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Appendix C
Functions

Introduction

SAS/QC software provides specialized DATA step functions for computations related
to control chart analysis, for Bayes analysis of screening designs, and for sampling
plan evaluation. You can use these functions in DATA step programming statements.
The following lists summarize these functions:

Table C.1. Functions for Control Chart Analysis

Function Description

C4 expected value, of the standard deviation of a sample from a
normal population with unit standard deviation

CUSUMARL average run length for a cumulative sum control chart scheme

D2 expected valud, of the range of a sample from a normal popu-
lation with unit standard deviation

D3 standard deviatiors of the range of a sample from a normal
population with unit standard deviation

EWMAARL average run length for an EWMA scheme

PROBMED cumulative distribution function of sample median

STDMED standard deviation of median of a standard normal sample

Table C.2. Function for Bayes Analysis of Screening Designs
Function Description
BAYESACT posterior probabilities of variance contamination

Table C.3. Functions for Sampling Plan Evaluation

Function Description

AOQ2 average outgoing quality for double-sampling plan
ASN2 average sample number for double-sampling plan
ATI2 average total inspection for double-sampling plan
PROBACC2 acceptance probability for double-sampling plan

In addition, the PROBBNML and PROBHYPR functions, which are provided in base
SAS software, are useful when evaluating single-sampling plans.

The twelve SAS/QC functions, together with the PROBBNML and PROBHYPR
functions, are described in the next section, “Function Descriptions.” The “Details”
section on page 1861, summarizes types of sampling plans and gives additional defi-
nitions.
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Function Descriptions

This section describes the twelve SAS/QC functions and the related functions
PROBBNML and PROBHYPR in alphabetical order.

AOQ2 Function

computes average outgoing quality for a double-sampling plan.

Syntax
AOQ2(replacementy, ay,r1, az,n1,n2,p)
where
replacement has the valuéREP’ or 'NOREP’, respectively, depending on
whether nonconforming items are replaced with conforming items.
N is the lot size, wherév > 2.
ay is the acceptance number for the first sample, where 0.
71 is the rejection number for the first sample, where> a1 + 1.
as is the acceptance number for the second sample, wherea .
ny is the size of the first sample, whetg > 1 andn; +ns < N.
o is the size of the second sample, whege> 1 andn; + ny < N.
P is the proportion of nonconforming items produced by the process,
where0 < p < 1.
Description

The AOQZ2 function returns the average outgoing quality for a Type B double-
sampling plan in which nonconforming items are replaced with conforming items
(replacements 'REP’ ) or not replacedréplacementis 'NOREP’). For details on
Type B double-sampling plans, see “Types of Sampling Plans” on page 1861.

For replacement, the average outgoing quality is
AOQ — pPal(N - nl) +1])\-IPG.2(N —ni — TLQ)

and for no replacement, the average outgoing quality is

Pa1(N_n1) +pPa2(N—n1—n2)

y2
AOQ =
Q N —nip N —nip —nop

where, in both situations,

Pal = Zf(d|n)
d=0

= probability of acceptance for first sample
ri—1
Fo, = Z f(d|n1)F(az — d|na)
d=a1+1
= probability of acceptance for second sample

1842
SAS OnlineDocll : Version 8



Appendix C. Function Descriptions

and

fldn) = (@)p*(1—p)?
= binomial probability that the number of nonconforming items
in a sample of size is exactlyd

Flan) = S f(din)
d=0

= probability that the number of nonconforming items is less
than or equal t@

Examples
The first set of statements results in a value of 0.0148099904. The second set of
statements results in a value of 0.0144743043.
data;
aog=aoq2(’norep’,120,0,2,1,13,13,0.18);
put aoq;
run;

data;
aog=aoq2(’rep’,120,0,2,1,13,13,0.18);
put aoq;

run;

ASN2 Function

computes the average sample number for a double-sampling plan.

Syntax

ASN2(modea1, r1,a2,n1, nz,p)

where
mode identifies whether sampling is under full inspectionodeis 'FULL’ )

or semicurtailed inspectionmodeis 'SEMI" ).

ay is the acceptance number for the first sample, where 0.
1 is the rejection number for the first sample, where> a; + 1.
as is the acceptance number for the second sample, vdierea .
ny is the size of the first sample, whetg > 1.
n9 is the size of the second sample, whege> 1.
p is the proportion of nonconforming items produced by the process,

where0 < p < 1.
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Description
The ASN2 function returns the average sample number for a Type B double-sampling
plan under full inspectionnjodeis 'FULL’" ) or semicurtailed inspectionmodeis
'SEMI’ ). For details on Type B double-sampling plans, see “Types of Sampling
Plans” on page 1861.

