
735

A P P E N D I X

1
Commands Used with the
IMGCTRL, IMGOP and PICFILL
Functions

CONVERT

Converts an image to the specified image type and depth

Syntax
rc=IMGOP(task-id, ’CONVERT’, type);

type
specifies the type of image to convert to:

’GRAY’
a monochrome (black and white) image

’CMAP’
a color-mapped image

’RGBA’
an RGB image
Type: Character

Details CONVERT performs dithering, quantizing, and other operations in order to
reduce an image to a simpler form. It can also create a two-color (black and white) RGB
image by converting a monochrome image to an RGBA image. Images that are
originally gray-scale or black and white cannot be colorized. CONVERT acts on the
currently selected image.

Example

Convert an RGB image to a dithered monochrome image:

rc=imgop(task-id,’READ’,’rgb.tif’);
rc=imgop(task-id,’CONVERT’,’GRAY’);
rc=imgop(task-id,’WRITE’,’gray.tif’);

Convert the GRAY image back to RGB. Because all color information is lost, the final
RGB image has only two colors:

rc=imgop(task-id,’READ’,’gray.tif’);
rc=imgop(task-id,’CONVERT’,’RGBA’);



736 COPY 4 Appendix 1

rc=imgop(task-id,’WRITE’,’rgb.tif’);

COPY

Copies an image

Syntax
rc=IMGOP(task-id, ’COPY’, source-image-id<, destination-image-id>);

source-image-id
is the identifier of the image to copy.

Type: Numeric

destination-image-id
is the new identifier of the copied image.

Type: Numeric

Details COPY copies an image from source-image-id to destination-image-id. That is,
it assigns another image identifier to an image. If destination-image-id is not specified,
it copies to the currently selected image. The copied image is not automatically
displayed.

Example

Simulate zooming and unzooming an image:

path=lnamemk(5,’sashelp.imagapp.gkids’,’format=cat’);
rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ_PASTE’,1,1,path);

if (zoom eq 1) then
do;

rc=imgop(task-id,’SELECT’,2);
rc=imgop(task-id,’COPY’,1,2);
rc=imgop(task-id,’SCALE’,width,height);
rc=imgop(task-id,’PASTE’,1,1);

if (unzoom=1) then
do;

rc=imgop(task-id,’UNPASTE’);
end;

end;



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 CREATE_IMAGE 737

CREATE_IMAGE

Creates a new image that is stored in memory

Syntax
rc=IMGOP(task-id, ’CREATE_IMAGE’, width, height,

type, depth<, color-map-len>);

width
is the width of the new image in pixels.

Type: Numeric

height
is the height of new image in pixels.

Type: Numeric

type
is the type of the image. These values match the values that QUERYN returns for
type:

1 specifies a GRAY image (1–bit depth)

2 specifies a CMAP image 8–bit depth)

3 specifies an RGB image (24–bit depth)
Type: Numeric

depth
is the depth of the new image. The depth must match the value given for type, above.

Type: Numeric

color-map-len
is the number of colors in the color map. This value is used only with a type of 2
(CMAP). If not specified, it defaults to 256.

Type: Numeric

Details CREATE_IMAGE creates an “empty” image in which all data and color map
values are set to 0 (black). You must use SET_COLORS to set the color map and use
SET_PIXEL to set the pixel values. Note that processing an entire image in this
manner can be very slow.

Example

Copy an image. Note that the COPY command is a much faster way of doing this,
and this example is here to show how to use the commands.

