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Chapter 49
Specialized Control Charts

Overview

Although the Shewhart chart serves well as the fundamental tool for statistical process
control (SPC) applications, its assumptions are challenged by many modern manu-
facturing environments. For example, when standard control limits are used in appli-
cations where the process is sampled frequently, autocorrelation in the measurements
can result in too many out-of-control signals. This chapter also considers process con-
trol applications involving multiple components of variation, short production runs,
nonnormal process data, and multivariate process data.

These questions are subjects of current research and debate. It is not the goal of this
chapter to provide definitive solutions but rather to illustrate some basic approaches
that have been proposed and indicate how they can be implemented with short SAS
programs. The sections in this chapter use the SHEWHART procedure in conjunction
with various SAS procedures for statistical modeling, as summarized by the following
table:

Process Control Application Modeling Procedure

Diagnosing and modeling autocorrelation in process data ARIMA

Developing control limits for processes involving multiple
components of variation

MIXED

Establishing control with short production runs and check-
ing for constant variance

GLM

Developing control limits for nonnormal individual mea-
surements

CAPABILITY

Creating control charts for multivariate process data PRINCOMP
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Part 9. The CAPABILITY Procedure

Autocorrelation in Process Data

Autocorrelation has long been recognized as a natural phenomenon in process indus-See SHWARIEW
in the SAS/QC
Sample Library

tries, where parameters such as temperature and pressure vary slowly relative to the
rate at which they are measured. Only in recent years has autocorrelation become
an issue in SPC applications, particularly in parts industries, where autocorrelation is
viewed as a problem that can undermine the interpretation of Shewhart charts. One
reason for this concern is that, as automated data collection becomes prevalent in
parts industries, processes are sampled more frequently and it is possible to recognize
autocorrelation that was previously undetected. Another reason, noted by Box and
Kramer (1992), is that the distinction between parts and process industries is becom-
ing blurred in areas such as computer chip manufacturing. For two other discussions
of this issue, refer to Schneider and Pruett (1994) and Woodall (1993).

The standard Shewhart analysis of individual measurements assumes that the process
operates with a constant mean�, and thatxt (the measurement at timet) can be
represented asxt = � + �t, where�t is a random displacement or error from the
process mean�. Typically, the errors are assumed to be statistically independent in
the derivation of the control limits displayed at three standard deviations above and
below the central line, which represents an estimate for�.

When Shewhart charts are constructed from autocorrelated measurements, the result
can be too many false signals, making the control limits seem too tight. This situation
is illustrated in Figure 49.1, which displays an individual measurement and moving
range chart for 100 observations of a chemical process.

Figure 49.1. Conventional Shewhart Chart
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Chapter 49. Autocorrelation in Process Data

The measurements are saved in a SAS data set named CHEMICAL.� The chart in
Figure 49.1 is created with the following statements:

symbol value=dot;
title ’Individual Measurements Chart’;
proc shewhart data=chemical;

irchart xt*t / cneedles = black
npanelpos = 100
split = ’/’;

label xt = ’Observed/Moving Range’
t = ’Time’;

run;

Diagnosing and Modeling Autocorrelation

You can diagnose autocorrelation with an autocorrelation plot created with the
ARIMA procedure.

proc arima data=chemical;
identify var = xt;

run;

Refer toSAS/ETS User’s Guidefor details on the ARIMA procedure. The plot, shown
in Figure 49.2, indicates that the data are highly autocorrelated with a lag 1 autocor-
relation of 0.83.

Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 48.348400 1.00000 | |********************|
1 40.141884 0.83026 | . |***************** |
2 34.732168 0.71837 | . |************** |
3 29.950852 0.61948 | . |************ |
4 24.739536 0.51169 | . |********** |
5 20.594420 0.42596 | . |********* |
6 18.427704 0.38114 | . |********. |

Partial Autocorrelations

Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

1 0.83026 | . |***************** |
2 0.09346 | . |** . |
3 0.00385 | . | . |
4 -0.07340 | . *| . |
5 -0.00278 | . | . |
6 0.09013 | . |** . |

Figure 49.2. Autocorrelation Plots for Chemical Data

The partial autocorrelation plot in Figure 49.2 suggests that the data can be modeled
with a first-order autoregressive model, commonly referred to as an AR(1) model.

�The measurements are patterned after the values plotted in Figure 1 of Montgomery and Mas-
trangelo (1991).
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Part 9. The CAPABILITY Procedure

~xt � xt � � = �0 + �1~xt�1 + �t

You can fit this model with the ARIMA procedure. The results in Figure 49.3 show
that the equation of the fitted model is~xt = 13:05 + 0:847~xt�1.

proc arima data=chemical;
identify var=xt;
estimate p=1 method=ml;

run;

Maximum Likelihood Estimation

Standard Approx
Parameter Estimate Error t Value Pr > |t| Lag

MU 85.28375 2.32973 36.61 <.0001 0
AR1,1 0.84694 0.05221 16.22 <.0001 1

Constant Estimate 13.05329

Figure 49.3. Fitted AR(1) Model

Strategies for Handling Autocorrelation

There is considerable disagreement on how to handle autocorrelation in process data.
Consider the following three views:

� At one extreme, Wheeler (1991b) argues that the usual control limits are
contaminated “only when the autocorrelation becomes excessive (say 0.80 or
larger).” He concludes that “one need not be overly concerned about the effects
of autocorrelation upon the control chart.”

� At the opposite extreme, automatic process control (APC), also referred to as
engineering process control, views autocorrelation as a phenomenon to be ex-
ploited. In contrast to SPC, which assumes that the process remains on target
unless an unexpected but removable cause occurs, APC assumes that the pro-
cess is changing dynamically due to known causes that cannot be eliminated.
Instead of avoiding “overcontrol” and “tampering,” which have a negative con-
notation in the SPC framework, APC advocates continuous tuning of the pro-
cess to achieve minimum variance control. Descriptions of this approach and
discussion of the differences between APC and SPC are provided by a num-
ber of authors, including Box and Kramer (1992), MacGregor (1987, 1990),
MacGregor, Hunter, and Harris (1988), and Montgomery and others (1994).