For full inspection, the average sample number is
ASN = niy + TLQ[F(Tl - 1|TL1) - F(a1|n1)]
and for semicurtailed inspection, the average sample number is

ri—1

ASN = nq + Z f(d|n1) (ngF(ag — d|n2) +
d=a1+1

7’2—d

[l — F(ro —d|n2 + 1)])

where

fln) = (p?(1—p?
= binomial probability that the number of nonconforming items
in a sample of size is exactlyd

F(aln) = ) f(dn)
d=0

= probability that the number of nonconforming items is less
than or equal ta

Examples
The first set of statements results in a value of 15.811418112. The second set of
statements results in a value of 14.110408695.
data;
asn=asn2(’full’,0,2,1,13,13,0.18);
put asn;
run;

data;
asn=asn2('semi’,0,2,1,13,13,0.18);
put asn;

run;
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ATI2 Function

computes the average total inspection for a double-sampling plan.

Syntax

ATI2(N, a1,71,a2,n1,n2, D)

where

N
ai
r1
az
ni
n2
p

Description

is the lot size, wher&v > 2.

is the acceptance number for the first sample, where 0.

is the rejection number for the first sample, where> a; + 1.

is the acceptance number for the second sample, vdierea .

is the size of the first sample, whete > 1 andn; + ny < N.

is the size of the second sample, whege> 1 andn; + ns < N.

is the proportion of nonconforming items produced by the process,
where0 < p < 1.

The ATI2 function returns the average total inspection for a Type B double-sampling

plan. For details on Type B double-sampling plans, see “Types of Sampling Plans

on page 1861.

The average total inspection is

where
ay

P, = Z f(d|n)
d=0

= probability of acceptance for first sample

and

ATl = ny Py, + (n1 + n2)Pa2 + N(l — P, — Pag)

ri—1

Py, = Y f(dn1)F(az —dlns)

d=a1+1

= probability of acceptance for second sample

f(dln)

F(a|n)

= (@p'1-p"
= binomial probability that the number of nonconforming items
in a sample of size is exactlyd

= > f(dn)
d=0

= probability that the number of nonconforming items is less
than or equal t@
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Examples
The following statements result in a value of 110.35046381.:
data;
ati=ati2(120,0,2,1,13,13,0.18);
put ati;
run;
BAYESACT Call
computes posterior probabilities that observations are contaminated with a larger
variance.
Syntax
CALL BAYESACT (k,s,df, a1, -, Qs Yty Yn, B1y- - BnyP0);
where
is the contamination coefficient, whete> 1.

s is an independent estimate @fwheres > 0.

df is the number of degrees of freedom fomwheredf > 0.

Q; is the prior probability of contamination for thi¢gh observation in the
sample, wheré = 1,...,n andn is the number of observations in the
sample. Note thal < o; < 1.

Yi is theith observation in the sample, where= 1,...,n andn is the
number of observations in the sample. When the BAYESACT call is
used to perform a Bayes analysis of designs (see “Description” below),
they;s are estimates for effects.

Bs is the variable that contains the returned posterior probability of con-
tamination for thejith observation in the sample, wheire= 1,...,n
andn is the number of observations in the sample.

Do is the variable that contains the posterior probability that the sample is
uncontaminated.

Description

The BAYESACT call computes posterior probabilitié)(that observations in a sam-
ple arecontaminatedvith a larger variance than other observations and computes the
posterior probability £o) that the entire sample is uncontaminated.

Specifically, the BAYESACT call assumes a normal random samptdradependent
observations, with a mean of 0 (a centered sample) where some of the observations
may have a larger variance than others:

_ [ o®  with probability1 — o;
Var(y) = { k202 with probability o

wherei = 1,...,n. The parametek is called thecontamination coefficientThe
value ofq; is theprior probability of contamination for théth observation. Based on
the prior probability of contamination for each observation, the call gives the posterior
probability of contamination for each observation and the posterior probability that
the entire sample is uncontaminated.
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Box and Meyer (1986) suggest computing posterior probabilities of contamination
for the analysis of saturated orthogonal factorial designs. Although these designs give
uncorrelated estimates for effects, the significance of effects cannot be tested in an
analysis of variance since there are no degrees of freedom for error. Box and Meyer
suggest computing posterior probabilities of contamination for the effect estimates.
The prior probabilities ¢;) give the likelihood that an effect will be significant, and

the contamination coefficienk) gives a measure of how large the significant effect
will be. Box and Meyer recommend usirg = 0.2 andk = 10, implying that

about 1 in 5 effects will be about 10 times larger than the remaining effects. To
adequately explore posterior probabilities, examine them over a range of values for
prior probabilities and a range of contamination coefficients.

