Chapter 40 SCHART Statement

Chapter Table of Contents

OVERVIEW
GETTING STARTED
SYNTAX
Summary of Options
DETAILS 1403Constructing Charts for Standard Deviations1403Output Data Sets1404ODS Tables1408Input Data Sets1408Methods for Estimating the Standard Deviation1412Axis Labels1413Missing Values1413
EXAMPLES
Example 40.1 Specifying a Known Standard Deviation
Example 40.2 Computing Average Run Lengths for s Charts

Part 9. The CAPABILITY Procedure

Chapter 40 SCHART Statement

Overview

The SCHART statement creates an s chart for subgroup standard deviations, which is used to analyze the variability of a process.*

You can use options in the SCHART statement to

- compute control limits from the data based on a multiple of the standard error of the plotted standard deviations or as probability limits
- tabulate subgroup sample sizes, subgroup standard deviations, control limits, and other information
- save control limits in an output data set
- save subgroup sample sizes, subgroup means, and subgroup standard deviations in an output data set
- read preestablished control limits from a data set
- specify a method for estimating the process standard deviation
- specify a known (standard) process standard deviation for computing control limits
- display distinct sets of control limits for data from successive time phases
- add block legends and symbol markers to reveal stratification in process data
- superimpose stars at points to represent related multivariate factors
- clip extreme points to make the chart more readable
- display vertical and horizontal reference lines
- control axis values and labels
- control layout and appearance of the chart

*You can also use R charts for this purpose; see Chapter 39, "RCHART Statement." In general, s charts are recommended with large subgroup sample sizes $(n_i \ge 10)$.

Getting Started

This section introduces the SCHART statement with simple examples that illustrate commonly used options. Complete syntax for the SCHART statement is presented in the "Syntax" section on page 1393, and advanced examples are given in the "Examples" section on page 1414.

Creating Standard Deviation Charts from Raw Data

See SHWSCHR in the SAS/QC Sample Library A petroleum company uses a turbine to heat water into steam, which is then pumped into the ground to make oil more viscous and easier to extract. This heating process occurs 20 times daily, and the amount of power (in kilowatts) used to heat the water to the desired temperature is recorded. The following statements create a SAS data set named TURBINE, which contains the power output measurements for 20 days:

```
data turbine;
   informat day date7.;
   format day date5.;
   input day @;
  do i=1 to 10;
      input kwatts @;
      output;
      end;
  drop i;
  datalines;
04JUL94 3196 3507 4050 3215 3583 3617 3789 3180 3505 3454
04JUL94 3417 3199 3613 3384 3475 3316 3556 3607 3364 3721
05JUL94 3390 3562 3413 3193 3635 3179 3348 3199 3413 3562
05JUL94 3428 3320 3745 3426 3849 3256 3841 3575 3752 3347
23JUL94 3421 3787 3454 3699 3307 3917 3292 3310 3283 3536
23JUL94 3756 3145 3571 3331 3725 3605 3547 3421 3257 3574
;
```

A partial listing of TURBINE is shown in Figure 40.1.

Figure 40.1. Partial Listing of the Data Set TURBINE

The data set TURBINE is said to be in "strung-out" form, since each observation contains the day and power output for a single heating. The first 20 observations contain the power outputs for the first day, the second 20 observations contain the power outputs for the second day, and so on. Because the variable DAY classifies the observations into rational subgroups, it is referred to as the *subgroup-variable*. The variable KWATTS contains the power output measurements and is referred to as the *process variable* (or *process* for short).

You can use an s chart to determine whether the variability in the heating process is in control. The following statements create the s chart shown in Figure 40.2:

```
title 'Chart for Standard Deviations of Power Output';
symbol v=dot;
proc shewhart data=turbine;
    schart kwatts*day;
run;
```

This example illustrates the basic form of the SCHART statement. After the keyword SCHART, you specify the *process* to analyze (in this case, KWATTS), followed by an asterisk and the *subgroup-variable* (DAY).

The input data set is specified with the DATA= option in the PROC SHEWHART statement.

Figure 40.2. s Chart for Power Output Data

Each point on the chart represents the standard deviation of the measurements for a particular day. For instance, the standard deviation plotted for the first day is

$$\sqrt{\frac{(3196 - 3487.4)^2 + (3507 - 3487.4)^2 + \dots + (3721 - 3487.4)^2}{19}} = 220.26$$

Since all of the subgroup standard deviations lie within the control limits, you can conclude that the variability of the process is in statistical control.

By default, the control limits shown are 3σ limits estimated from the data; the formulas for the limits are given in Table 40.21 on page 1404. You can also read control limits from an input data set; see "Reading Preestablished Control Limits" on page 1391.

For computational details, see "Constructing Charts for Standard Deviations" on page 1403. For more details on reading raw data, see "DATA= Data Set" on page 1408.

Creating Standard Deviation Charts from Subgroup Summary Data

See SHWSCHR in the SAS/QC Sample Library The previous example illustrates how you can create *s* charts using raw data (process measurements). However, in many applications, the data are provided as subgroup summary statistics. This example illustrates how you can use the SCHART statement with data of this type.

The following data set (OILSUM) provides the data from the preceding example in summarized form:

```
data oilsum;
   input day kwattsx kwattss kwattsn;
   informat day date7. ;
   format day date5. ;
   label day
               ='Date of Measurement';
   datalines;
04JUL94 3487.40 220.260 20
05JUL94 3471.65 210.427 20
06JUL94 3488.30 147.025 20
07JUL94 3434.20 157.637 20
08JUL94 3475.80 258.949 20
09JUL94 3518.10 211.566 20
10JUL94 3492.65 193.779 20
11JUL94 3496.40 212.024 20
12JUL94 3398.50 199.201 20
13JUL94 3456.05 173.455 20
14JUL94 3493.60 187.465 20
15JUL94 3563.30 205.472 20
16JUL94 3519.05 173.676 20
17JUL94 3474.20 200.576 20
18JUL94 3443.60 222.084 20
19JUL94 3586.35 185.724 20
20JUL94 3486.45 223.474 20
21JUL94 3492.90 145.267 20
22JUL94 3432.80 190.994 20
23JUL94 3496.90 208.858 20
;
```

A partial listing of OILSUM is shown in Figure 40.3. There is exactly one observation for each subgroup (note that the subgroups are still indexed by DAY). The variable KWATTSX contains the subgroup means, the variable KWATTSS contains the subgroup standard deviations, and the variable KWATTSN contains the subgroup sample sizes (these are all 20).

Summary Data Set for Power Outputs					
day	kwattsx	kwattss	kwattsn		
04JUL	3487.40	220.260	20		
05JUL	3471.65	210.427	20		
06JUL	3488.30	147.025	20		
•	•	•	•		
•	•	•	•		
•	•	•	•		

Figure 40.3. The Summary Data Set OILSUM

You can read this data set by specifying it as a HISTORY= data set in the PROC SHEWHART statement, as follows:

```
title 'Chart for Standard Deviations of Power Output';
proc shewhart history=oilsum lineprinter;
    schart kwatts*day='*';
run;
```

The resulting *s* chart is shown in Figure 40.4. Since the LINEPRINTER option is specified in the PROC SHEWHART statement, line printer output is produced. The asterisk (*) specified in single quotes after the *subgroup-variable* indicates the character used to plot points. This character must follow an equal sign.