� A third strategy advocates removing autocorrelation from the data and con-
structing a Shewhart chart (or an EWMA chart or a cusum chart) for the resid-
uals; refer, for example, to Alwan and Roberts (1988).

An example of the last approach is presented in the remainder of this section simply to
demonstrate the use of the ARIMA procedure in conjunction with the SHEWHART
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Chapter 49. Autocorrelation in Process Data

procedure. The ARIMA procedure models the autocorrelation and saves the residuals
in an output data set; the SHEWHART procedure creates a control chart using the
residuals as input data.

In the chemical data example, the residuals can be computed as forecast errors and
saved in an output SAS data set with the FORECAST statement in the ARIMA pro-
cedure.

proc arima data=chemical;
identify var=xt;
estimate p=1 method=ml;
forecast out=results id=t;

run;

The output data set (named RESULTS) saves the one-step-ahead forecasts as a vari-
able named FORECAST, and it also contains the original variables XT and T. You
can create a Shewhart chart for the residuals by using the data set RESULTS as input
to the SHEWHART procedure.

title ’Residual Analysis Using AR(1) Model’;
proc shewhart data=results(firstobs=4 obs=100);

xchart xt*t / npanelpos = 100
split = ’/’
trendvar = forecast
xsymbol = xbar
ypct1 = 40
vref2 = 70 to 100 by 10
lvref = 2
nolegend;

label xt = ’Residual/Forecast’
t = ’Time’;

run;

The chart is shown in Figure 49.4. Specifying TRENDVAR=FORECAST plots the
values of FORECAST in the lower chart and plots the residuals (XT� FORECAST)
together with their3� limits in the upper chart.�

Various other methods can be applied with this data. For example, Montgomery
and Mastrangelo (1991) suggest fitting an exponentially weighted moving average
(EWMA) model and using this model as the basis for a display that they refer to as
anEWMA central line control chart.

Before presenting the statements for creating this display, it is helpful to review some
terminology. The EWMAstatisticplotted on a conventional EWMA control chart is
defined as

zt = �xt + (1� �)zt�1

�The upper chart in Figure 49.4 resembles Figure 2 of Montgomery and Mastrangelo (1991), who
conclude that the process is in control.
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Part 9. The CAPABILITY Procedure

Figure 49.4. Residuals from AR(1) Model

The EWMA chart (which you can construct with the MACONTROL procedure) is
based on the assumption that the observationsxt are independent. However, in the
context of autocorrelated process data (and more generally in time series analysis),
the EWMA statisticzt plays a different role:� it is the optimal one-step-ahead forecast
for a process that can be modeled by an ARIMA(0,1,1) model

xt = xt�1 + �t � ��t�1

provided that the weight parameter� is chosen as� = 1 � �. This statistic is also a
good predictor when the process can be described by a subset of ARIMA models for
which the process is “positively autocorrelated and the process mean does not drift
too quickly.”y

You can fit an ARIMA(0,1,1) model to the chemical data with the following state-
ments. A summary of the fitted model is shown in Figure 49.5.

proc arima data=chemical;
identify var=xt(1);
estimate q=1 method=ml noint;
forecast out=ewma id=t;

run;

�For a discussion of these roles, refer to Hunter (1986).
yRefer to Montgomery and Mastrangelo (1991) and the discussion that follows their paper.
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Chapter 49. Autocorrelation in Process Data

Maximum Likelihood Estimation

Standard Approx
Parameter Estimate Error t Value Pr > |t| Lag

MA1,1 0.15041 0.10021 1.50 0.1334 1

Variance Estimate 14.97024
Std Error Estimate 3.86914
AIC 549.868
SBC 552.4631
Number of Residuals 99

Figure 49.5. Fitted ARIMA(0,1,1) Model

The forecast values and their standard errors (variables FORECAST and STD), to-
gether with the original measurements, are saved in a data set named EWMA. The
EWMA central line control chart plots the forecasts from the ARIMA(0,1,1) model
as the central “line,” and it uses the standard errors of prediction to determine upper
and lower control limits. You can construct this chart, shown in Figure 49.6,� with
the following statements:

data ewma;
set ewma(firstobs=2 obs=100);

run;

data ewmatab;
length _var_ $ 8 ;
set ewma (rename=(forecast=_mean_ xt=_subx_));
_var_ = ’xt’;
_sigmas_ = 3;
_limitn_ = 1;
_lclx_ = _mean_ - 3 * std;
_uclx_ = _mean_ + 3 * std;
_subn_ = 1;

title ’EWMA Center Line Control Chart’;
proc shewhart table=ewmatab;

xchart xt*t / npanelpos = 100
xsymbol = ’Center’
cinfill = ligr
llimits = 1
nolegend;

label _subx_ = ’Observed’
t = ’Time’ ;

run;

Note that EWMA is read by the SHEWHART procedure as a TABLE= input data set,
which has a special structure intended for applications in which both the statistics to
be plotted and their control limits are pre-computed. The variables in a TABLE= data

�Figure 49.6 is similar to Figure 5 of Montgomery and Mastrangelo (1991).
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Part 9. The CAPABILITY Procedure

set have reserved names beginning and ending with the underscore character; for this
reason, FORECAST and XT are temporarily renamed as–MEAN– and–SUBX–,
respectively. For more information on TABLE= data sets, see “Input Data Sets” in
the chapter for the chart statement in which you are interested.

Again, the conclusion is that the process is in control. While Figure 49.4 and Figure
49.6 are not the only displays that can be considered for analyzing the chemical data,
their construction illustrates the conjunctive use of the ARIMA and SHEWHART
procedures in process control applications involving autocorrelated data.