If an independent estimate ofis unavailable (as is the case when the are effects
from a saturated orthogonal design), use Qsfanddf in the BAYESACT call. Oth-
erwise, the call assumess proportional to the square root ofyd random variable
with df degrees of freedom. For example, if thes are estimated effects from an
orthogonal design that is not saturated, then use the BAYESACT callsveitfual to
the estimated standard error of the estimatesdtneljual to the degrees of freedom
for error.

From Bayes’ theorem, the posterior probability thats contaminated is
azf(yh 0) k202)
aif (yi;0,k%0%) + (1 — o) f(3i5 0, 0%)

for a given value otr, wheref(z; i, o) is the density of a normal distribution with
meany and variancer2.

Bi(o) =

The probability that the sample is uncontaminated is

p=[101-Bi(e))

i=1

Posterior probabilities that are independent-@fre derived by integrating;(o) and
p over a noninformative prior fos. If an estimate ob is available (wherlf > 0), it
is appropriately incorporated. Refer to Box and Meyer (1986) for details.

Examples
The statements
data;
retain postl-post7 postnone;
call bayesact(10,0,0,
0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
-5.4375,1.3875,8.2875,0.2625,1.7125,-11.4125,1.5875,
postl, post2, post3, post4, post5, post6, post7,
postnone);
run;

return the following posterior probabilities:
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POST1 0.42108
POST2 0.037412
POST3 0.53438
POST4 0.024679
POSTS 0.050294
POST6 0.64329
POSTY 0.044408

POSTNONE  0.28621

The probability that the sample is uncontaminated is 0.28621. A situation where this
BAYESACT call would be appropriate is a saturatgddesign in 8 runs, where the
estimates for main effects are as shown in the function above (-5.4375, 1.3875, . . .,
1.5875).

C4 Function

computes the expected value of the standard deviatienirndependent normal ran-
dom variables.

Syntax
C4(n)

wheren is the sample size, with > 2.

Description
The C4 function returns the expected value of the standard deviatiarinafepen-
dent, normally distributed random variables with the same mean and with standard
deviation of 1. This expected value is referred to as the control chart corgtant

The valuec, is calculated as
(32— 1)

- T(%

wherel'(-) is the gamma function. As grows,c, is asymptotically equal t¢dn —
4)/(4n — 3).

For more information, refer to thfSQC Glossary and Tables for Statistical Quality
Control, the ASTM Manual on Presentation of Data and Control Chart Analysis
Montgomery (1996), and Wadsworth and others (1986).

In other chapters;, is written asc4(n) to emphasize the dependenceron

You can use the constas to calculate an unbiased estimégg of the standard devi-
ationo of a normal distribution from the sample standard deviation albservations:

6 = (sample standard deviatipfes

where the sample standard deviation is calculated usind in the denominator. In

the SHEWHART procedurey is used to calculate control limits fercharts, and it is

used in the estimation of the process standard deviation based on subgroup standard
deviations.
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Examples
The following statements result in a value of 0.939985603:
data;
constant=c4(b);
put constant;
run;

CUSUMARL Function

computes the average run length for a cumulative sum control chart scheme.

Syntax
CUSUMARL (typed, h, k <,headstart-)
where
type indicates a one-sided or two-sided scheme. Valid values are
‘ONESIDED’ or ‘O’ for a one-sided scheme, and ‘TWOSIDED’ or
‘T’ for a two-sided scheme.
) is the shift to be detected, expressed as a multiple of the process stan-
dard deviation(c).
h is the decision interval (one-sided scheme) or the vertical distance be-

tween the origin and the upper arm of the V-mask (two-sided scheme),
each time expressed as a positive value in standard units (a multiple of
o/+/n, wheren is the subgroup sample size).

k is the reference value (one-sided scheme) or the slope of the lower arm
of the V-mask (two-sided scheme), each time expressed as a positive
value in standard units (a multiple ef//n, wheren is the subgroup
sample size).

headstart is the headstart value (optional) expressed in standard units (a multiple
of o/+/n, wheren is the subgroup sample size). The deféngdadstart
is zero. For details, refer to Lucas and Crosier (1982).