Note that KWATTS is *not* the name of a SAS variable in the data set OILSUM but is, instead, the common prefix for the names of the SAS variables KWATTSS and KWATTSN. The suffix characters S and N indicate *standard deviation* and *sample size*, respectively. Thus, you can specify two subgroup summary variables in the HIS-TORY= data set with a single name (KWATTS), which is referred to as the *process*. The name DAY, specified after the asterisk, is the name of the *subgroup-variable*.

In general, a HISTORY= input data set used with the SCHART statement must contain the following variables:

- subgroup variable
- subgroup standard deviation variable
- subgroup sample size variable

Furthermore, the names of the subgroup standard deviation and sample size variables must begin with the *process* name specified in the SCHART statement and end with the special suffix characters S and N, respectively. If the names do not follow this convention, you can use the RENAME option in the PROC SHEWHART statement to rename the variables for the duration of the SHEWHART procedure step (see page 1507).

Figure 40.4. s Chart for Power Output Data

In summary, the interpretation of process depends on the input data set.

- If raw data are read using the DATA= option (as in the previous example), *process* is the name of the SAS variable containing the process measurements.
- If summary data are read using the HISTORY= option (as in this example), *process* is the common prefix for the names of the variables containing the summary statistics.

For more information, see "HISTORY= Data Set" on page 1409.

Saving Summary Statistics

```
See SHWSCHR
in the SAS/QC
Sample Library
```

In this example, the SCHART statement is used to create a summary data set that can be read later by the SHEWHART procedure (as in the preceding example). The following statements read measurements from the data set TURBINE and create a summary data set named TURBHIST:

run;

The OUTHISTORY= option names the output data set, and the NOCHART option suppresses the display of the chart, which would be identical to the chart in Figure

40.2. Options such as OUTHISTORY= and NOCHART are specified after the slash (/) in the SCHART statement. A complete list of options is presented in the "Syntax" section on page 1393.

Figure 40.5 contains a partial listing of TURBHIST.

Su	mmary Data Set	for Power	Output	
đ	lay kwattsX	kwattsS	kwattsN	
04J	UL 3487.40	220.260	20	
05J	UL 3471.65	210.427	20	
06J	UL 3488.30	147.025	20	
07J	UL 3434.20	157.637	20	
08J	UL 3475.80	258.949	20	
•	•	•	•	
•	•	•	•	
•	•	•	•	

Figure 40.5. The Summary Data Set TURBHIST

There are four variables in the data set TURBHIST.

- DAY contains the subgroup index.
- KWATTSX contains the subgroup means.
- KWATTSS contains the subgroup standard deviations.
- KWATTSN contains the subgroup sample sizes.

The subgroup mean variable is included even though it is not required by the SCHART statement. This allows the data set to be used as a HISTORY= data set with the BOXCHART, XCHART, and XSCHART statements, as well as with the SCHART statement. Note that the summary statistic variables are named by adding the suffix characters X, S, and N to the *process* KWATTS specified in the SCHART statement. In other words, the variable naming convention for OUTHISTORY= data sets is the same as that for HISTORY= data sets.

For more information, see "OUTHISTORY= Data Set" on page 1406.

Saving Control Limits

You can save the control limits for an *s* chart in a SAS data set; this enables you to apply the control limits to future data (see "Reading Preestablished Control Limits" on page 1391) or modify the limits with a DATA step program.

The following statements read measurements from the data set TURBINE (see page 1384) and save the control limits displayed in Figure 40.2 in a data set named TURBLIM:

run;

See SHWSCHR in the SAS/QC Sample Library The OUTLIMITS= option names the data set containing the control limits, and the NOCHART option suppresses the display of the chart. The data set TURBLIM is listed in Figure 40.6.

Control Limits for Power Output Data							
VAR	_SUBGRP_	_TYPE_	_LIMITN_	_ALPHA_	_SIGMAS_	_LCLX_	
kwatts	day	ESTIMATE	20	.002792725	3	3351.92	
MEAN	_UCLX_	_LCLS_	_s_	_UCLS_	_STDDEV_		
3485.41	3618.90	100.207	196.396	292.584	198.996		

Figure 40.6. The Data Set TURBLIM Containing Control Limit Information

The data set TURBLIM contains one observation with the limits for *process* KWATTS. The variables _LCLS_ and _UCLS_ contain the lower and upper control limits, and the variable _S_ contains the central line. The value of _MEAN_ is an estimate of the process mean, and the value of _STDDEV_ is an estimate of the process standard deviation σ . The value of _LIMITN_ is the nominal sample size associated with the control limits, and the value of _SIGMAS_ is the multiple of σ associated with the control limits. The variables _VAR_ and _SUBGRP_ are bookkeeping variables that save the *process* and *subgroup-variable*. The variable _TYPE_ is a bookkeeping variable that indicates whether the values of _MEAN_ and _STDDEV_ are estimates or standard values. The variables _LCLX_ and _UCLX_, which contain the lower and upper control limits for subgroup means, are included so that the data set TURBLIM can be used to create an \overline{X} chart (see Chapter 44, "XSCHART Statement"). For more information, see "OUTLIMITS= Data Set" on page 1404.

You can create an output data set containing both control limits and summary statistics with the OUTTABLE= option, as illustrated by the following statements:

The data set TURBTAB is listed in Figure 40.7.

This data set contains one observation for each subgroup sample. The variables _SUBS_ and _SUBN_ contain the subgroup standard deviations and subgroup sample sizes. The variables _LCLS_ and _UCLS_ contain the lower and upper control limits, and the variable _S_ contains the central line. The variables _VAR_ and BATCH contain the *process* name and values of the *subgroup-variable*, respectively. For more information, see "OUTTABLE= Data Set" on page 1406.

	Summa	ry Si	tatist	tics	and Contro	l Limit In	formation		
		_ s	 L						_
		I	I	_	_	_		_	Е
_		G	М	S	L	S		U	х
v		М	I	υ	C	υ		C	L
A	d	А	т	в	L	в	_	L	I
R	a	S	N	N	S	S	S	S	м
_	У	_	_	_	-	-	-	_	-
kwatts	04JUL	3	20	20	100.207	220.260	196.396	292.584	
kwatts	05JUL	3	20	20	100.207	210.427	196.396	292.584	
kwatts	06JUL	3	20	20	100.207	147.025	196.396	292.584	
kwatts	07JUL	3	20	20	100.207	157.637	196.396	292.584	
kwatts	08JUL	3	20	20	100.207	258.949	196.396	292.584	
kwatts	09JUL	3	20	20	100.207	211.566	196.396	292.584	
kwatts	10JUL	3	20	20	100.207	193.779	196.396	292.584	
kwatts	11JUL	3	20	20	100.207	212.024	196.396	292.584	
kwatts	12JUL	3	20	20	100.207	199.201	196.396	292.584	
kwatts	13JUL	3	20	20	100.207	173.455	196.396	292.584	
kwatts	14JUL	3	20	20	100.207	187.465	196.396	292.584	
kwatts	15JUL	3	20	20	100.207	205.472	196.396	292.584	
kwatts	16JUL	3	20	20	100.207	173.676	196.396	292.584	
kwatts	17JUL	3	20	20	100.207	200.576	196.396	292.584	
kwatts	18JUL	3	20	20	100.207	222.084	196.396	292.584	
kwatts	19JUL	3	20	20	100.207	185.724	196.396	292.584	
kwatts	20JUL	3	20	20	100.207	223.474	196.396	292.584	
kwatts	21JUL	3	20	20	100.207	145.267	196.396	292.584	
kwatts	22JUL	3	20	20	100.207	190.994	196.396	292.584	
kwatts	23JUL	3	20	20	100.207	208.858	196.396	292.584	

Figure 40.7. The OUTTABLE= Data Set TURBTAB

An OUTTABLE= data set can be read later as a TABLE= data set. For example, the following statements read TURBTAB and display an s chart (not shown here) identical to the chart in Figure 40.2:

```
title 'Chart for Standard Deviations of Power Output';
symbol v=dot;
proc shewhart table=turbtab;
    schart kwatts*day;
run;
```

Because the SHEWHART procedure simply displays the information in a TABLE= data set, you can use TABLE= data sets to create specialized control charts (see Chapter 49, "Specialized Control Charts"). For more information, see "TABLE= Data Set" on page 1410.