Figure 49.6. EWMA Center Line Chart

SAS OnlineDoc: Version 8
1762



Chapter 49. Multiple Components of Variation

Multiple Components of Variation
In the preceding section, the excessive variation in the conventional Shewhart chart inSee SHWMULTC

in the SAS/QC
Sample Library

Figure 49.1 is the result of positive autocorrelation in the data. The variation is “ex-
cessive” not because it is due to special causes of variation, but because the Shewhart
model is inappropriate. This section considers another form of departure from the
Shewhart model; here, measurements areindependentfrom one subgroup sample to
the next, but there are multiple components of variation for each measurement. This
is illustrated with an example involving two components.�

A company that manufactures polyethylene film monitors the statistical control of an
extrusion process that produces a continuous sheet of film. At periodic intervals of
time, samples are taken at four locations (referred to as lanes) along a cross section of
the sheet, and a test measurement is made of each sample. The test values are saved
in a SAS data set named FILM. A partial listing of FILM is shown in Figure 49.7.

sample lane testval

1 A 93
1 B 87
1 C 92
1 D 78
2 A 87
. . .
. . .
. . .

56 D 75

Figure 49.7. Polyethylene Sheet Measurements in the Data Set FILM

Preliminary Examination of Variation
As a preliminary step in the analysis, the data are sorted by lane and visually screened
for outliers (test values greater than 130) with box plots created as follows:

proc sort data=film;
by lane;

title ’Outlier Analysis’;
proc shewhart data=film;

boxchart testval*lane / boxstyle = schematicid
idsymbol = dot
cboxfill = megr
vref = 130
vreflab = ’Outlier Cutoff’
hoffset = 5
stddevs
nolegend
nolimits ;

id sample;
run;

�Also refer to Chapter 5 of Wheeler and Chambers (1986) for an explanation of the effects of sub-
grouping and sources of variation on control charts.
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Part 9. The CAPABILITY Procedure

Specifying BOXSTYLE=SCHEMATICID requests schematic box plots with outliers
identified by the value of the ID variable SAMPLE. The STDDEVS option specifies
that the estimate of the process standard deviation is to be based on subgroup standard
deviations. Although this estimate is not needed here because control limits are not
displayed, it is recommended that you specify the STDDEVS option whenever you
are working with subgroup sample sizes greater than ten. The NOLEGEND and
NOLIMITS options suppress the subgroup sample size legend and control limits for
lane means that are displayed by default. The display is shown in Figure 49.8.

Figure 49.8. Outlier Analysis for the Data Set FILM

Figure 49.9 shows similarly created box plots for the data in FILM after the outliers
have been removed.�

data film;
set film;
if testval < 130;

title ’Variation Within Lane’;
proc shewhart data=film;

boxchart testval*lane / boxstyle = schematicid
idsymbol = dot
cboxfill = megr
hoffset = 5
stddevs
nolegend
nolimits ;

id sample;
run;

�For the remainder of this section, unless otherwise indicated, it is assumed that the outliers are
deleted from the data set FILM.
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Chapter 49. Multiple Components of Variation

Figure 49.9. The Data Set FILM Without Outliers

Since you have no additional information about the process, you may want to create
a conventional�X andR chart for the test values grouped by the variable SAMPLE.
This is a straightforward application of the XRCHART statement in the SHEWHART
procedure.

proc sort data=film;
by sample;

symbol value=dot;
title ’Shewhart Chart for Means and Ranges’;
proc shewhart data=film;

xrchart testval*sample /
split = ’/’
npanelpos = 60
limitn = 4
coutfill = megr
nolegend
alln;

label testval=’Average Test Value/Range’;
run;

The �X andR chart is displayed in Figure 49.10. Ordinarily, the out-of-control points
in Figure 49.10 would indicate that the process is not in statistical control. In this
situation, however, the process is known to be quite stable, and the data have been
screened for outliers. Thus, the control limits seem to be inappropriate for the data.
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Part 9. The CAPABILITY Procedure

Figure 49.10. Conventional �X and R Chart

Determining the Components of Variation

The standard Shewhart analysis assumes that sampling variation, also referred to as
within-groupvariation, is the only source of variation. Writingxij for the jth mea-
surement within theith subgroup, you can express the model for the conventional�X

andR chart as

xij = �+ �W �ij

for i = 1; 2; : : : ; k and j = 1; 2; : : : ; n. The random variables�ij are assumed to
be independent with zero mean and unit variance, and�2W is the within-subgroup
variance. The parameter� denotes the process mean.

In a process such as film manufacturing, this model is not adequate because there is
additional variation due to changes in temperature, pressure, raw material, and other
factors. Instead, a useful model is

xij = �+ �B!i + �W �ij

where�2
B is the between-subgroup variance, the random variables!i are independent

with zero mean and unit variance, and the random variables!i are independent of the
random variables�ij .�

�This notation is used in Chapter 3 of Wetherill and Brown (1991), which discusses this issue.
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Chapter 49. Multiple Components of Variation

To plot the subgroup averages�xi: �
P xij

n
on a control chart, you need expressions

for the expectation and variance of�xi:. These are

E(�xi:) = �

Var(�xi:) = �2
B +

�2W
n

Thus, the central line should be located at�̂, and3� limits should be located at

�̂� 3

q
�̂2
B +

�̂2
W

n

where�̂2
B and�̂2

W denote estimates of the variance components. You can use a variety
of SAS procedures for fitting linear models to estimate the variance components. The
following statements show how this can be done with the MIXED procedure:

proc mixed data=film;
class sample;
model testval = / s;
random sample;
make ’solutionf’ out=sf;
make ’covparms’ out=cp;

run;

The results are shown in Figure 49.11. Note that the parameter estimates are�̂2B =

19:25, �̂2
W = 39:68, and�̂ = 88:90.