Description
The CUSUMARL function returns the average run length of one-sided and two-sided
cumulative sum schemes with parameters as described above. The notation is consis-
tent with that used in the CUSUM procedure.

For a one-sided scheme, the average run length is calculated using the integral equa-
tion method (with 24 Gaussian points) described by Goel and Wu (1971) and Lucas
and Crosier (1982).

For a two-sided scheme with @adstartthe average run length (ARL) is calculated
using the fact that
(ARL)™! = (ARL,)~! 4 (ARL )!

where ARL, and ARL denote the average run lengths of the equivalent one-sided
schemes for detecting a shift of the same magnitude in the positive direction and in
the negative direction, respectively.
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For a two-sided scheme with a nonzér@adstart the ARL is calculated by combin-
ing average run lengths for one-sided schemes as described in Appendix A.1 of Lucas
and Crosier (1982, 204).

For a specified shift, you can use the CUSUMARL function to design a cusum
scheme by first calculating average run lengths for a range of valuesmd & and
then choosing the combination bfandk that yields a desired average run length.

You can also use the CUSUMARL function to interpolate published tables of average
run lengths.

Examples
The following three sets of statements result in the values 4.1500826715,
4.1500836225, and 4.1061588131, respectively.
data;
arl=cusumarl('twosided’,2.5,8,0.25);
put arl;
run;

data;
arl=cusumarl('onesided’,2.5,8,0.25);
put arl;

run;

data;
arl=cusumarl(’0’,2.5,8,0.25,0.1);
put arl;

run;

D2 Function

computes the expected value of the sample range.

Syntax
D2(n)

wheren is the sample size, with < n < 25.

Description
The D2 function returns the expected value of the sample rangeirddependent,
normally distributed random variables with the same mean and a standard deviation
of 1. This expected value is referred to as the control chart congtarfihe values
returned by the D2 function are accurate to ten decimal places.

The valueds can be expressed as
do= [ - (- 8@)" - (@) do
—00
where®(-) is the standard normal cumulative distribution function. Refer to Tippett
(1925). In other chapterd; is written asd,(n) to emphasize the dependenceron

In the SHEWHART procedureds is used to calculate control limits for charts,
and it is used in the estimation of the process standard deviation based on subgroup
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ranges. Also refer to thASQC Glossary and Tables for Statistical Quality Con-
trol, the ASTM Manual on Presentation of Data and Control Chart AnalyiKiame
(1985), Montgomery (1996), and Wadsworth and others (1986).

You can use the constadt to calculate an unbiased estimdte) of the standard
deviationo of a normal distribution from the sample rangenobbservations:

& = (sample rangg/ d»

Note that the statistical efficiency of this estimate relative to that of the sample stan-
dard deviation decreasesaicreases.

Examples
The following statements result in a value of 2.3259289473:
data;
constant=d2(5);
put constant;
run;

D3 Function

computes the standard deviation of the range ofdependent normal random vari-
ables.

Syntax
D3(n)

wheren is the sample size, with < n < 25.

Description
The D3 function returns the standard deviation of the range iofdependent, nor-
mally distributed random variables with the same mean and with unit standard devi-
ation. The standard deviation returned is referred to as the control chart cafistant
The values returned by the D3 function are accurate to ten decimal places.

The valueds can be expressed as

0o ry
d3 = 2/ / f(z,y) drdy — d3
— o0 — o0
where

flz,y) =1-(2(y)" — (1 = 2(2))" + (2(y) — (2))"
where®(-) is the standard normal cumulative distribution function dpds the ex-
pected range. Refer to Tippett (1925).

In other chapterds is written asds(n) to emphasize the dependenceron

In the SHEWHART procedureds is used to calculate control limits for charts,
and it is used in the estimation of the process standard deviation based on subgroup
ranges.

For more information, refer to th&SQC Glossary and Tables for Statistical Quality
Control, the ASTM Manual on Presentation of Data and Control Chart Analysis
Montgomery (1996), and Wadsworth and others (1986).
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You can use the constadg to calculate an unbiased estimdte) of the standard
deviationog of the range of a sample ef normally distributed observations from
the sample range of observations:

or = (sample ranggds/d2)
You can use the D2 function to calculaig

Examples
The following statements result in a value of 0.8640819411.:
data;
constant=d3(5);
put constant;
run;

EWMAARL Function

computes the average run length for an exponentially weighted moving average.

