is necessary because all of the search algorithms access these points repeatedly. If this
requires more memory than is available, consider using knowledge of the problem to
reduce the set of candidate points. For example, for first- or second-order models, it
is usually adequate to restrict the candidates to just the center and the edges of the
experimental region or perhaps an even smaller set; see the introductory examples
on page 727 and page 728.

The distance-based criteria (CRITERION=U and CRITERION=S) also require re-
peated access to the distance between candidate points. The procedure will try to
fit the matrix of these distances in memory; if it cannot, it will recompute them as
needed, but this will cause the search to be dramatically slower.

The run time of each search algorithm depends primarily onND, the size of the target
design and onNC , the number of candidate points. For a given model, the run times
of the sequential, exchange, and DETMAX algorithms are all roughly proportional to
bothND andNC (that is,O(ND)+O(NC)). The run times for the two simultaneous
switching algorithms (FEDOROV and M–FEDOROV) are roughly proportional to
the product ofND andNC (that is,O(NCND)). The constant of proportionality is
larger when searching for A-optimal designs because the update formulas are more
complicated (see “Search Methods,” which follows).

For problems where eitherND or NC is large, it is a good idea to make a few test
runs with a faster algorithm and a small number of tries before attempting to use one
of the slower and more reliable search algorithms. For most problems, the efficiency
of a design found by a faster algorithm will be within one or two percent of that for
the best possible design, and this is usually sufficient if it appears that searching with
a slower algorithm is infeasible.
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Search Methods

The search procedures available in the OPTEX procedure offer various compromises
between speed and reliability in finding the optimum. In general, the longer an algo-
rithm takes to arrive at an answer, the more efficient is the resulting design, although
this is not invariably true. The right search procedure for any specific case depends
on the size of the problem, the relative importance of using the best possible design
as opposed to a very good one, and the computing resources available.

Useful Matrix Formulas
All of the search algorithms are based on adding candidate points to the growing
design and deleting them from a design that is too big. IfV = (X 0X)�1 is the
inverse of the information matrix for the design at any stage, then the change inV
that results from adding a new point to the design (which adds a new rowx to the
design matrix) is

V ! V �
V xx0V

1 + x0V x

and the change inV that results from deleting the pointy from the design is

V ! V +
V yy0V

1� y0V y

It follows, for example, that addingx multiplies the determinant of the information
matrix by1+x0V x, and likewise deletingy multiplies the determinant by1�y0V y.
For any pointz, the quantityz0V z is proportional to the prediction variance at the
point z. Thus, the pointx whose addition to the design maximizes the determinant
of the information is the point whose prediction variance calculated from the present
design is largest. The point whose deletion from the design costs the least in terms of
the determinant is the point with the smallest prediction variance.

Similar rank-one update formulas can be derived for A-optimality, which is based on
the trace of the inverse of the information matrix instead of its determinant. However,
in this case there is no single quantity that can be examined for both adding and
deleting a point. Instead, the trace that results from adding a pointx depends on

x0V 2x

1 + x0V x

and the trace that results from deleting a pointy depends on

y0V 2y

1� y0V y

This complication makes A-optimal designs harder to search for than D-optimal ones.

There are no useful rank-one update formulas for the distance-based design criteria.
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Sequential Search Algorithm
The simplest and fastest algorithm is the sequential search due to Dykstra (1971),
which starts with an empty design and adds successive candidate points so that the
chosen criterion is optimized at each step. You can use the sequential procedure as a
first step in finding a design

� to judge the size of the problem in terms of time and space requirements
� to determine the number of design points needed to estimate the parameters of

the model

The sequential algorithm requires no initial design; in fact, it can be used to provide
an initial design for the other search procedures (see the INITDESIGN= option on
page 739). If you specify a data set for an initial design for this search procedure, no
search will be made; in this way, the OPTEX procedure can be used to evaluate an
existing design.

Since the sequential search method involves no randomness, it requires only one try
to find a design. The sequential procedure is by far the fastest of any of the search
methods, but in difficult design situations it is also the least reliable in finding a
globally optimal design. Also, the fact that it always finds the same design (due to
the lack of randomness mentioned previously) makes it inappropriate when you want
to find a design that represents a compromise between several optimality criteria.