Covariance Parameter
Estimates

Cov Parm Estimate

sample 19.2526
Residual 39.6825

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 88.8963 0.7250 55 122.61 <.0001

Figure 49.11. Partial Output from the MIXED Procedure

The following statements merge the output data sets from the MIXED procedure into
a SAS data set named NEWLIM that contains the appropriately derived control limit
parameters for the average test value:
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data cp;
set cp sf;
keep est;

proc transpose data=cp out=newlim;

data newlim;
set newlim;
drop _name_ _label_ col1-col3;
length _var_ _subgrp_ _type_ $8;
_var_ = ’testval’;
_subgrp_ = ’sample’;
_type_ = ’estimate’;
_limitn_ = 4;
_mean_ = col3;
_stddev_ = sqrt(4*col1 + col2);
output;

run;

Here, the variable–LIMITN – is assigned the value ofn, the variable–MEAN– is
assigned the value of̂�, and the variable–STDDEV– is assigned the value of

�̂adj �

q
4�̂2

B + �̂2
W

In the following statements, the SHEWHART procedure reads these parameter esti-
mates and displays the�X andR chart shown in Figure 49.12:

title ’Control Chart With Adjusted Limits’;
proc shewhart data=film limits=newlim;

xrchart testval*sample / npanelpos = 60;
run;

The control limits for the�X chart are displayed aŝ� � 3p
n
�̂adj. Note that the chart

in Figure 49.12 correctly indicates that the variation in the process is due to common
causes.

You can use a similar set of statements to display the derived control limits in
NEWLIM on an �X andR chart for the original data (including outliers), as shown in
Figure 49.13.

A simple alternative to the chart in Figure 49.12 is an “individual measurements”
chart for the subgroup means. The advantage of the variance components approach
is that it yields separate estimates of the components due to lane and sample, as well
as a number of hypothesis tests (these require assumptions of normality). In applying
this method, however, you should be careful to use data that represent the process in
a state of statistical control.

SAS OnlineDoc: Version 8
1768



Chapter 49. Multiple Components of Variation

Figure 49.12. �X and R Chart with Derived Control Limits

Figure 49.13. �X and R Chart with Derived Control Limits for Raw Data
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Short Run Process Control

When conventional Shewhart charts are used to establish statistical control, the initialSee SHWSRUN
in the SAS/QC
Sample Library

control limits are typically based on 25 to 30 subgroup samples. Often, however, this
amount of data is not available in manufacturing situations where product changeover
occurs frequently or production runs are limited.

A variety of methods have been introduced for analyzing data from a process that is
alternating between short runs of multiple products. The methods commonly used in
the United States are variations of two basic approaches:�

� the difference from nominalapproach. A product-specific nominal value is
subtracted from each measured value, and the differences (together with ap-
propriate control limits) are charted. Here it is assumed that the nominal value
represents the central location of the process (ideally estimated with historical
data) and that the process variability is constant across products.

� the standardizationapproach. Each measured value is standardized with a
product-specific nominal and standard deviation values. This approach is fol-
lowed when the process variability is not constant across products.

These approaches are highlighted in this section because of their popularity, but two
alternatives that are technically more sophisticated are worth noting.

� Hillier (1969) provided a method for modifying the usual control limits for�X
andR charts in startup situations where fewer than 25 subgroup samples are
available for estimating the process mean� and standard deviation�; also refer
to Quesenberry (1993).

� Quesenberry (1991a, 1991b) introduced the so-calledQ chart for short (or
long) production runs, which standardizes and normalizes the data using prob-
ability integral transformations.

SAS examples illustrating these alternatives are provided in the SAS/QC sample li-
brary and are described by Rodriguez and Bynum (1992).

Analyzing the Difference from Nominal

The following exampley is adapted from an application in aircraft component manu-
facturing. A metal extrusion process is used to make three slightly different models
of the same component. The three product types (labeled M1, M2, and M3) are
produced in small quantities because the process is expensive and time-consuming.

Figure 49.14 shows the structure of a SAS data set named OLD, which contains the
diameter measurements for various short runs. Samples 1 to 30 are to be used to
estimate the process standard deviation� for the differences from nominal.

�For a review of related methods, refer to Al-Salti and Statham (1994).
yRefer to Chapter 1 of Wheeler (1991a) for a similar example.
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sample prodtype diameter

1 M3 13.99
2 M3 14.69
3 M3 13.86
4 M3 14.32
5 M3 13.23
. . .
. . .
. . .

30 M3 14.35

Figure 49.14. Diameter Measurements in the Data Set OLD

In short run applications involving many product types, it is common practice to
maintain a database for the nominal values for the product types. Here, the nominal
values are saved in a SAS data set named NOMVAL, which is listed in Figure 49.15.

prodtype nominal

M1 15.0
M2 15.5
M3 14.8
M4 15.2

Figure 49.15. Nominal Values for Product Types in the Data Set NOMVAL

To compute the differences from nominal, you must merge the data with the nominal
values. You can do this with the following SAS statements. Note that an IN= vari-
able is used in the MERGE statement to allow for the fact that NOMVAL includes
nominal values for product types that are not represented in OLD. Figure 49.16 lists
the merged data set OLD.

proc sort data=old;
by prodtype;

data old;
format diff 5.2 ;
merge nomval old(in = a);

by prodtype;
if a;
diff = diameter - nominal;

proc sort data=old;
by sample;

run;

sample prodtype diameter nominal diff

1 M3 13.99 14.8 -0.81
2 M3 14.69 14.8 -0.11
3 M3 13.86 14.8 -0.94
4 M3 14.32 14.8 -0.48
5 M3 13.23 14.8 -1.57
. . . . .
. . . . .
. . . . .