Reading Preestablished Control Limits

In the previous example, the OUTLIMITS= data set TURBLIM saved control limits computed from the measurements in TURBINE. This example shows how these limits can be applied to new data.

See SHWSCHR in the SAS/QC Sample Library

The following statements create an s chart for new measurements in the data set TURBINE2 (not listed here) using the control limits in TURBLIM:

```
title 'Chart for Standard Deviations of Power Output';
symbol v=dot;
proc shewhart data=turbine2 limits=turblim;
    schart kwatts*day;
run;
```

The chart is shown in Figure 40.8. The LIMITS= option in the PROC SHEWHART statement specifies the data set containing the control limits. By default,* this information is read from the first observation in the LIMITS= data set for which

- the value of _VAR_ matches the *process* name KWATTS
- the value of _SUBGRP_ matches the *subgroup-variable* name DAY

All the standard deviations lie within the control limits, indicating that the variability of the heating process is still in statistical control.

In this example, the LIMITS= data set was created in a previous run of the SHE-WHART procedure. You can also create a LIMITS= data set with the DATA step. See "LIMITS= Data Set" on page 1409 for details concerning the variables that you must provide.

^{*}In Release 6.09 and in earlier releases, it is also necessary to specify the READLIMITS option to read control limits from a LIMITS= data set.

Syntax

The basic syntax for the SCHART statement is as follows:

SCHART process*subgroup-variable;

The general form of this syntax is as follows:

SCHART (processes)*subgroup-variable <(block-variables) > < =symbol-variable | ='character' > < I options >;

You can use any number of SCHART statements in the SHEWHART procedure. The components of the SCHART statement are described as follows.

process

processes

identify one or more processes to be analyzed. The specification of *process* depends on the input data set specified in the PROC SHEWHART statement.

- If raw data are read from a DATA= data set, *process* must be the name of the variable containing the raw measurements. For an example, see "Creating Standard Deviation Charts from Raw Data" on page 1384.
- If summary data are read from a HISTORY= data set, *process* must be the common prefix of the summary variables in the HISTORY= data set. For an example, see "Creating Standard Deviation Charts from Subgroup Summary Data" on page 1386.
- If summary data and control limits are read from a TABLE= data set, *process* must be the value of the variable _VAR_ in the TABLE= data set. For an example, see "Saving Control Limits" on page 1389.

A *process* is required. If you specify more than one *process*, enclose the list in parentheses. For example, the following statements request distinct *s* charts for WEIGHT, LENGTH, and WIDTH:

```
proc shewhart data=measures;
    schart (weight length width)*day;
run;
```

```
subgroup-variable
```

is the variable that identifies subgroups in the data. The *subgroup-variable* is required. In the preceding SCHART statement, DAY is the subgroup variable. For details, see "Subgroup Variables" on page 1534.

block-variables

are optional variables that group the data into blocks of consecutive subgroups. The blocks are labeled in a legend, and each *block-variable* provides one level of labels in the legend. See "Displaying Stratification in Blocks of Observations" on page 1684 for an example.

symbol-variable

is an optional variable whose levels (unique values) determine the symbol marker or character used to plot the subgroup standard deviations.

- If you produce a chart on a line printer, an 'A' is displayed for the points corresponding to the first level of the *symbol-variable*, a 'B' is displayed for the points corresponding to the second level, and so on.
- If you produce a chart on a graphics device, distinct symbol markers are displayed for points corresponding to the various levels of the *symbol-variable*. You can specify the symbol markers with SYMBOL*n* statements. See "Displaying Stratification in Levels of a Classification Variable" on page 1683 for an example.

character

specifies a plotting character for charts produced on line printers. For example, the following statements create an s chart using an asterisk (*) to plot the points:

```
proc shewhart data=values;
    schart weight*day='*';
run;
```

options

enhance the appearance of the chart, request additional analyses, save results in data sets, and so on. The "Summary of Options" section, which follows, lists all options by function. Chapter 46, "Dictionary of Options," describes each option in detail.

Summary of Options

The following tables list the SCHART statement options by function. For complete descriptions, see Chapter 46, "Dictionary of Options."

Table 40.1.	Tabulation Options	
-------------	--------------------	--

TABLE	creates a basic table of subgroup standard deviations, subgroup sam- ple sizes, and control limits			
TABLEALL	is equivalent to the options TABLE, TABLECENTRAL, TABLEID, TABLELEGEND, TABLEOUTLIM, and TABLETESTS			
TABLECENTRAL	augments basic table with values of central lines			
TABLEID	augments basic table with columns for ID variables			
TABLELEGEND	augments basic table with legend for tests for special causes			
TABLEOUTLIM	augments basic table with columns indicating control limits exceeded			
TABLETESTS	augments basic table with a column indicating which tests for special			
	causes are positive			

Note that specifying (EXCEPTIONS) after a tabulation option creates a table for exceptional points only.

TESTS2=value-list	specifies tests for special causes for the <i>s</i> chart
customized-pattern-list TEST2RUN=n	specifies length of pattern for Test 2
TEST3RUN=n	specifies length of pattern for Test 3
TESTACROSS	applies tests across phase boundaries
TESTLABEL='label' (variable) keyword	provides labels for points where test is positive
TESTLABELn='label'	specifies label for n^{th} test for special causes
TESTNMETHOD= STANDARDIZE	applies tests to standardized chart statistics
TESTOVERLAP	performs tests on overlapping patterns of points
ZONE2LABELS	adds labels A, B, and C to zone lines for s chart
ZONE2VALUES	labels zone lines with their values
ZONES2	adds lines to s chart delineating zones A, B, and C
ZONEVALPOS=n	specifies position of ZONE2VALUES labels

 Table 40.2.
 Options for Specifying Tests for Special Causes

 Table 40.3.
 Graphical Options for Displaying Tests for Special Causes

CTESTS=color test-color-list	specifies color for labels indicating points where test is positive
CZONES=color	specifies color for lines and labels delineating zones A, B, and C
LABELFONT=font	specifies software font for labels at points where test is positive (alias for the TESTFONT= option)
LABELHEIGHT=value	specifies height of labels at points where test is positive (alias for the TESTHEIGHT= option)
LTESTS=linetype	specifies type of line connecting points where test is positive
LZONES=linetype	specifies line type for lines delineating zones A, B, and C
TESTFONT=font	specifies software font for labels at points where test is positive
TESTHEIGHT=value	specifies height of labels at points where test is positive