COPY:
width=0; height=0; type=0; depth=0; cmaplen=0;
r=0; g=0; b=0; pixel=0; pixel2=0; pixel3=0;

task-id=imginit(0,’nodisplay’);
task-id2=imginit(0,’nodisplay’);



738 CROP 4 Appendix 1

/* read and query original image */
rc=imgop(task-id,’READ’,’first.tif’);
rc=imgop(task-id,’QUERYN’,’WIDTH’,width);
rc=imgop(task-id,’QUERYN’,’HEIGHT’,height);
rc=imgop(task-id,’QUERYN’,’TYPE’,type);
rc=imgop(task-id,’QUERYN’,’DEPTH’,depth);
rc=imgop(task-id,’QUERYN’,’COLORMAP_LEN’,

cmaplen);

/* Create the new image */
rc=imgop(task-id2,’CREATE_IMAGE’,width,height,

type,depth);

/* Copy the color map */
do i=0 to cmaplen-1;

rc=imgop(task-id,’GET_COLORS’,i,r,g,b);
rc=imgop(task-id2,’SET_COLORS’,i,r,g,b);

end;

/* Copy the pixels */
do h=0 to height-1;

do w=0 to width-1;
rc=imgop(task-id,’GET_PIXEL’,w,h,pixel,

pixel2,pixel3);
rc=imgop(task-id2,’SET_PIXEL’,w,h,pixel,

pixel2,pixel3);
end;

end;

/* Write out the new image */
rc=imgop(task-id2,’WRITE’,’second.tif’,

’format=tif’);
rc=imgterm(task-id);
rc=imgterm(task-id2);

return;

CROP

Crops the selected image

Syntax
rc=IMGOP(task-id, ’CROP’, start-x, start-y, end-x, end-y);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’CROP’<, arguments>>);

start-x
is the row number of the upper corner.

Type: Numeric



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 DESTROY 739

start-y
is the column number of the upper corner.

Type: Numeric

end-x
is the row number of the lower corner.

Type: Numeric

end-y
is the column number of the lower corner.

Type: Numeric

Details The start-x, start-y, end-x, and end-y points use units of pixels and are
included in the new image. The top left corner of the image is (0,0).

Example

Display an image and then crop it:

name=lnamemk(1,path);
rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ_PASTE’,1,1,name);

if (crop eq 1) then
do;

rc=imgop(task-id,’CROP’,ucx,ucy,lcx,lcy);
rc=imgop(task-id,’PASTE’,1,1);

end;

DESTROY

Removes an image from memory and from the display

Syntax
rc=IMGOP(task-id, ’DESTROY’<, image-id>);

image-id
contains the identifier of the image to remove.

Type: Numeric

Details DESTROY removes an image from memory and from the display. Unless
image-id is specified, this command acts on the currently selected image. The command
does not affect the image that is stored in the external file or catalog.

Example

Remove an image from the display:

if (remove=1 and imgnum > 0)
then



740 DESTROY_ALL 4 Appendix 1

rc=imgop(task-id,’DESTROY’,imgnum);

DESTROY_ALL

Removes all images from memory and from the display

Syntax
rc=IMGOP(task-id, ’DESTROY_ALL’);

Details DESTROY_ALL runs the DESTROY command for all images in memory. The
external image files are not affected.

Example

Remove all images:

if (clear=1) then
rc=imgop(task-id,’DESTROY_ALL’);

DITHER

Dithers an image to a color map

Syntax
rc=IMGOP(task-id, ’DITHER’<, option>);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’DITHER’<, arguments>>);

option
specifies which color searching algorithm to use. Each algorithm searches the color
map at a different speed. You can specify FS_NORMAL, FS_FAST, FS_FASTER, or
FS_FASTEST. If you specify FS_NORMAL, then SCL exhaustively searches the color
map for the closest match. FS_FAST, FS_FASTER, and FS_FASTEST each use a
progressively faster searching algorithm. These algorithms will find a close color
match but not the closest. Usually, a close match is sufficient. The faster the search,
the less accurate the color match might be. The default option is FS_FASTEST.

Details DITHER acts on the currently selected image. It dithers an image to the
current color map: the one specified by a previous GENERATE_CMAP,
STANDARD_CMAP, or GRAB_CMAP command.



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 DITHER_BW 741

Like the MAP_COLORS command, DITHER reduces the number of colors in an
image. Unlike the MAP_COLORS command, DITHER attempts to choose colors by
looking at pixels in groups, not as single pixels, and tries to choose groups that will
result in the appropriate color. This is similar to the half-toning algorithm that print
vendors use to show multiple colors with the use of only four ink colors. This command
is much more computationally expensive than the other color-reduction commands, but
it handles continuous-tone images much better.