30 M3 14.35 14.8 -0.45

Figure 49.16. Data Merged with Nominal Values
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Part 9. The CAPABILITY Procedure

Assume that the variability in the process is constant across product types. To esti-
mate the common process standard deviation�, you first estimate� for each product
type based on the average of the moving ranges of the differences from nominal. You
can do this in several steps, the first of which is to sort the data and compute the
average moving range with the SHEWHART procedure.

proc sort data=old;
by prodtype;

proc shewhart data=old;
irchart diff*sample /

nochart
outlimits=baselim;

by prodtype;
run;

The purpose of this procedure step is simply to save the average moving range for
each product type in the OUTLIMITS= data set BASELIM, which is listed in Figure
49.17 (note that PRODTYPE is specified as a BY variable).

Control Limits By Product Type

prodtype _VAR_ _SUBGRP_ _TYPE_ _LIMITN_ _ALPHA_ _SIGMAS_

M1 diff sample ESTIMATE 2 .002699796 3
M2 diff sample ESTIMATE 2 .002699796 3
M3 diff sample ESTIMATE 2 .002699796 3

_LCLI_ _MEAN_ _UCLI_ _LCLR_ _R_ _UCLR_ _STDDEV_

-3.13258 0.13000 3.39258 0 1.22714 4.00850 1.08753
-1.77795 -0.06500 1.64795 0 0.64429 2.10458 0.57098
-3.22641 -0.19143 2.84356 0 1.14154 3.72887 1.01166

Figure 49.17. Values of �R by Product Type

To obtain a combined estimate of�, you can use the MEANS procedure to average
the average ranges in BASELIM and then divide by the unbiasing constantd2.

proc means data=baselim noprint;
var _r_;
output out=difflim (keep=_r_) mean=_r_;

data difflim;
set difflim;
drop _r_;
length _var_ _subgrp_ $ 8;
_var_ = ’diff’;
_subgrp_ = ’sample’;
_mean_ = 0.0;
_stddev_ = _r_ / d2(2);
_limitn_ = 2;
_sigmas_ = 3;

run;
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The data set DIFFLIM is structured for subsequent use by the SHEWHART proce-
dure as an input LIMITS= data set. The variables in a LIMITS= data set provide
pre-computed control limits or—as in this case—the parameters from which control
limits are to be computed. These variables have reserved names that begin and end
with the underscore character. Here, the variable–STDDEV– saves the estimate of
�, and the variable–MEAN– saves the mean of the differences from nominal. Recall
that this mean is zero, since the nominal values are assumed to represent the process
mean for each product type. The identifier variables–VAR– and–SUBGRP– record
the names of the process and subgroup variables (these variables are critical in appli-
cations involving many product types). The variable–LIMITN – is assigned a value
of 2 to specify moving ranges of two consecutive measurements, and the variable

–SIGMAS– is assigned a value of 3 to specify3� limits. The data set DIFFLIM is
listed in Figure 49.18.

Control Limit Parameters For Differences

_var_ _subgrp_ _mean_ _stddev_ _limitn_ _sigmas_

diff sample 0 0.89006 2 3

Figure 49.18. Estimates of Mean and Standard Deviation

Now that the control limit parameters are saved in DIFFLIM, diameters for an addi-
tional 30 parts (samples 31 to 60) are measured and saved in a SAS data set named
NEW. You can construct short run control charts for this data by merging the mea-
surements in NEW with the corresponding nominal values in NOMVAL, computing
the differences from nominal, and then contructing the short run individual measure-
ments and moving range charts.

proc sort data=new;
by prodtype;

data new;
format diff 5.2 ;
merge nomval new(in = a);

by prodtype;
if a;
diff = diameter - nominal;
label sample = ’Sample Number’

prodtype = ’Model’;

proc sort data=new;
by sample;

symbol1 value=dot color=black;
symbol2 value=plus color=black;
symbol3 value=circle color=black;
title ’Chart for Difference from Nominal’;
proc shewhart data=new limits=difflim;

irchart diff*sample=prodtype / split=’/’;
label diff = ’Difference/Moving Range’;

run;
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The chart is displayed in Figure 49.19. Note that the product types are identified with
symbol markers as requested by specifying PRODTYPE as asymbol-variable.

Figure 49.19. Short Run Control Chart

You can also identify the product types with a legend by specifying PRODTYPE as
a–PHASE– variable.

symbol v=dot c=yellow;
title ’Chart for Difference from Nominal’;
proc shewhart data=new (rename=(prodtype=_phase_))

limits=difflim;
irchart diff*sample /

readphases=all
phaseref
phasebreak
phaselegend
split=’/’;

label diff = ’Difference/Moving Range’;
run;

The display is shown in Figure 49.20. Note that the PHASEBREAK option is used
to suppress the connection of adjacent points in different phases (product types).
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Figure 49.20. Identification of Product Types

In some applications, it may be useful to replace the moving range chart with a plot of
the nominal values. You can do this with the TRENDVAR= option in the XCHART
statement� provided that you reset the value of–LIMITN – to 1 to specify a subgroup
sample of size one.

data difflim;
set difflim;
_var_ = ’diameter’;
_limitn_ = 1;

title ’Differences and Nominal Values’;
proc shewhart data=new limits=difflim;

xchart diameter*sample (prodtype) /
nolimitslegend
nolegend
split = ’/’
blockpos = 3
blocklabtype = scaled
blocklabelpos = left
xsymbol = xbar
trendvar = nominal;

label diameter = ’Difference/Nominal’
prodtype = ’Product’;

run;

�The TRENDVAR= option is not available in the IRCHART statement.
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The display is shown in Figure 49.22. Note that you identify the product types by
specifying PRODTYPE as ablock variableenclosed in parentheses after the sub-
group variable SAMPLE. The BLOCKLABTYPE= option specifies that values of
the block variable are to be scaled (if necessary) to fit the space available in the block
legend. The BLOCKLABELPOS= option specifies that the label of the block vari-
able is to be displayed to the left of the block legend.