Syntax
EWMAARL (4,7, k)
where
0 is the shift to be detected, expressed as a multiple of the process stan-
dard deviation ), whered > 0.
r is the weight factor for the current subgroup mean in the EWMA, where
0 <r <1 Ifr=1,the EWMAARL function returns the average run
length for a Shewhart chart for means. Refer to Wadsworth and others
(1986). Ifr < 0.05, £k > 3, andé < 0.10, the algorithm used is
unstable. However, note that the EWMA behaves like a cusum when
r — 0, and in this case the CUSUMARL function is applicable.
k is the multiple ofo used to define the control limits, wheke > 0.
Typically k£ = 3.
Description

The EWMAARL function computes the average run length for an exponen-
tially weighted moving average (EWMA) scheme using the method of Crowder
(1987a,b). The notation used in the preceding list is consistent with that used in the
MACONTROL procedure.

For a specified shifé, you can use the EWMAARL function to design an exponen-
tially weighted moving average scheme by first calculating average run lengths for a
range of values of andk and then choosing the combinationradindk that yields a
desired average run length.

Examples
The following statements specify a shift of 1a weight factor of 0.25, ands3control
limits. The EWMAARL function returns an average run length of 11.154267016.
data;
arl=ewmaarl(1.00,0.25,3.0);
put arl;
run;
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PROBACC2 Function

computes the acceptance probability for a double-sampling plan.

Syntax
PROBACCZ(al, r1,a2,Nn1,N2, D, N)

PROBACC2(ay, 71, ag, n1, 12, p)

where
ay is the acceptance number for the first sample, where 0.
r1 is the rejection number for the first sample, where> a1 + 1.
as is the acceptance number for the second sample, wherea; .
ny is the size of the first sample, whete > 1 andn; + ns < N.

n9 is the size of the second sample, whege> 1 andn; + no < N.

D is the number of nonconforming items in the lot, wher€ D < N.

N is the lot size, wher&v > 2.

p is the proportion of nonconforming items produced by the process,
where0 < p < 1.

Description
The PROBACC?2 function returns the acceptance probability for a double-sampling
plan of Type A if you specify the parameteBsand NV, and it returns the acceptance
probability for a double-sampling plan of Type B if you specify the paramet&or
details on Type A and Type B double-sampling plans, see “Types of Sampling Plans”
on page 1861.

For either type of sampling plan, the acceptance probability is calculated as
Po, + P,

where

Pa1 = Zf(d|n)
d=0

= probability of acceptance for first sample
ri—1

Paz = Z f(d|n1)F(a2 - d|n2)
d=ai1+1
= probability of acceptance for second sample

and

fldn) = @p*(1—p
= binomial probability that the number of nonconforming items
in a sample of size is exactlyd
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F(aln) = ) f(dn)
d=0

= probability that the number of nonconforming items is less
than or equal ta

These probabilities are determined from either the hypergeometric distribution (Type
A sampling) or the binomial distribution (Type B sampling).

Examples
The first set of statements results in a value of 0.2396723824. The second set of
statements results in a value of 0.0921738126.
data;
prob=probacc2(1,4,3,50,100,10,200);
put prob;
run;

data;
prob=probacc2(0,2,1,13,13,0.18);
put prob;

run;

PROBBNML Function

computes the probability that an observation from a binamial) distribution will
be less than or equal te.

Syntax
PROBBNML (p,n, m)
where
P is the probability of success for the binomial distribution, where

p < 1. Interms of acceptance samplings the probability of selecting
a nonconforming item.

n is the number of independent Bernoulli trials in the binomial distribu-
tion, wheren > 1. In terms of acceptance samplingis the number of
items in the sample.

m is the number of successes, wheérg m < n. In terms of acceptance
sampling,m is the number of nonconforming items.
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Description
The PROBBNML function returns the probability that an observation from a bino-
mial distribution (with parametens andp) is less than or equal t@. To compute the
probability that an observation is equal to a given vakuecompute the difference of
two values for the cumulative binomial distribution.

In terms of acceptance sampling, the function returns the probability of finding
or fewer nonconforming items in a sample wfitems, where the probability of a
nonconforming item ip. To find the probability that the sample contains exactly
m nonconforming items, compute the difference between PROBB{\M, m) and
PROBBNML(p,n,m — 1).

In addition to using the PROBBNML function to return the probability of acceptance,
the function can be used in calculations for average sample number, average outgoing
quality, and average total inspection in Type B single-sampling. See “Evaluating
Single-Sampling Plans” on page 1861 for details.

The PROBBNML function computes
> (i1 —p)n

J=0
wherem, n, andp are defined in the preceding list.