Table 40.4. Line Printer Options for Displaying Tests for Special Causes

TESTCHAR='character'	specifies character for line segments that connect any sequence of points for which a test for special causes is positive
ZONECHAR='character'	specifies character for lines that delineate zones for tests for spe- cial causes

Table 40.5.	Clipping	Options
-------------	----------	---------

CCLIP=color	specifies color for plot symbol for clipped points
CLIPCHAR='character'	specifies plot character for clipped points
CLIPFACTOR=value	determines extent to which extreme points are clipped
CLIPLEGEND='string'	specifies text for clipping legend
CLIPLEGPOS=keyword	specifies position of clipping legend
CLIPSUBCHAR=	specifies substitution character for CLIPLEGEND= text
'character'	
CLIPSYMBOL=symbol	specifies plot symbol for clipped points
CLIPSYMBOLHT=value	specifies symbol marker height for clipped points

Table 40.6. Reference Line Options

CHREF=color	specifies color for lines requested by HREF= option
CVREF=color	specifies color for lines requested by VREF= option
HREF=values SAS-data-set	specifies position of reference lines perpendicular to horizontal axis on <i>s</i> chart
HREFCHAR='character'	specifies line character for HREF= lines
HREFLABELS= 'label1''labeln'	specifies labels for HREF= lines
HREFLABPOS=n	specifies position of HREFLABELS=labels
LHREF=linetype	specifies line type for HREF= lines
LVREF=linetype	specifies line type for VREF= lines
NOBYREF	specifies that reference line information in a data set is to be applied uniformly to charts created for all BY groups
VREF=values SAS-data-set	specifies position of reference lines perpendicular to vertical axis on s chart
VREFCHAR='character'	specifies line character for VREF= lines
VREFLABELS= 'label1''labeln'	specifies labels for VREF= lines
VREFLABPOS=n	specifies position of VREFLABELS= labels

Table 40.7.	Block Variable Legend Options
-------------	-------------------------------

BLOCKLABELPOS=	specifies position of label for block-variable legend
keyword	
BLOCKLABTYPE=	specifies text size of <i>block-variable</i> legend
value keyword	
BLOCKPOS=n	specifies vertical position of <i>block-variable</i> legend
BLOCKREP	repeats identical consecutive labels in block-variable legend
CBLOCKLAB=color	specifies color for filling background in <i>block-variable</i> legend
CBLOCKVAR=variable	specifies one or more variables whose values are colors for filling
(variables)	background of <i>block-variable</i> legend

Table 40.8.	Axis and Axis Label Options
-------------	-----------------------------

CAXIS=color	specifies color for axis lines and tick marks
CFRAME=color (color-list)	specifies fill colors for frame for plot area
CTEXT=color	specifies color for tick mark values and axis labels
HAXIS=values AXISn	specifies major tick mark values for horizontal axis
HEIGHT=value	specifies height of axis label and axis legend text
HMINOR= <i>n</i>	specifies number of minor tick marks between major tick marks on horizontal axis
HOFFSET=value	specifies length of offset at both ends of horizontal axis
NOHLABEL	suppresses label for horizontal axis
NOTICKREP	specifies that only the first occurrence of repeated, adjacent sub- group values is to be labeled on horizontal axis
NOTRUNC	suppresses vertical axis truncation at zero applied by default to s chart
NOVANGLE	requests vertical axis labels that are strung out vertically
SKIPHLABELS=n	specifies thinning factor for tick mark labels on horizontal axis
TURNHLABELS	requests horizontal axis labels that are strung out vertically
VAXIS=values AXISn	specifies major tick mark values for vertical axis on s chart
VMINOR= <i>n</i>	specifies number of minor tick marks between major tick marks on vertical axis
VOFFSET=value	specifies length of offset at both ends of vertical axis
VZERO	forces origin to be included in vertical axis for primary chart
VZERO2	forces origin to be included in vertical axis for secondary chart
WAXIS= <i>n</i>	specifies width of axis lines

Table 40.9.	Plot Layout Options
	i lot Layout Options

ALLN	plots summary statistics for all subgroups
BILEVEL	creates control charts using half-screens and half-pages
EXCHART	creates control charts for a process variable only when exceptions occur
INTERVAL=keyword	specifies natural time interval between consecutive subgroup po- sitions when time, date, or datetime format is associated with a numeric subgroup variable
MAXPANELS=n	specifies maximum number of pages or screens for chart
NMARKERS	requests special markers for points corresponding to sample sizes not equal to nominal sample size for fixed control limits
NOCHART	suppresses creation of s chart
NOFRAME	suppresses frame for plot area
NOLEGEND	suppresses legend for subgroup sample sizes
NPANELPOS=n	specifies number of subgroup positions per panel on each chart
REPEAT	repeats last subgroup position on panel as first subgroup position of next panel
TOTPANELS=n	specifies number of pages or screens to be used to display chart
ZEROSTD	displays s chart regardless of whether $\hat{\sigma} = 0$

Table 40.10. Options for Specifying Control Limits

ALPHA=value	requests probability limits for control charts
LIMITN=n VARYING	specifies either nominal sample size for fixed control limits or varying limits
NOREADLIMITS	computes control limits for each <i>process</i> from the data rather than from a LIMITS= data set (Release 6.10 and later releases)
READALPHA	reads the variable _ALPHA_ instead of the variable _SIGMAS_ from a LIMITS= data set
READINDEXES=ALL 'label1''labeln'	reads multiple sets of control limits for each <i>process</i> from a LIM-ITS= data set
READLIMITS	reads single set of control limits for each <i>process</i> from a LIM-ITS= data set (Release 6.09 and earlier releases)
SIGMAS=k	specifies width of control limits in terms of multiple k of standard error of plotted statistic

CINFILL=color	specifies color for area inside control limits
CLIMITS=color	specifies color of control limits, central line, and related labels
LCLLABEL='label'	specifies label for lower control limit on s chart
LIMLABSUBCHAR= 'character'	specifies a substitution character for labels provided as quoted strings; the character is replaced with the value of the control limit
LLIMITS=linetype	specifies line type for control limits
NDECIMAL=n	specifies number of digits to right of decimal place in default labels for control limits and central line on s chart
NOCTL	suppresses display of central line on s chart
NOLCL	suppresses display of lower control limit on s chart
NOLIMITLABEL	suppresses labels for control limits and central line
NOLIMITS	suppresses display of control limits
NOLIMITSFRAME	suppresses default frame around control limit information when multiple sets of control limits are read from a LIMITS= data set
NOLIMITSLEGEND	suppresses legend for control limits
NOLIMIT0	suppresses display of zero lower control limit on s chart
NOUCL	suppresses display of upper control limit on s chart
SSYMBOL='string' keyword	specifies label for central line on s chart
UCLLABEL='string'	specifies label for upper control limit on s chart
WLIMITS=n	specifies width for control limits and central line

Table 40.11.	Options for Displaying	a Control Limits

Table 40.12. Grid Options

ENDGRID	adds grid after last plotted point
GRID	adds grid to control chart
LENDGRID=linetype	specifies line type for grid requested with the ENDGRID option
LGRID=linetype	specifies line type for grid requested with the GRID option
WGRID= <i>n</i>	specifies width of grid lines