Figure 49.21. Short Run Control Chart with Nominal Values

Testing for Constant Variances

The difference-from-nominal chart should be accompanied by a test that checks
whether the variances for each product type are identical (homogeneous). Levene’s
test of homogeneity is particularly appropriate for short run applications because it
is robust to departures from normality; refer to Snedecor and Cochran (1980). You
can implement Levene’s method by using the GLM procedure to construct a one-way
analysis of variance for the absolute deviations of the diameters from averages within
product types.

proc sort data=old;
by prodtype;

proc means data=old noprint;
var diameter;
by prodtype;
output out=oldmean (keep=prodtype diammean) mean=diammean;

data old;
merge old oldmean;

by prodtype;
absdev = abs( diameter - diammean );
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proc means data=old noprint;
var absdev;
by prodtype;
output out=stats n=n mean=mean css=css std=std;

title ’Test for Constant Variance’;
proc glm data=old outstat=glmout ;

class prodtype;
model absdev = prodtype;

run;

A partial listing of the results is displayed in Figure 49.22. The largep-value (0.3386)
indicates that the data do not reject the hypothesis of homogeneity.

The GLM Procedure

Dependent Variable: absdev

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 2 1.02901063 0.51450532 1.13 0.3373

Error 27 12.27381243 0.45458565

Corrected Total 29 13.30282306

Figure 49.22. Levene’s Test of Variance Homogeneity

Standardizing Differences from Nominal

When the variances across product types arenotconstant, various authors recommend
standardizing the differences from nominal and displaying them on a common chart
with control limits at�3.

To illustrate this method, assume that the hypothesis of homogeneity is rejected for
the differences in OLD. Then you can use the product-specific estimates of� in
BASELIM to standardize the differences from nominal in NEW and create the stan-
dardized chart as follows:

proc sort data=new;
by prodtype;

data new;
keep sample prodtype z diff diameter nominal _stddev_;
label sample = ’Sample Number’;
format diff 5.2 ;
merge baselim new(in = a);

by prodtype;
if a;
z = (diameter - nominal) / _stddev_ ;

proc sort data=new;
by sample;
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title ’Standardized Chart’;
proc shewhart data=new;

irchart z*sample (prodtype) /
blocklabtype = scaled
mu0 = 0
sigma0 = 1
split = ’/’;

label prodtype = ’Product Classification’
z = ’Standardized Difference/Moving Range’;

run;

Note that the options MU0= and SIGMA= specify that the control limits for the
standardized differences from nominal are to be based on the parameters� = 0 and
� = 1. The chart is displayed in Figure 49.23.

Figure 49.23. Standardized Difference Chart
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Nonnormal Process Data

A number of authors have pointed out that Shewhart charts for subgroup means workSee SHWNONN
in the SAS/QC
Sample Library

well whether the measurements are normally distributed or not.� On the other hand,
the interpretation of standard control charts for individual measurements (X charts)
is affected by departures from normality.

In situations involving a large number of measurements, it may be possible to sub-
group the data and construct an�X chart instead of anX chart. However, the mea-
surements should not be subgrouped arbitrarily for this purpose.y If subgrouping is
not possible, two alternatives are to transform the data to normality (preferably with
a simple transformation such as the log transformation) or modify the usual limits
based on a suitable model for the data distribution.

The second of these alternatives is illustrated here with data from a study conducted
by a service center. The time taken by staff members to answer the phone was mea-
sured, and the delays were saved as values of a variable named TIME in a SAS data
set named CALLS. A partial listing of CALLS is shown in Figure 49.24.

recnum time

1 3.233
2 3.110
3 3.136
. .
. .
. .

50 2.871

Figure 49.24. Answering Times from the Data Set CALLS

Creating a Preliminary Individual Measurements Chart

As a first step, the delays were analyzed using anX chart created with the following
statements. The chart is displayed in Figure 49.25.

title ’Standard Analysis of Individual Delays’;
proc shewhart data=calls;

irchart time * recnum /
rtmplot = schematic
outlimits = delaylim
cboxfill = grey
nochart2;

label recnum = ’Record Number’
time = ’Delay (minutes)’ ;

run;

You may be inclined to conclude that the41st point signals a special cause of variation.
However, the box plot in the right margin (requested with the RTMPLOT= option)
indicates that the distribution of delays is skewed. Thus, the reason that the measure-

�Refer to Schilling and Nelson (1976) and Wheeler (1991b).
yRefer to Wheeler and Chambers (1986) for a discussion of subgrouping.
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ments are grouped well within the control limits is that the limits are incorrect and
not that the process is too good for the limits.

Note: This example assumes the process is in statistical control; otherwise, the box
plot could not be interpreted as a representation of the process distribution. You can
check the assumption of normality with goodness-of-fit tests by using the CAPABIL-
ITY procedure, as shown in the statements that follow.

Figure 49.25. Standard Control Limits for Delays

Calculating Probability Limits

The OUTLIMITS= option saves the control limits from the chart in Figure 49.25 in
a SAS data set named DELAYLIM, which is listed in Figure 49.26.

_ _ _ _
S L _ S S
U _ I A I _ _ _ T

_ B T M L G L M U D
V G Y I P M C E C D
A R P T H A L A L E
R P E N A S I N I V
_ _ _ _ _ _ _ _ _ _

time recnum ESTIMATE 2 .002699796 3 1.77008 2.91038 4.05068 0.38010

Figure 49.26. Control Limits for Standard Chart from the Data Set CALLS
The control limits can be replaced with the corresponding percentiles from a fitted
lognormal distribution. The equation for the lognormal density function is

f(x) = 1
x
p
2��

exp
�
�

(log(x)��)2
2�2

�
x > 0

where� denotes the shape parameter and� denotes the scale parameter.