Examples
The following statements compute the probability that an observation from a binomial
distribution withp = 0.05 andn = 10 is less than or equal to 4:

data;
prob=probbnml(0.05,10,4);
put prob;

run;

These statements result in the value 0.9999363102. In terms of acceptance sampling,
for a sample of size 10 where the probability of a nonconforming item is 0.05, the
probability of finding 4 or fewer nonconforming items is 0.9999363102.

The following statements compute the probability that an observation from a binomial
distribution withp = 0.05 andn = 10 is exactly 4:

data;
p=probbnml(0.05,10,4) - probbnml(0.05,10,3);

put p;
run;

These statements result in the value 0.0009648081.

For additional information on probability functions, refer 3\S Language Refer-
ence: Dictionary
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PROBHYPR Function

computes the probability that an observation from a hypergeometric distribution is
less than or equal te.

Syntax
PROBHYPR(N, K, n,z <,r >)
where
N is the population size for a hypergeometric distribution. In terms of
acceptance samplingy is the lot size.
K is the number of items in the category of interest in the population. In
terms of acceptance samplinfg,is the number of nonconforming items
in alot.
n is the sample size for a hypergeometric distribution. In terms of accep-
tance samplingp is the sample size.
x is the number of items from the category of interest in the sample. In
terms of acceptance samplingis the number of nonconforming items
in the sample.
r is optional and gives the odds ratio for the extended hypergeometric

distribution. For the standard hypergeometric distributioss 1; this
value is the default. In acceptance sampling, typicalty 1.

Restrictions on items in the syntax are given in the following equations:

1<N

0<K<N

0<n<N

max(0, K +n — N) <z <min(K,n)
N, K, n andz are integers

Description
The PROBHYPR function returns the probability that an observation from an ex-
tended hypergeometric distribution with paramef®rsK andn and an odds ratio of
rislessthan or equal toa The default for- is 1 and leads to the usual hypergeometric
distribution.

In terms of acceptance samplingyrit= 1, the PROBHYPR function gives the prob-
ability of « or fewer nonconforming items in a sample of sizéaken from a lot
containingN items, K of which are nonconforming, when sampling is done without
replacement. Typically = 1 in acceptance sampling.

For example, suppose an urn contains red and white balls, and you are interested in
the probability of selecting a white ball. 4= 1, the function returns the probability

of selectingr white balls when given the population size (number of balls in the urn),
sample size (humber of balls taken from the urn), and number of white balls in the
population (urn).
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If, however, the probability of selecting a white ball differs from the probability of
selecting a red ball, then # 1. Suppose an urn contains one white ball and one
red ball, and the probability of choosing the red ball is higher than the probability of
choosing the white ball. This might occur if the red ball were larger than the white
ball, for example. Given the probabilities of choosing a red ball and a white ball when
an urn contains one of each, you calculatand use the value in the PROBHYPR
function. Returning to the case where an urn contains many ballsrwithl, the
function gives the probability of selectingwhite balls when given the number of
balls in the urn, the number of balls taken from the urn, the number of white balls in
the urn, and the relative probability of selecting a white ball or a red ball.

The PROBHYPR function is used to evaluate Type A single-sampling plans. See
“Evaluating Single-Sampling Plans” on page 1861 for details.

If » = 1 (the default), the PROBHYPR function calculates probabilities from the
usual hypergeometric distribution:

PiX <] = ZP

()0
i n—i if max(0, K +n — N) < i < min(K,n)

S

0 otherwise

where

\

The PROBHYPR function accepts values other than 1rfaand in these cases, it
calculates the probability for the extended hypergeometric distribution:

&
Pr[X; <z|X;+ Xy =n] = ZP’

where

j
( >< n—1 ) if max(0, K +n — N) <i < min(K,n)

)0

3

| 0 otherwise
where
X is binomially distributed with parameters K apgl
X is binomially distributed with parameters N-K apgl
7 =1l-p
q2 =1—po
r = (p192)/(P2q1)
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For details on the extended hypergeometric distribution, refer to Johnson and Kotz
(1969).