	· · · · · · · · · · · · · · · · · · ·
ALLLABEL=VALUE	labels every point on <i>s</i> chart
(variable)	
CCONNECT=color	specifies color for line segments that connect points on chart
CFRAMELAB=color	specifies fill color for frame around labeled points
CNEEDLES=color	specifies color for needles that connect points to central line
CONNECTCHAR= 'character'	specifies character used to form line segments that connect points on chart
COUT=color	specifies color for portions of line segments that connect points outside control limits
COUTFILL=color	specifies color for shading areas between the connected points and control limits outside the limits
NEEDLES	connects points to central line with vertical needles
NOCONNECT	suppresses line segments that connect points on chart
OUTLABEL=VALUE (variable)	labels points outside control limits on s chart
SYMBOLCHARS= 'characters'	specifies characters indicating symbol-variable
SYMBOLLEGEND= NONE <i>name</i>	specifies LEGEND statement for levels of symbol-variable
SYMBOLORDER= keyword	specifies order in which symbols are assigned for levels of <i>symbol-variable</i>

Table 40.13.	Options for Plo	tting and Lah	elina Points
		ting and Lac	Joining F On its

Table 40.14. Input Data Set Options

MISSBREAK	specifies that observations with missing values are not to be
	processed

Table 40.15. Output Data Set Options

OUTHISTORY= SAS-data-set	creates output data set containing subgroup summary statistics
OUTINDEX='string'	specifies value of _INDEX_ in the OUTLIMITS= data set
OUTLIMITS=	creates output data set containing control limits
SAS-data-set OUTTABLE=	creates output data set containing subgroup summary statistics
SAS-data-set	and control limits
WEBOUT=	creates OUTTABLE= data set with additional graph coordinate
SAS-data-set	data

CPHASEBOX=color	specifies color for box enclosing all plotted points for a phase
CPHASEBOX- CONNECT=color	specifies color for line segments connecting adjacent enclosing boxes
CPHASEBOXFILL=color	specifies fill color for box enclosing all plotted points for a phase
CPHASELEG=color	specifies text color for phase legend
CPHASEMEAN- CONNECT=color	specifies color for line segments connecting average value points within a phase
NOPHASEFRAME	suppresses default frame for phase legend
OUTPHASE='string'	specifies value of _PHASE_ in the OUTHISTORY= data set
PHASEBREAK	disconnects last point in a phase from first point in next phase
PHASELABTYPE=value keyword	specifies text size of phase legend
PHASELEGEND	displays phase labels in a legend across top of chart
PHASEMEANSYMBOL= symbol	specifies symbol marker for average of values within a phase
PHASEREF	delineates phases with vertical reference lines
READPHASES= ALL 'label1''labeln'	specifies <i>phases</i> to be read from an input data set

 Table 40.17.
 Specification Limit Options

CIALPHA=value	specifies α value for computing capability index confidence limits
CITYPE=keyword	specifies capability index confidence limits type
LSL=value-list	specifies list of lower specification limits
TARGET=value-list	specifies list of target values
USL=value-list	specifies list of upper specification limits

Table 40.18. Process Mean and Standard Deviation Options

SIGMA0=value	specifies known value σ_0 for process standard deviation σ
SMETHOD=keyword	specifies method for estimating process standard deviation σ
TYPE=keyword	identifies whether parameters are estimates or standard values and specifies value of _TYPE_ in the OUTLIMITS= data set

ANNOTATE=	specifies annotate data set that adds features to s chart	
SAS-data-set		
DESCRIPTION='string'	specifies string that appears in the description field of PROC GREPLAY master menu for s chart	
FONT=font	specifies software font for labels and legends on charts	
HTML=(variable)	specifies a variable whose values are URLs to be associated with subgroups	
NAME='string'	specifies name that appears in the name field of the PROC GRE- PLAY master menu for s chart	
PAGENUM='string'	specifies the form of the label used in pagination	
PAGENUMPOS= keyword	specifies the position of the page number requested with the PA-GENUM= option	

Table 40.20. Star Options

CSTARCIRCLES=color	specifies color for STARCIRCLES= circles
CSTARFILL=color	specifies color for filling stars
(variable)	
CSTAROUT=color	specifies outline color for stars exceeding inner or outer circles
CSTARS=color (variable)	specifies color for outlines of stars
LSTARCIRCLES= linetypes	specifies line types for STARCIRCLES= circles
LSTARS=linetype (variable)	specifies line types for outlines of STARVERTICES= stars
STARBDRADIUS=value	specifies radius of outer bound circle for vertices of stars
STARCIRCLES=value-list	specifies reference circles for stars
STARINRADIUS=value	specifies inner radius of stars
STARLABEL=keyword	specifies vertices to be labeled
STARLEGEND=keyword	specifies style of legend for star vertices
STARLEGENDLAB='label'	specifies label for STARLEGEND=legend
STAROUTRADIUS=value	specifies outer radius of stars
STARSPEC=value	specifies method used to standardize vertex variables
SAS-data-set	
STARSTART=value	specifies angle for first vertex
STARTYPE=keyword	specifies graphical style of star
STARVERTICES=	superimposes star at each point on s chart
variable (variables)	
WSTARCIRCLES=n	specifies width of STARCIRCLES= circles
WSTARS=n	specifies width of STARVERTICES = stars

Details

Constructing Charts for Standard Deviations

The following notation is used in this section:

σ	process standard deviation (standard deviation of the population of measurements)
s_i	standard deviation of measurements in ith subgroup
	$s_i = \sqrt{(1/(n_i - 1))((x_{i1} - \bar{X}_i)^2 + \dots + (x_{in_i} - \bar{X}_i)^2)}$
n_i	sample size of $t^{\rm h}$ subgroup
$c_4(n)$	expected value of the standard deviation of n independent normally distributed variables with unit standard deviation
$c_5(n)$	standard error of the standard deviation of n independent observations from a normal population with unit standard deviation
$\chi_p^2(n)$	$100p^{ ext{th}}$ percentile $(0 of the \chi^2 distribution with n degrees of freedom$

Plotted Points

Each point on an *s* chart indicates the value of a subgroup standard deviation (s_i) . For example, if the tenth subgroup contains the values 12, 15, 19, 16, and 13, the value plotted for this subgroup is

$$s_{10} = \sqrt{((12 - 15)^2 + (15 - 15)^2 + (19 - 15)^2 + (16 - 15)^2 + (13 - 15)^2)/4} = 2.739$$

Central Line

By default, the central line for the i^{th} subgroup indicates an estimate for the expected value of s_i , which is computed as $c_4(n_i)\hat{\sigma}$, where $\hat{\sigma}$ is an estimate of σ . If you specify a known value (σ_0) for σ , the central line indicates the value of $c_4(n_i)\sigma_0$. Note that the central line varies with n_i .

Control Limits

You can compute the limits in the following ways:

- as a specified multiple (k) of the standard error of s_i above and below the central line. The default limits are computed with k = 3 (these are referred to as 3σ limits).
- as probability limits defined in terms of α , a specified probability that s_i exceeds the limits

The following table provides the formulas for the limits:

Table 40.21.Limits for s Charts

Control Limits	
LCL = lower limit = max $(c_4(n_i)\hat{\sigma} - kc_5(n_i)\hat{\sigma}, 0)$	
UCL = upper limit = $c_4(n_i)\hat{\sigma} + kc_5(n_i)\hat{\sigma}$	
Probability Limits	
LCL = lower limit = $\hat{\sigma} \sqrt{\chi^2_{\alpha/2}(n_i - 1)/(n_i - 1)}$	
UCL = upper limit = $\hat{\sigma} \sqrt{\chi^2_{1-\alpha/2}(n_i-1)/(n_i-1)}$	

The formulas assume that the data are normally distributed. If a standard value σ_0 is available for σ , replace $\hat{\sigma}$ with σ_0 in Table 40.21. Note that the upper and lower limits vary with n_i and that the probability limits are asymmetric around the central line.