Example

Dither an image:

if (dither=1) then
do;

rc=imgop(task-id,’GENERATE_CMAP’,’COLORRAMP’,
5,5,4);

rc=imgop(task-id,’DITHER’);
rc=imgop(task-id,’PASTE’);

end;

DITHER_BW

Dithers the selected image to a monochrome black and white image

Syntax
rc=IMGOP(task-id, ’DITHER_BW’);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’DITHER_BW’<, arguments>>);

Details This command reduces an image to a black-and-white image. DITHER_BW
is much more efficient for this task than the general purpose DITHER command.

Example

Dither an image either to black and white or to a color map:

if
(dither=1) then

do;
rc=imgop(task-id,’DITHER_BW’);
rc=imgop(task-id,’PASTE’);

end;
if (dither=2) then

do;
rc=imgop(task-id,’GENERATE_CMAP’,

’COLORRAMP’,5,5,4);
rc=imgop(task-id,’DITHER’);



742 EXECLIST 4 Appendix 1

rc=imgop(task-id,’PASTE’);
end;

EXECLIST

Executes a list of commands

Syntax
rc=IMGOP(task-id, ’EXECLIST’, commandlist-id);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’EXECLIST’<, arguments>>);

commandlist-id
contains the identifier of the SCL list of commands to pass and execute. The
commands are processed as the task starts. A value of zero means that no list is
passed.

Type: Numeric

Details EXECLIST provides a mechanism for sending multiple commands to be
processed at one time. If your program includes the same set of commands several
times, you can fill an SCL list with those commands and then use EXECLIST to
execute the commands.

Example

Create an SCL list that consists of two sublists. Each sublist contains one item for a
command name and one item for each command argument.

length rc 8;
init:

task-id=imginit(0);
main_list=makelist(0, ’G’);

sub_list1=makelist(0, ’G’);
main_list=setiteml(main_list, sub_list1, 1, ’Y’);
sub_list1=setitemc(sub_list1, ’WSIZE’, 1, ’Y’);
sub_list1=setitemn(sub_list1, 500, 2 , ’Y’);
sub_list1=setitemn(sub_list1, 500, 3 , ’Y’);

sub_list2=makelist(0, ’G’);
main_list=setiteml(main_list, sub_list2, 2, ’Y’);
sub_list2=setitemc(sub_list2, ’WTITLE’, 1, ’Y’);
sub_list2=setitemc(sub_list2, ’EXECLIST example’,

2, ’Y’);
rc=imgop(task-id, ’EXECLIST’, main_list);

return;

main:



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 FILTER 743

return;
term:

rc=imgterm(task-id);
return;

FILTER

Applies a filter to an image

Syntax
rc=IMGOP(task-id, ’FILTER’, filter-type, matrix);

filter-type
must be specified as ’CONVOLUTION’. Other filter types will be added in the future.

Type: Character

matrix
contains the matrix size, the filter matrix, the divisor, the bias, and 1 if you want to
use the absolute value of the resulting value. If not specified, the defaults are 1 for
divisor, 0 for bias, and 0 for not using the absolute value. Separate each number with
a space.

Type: Character

Details The FILTER command supports convolution filters that are provided by
users. A filter matrix is moved along the pixels in an image, and a new pixel value is
calculated and replaced at the pixel that is at the center point of the filter matrix. The
new value is determined by weighting nearby pixels according to the values in the filter
matrix.

A detailed explanation of the concept and theory behind filtering is beyond the scope
of this document. However, it is explained in many textbooks. For example, see Digital
Image Processing, by Rafael Gonzalez and Paul Wintz, and The Image Processing
Handbook, by John C. Russ.

The equation that FILTER uses is shown in Figure A1.1 on page 744.