Exchange Algorithm
The next fastest algorithm is the simple exchange method of Mitchell and Miller
(1970). This technique tries to improve an initial design by adding a candidate point
and then deleting one of the design points, stopping when the chosen criterion ceases
to improve. This method is relatively fast (though typically much slower than the
sequential search) and fairly reliable. METHOD=EXCHANGE is the default.

Johnson and Nachtsheim (1983) introduce a generalization of both the simple ex-
change algorithm and the modified Fedorov search algorithm of Cook and Nacht-
sheim (1980), which is described later in this list. In the modified Fedorov algo-
rithm, each of the points in the current design is considered for exchange with a
candidate point; in the generalized version, only thek design points with small-
est variance in the current design are considered for exchange. You can specify
k-exchange as the search procedure for OPTEX by giving a value fork in parentheses
after METHOD=EXCHANGE. Whenk = ND, the size of the design,k-exchange
is equivalent to the modified Fedorov algorithm; whenk = 1, it is equivalent to the
simple exchange algorithm. Cook and Nachtsheim (1980) indicate thatk < ND=4 is
typically sufficient.

DETMAX Algorithm
The DETMAX algorithm of Mitchell (1974a) is the best known and most widely used
optimal design search algorithm. It generalizes the simple exchange method. Instead
of requiring that each addition of a point be followed directly by a deletion, the al-
gorithm provides forexcursionsin which the size of the design may vary between
ND + k andND � k. HereND + k is the specified size of the design andk is the
maximum allowed size for an excursion. By defaultk is 4, but you can change this
(see the METHOD=DETMAX(level) option on page 740). For the precise stopping
rules for each excursion and for the entire search, refer to Mitchell (1974a).
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Fedorov and Modified Fedorov Algorithms
The three algorithms discussed so far add and delete points one at a time. By contrast,
the Fedorov and modified Fedorov algorithms are based on simultaneous switching,
adding and deleting points simultaneously. These two algorithms usually find a better
design than the others, but because each step involves a search over all possible pairs
of candidate and design points, they generally run much slower.

At each step, the Fedorov algorithm (Fedorov 1972) seeks the pair(x;y) of one can-
didate point and one design point that optimizes the change�(x;y) in the optimality
criterion, and then switchesx for y in the design. Thus, after computing�(x;y)
for all possible pairs of candidate and design points, the Fedorov algorithm performs
only one switch.

The modified Fedorov algorithm of Cook and Nachtsheim (1980) computes the same
number of�’s on each step but switches each pointy in the design with the candidate
pointx that maximizes�(x,y). This procedure is generally as reliable as the simple
Fedorov algorithm in finding the optimal design, but it can be up to twice as fast.

Optimal Blocking

Building on the work of Harville (1974), Cook and Nachtsheim (1989) give an algo-
rithm for finding D-optimal designs in the presence of fixed block effects. In this case,
the design for the original candidate points is called thetreatment design; the infor-
mation matrix for the treatment design has the formX 0AX for a certain symmetric,
nonnegative-definite matrixA that depends on the blocks. The algorithm is based
on two kinds of low-rank changes to the treatment design matrixX: exchanginga
point in the design with a potential treatment point, andinterchangingtwo points in
the design. Cook and Nachtsheim (1989) give formulas for computing the resulting
change inX 0AX andjX 0AXj. These update formulas can be generalized to apply
whenever the information matrix for the treatment design has the formX 0AX, not
just whenA is derived from fixed blocks. This is the basis for the optimal blocking
algorithm in the OPTEX procedure.

Notice that you can combine several options to use the OPTEX procedure toevaluate
a design with respect to the fixed covariates. Assume the design you want to evaluate
is in a data set named EDESIGN. Then first specify

generate initdesign=edesign method=sequential;

This makes the data set EDESIGN the treatment design. Then specify the following
BLOCKS statement options:

blocks {block-specification} init=chain iter=0;

The INIT=CHAIN option ensures that the starting ordering for the treatment points
is the same as in the EDESIGN data set, and the ITER=0 specification causes the
procedure simply to output the efficiencies for the initial design, without trying to
optimize it.