You can specify parameters for the limits as follows:

- Specify k with the SIGMAS= option or with the variable _SIGMAS_ in a LIMITS= data set.
- Specify α with the ALPHA= option or with the variable _ALPHA_ in a LIM-ITS= data set.
- Specify a constant nominal sample size $n_i \equiv n$ for the control limits with the LIMITN= option or with the variable _LIMITN_ in a LIMITS= data set.
- Specify σ_0 with the SIGMA0= option or with the variable _STDDEV_ in a LIMITS= data set.

Output Data Sets

OUTLIMITS= Data Set

The OUTLIMITS= data set saves control limits and control limit parameters. The following variables are saved:

Table 4	U.22. OUTLIMITS= Data Set
Variable	Description
ALPHA	probability (α) of exceeding limits
CP	capability index C_p
CPK	capability index C_{pk}
CPL	capability index CPL
CPM	capability index C_{pm}
CPU	capability index CPU
INDEX	optional identifier for the control limits specified with the
	OUTINDEX= option
LCLS	lower control limit for subgroup standard deviation
LCLX	lower control limit for subgroup mean
LIMITN	sample size associated with the control limits
LSL	lower specification limit
MEAN	process mean $(\overline{\overline{X}} \text{ or } \mu_0)$

Table 40.22. OUTLIMITS= Data Set

Variable	Description
S	value of central line on <i>s</i> chart
SIGMAS	multiple (k) of standard error of \bar{X}_i or s_i
STDDEV	process standard deviation ($\hat{\sigma}$ or σ_0)
SUBGRP	subgroup-variable specified in the SCHART statement
TARGET	target value
TYPE	type (estimate or standard value) of _MEAN_ and _STDDEV_
UCLS	upper control limit for subgroup standard deviation
UCLX	upper control limit for subgroup mean
USL	upper specification limit
VAR	process specified in the SCHART statement

Table 40.22.(continued)

Notes:

- 1. The variables _LCLX_, _MEAN_, and _UCLX_ are saved to allow the OUTLIMITS= data set to be used as a LIMITS= data set with the BOXCHART, XCHART, and XSCHART statements.
- 2. If the control limits vary with subgroup sample size, the special missing value *V* is assigned to the variables _LIMITN_, _LCLX_, _UCLX_, _LCLS_, _S_, and _UCLS_.
- 3. If the limits are defined in terms of a multiple k of the standard error of s_i , the value of _ALPHA_ is computed as

 $F_S(\text{LCLS}/\text{STDDEV}) + 1 - F_S(\text{UCLS}/\text{STDDEV})$

where $F_S(\cdot)$ is the cumulative distribution function of the standard deviation of a sample of *n* observations from a normal population with unit standard deviation, and *n* is the value of _LIMITN_. If _LIMITN_ has the special missing value *V*, this value is assigned to _ALPHA_.

- 4. If the limits are probability limits, the value of _SIGMAS_ is computed as (_UCLS_ _S_)/e, where e is the standard error of the standard deviation of n observations from a normal population with unit standard deviation. If _LIMITN_ has the special missing value V, this value is assigned to _SIGMAS_.
- 5. The variables _CP_, _CPK_, _CPL_, _CPU_, _LSL_, and _USL_ are included only if you provide specification limits with the LSL= and USL= options. The variables _CPM_ and _TARGET_ are included if, in addition, you provide a target value with the TARGET= option. See "Capability Indices" on page 1537 for computational details.
- 6. Optional BY variables are saved in the OUTLIMITS= data set.

The OUTLIMITS= data set contains one observation for each *process* specified in the SCHART statement. For an example, see "Saving Control Limits" on page 1389.

OUTHISTORY= Data Set

The OUTHISTORY= data set saves subgroup summary statistics. The following variables are saved:

- the *subgroup-variable*
- a subgroup mean variable named by *process* suffixed with *X*
- a subgroup standard deviation variable named by process suffixed with S
- a subgroup sample size variable named by process suffixed with N

The subgroup mean variable is included so that the data set can be reused as a HIS-TORY= data set with the BOXCHART, XCHART, and XSCHART statements, as well as the SCHART statement.

Given a *process* name that contains eight characters, the procedure first shortens the name to its first four characters and its last three characters, and then it adds the suffix. For example, the procedure shortens the *process* DIAMETER to DIAMTER before adding the suffix.

Subgroup summary variables are created for each *process* specified in the SCHART statement. For example, consider the following statements:

```
proc shewhart data=steel;
    schart (width diameter)*lot / outhistory=summary;
run;
```

The data set SUMMARY contains variables named LOT, WIDTHX, WIDTHS, WIDTHN, DIAMTERX, DIAMTERS, and DIAMTERN.

Additionally, the following variables, if specified, are included:

- BY variables
- block-variables
- symbol-variable
- ID variables
- _PHASE_ (if the OUTPHASE= option is specified)

For an example of an OUTHISTORY= data set, see "Saving Summary Statistics" on page 1388.

OUTTABLE= Data Set

The OUTTABLE= data set saves subgroup summary statistics, control limits, and related information. The following variables are saved:

Variable	Description
ALPHA	probability (α) of exceeding control limits
EXLIM	control limit exceeded on s chart
LCLS	lower control limit for standard deviation
LIMITN	nominal sample size associated with the control limits
S	average standard deviation
SIGMAS	multiple (k) of the standard error associated with control limits
subgroup	values of the subgroup variable
SUBN	subgroup sample size
SUBS	subgroup standard deviation
TESTS2	tests for special causes signaled on s chart
UCLS	upper control limit for standard deviation
VAR	process specified in the SCHART statement

In addition, the following variables, if specified, are included:

- BY variables
- block-variables
- symbol-variable
- ID variables
- _PHASE_ (if the READPHASES= option is specified)

Notes:

- 1. Either the variable _ALPHA_ or the variable _SIGMAS_ is saved depending on how the control limits are defined (with the ALPHA= or SIGMAS= option, respectively, or with the corresponding variables in a LIMITS= data set).
- 2. The variable _TESTS2_ is saved if you specify the TESTS2= option.
- 3. The variables _VAR_, _EXLIM_, and _TESTS2_ are character variables of length 8. The variable _PHASE_ is a character variable of length 16. All other variables are numeric.

For an example, see "Saving Control Limits" on page 1389.

ODS Tables

The following table summarizes the ODS tables that you can request with the SCHART statement.

Table Name	Description	Options
SCHART	s chart summary statistics	TABLE, TABLEALL, TABLEC,
		TABLEID, TABLELEG,
		TABLEOUT, TABLETESTS
Tests	descriptions of tests for special causes requested with the TESTS= option for which at least one positive signal is found	TABLEALL, TABLELEG

Table 40.23. ODS Tables Produced with the SCHART Statement

Input Data Sets

DATA= Data Set

You can read raw data (process measurements) from a DATA= data set specified in the PROC SHEWHART statement. Each *process* specified in the SCHART statement must be a SAS variable in the DATA= data set. This variable provides measurements, which must be grouped into subgroup samples indexed by the values of the *subgroup-variable*. The *subgroup-variable*, which is specified in the SCHART statement, must also be a SAS variable in the DATA= data set.