Examples
Suppose you take a sample of size 10 (without replacement) from an urn that contains
200 balls, 50 of which are white. The remaining 150 balls are red. The following

statements calculate the probability that your sample contains 2 or fewer white balls:
data;
y=probhypr(200,50,10,2);

put y;
run;

These statements result in a value of 0.5236734081. Now, suppose the probability of
selecting a red ball does not equal the probability of selecting a white ball. Specifi-
cally, suppose the probability of choosing a red bajds= 0.4 and the probability

of choosing a white ball ip; = 0.2. Calculater as

_ g _ (0.2)(0.6)
p2q1 (0.4)(0.8)

With » = 0.375, the probability of choosing 2 or fewer white balls from an urn that
contains 200 balls, 50 of which are white, is calculated using the following state-
ments:

r =0.375

data;
y=probhypr(200,50,10,2,0.375);

put y;
run;

These statements return a value of 0.9053936127. See “Evaluating Single-Sampling
Plans” on page 1861 for another example.

For additional information on probability functions, refer $\S Language Refer-
ence: Dictionary

PROBMED Function

computes cumulative probabilities for the sample median.

Syntax
PROBMED (n, x)
where
n is the sample size.
x is the point of interest; that is, the PROBMED function calculates the
probability that the median is less than or equat to
Description

The PROBMED function computes the probability that the sample median is less
than or equal ta: for a sample of independent, standard normal random variables
(mean 0, variance 1).
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Let n represent the sample size akig represent théth order statistic. Then, when
n is odd, the function calculates

n+1 n+1
Pr[X((nt1)/2) < ] ='4>(a:)< 5 3 )
where
1 L _
(at) = 52 b)/o 11— 1)L gt

and Ba, b) = I'(a)I'(b)/T'(a + b), wherel'(-) is the gamma function. Ik is even,
the PROBMED function calculates

X X
br [ (n/2) T X((n/2)+1)

2 Sm]:

L ’ —d(u)V? -1 - r — )2 12D 800 du
s/ Al R - 0= e -} @) o) d

—00

where Bn/2,n/2) = [['(n/2)]?/T'(n) and®(-) and 4(-) are the standard normal
cumulative distribution function and density function, respectively.

For more information, refer to David (1981).

Examples

The statements
data;
b=probmed(5,-0.1);
put b;
run;

result in a value of 0.4256380897.

STDMED Function

computes the standard deviation of a sample median.

Syntax
STDMED (n)

wheren is the sample size.

Description
The STDMED function gives the standard deviation of the median of a normally
distributed sample with a mean of 0 and a variance of 1. This function gives the
standard error used to determine the width of the control limits for charts produced
by the MCHART and MRCHART statements in PROC SHEWHART.

Letn represent the sample size alig represent théth order statistic. Then, when
n is odd, the STDMED function caIcuIatg?Var(X((nH)/z)), where
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=] —

Var(X((n+1)/2)) = @ /_oo 12[@(:6)]("—1)/2[1 _ ‘I)(x)](n—l)h () dz

where Ba, b) = I'(a)I'(b)/T'(a+b) andI'(-) is the gamma functior(-) is the stan-
dard normal cumulative distribution function, an¢ ) is the corresponding density
function.

If n is even, the function calculates the square root of the following:

Var [X(n/m t X((n/2)+1>] _

2

(1/4) [E(X?nm) +E(X{,/901)) T 2E(X(n/2)X((n/2>+1))]

where
E(X(n/z)) =3 (%2, %) /_Z x2[¢(m)](n/2)—1[1 @(m)]n/z ¢(z) dr
E(X((n/2)+1)) =3 (%2, %) /_(: m2[@(x)]n/2[1 @(m)](n/2)—1 o(z) dz

oo ry
X Xomon) = gy | [ =@ 0] 6(x) o) dedy

For more details, refer to David (1981), Kendall and Stuart (1977, 252), and Sarhan
and Greenberg (1962).

Examples
These statements use a loop to calculate the standard deviation of the median for

sample sizes from 6 to 12:
data;
do n=6 to 12;
s=stdmed(n);
put s;
output;
end;
run;

The statements produce these values:

0.4634033519
0.4587448763
0.410098592

0.4075552495
0.3719226208
0.3703544701
0.3428063408
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Details

Types of Sampling Plans

In single sampling, a random samplerftems is selected from a lot of sizZg. If
the numbew of nonconforming (defective) items found in the sample is less than or
equal to an acceptance numlbegthe lot is accepted. Otherwise, the lot is rejected.

In double sampling, a sample of sizg is drawn from the lot, and the numbey of
nonconforming items is counted. df is less than or equal to an acceptance number
a1, the lot is accepted, anddf; is greater than or equal to a rejection numbgrthe

lot is rejected. Otherwise, if; < d; < rq1, a second sample of sizg is taken, and

the number of nonconforming item is counted. Then itl; + ds is less than or
equal to an acceptance numbsgrthe lot is accepted, anddf + d- is greater than or
equal to a rejection numbes = a2 + 1, the lot is rejected. This notation follows that

of Schilling (1982). Note that some authors, including Montgomery (1996), define
the first rejection number using a strict inequality.