744 FILTER 4 Appendix 1

Figure A1.1 Calculating New Pixel Values

Example

Consider the following 3x3 matrix:

-1 -2 -3
4 5 6

-7 8 -9

Design the matrix with a divisor of 1 and a zero bias, and use the absolute value of the
answer:

matrix="3 -1 -2 -3 4 5 6 -7 8 -9 1 0 1";
rc=imgop(tid,’FILTER’,"CONVOLUTION",matrix);

Note: Calculated values that are larger than 255 are normalized to 255, and
calculated values that are smaller than zero are normalized to zero. If 1 is set for
’absolute value’, then negative numbers are converted to positive numbers before
normalization.

A filter selection and creation window is available. An example of using it is in the
image sample catalog (imagedmo) named FILTEXAM.FRAME. It is essentially the



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 GENERATE_CMAP 745

same window that is used in the Image Editor. It accesses the filters that are shipped
with the Image Editor. 4

GAMMA

Applies a gamma value to the selected image

Syntax
rc=IMGOP(task-id, ’GAMMA’, gamma-value);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’GAMMA’ <, arguments>>);

gamma-value
is the gamma value to apply to the image.

Type: Numeric

Details GAMMA corrects the image by either darkening or lightening it. Gamma
values must be positive, with the most useful values ranging between 0.5 and 3.0. A
gamma value of 1.0 results in no change to the image. Values less than 1.0 darken the
image, and values greater than 1.0 lighten it.

Example

Apply a gamma value that has previously been stored in GAMNUM:

if
(gamma eq 1) then

do;
rc=imgop(task-id,’GAMMA’,gamnum);
if (rc ne 0) then _msg_=’gamma error’;
rc=imgop(task-id,’PASTE’);

end;

GENERATE_CMAP

Generates a color map for the selected image

Syntax
rc=IMGOP(task-id, ’GENERATE_CMAP’, COLORRAMP, reds, greens, blues);

rc=IMGOP(task-id, ’GENERATE_CMAP’, GRAYRAMP, n);



746 GET_BARCODE 4 Appendix 1

reds
is the number of red colors to generate.

Type: Numeric

greens
is the number of green colors to generate.

Type: Numeric

blues
is the number of blue colors to generate.

Type: Numeric

n
is the number of gray colors to generate.

Type: Numeric

Details GENERATE_CMAP generates two kinds of color maps:

COLORRAMP
is a color ramp of RGB colors that fill the RGB color spectrum, given the desired
number of red, green, and blue shades to use. This command generates a color
map of reds�greens�blues colors, with a maximum of 256 colors allowed. It is
possible to generate a color map that consists only of reds, greens, or blues by
specifying that only one shade be used for the other two colors.

GRAYRAMP
is a color map that consists only of grays. The number of shades of gray is limited
to 256.

After the color map is generated, it can be applied to an image with either the
DITHER command or the MAP_COLORS command.

Example

Use the GENERATE_CMAP command to generate a color ramp and a gray ramp,
each containing 100 color map entries:

gray:
rc=imgop(task-id,’GENERATE_CMAP’,’GRAYRAMP’,100);

return;

color:
rc=imgop(task-id,’GENERATE_CMAP’,’COLORRAMP’,5,5,4);

return;

GET_BARCODE

Returns the value of the specified bar code

Syntax
rc=IMGOP(task-id, ’GET_BARCODE’, bar-code-type,

return-string<, x1, y1, x2, y2>);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 GET_COLORS 747

bar-code-type
is a character string that contains one value from the following list:

’CODE39’ code 39 bar codes

’CODE39X’ extended code 39 bar codes

’CODE128’ code 128 bar codes.
Type: Character

return-string
contains the returned value. Remember to make this variable long enough to hold
the longest value that could be returned.

Type: Character

x1,y2
are the upper coordinates of the area in the image to search for the bar code. The
default is 0,0.

x2,y2
are the lower coordinates of the area in the image to search for the bar code. The
default is the width and height of the image. Note that the area specified for the
bar-code location can be larger than the bar code. This area should be relatively free
of things like other text.