SAS OnlineDoc: Version 8
782



Chapter 24. Computational Details

Search Strategies

General Recommendations
As with all combinatorial optimization problems, finding efficient experimental de-
signs can be difficult. For this reason, the OPTEX procedure provides a variety of
ways to customize the search.

Although default settings make the procedure simple to use “as is,” you can usually
improve the search using knowledge of the specific design problem. For example, if
the default algorithm (EXCHANGE) runs quickly but it is not clear whether it finds
the best design, you can try a slower but more reliable search method or use more
iterations than the default number of 10.

Set of Candidate Points
The choice of candidate points can profoundly affect both the speed with which the
search converges at a local optimum and the likelihood that this local optimum is
indeed the global optimum. Up to a point, the more candidate points there are, the
better the resulting optimum design will be but the longer it will take to find. Any
prior knowledge that can be brought to bear on the choice of candidates will almost
certainly improve the search. For example, for first- or second-order models it is
usually adequate to restrict the candidates to just the center and the edges of the ex-
perimental region, or perhaps even less; refer to Snee (1985), and see the introductory
examples on page 727 and page 728.

Initial Design
The reliability of the search algorithms in finding the optimal design can be quite
sensitive to the choice of initial design. The default method of initialization for each
search procedure should achieve good results for a wide variety of situations (see
the INITDESIGN= option on page 739). However, in certain situations it is bet-
ter to override the defaults. For example, if there are many local optima and you
want to find the exact global optimum, it will probably be best to start each try with
a completely random design (INITDESIGN=RANDOM). On the other hand, prior
knowledge may provide a specific initial design, which can be placed in a SAS data
set and specified with the INITDESIGN= option.

Output

By default, the OPTEX procedure lists the following information for each attempt to
find the optimum design:

� the D-efficiency of the design
� the A-efficiency of the design
� the G-efficiency of the design
� the square root of the average variance for prediction over the candidate points

If you specify a BLOCKS statement, then the covariate-adjusted D- and A-
efficiencies are also listed.

See “Design Efficiency Measures” on page 773 for details on the efficiencies. The
OPTEX procedure orders the designs first by the optimality criteria with which they
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were generated and then by optimality with respect to the other three preceding mea-
sures.

If you use the NOCODE option, the OPTEX procedure lists

� log jX0Xj
� trace(X 0X)�1

� the G-efficiency of the design
� the square root of the average variance for prediction over the candidate points

If you specify one of the distance-based optimality criteria (CRITERION=U or CRI-
TERION=S), then, instead of the preceding efficiencies, alternative measures of cov-
erage and spread are listed. For U-optimality these measures are

� the average distance from each candidate to the nearest design point (this is the
U criterion)

� the average harmonic mean distance from each candidate to the design

For S-optimality, the following alternative measures of spread are listed:

� the harmonic mean distance from each design point to the nearest other design
point (this is the S criterion)

� the average distance from each design point to the nearest other design point

In addition, the OPTEX procedure can create an output data set, as described in
“OUTPUT Statement” on page 742 and in “Output Data Sets” on page 769.

ODS Tables

The following table summarizes the ODS tables that you can request with the PROC
OPTTEX statement.

Table 24.5. ODS Tables Produced in PROC OPTEX

ODS Table Name Description Statement Option
ClassLevels Classification variable levels CLASS default
FactorRanges Continuous variable ranges default default
BlockDesignEfficiencies Block design efficiency criteria BLOCK default
Efficiencies Efficiency criteria for all designs GENERATE default
Criteria Efficiency criteria for a single design EXAMINE default
Points Design points EXAMINE POINTS
Information Information matrix XPX EXAMINE INFORMATION
Variance Inverse information matrix inv(XPX) EXAMINE VARIANCE
Status Optimization status PROC STATUS
Distances Distance criteria for all designs GENERATE CRITERION=U

or S
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