In Type A samplingthe sample is intended to represent a single, finite-sized lot, and
the characteristics of the sampling plan dependXyrthe number of nonconforming
items in the lot, as well ad’, n, andec.

In Type B samplingthe sample is intended to represent a series of lots (or the lot size
is effectively infinite), and the characteristics of the sampling plan depend the
proportion of nonconforming items produced by the process, as welbaslc.

A hypergeometric model is appropriate for Type A sampling, and a binomial model
is appropriate for Type B sampling.

Evaluating Single-Sampling Plans

You can use the base SAS functions PROBBNML and PROBHYPR to evaluate
single-sampling plans. Measures of the performance of single-sampling plans in-
clude

the probability of acceptanck,

the average sample number ASN
the average outgoing quality AOQ
the average total inspection ATI

Probability of Acceptance
Since P, is the probability of findinge or fewer defectives in the sample, you can
calculate the acceptance probability using the function PROBHYRR, n, ¢) for
Type A sampling and the function PROBBNN}, n, ¢) for Type B sampling.

For example, the following statements calcul&tefor the plann = 20, ¢ = 1 when
sampling from a single lot of siz& = 120 that containsD = 22 nonconforming
items, resulting in a value of 0.0762970752:
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data;
prob=probhypr(120,22,20,1);
put prob;

run;

Similarly, the following statements calculatg, for the plann = 20, ¢ = 1 when
sampling from a series of lots for which the proportion of nonconforming items is
p = 0.18, resulting in a value of 0.1018322793:

data;
prob=probbnmi(0.18,20,1);
put prob;

run;

Other Measures of Performance
The measures ASN, AOQ, and ATl are meaningful only for Type B sampling and can
be calculated using the PROBBNML function. For reference, the following equations
are provided.

Average sample number: Following the notation of Schilling (1982), I&f(c|n)

denote the probability of finding or fewer nonconforming items in a sample of size

n. Note thatF'(c|n) is equivalent to PROBBNMI(p, n, c). Then, depending on the
mode of inspection, the average sample number can be expressed as shown in the
following table:

Mode of Inspection| ASN
Full n

(c+1)(1—F(c+1n+1))
p

Semicurtailed nF(cln) +

(n—¢)F(cln+1) N (c+1)(1—F(c+1n+1))

Fully curtailed
1—p P

Average outgoing qualitycan be expressed as

_ P(N —n)F(cln)
AOQ = N
if the nonconforming items found are replaced with conforming items, and as
00 — PV = m)F(cln)
N —np

if the nonconforming items found are not replaced.

Average total inspectioncan be expressed as

ATl =n+ (1= F(cn))(N —n)
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Evaluating Double-Sampling Plans

The following list gives some measures for double-sampling plans. The formula for
each measure is given in the section describing the corresponding function.

the probability of acceptancé’,, calculated with the PROBACC2 function
the average sample number, ASN, calculated with the ASN2 function
the average outgoing quality, AOQ, calculated with the AOQ?2 function
the average total inspection, ATI, calculated with the ATI2 function

Deriving Control Chart Constants

You can use the functions D2, D3, and C4 to calculate standard control chart constants
that are derived frordsy, d3 andey. For reference, the following equations for some
of these constants are provided:

Ay = k/(davm)
A = k/(csvm)

B; = max(0,1— (k/ca)y/1—¢F)
By = 1+ (k/ca)y/1—c?

Bs = max(0,cqs —ky/1—c3)

Bﬁ = C4+k 1—6?1

cs = 1-— cﬁ
Dy = max(0,ds — kds)
Dy = do+ kds
D3 = max(0,1 — kds/ds)
Dy = 1+ kds/ds

E, = k/dy

Es = kjes

In the preceding equationk s the multiple of standard err¢k = 3 in the case of 3

limits), andn is the subgroup sample size. The use of these control chart constants is
discussed in thASQC Glossary and Tables for Statistical Quality ContiiofASTM
Manual on Presentation of Data and Control Chart Analy$ontgomery (1996),

and Wadsworth and others (1986).

Although you do not ordinarily need to calculate control chart constants when using
the SHEWHART procedure, you may find the D2, D3, and C4 functions useful for
creating LIMITS= data sets that contain control limits to be read by the SHEWHART
procedure.
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