Each observation in a DATA= data set must contain a value for each *process* and a value for the *subgroup-variable*. If the t^{th} subgroup contains n_i items, there should be n_i consecutive observations for which the value of the *subgroup-variable* is the index of the t^{th} subgroup. For example, if each subgroup contains five items and there are 30 subgroup samples, the DATA= data set should contain 150 observations. Other variables that can be read from a DATA= data set include

- _PHASE_ (if the READPHASES= option is specified)
- block-variables
- symbol-variable
- BY variables
- ID variables

By default, the SHEWHART procedure reads all of the observations in a DATA= data set. However, if the DATA= data set includes the variable _PHASE_, you can read selected groups of observations (referred to as *phases*) with the READPHASES= option (for an example, see "Displaying Stratification in Phases" on page 1689).

For an example of a DATA= data set, see "Creating Standard Deviation Charts from Raw Data" on page 1384.

LIMITS= Data Set

You can read preestablished control limits (or parameters from which the control limits can be calculated) from a LIMITS= data set specified in the PROC SHEWHART statement. For example, the following statements read control limit information from the data set CONLIMS:*

```
proc shewhart data=info limits=conlims;
    schart weight*batch;
run;
```

The LIMITS= data set can be an OUTLIMITS= data set that was created in a previous run of the SHEWHART procedure. Such data sets always contain the variables required for a LIMITS= data set; see Table 40.22 on page 1404. The LIMITS= data set can also be created directly using a DATA step. When you create a LIMITS= data set, you must provide one of the following:

- the variables _LCLS_, _S_, and _UCLS_, which specify the control limits directly
- the variable _STDDEV_, which is used to calculate the control limits according to the equations in Table 40.21 on page 1404

In addition, note the following:

- The variables _VAR_ and _SUBGRP_ are required. These must be character variables of length 8.
- The variable _INDEX_ is required if you specify the READINDEX= option. This must be a character variable of length 16.
- The variables _LIMITN_, _SIGMAS_ (or _ALPHA_), and _TYPE_ are optional, but they are recommended to maintain a complete set of control limit information. The variable _TYPE_ must be a character variable of length 8; valid values are ESTIMATE, ESTIMATE, STDMU, and STDSIGMA.
- BY variables are required if specified with a BY statement.

For an example, see "Reading Preestablished Control Limits" on page 1391.

HISTORY= Data Set

You can read subgroup summary statistics from a HISTORY= data set specified in the PROC SHEWHART statement. This allows you to reuse OUTHISTORY= data sets that have been created in previous runs of the SHEWHART, CUSUM, or MACONTROL procedures or to read output data sets created with SAS summarization procedures, such as PROC MEANS.

^{*}In Release 6.09 and in earlier releases, it is necessary to specify the READLIMITS option.

A HISTORY= data set used with the SCHART statement must contain the following:

- the *subgroup-variable*
- a subgroup standard deviation variable for each process
- a subgroup sample size variable for each *process*

The names of the subgroup standard deviation and subgroup sample size variables must be the *process* name concatenated with the special suffix characters S and N, respectively. For example, consider the following statements:

```
proc shewhart history=summary;
    schart (weight yldstren)*batch;
run;
```

The data set SUMMARY must include the variables BATCH, WEIGHTS, WEIGHTN, YLDSRENS, and YLDSRENN.

Note that if you specify a *process* name that contains eight characters, the names of the summary variables must be formed from the first four characters and the last three characters of the *process* name, suffixed with the appropriate character.

Other variables that can be read from a HISTORY= data set include

- _PHASE_ (if the READPHASES= option is specified)
- block-variables
- symbol-variable
- BY variables
- ID variables

By default, the SHEWHART procedure reads all the observations in a HISTORY= data set. However, if the data set includes the variable _PHASE_, you can read selected groups of observations (referred to as *phases*) by specifying the READ-PHASES= option (see "Displaying Stratification in Phases" on page 1689 for an example).

For an example of a HISTORY= data set, see "Creating Standard Deviation Charts from Subgroup Summary Data" on page 1386.

TABLE= Data Set

You can read summary statistics and control limits from a TABLE= data set specified in the PROC SHEWHART statement. This enables you to reuse an OUTTABLE= data set created in a previous run of the SHEWHART procedure. Because the SHE-WHART procedure simply displays the information in a TABLE= data set, you can use TABLE= data sets to create specialized control charts. Examples are provided in Chapter 49, "Specialized Control Charts." The following table lists the variables required in a TABLE= data set used with the SCHART statement:

Variable	Description
LCLS	lower control limit for standard deviation
LIMITN	nominal sample size associated with the control limits
S	average standard deviation
subgroup-variable	values of the subgroup-variable
SUBN	subgroup sample size
SUBS	subgroup standard deviation
UCLS	upper control limit for standard deviation

 Table 40.24.
 Variables Required in a TABLE= Data Set

Other variables that can be read from a TABLE= data set include

- block-variables
- symbol-variable
- BY variables
- ID variables
- _PHASE_ (if the READPHASES= option is specified). This variable must be a character variable of length 16.
- _TESTS2_ (if the TESTS2= option is specified). This variable is used to flag tests for special causes and must be a character variable of length 8.
- _VAR_. This variable is required if more than one *process* is specified or if the data set contains information for more than one *process*. This variable must be a character variable of length 8.

For an example of a TABLE= data set, see "Saving Control Limits" on page 1389.

Methods for Estimating the Standard Deviation

When control limits are determined from the input data, three methods (referred to as default, MVLUE, and RMSDF) are available for estimating σ .

Default Method

The default estimate for σ is

$$\hat{\sigma} = \frac{s_1/c_4(n_1) + \dots + s_N/c_4(n_N)}{N}$$

where N is the number of subgroups for which $n_i \ge 2$, s_i is the sample standard deviation of the i^{th} subgroup

$$s_i = \sqrt{\frac{1}{n_i - 1} \sum_{j=1}^{n_i} (x_{ij} - \bar{X}_i)^2}$$

and

$$c_4(n_i) = rac{\Gamma(n_i/2)\sqrt{2/(n_i-1)}}{\Gamma((n_i-1)/2)}$$

Here $\Gamma(\cdot)$ denotes the gamma function, and \bar{X}_i denotes the i^{th} subgroup mean. A subgroup standard deviation s_i is included in the calculation only if $n_i \ge 2$. If the observations are normally distributed, then the expected value of s_i is $c_4(n_i)\sigma$. Thus, $\hat{\sigma}$ is the unweighted average of N unbiased estimates of σ . This method is described in the ASTM Manual on Presentation of Data and Control Chart Analysis (1976).

MVLUE Method

If you specify SMETHOD=MVLUE, a minimum variance linear unbiased estimate (MVLUE) is computed for σ . Refer to Burr (1969, 1976) and Nelson (1989, 1994). This estimate is a weighted average of N unbiased estimates of σ of the form $s_i/c_4(n_i)$, and it is computed as

$$\hat{\sigma} = \frac{h_1 s_1 / c_4(n_1) + \dots + h_N s_N / c_4(n_N)}{h_1 + \dots + h_N}$$

where

$$h_i = rac{[c_4(n_i)]^2}{1 - [c_4(n_i)]^2}$$

A subgroup standard deviation s_i is included in the calculation only if $n_i \ge 2$, and N is the number of subgroups for which $n_i \ge 2$. The MVLUE assigns greater weight to estimates of σ from subgroups with larger sample sizes, and it is intended for situations where the subgroup sample sizes vary. If the subgroup sample sizes are constant, the MVLUE reduces to the default estimate.