SAS OnlineDoc: Version 8
1780



Chapter 49. Nonnormal Process Data

The following statements use the CAPABILITY procedure to fit a lognormal model
and superimpose the fitted density on a histogram of the data, shown in Figure 49.27:

title ’Lognormal Fit for Delay Distribution’;
proc capability data=calls noprint;

histogram time /
lognormal(threshold=2.3 color=black w=2)
cfill = grey
outfit = lnfit
nolegend ;

inset n = ’Number of Calls’
lognormal( sigma = ’Shape’ (4.2)

zeta = ’Scale’ (5.2)
theta ) / pos = ne;

run;

Figure 49.27. Distribution of Delays

Parameters of the fitted distribution and results of goodness-of-fit tests are saved in the
data set LNFIT, which is listed in Figure 49.28. The largep-values for the goodness-
of-fit tests are evidence that the lognormal model provides a good fit.

_VAR_ _CURVE_ _LOCATN_ _SCALE_ _SHAPE1_ _MIDPTN_

time LNORMAL 2.3 -0.68910 0.64110 4.2

_ADASQ_ _ADP_ _CVMWSQ_ _CVMP_ _KSD_ _KSP_

0.34854 0.47465 0.058737 0.40952 0.092223 0.15

Figure 49.28. Parameters of Fitted Lognormal Model in the Data Set LNFIT
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The following statements replace the control limits in DELAYLIM with limits com-
puted from percentiles of the fitted lognormal model. The 100�th percentile of the
lognormal distribution isP� = exp(���1(�) + �), where��1 denotes the inverse
standard normal cumulative distribution function. The SHEWHART procedure con-
structs anX chart with the modified limits, displayed in Figure 49.29.

data delaylim;
merge delaylim lnfit;
drop _sigmas_ ;
_lcli_ = _locatn_ + exp(_scale_+probit(0.5*_alpha_)*_shape1_);
_ucli_ = _locatn_ + exp(_scale_+probit(1-0.5*_alpha_)*_shape1_);
_mean_ = _locatn_ + exp(_scale_+0.5*_shape1_*_shape1_);

title ’Lognormal Control Limits for Delays’;
proc shewhart data=calls limits=delaylim;

irchart time*recnum /
rtmplot = schematic
cboxfill = grey
nochart2 ;

label recnum = ’Record Number’
time = ’Delay (minutes)’ ;

run;

Figure 49.29. Adjusted Control Limits for Delays

Clearly the process is in control, and the control limits (particularly the lower limit)
are appropriate for the data. The particular probability level� = 0:0027 associated
with these limits is somewhat immaterial, and other values of� such as 0.001 or 0.01
could be specified with the ALPHA= option in the original IRCHART statement.
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Multivariate Control Charts

In many industrial applications, the output of a process characterized byp variables See SHWT2
in the SAS/QC
Sample Library

that are measured simultaneously. Independent variables can be charted individually,
but if the variables are correlated, a multivariate chart is needed to determine whether
the process is in control.

Many types of multivariate control charts have been proposed; refer to Alt (1985) for
an overview. Denote theith measurement on thejth variable asXij for i = 1; 2; : : : ; n,
wheren is the number of measurements, andj = 1; 2; : : : ; p. Standard practice is to
construct a chart for a statisticT 2

i of the form

T 2
i = (Xi �

�Xn)
0
S
�1
n (Xi �

�Xn)

where

�Xj =
1
n

Pn
i=1Xij ; Xi =

2
6664

Xi1

Xi2
...

Xip

3
7775 ; �Xn =

2
6664

�X1
�X2
...
�Xp

3
7775

and

Sn =
1

n� 1

nX
i=1

(Xi �
�Xn)(Xi �

�Xn)
0

It is assumed thatXi has ap-dimensional multivariate normal distribution with mean
vector� = (�1�2 � � ��p)

0 and covariance matrix� for i = 1; 2; : : : ; n. Depending on
the assumptions made about the parameters, a�2, HotellingT 2, or beta distribution
is used forT 2

i , and the percentiles of this distribution yield the control limits for the
multivariate chart.

In this example, a multivariate control chart is constructed using a beta distribution for
T 2
i . The beta distribution is appropriate when the data are individual measurements

(rather than subgrouped measurements) and when� and� are estimated from the
data being charted. In other words, this example illustrates a start-up phase chart
where the control limits are determined from the data being charted.

Calculating the Chart Statistic

In this situation, it was shown by Gnanadesikan and Kettenring (1972), using a result
of Wilks (1962), thatT 2

i is exactly distributed as a multiple of a variable with a beta
distribution. Specifically,

T 2
i �

(n� 1)2

n
B

�
p

2
;
n� p� 1

2

�

Tracy, Young, and Mason (1992) used this result to derive initial control limits for
a multivariate chart based on three quality measures from a chemical process in the
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start-up phase: percent of impurities, temperature, and concentration. The remainder
of this section describes the construction of a multivariate control chart using their
data, which are given here by the data set STARTUP.

data startup;
input sample impure temp conc;
label sample = ’Sample Number’

impure = ’Impurities’
temp = ’Temperature’
conc = ’Concentration’ ;

datalines;
1 14.92 85.77 42.26
2 16.90 83.77 43.44
3 17.38 84.46 42.74
4 16.90 86.27 43.60
5 16.92 85.23 43.18
6 16.71 83.81 43.72
7 17.07 86.08 43.33
8 16.93 85.85 43.41
9 16.71 85.73 43.28

10 16.88 86.27 42.59
11 16.73 83.46 44.00
12 17.07 85.81 42.78
13 17.60 85.92 43.11
14 16.90 84.23 43.48
;

In preparation for the computation of the control limits, the sample size is calculated
and parameter variables are defined.

proc means data=startup noprint ;
var impure temp conc;
output out=means n=n;

data startup;
if _n_ = 1 then set means;
set startup;
p = 3;
_subn_ = 1;
_limitn_ = 1;