Details Given an image with a bar code, the GET_BARCODE command attempts to
decode the bar code and then returns the value of the bar code. The bar code can be
decoded only if it is clear in the image. The DPI resolution that is used when the image
is scanned determines how clearly the bar code appears in the image. Below 200 DPI,
recognition is very poor.

Example

Return the value of the bar code that is located in the 10,10,300,200 area of the
image:

rc=imgop(taskid,’GET_BARCODE’,’CODE39’,retstring,
10,10,300,200);

GET_COLORS

Returns the RGB values of the index positions of a color map for the selected image

Syntax
rc=IMGOP(task-id, ’GET_COLORS’, index, red, green, blue);

index
contains the identifier for the color map index.

Type: Numeric



748 GET_PIXEL 4 Appendix 1

red
is the red value for the index.

Type: Numeric

green
is the green value for the index.

Type: Numeric

blue
is the blue value for the index.

Type: Numeric

Details The color values must be between 0 and 255. If index is outside the valid
range for the color map, an error is returned.

Example

See the example for “CREATE_IMAGE” on page 737.

GET_PIXEL

Returns the pixel value of a specified position in the selected image

Syntax
rc=IMGOP(task-id, ’GET_PIXEL’, x, y, red<, green, blue>);

x
is the row location in the image.

Type: Numeric

y
is the column location in the image.

Type: Numeric

red
is either the red value of an RGB image or the pixel value for a CMAP or GRAY
image.

Type: Numeric

green
is the green value for an RGB image and is ignored for all others.

Type: Numeric

blue
is the blue value for an RGB image and is ignored for all others.

Type: Numeric

Details The color values for a CMAP image or an RGB image must be between 0 and
255. If any value is out of range, an error is returned. For a GRAY image, GET_PIXEL
returns a red value of either 0 or 1.



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 MAP_COLORS 749

Example

See the example for “CREATE_IMAGE” on page 737.

GRAB_CMAP

Grabs the color map from the selected image

Syntax
rc=IMGOP(task-id, ’GRAB_CMAP’);

Details After the color map is grabbed, it can be applied to another image with either
the DITHER command or the MAP_COLORS command.

Example

Grab the color map of one image and then apply it to another image with the
DITHER command:

rc=imgop(task-id,’READ’,’image-1’);
rc=imgop(task-id,’GRAB_CMAP’);
rc=imgop(task-id,’READ’,’image-2’);
rc=imgop(task-id,’DITHER’);

MAP_COLORS

Maps colors to the closest colors in the selected color map

Syntax
rc=IMGOP(task-id, ’MAP_COLORS’<, option>);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’MAP_COLORS’ <, arguments>>);

option
specifies the order in which the colors are to be mapped. By default, the colors are
mapped in an order that is defined by an internal algorithm. Specify ’SAME_ORDER’
to force the color map of the image to be in the same order as the selected color map.

Type: Character

Details MAP_COLORS acts on the currently selected image. Like the DITHER and
QUANTIZE commands, MAP_COLORS reduces the number of colors in a color image.



750 MIRROR 4 Appendix 1

Unlike DITHER, MAP_COLORS attempts to choose colors by looking at pixels
individually, not in groups. This technique is much less computationally expensive than
DITHER, although it does not handle continuous-tone images as well.

Continuous-tone images contain many shades of colors. Because MAP_COLORS
maps the colors in an image to their closest colors in the color map, many of the shades
of a color re-map to the same color in the color map. This can reduce the detail in the
image. For example, a continuous-tone, black-and-white image would contain several
shades of gray in addition to black and white. When MAP_COLORS re-maps the colors
in the image, the shades of gray are mapped to either black or white, and much of the
detail in the image is lost.

Unlike the QUANTIZE command, MAP_COLORS is passed a particular color map to
use. Therefore, multiple images can be reduced to the same color map, further reducing
the number of colors used in a frame that contains multiple images. The algorithm
looks at each pixel in the image and determines the closest color in the color map. This
type of algorithm works best for images that are not continuous-tone images, such as
charts, cartoon images, and so on.