RMSDF Method

If you specify SMETHOD=RMSDF, a weighted root-mean-square estimate is computed for σ .

$$\hat{\sigma} = \frac{\sqrt{(n_1 - 1)s_1^2 + \dots + (n_N - 1)s_N^2}}{c_4(n)\sqrt{n_1 + \dots + n_N - N}}$$

The weights are the degrees of freedom $n_i - 1$. A subgroup standard deviation s_i is included in the calculation only if $n_i \ge 2$, and N is the number of subgroups for which $n_i \ge 2$.

If the unknown standard deviation σ is constant across subgroups, the root-meansquare estimate is more efficient than the minimum variance linear unbiased estimate. However, in process control applications, it is generally not assumed that σ is constant, and if σ varies across subgroups, the root-mean-square estimate tends to be more inflated than the MVLUE.

Axis Labels

You can specify axis labels by assigning labels to particular variables in the input data set, as summarized in the following table:

Axis	Input Data Set	Variable
Horizontal	all	subgroup-variable
Vertical	DATA=	process
Vertical	HISTORY=	subgroup standard deviation variable
Vertical	TABLE=	_SUBS_

For an example, see "Labeling Axes" on page 1719.

Missing Values

An observation read from a DATA=, HISTORY=, or TABLE= data set is not analyzed if the value of the subgroup variable is missing. For a particular process variable, an observation read from a DATA= data set is not analyzed if the value of the process variable is missing. Missing values of process variables generally lead to unequal subgroup sample sizes. For a particular process variable, an observation read from a HISTORY= or TABLE= data set is not analyzed if the values of any of the corresponding summary variables are missing.

Examples

This section provides advanced examples of the SCHART statement.

Example 40.1. Specifying a Known Standard Deviation

See SHWSEX1 in the SAS/QC Sample Library In some applications, a standard value σ_0 may be available for the process standard deviation σ . This example shows how you can specify σ_0 to compute the control limits.

Suppose that the amount of power needed to heat water in the heating process described on page 1384 has a known standard deviation of 200. The following statements specify this known value and create an *s* chart, shown in Output 40.1.1, for the power output measurements in the data set TURBINE:

The SIGMA0= option specifies σ_0 , and the SSYMBOL= option specifies a label for the central line indicating that the central line is computed from σ_0 . Since all the points lie within the limits, you can conclude that the variability of the process is stable.

Output 40.1.1. Reading in Standard Value for Process Standard Deviation

You can also specify σ_0 as the value of the variable _STDDEV_ in a LIMITS= data set, as illustrated by the following statements:*

```
data plimits;
  length _var_ _subgrp_ _type_ $8;
  _var_ = 'kwatts';
  _subgrp_ = 'day';
  _type_ = 'STDSIGMA';
  _limitn_ = 20;
  _stddev_ = 200;
run;
title 'Chart Using Known Process Standard Deviation';
symbol v=dot;
proc shewhart data=turbine limits=plimits;
  schart kwatts*day / ssymbol=s0;
run;
```

The resulting s chart (not shown here) is identical to the one shown in Output 40.1.1. For more information, see "LIMITS= Data Set" on page 1409.

Example 40.2. Computing Average Run Lengths for s Charts

This example illustrates how you can compute the average run length of an s chart. The data used here are the power measurements in the data set TURBINE, which is introduced on page 1384.

See SHWSARL in the SAS/QC Sample Library

The in-control average run length of a Shewhart chart is $ARL = \frac{1}{p}$, where *p* is the probability that a single point exceeds its control limits. Since this probability is saved as the value of the variable _ALPHA_ in an OUTLIMITS= data set, you can compute ARL for an *s* chart as follows:

```
title 'Average In-Control Run Length';
proc shewhart data=turbine;
   schart kwatts*day / outlimits=turblim nochart;
data arlcomp;
   keep _var_ _sigmas_ _alpha_ arl;
   set turblim;
   arl = 1 / _alpha_;
run;
```

The data set ARLCOMP is listed in Output 40.2.1, which shows that the ARL is equal to 358.

Output 40.2.1. The Data Set ARLCOMP

Ave	erage In-Contro	l Run Length	
VAR	_ALPHA_	_SIGMAS_	arl
kwatts	.002792725	3	358.073

*In Release 6.09 and in earlier releases, it is necessary to specify the READLIMITS option.

To compute out-of-control average run lengths, define f as the slippage factor for the process standard deviation σ , where f > 1. In other words, the "shifted" standard deviation to be detected by the chart is $f\sigma$. The following statements compute the ARL as a function of f:

```
title 'Average Run Length Analysis';
data arlshift;
  keep f f_std p arl_f;
  set turblim;
  df = _limitn_ - 1;
  do f = 1 to 1.5 by 0.05;
    f_std = f * _stddev_;
    low = df * ( _lcls_ / f_std )**2;
    upp = df * ( _ucls_ / f_std )**2;
    p = probchi( low, df ) + 1 - probchi( upp, df );
    arl_f = 1 / p;
    output;
  end;
run;
```

The data set ARLSHIFT is listed in Output 40.2.2. For example, on average, 53 samples are required to detect a ten percent increase in σ (a shifted standard deviation of approximately 219). The computations use the fact that $(n_i - 1)s_i^2/\sigma^2$ has a χ^2 distribution with $n_i - 1$ degrees of freedom, assuming that the measurements are normally distributed.

Output 40.2.2. The Data Set ARLSHIFT

Average Run Length Analysis				
	f	f_std	р	arl_f
	1.00	198.996	0.00279	358.073
	1.05	208.945	0.00758	131.922
	1.10	218.895	0.01875	53.322
	1.15	228.845	0.03984	25.102
	1.20	238.795	0.07388	13.535
	1.25	248.745	0.12239	8.171
	1.30	258.694	0.18475	5.413
	1.35	268.644	0.25834	3.871
	1.40	278.594	0.33923	2.948
	1.45	288.544	0.42298	2.364
	1.50	298.494	0.50546	1.978

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., *SAS/QC[®] User's Guide, Version 8*, Cary, NC: SAS Institute Inc., 1999. 1994 pp.

SAS/QC[®] User's Guide, Version 8

Copyright © 1999 SAS Institute Inc., Cary, NC, USA.

ISBN 1-58025-493-4

All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, by any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the software by the government is subject to restrictions as set forth in FAR 52.227–19 Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, October 1999

 SAS^{\circledast} and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute in the USA and other countries. $^{\circledast}$ indicates USA registration.

 $IBM^{\circledast}, ACF/VTAM^{\circledast}, AIX^{\circledast}, APPN^{\circledast}, MVS/ESA^{\circledast}, OS/2^{\circledast}, OS/390^{\circledast}, VM/ESA^{\circledast}, and VTAM^{\circledast}$ are registered trademarks or trademarks of International Business Machines Corporation. $^{\circledast}$ indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

The Institute is a private company devoted to the support and further development of its software and related services.