Next, the PRINCOMP procedure is used to compute the principal components of the
variables and save them in an output data set named PRIN.

proc princomp data=startup out=prin outstat=scores std cov;
var impure temp conc;

run;

The following statements computeT 2
i and its exact control limits, using the fact that

T 2
i is the sum of squares of the principal components.� Note that these statements

�Refer to Jackson (1980).
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create several special SAS variables so that the data set PRIN can subsequently be
read as a TABLE= input data set by the SHEWHART procedure. These special vari-
ables begin and end with an underscore character. The data set PRIN is listed in
Figure 49.30.

data prin (rename=(tsquare=_subx_));
length _var_ $ 8 ;
drop prin1 prin2 prin3 _type_ _freq_;
set prin;
comp1 = prin1*prin1;
comp2 = prin2*prin2;
comp3 = prin3*prin3;
tsquare = comp1 + comp2 + comp3;
_var_ = ’tsquare’;
_alpha_ = 0.05;
_lclx_ = ((n-1)*(n-1)/n)*betainv(_alpha_/2, p/2, (n-p-1)/2);
_mean_ = ((n-1)*(n-1)/n)*betainv(0.5, p/2, (n-p-1)/2);
_uclx_ = ((n-1)*(n-1)/n)*betainv(1-_alpha_/2, p/2, (n-p-1)/2);
label tsquare = ’T Squared’

comp1 = ’Comp 1’
comp2 = ’Comp 2’
comp3 = ’Comp 3’;

run;

T2 Chart For Chemical Example

_var_ n sample impure temp conc p _subn_ _limitn_ comp1

tsquare 14 1 14.92 85.77 42.26 3 1 1 0.79603
tsquare 14 2 16.90 83.77 43.44 3 1 1 1.84804
tsquare 14 3 17.38 84.46 42.74 3 1 1 0.33397
tsquare 14 4 16.90 86.27 43.60 3 1 1 0.77286
tsquare 14 5 16.92 85.23 43.18 3 1 1 0.00147
tsquare 14 6 16.71 83.81 43.72 3 1 1 1.91534
tsquare 14 7 17.07 86.08 43.33 3 1 1 0.58596
tsquare 14 8 16.93 85.85 43.41 3 1 1 0.29543
tsquare 14 9 16.71 85.73 43.28 3 1 1 0.23166
tsquare 14 10 16.88 86.27 42.59 3 1 1 1.30518
tsquare 14 11 16.73 83.46 44.00 3 1 1 3.15791
tsquare 14 12 17.07 85.81 42.78 3 1 1 0.43819
tsquare 14 13 17.60 85.92 43.11 3 1 1 0.41494
tsquare 14 14 16.90 84.23 43.48 3 1 1 0.90302

comp2 comp3 _subx_ _alpha_ _lclx_ _mean_ _uclx_

10.1137 0.01606 10.9257 0.05 0.24604 2.44144 7.13966
0.0162 0.17681 2.0410 0.05 0.24604 2.44144 7.13966
0.1538 5.09491 5.5827 0.05 0.24604 2.44144 7.13966
0.3289 2.76215 3.8640 0.05 0.24604 2.44144 7.13966
0.0165 0.01919 0.0372 0.05 0.24604 2.44144 7.13966
0.0645 0.27362 2.2534 0.05 0.24604 2.44144 7.13966
0.4079 0.44146 1.4354 0.05 0.24604 2.44144 7.13966
0.1729 0.73939 1.2077 0.05 0.24604 2.44144 7.13966
0.0001 0.44483 0.6766 0.05 0.24604 2.44144 7.13966
0.0004 0.86364 2.1692 0.05 0.24604 2.44144 7.13966
0.0274 0.98639 4.1717 0.05 0.24604 2.44144 7.13966
0.0823 0.87976 1.4003 0.05 0.24604 2.44144 7.13966
1.6153 0.30167 2.3320 0.05 0.24604 2.44144 7.13966
0.0001 0.00010 0.9032 0.05 0.24604 2.44144 7.13966

Figure 49.30. The Data Set PRIN
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You can now use the data set PRIN as input to the SHEWHART procedure to create
the multivariate control chart displayed in Figure 49.31.

symbol value=dot;
title ’T’ m=(+0,+0.5) ’2’

m=(+0,-0.5) ’ Chart For Chemical Example’;
proc shewhart table=prin;

xchart tsquare*sample /
xsymbol = mu
nolegend ;

run;

Figure 49.31. Multivariate Control Chart for Chemical Process

The methods used in this example easily generalize to other types of multivariate
control charts. You can create charts using the�2 andF distributions by using the
appropriate CINV or FINV function in place of the BETAINV function in the state-
ments on page 1785. For details, refer to Alt (1985), Jackson (1980, 1991), and Ryan
(1989).

Examining the Principal Component Contributions

You can use thestar optionsin the SHEWHART procedure to superimpose points on
the chart with stars whose vertices represent standardized values of the squares of the
three principal components used to determineT 2

i .
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symbol value=none;
proc shewhart table=prin;

xchart tsquare*sample /
starvertices = (comp1 comp2 comp3)
startype = wedge
cstars = black
starlegend = none
starlabel = first
staroutradius = 4
npanelpos = 14
xsymbol = mu
nolegend ;

run;

The chart is displayed in Figure 49.32. In situations where the principal components
have a physical interpretation, the star chart can be a helpful diagnostic for determin-
ing the relative contributions of the different components.

Figure 49.32. Multivariate Control Chart Displaying Principal Components

For more information about star charts, see “Displaying Auxiliary Data with Stars”
on page 1701, or consult the entries for the STARVERTICES= and related options in
Chapter 46, “Dictionary of Options.”

Principal components are not the only approach that can be used to interpret multi-
variate control charts. This problem has recently been studied by a number of au-
thors, including Doganaksoy and others (1991), Hawkins (1991, 1993), and Mason
and others (1993).
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