Specify the option ’SAME_ORDER’ if you are mapping several images and you want
the color map to be identical for all of them.

Example

Grab the color map of one image and then apply it to another image with the
MAP_COLORS command:

rc=imgop(task-id,’READ’,image1);
rc=imgop(task-id,’GRAB_CMAP’);
rc=imgop(task-id,’READ’,image2);
rc=imgop(task-id,’MAP_COLORS’);

MIRROR

Mirrors an image

Syntax
rc=IMGOP(task-id, ’MIRROR’);

Details MIRROR acts on the currently selected image. It flips an image on its
vertical axis, resulting in a “mirror” copy of the original image.

Example

Mirror an image:

if (mirror=1) then
rc=imgop(task-id,’MIRROR’);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 PASTE 751

NEGATE
Changes an image to a negative

Syntax
rc=IMGOP(task-id, ’NEGATE’);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’NEGATE’<, arguments>>);

Details NEGATE acts on the currently selected image. It creates a photographic
negative of the image by reversing the use of dark/light colors. The negative is created
by replacing each color with its complement.

Example

Create a negative of an image:

if (negative=1) then
rc=imgop(task-id,’NEGATE’);

PASTE
Displays an image at a specified location

Syntax
rc=IMGOP(task-id, ’PASTE’<, x, y>);

x
is the X coordinate of the top left corner of the image.

Type: Numeric

y
is the Y coordinate of the top left corner of the image.

Type: Numeric

Details PASTE acts on the currently selected image. If no coordinates are specified,
the selected image is displayed either at location 0,0 or at the coordinates that were set
by a previous PASTE. To set new coordinators, you can use a PASTE command with no
image specified. Coordinates that are specified by a new PASTE override previous
settings.

Example

Display an image with its upper left corner at 200, 200:



752 PASTE_AUTO 4 Appendix 1

if (display=1) then
rc=imgop(task-id,’PASTE’,200,200);

PASTE_AUTO

Displays an image automatically

Syntax
rc=IMGOP(task-id, ’PASTE_AUTO’<, x, y>);

x
is the X coordinate (on the display) of the top left corner of the image.

Type: Numeric

y
is the Y coordinate (on the display) of the top left corner of the image.

Type: Numeric

Details PASTE_AUTO acts on the currently selected image. It provides the same
basic function as PASTE. In addition, PASTE_AUTO modifies an image by dithering it
(changing the color map) or quantizing it (reducing the number of colors it uses), so that
you can display it on the current device. It also attempts to prevent switching to false
colors or to a private color map.

Example

Automatically display an image with its upper left corner at 200, 200:

if (display=1) then
rc=imgop(task-id,’PASTE_AUTO’,200,200);

PRINT

Prints an image

Syntax
rc = IMGOP(task-id, ’PRINT’<, x, y<, width, height<, type>>>);

x
is the X coordinate (on the page) of the top left corner of the image.

Type: Numeric



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 PRINT 753

y
is the Y coordinate (on the page) of the top left corner of the image.

Type: Numeric

width
specifies either the actual width in pixels or a scaling factor for the width.

Type: Numeric

height
specifies either the actual height in pixels or a scaling factor for the height.

Type: Numeric

type
specifies the type to convert the image to before the image is printed. You can specify
one of the following:

CMAP color mapped image (maximum of 256 colors)

GRAY gray-scale image

MONOCHROME two-color (black and white) image

RGBA true-color image.
Type: Character

Details By default, PRINT centers the image. If you do not specify the width and
height, PRINT fills the page.

If you want to specify either x or y, you must specify both. Also, if you want to
specify either width or height, you must specify both. If you specify only one option in
either of these pairs, PRINT uses the default values for both options in the pair. For
example, if you specify the width but not the height, PRINT uses the default values for
both the width and the height.

Use options x and y to position the image on the page. To center an image, specify -1
for the dimension in which you want to center the image (either x or y, or both). For
example, if x is 0 and y is 999999, then the image will be printed in the lower left
corner. If both x and y are 0, then the image will be printed in the upper left corner. If
both x and y are -1, then the image will be printed in the center of the page.

To specify the actual width or height that you want to use to print the image, specify
a positive number. To use the actual image size, specify 0 for both width and height. To
scale the image, specify the scaling factor as a negative number. A scaling factor of
-100 prints the image without scaling it up or down. A scaling factor of -150 is a
scaling factor of 150 percent, and -50 is a scaling factor of 50 percent.

To keep the same aspect ratio, specify 0 for either width or height. For example, if
you specify -75 for one option and 0 for the other, PRINT scales the image by 75 percent
while keeping the same aspect ratio. You cannot specify 0 for both width and height.

If the scaling factor that you specify is larger than the easel, PRINT reduces the
factor to the size of the easel. If the combination of options that you specify would
postion the image off the page, then the width and height options take priority, and the
position is adjusted so that the image fits on the page.

Examples
� Position the image in the lower right corner:

rc=imgop(task-id,’PRINT’,999999,999999);

� Print the image in the center of the page and use the actual pixel size:

rc=imgop(task-id,’PRINT’,-1,-1,-100,-100);

� Scale the image up to fill the whole page:



754 QUANTIZE 4 Appendix 1

rc=imgop(task-id,’PRINT’,0,0,-99999,-99999);

� Scale the image up by 150 percent:

rc=imgop(task-id,’PRINT’,0,0,-150,-150);

� Scale the width to 200 percent and keep the same aspect ratio:

rc=imgop(task-id,’PRINT’,0,0,-200,0 );

� Print the image with a width of 200 and keep the same aspect ratio:

rc=imgop(task-id,’PRINT’,0,0,200,0);

� Scale the width by 150 percent and use a height of 99:

rc=imgop(task-id,’PRINT’,0,0,-150,99);

� Fill in one direction and keep the same aspect ratio:

rc=imgop(task-id,’PRINT’,0,0,99999,0);

� Fill the page with the image:

rc=imgop(task-id,’PRINT’,0,0,99999,99999);

QUANTIZE
Reduces the number of colors used for an image

Syntax
rc = IMGOP(task-id, ’QUANTIZE’, colors);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’QUANTIZE’<, arguments>>);

colors
is the number of colors to use for the image. The value of the colors variable must be
between 2 through 256.

Type: Numeric

Details QUANTIZE acts on the currently selected image. It generates a
color-mapped image for which the command assigns the values in the color map.
QUANTIZE results in a very good approximation of the image, with the possible
negative effect that two or more images that are quantized to the same number of
colors might still use different colors for each image. (The algorithm is an adaptation of
the Xiaolin Wu algorithm, as described in Graphics Gems II.*)

Example

Reduce the number of colors for an image to the number stored in NUMCOLOR:

* Wu, Xiaolin (1991), “ Efficient Statistical Computations for Optimal Color Quantization,” in Graphics Gems II, ed. J. Arvo,
Boston: Academic Press, 126–133.



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 QUERYC, QUERYL, and QUERYN 755

if (quantize eq 1) then
rc=imgop(task-id,’QUANTIZE’,numcolor);

QUERYC, QUERYL, and QUERYN

Query information about images

Syntax
rc=IMGOP(task-id, ’QUERYC’, attribute, information);

rc=IMGOP(task-id, ’QUERYL’, attribute, list-id);

rc=IMGOP(task-id, ’QUERYN’, attribute, information);

attribute
is the value to report. Attributes for QUERYC are listed in “Attributes for the
QUERYC Command” on page 755. Attributes for QUERYL are listed in “Attributes
for the QUERYL Command” on page 755. Attributes for QUERYN are listed in
“Attributes for the QUERYN Command” on page 756.

Type: Character

information
contains the information that is returned by QUERYC and QUERYN. QUERYC
returns a character value, and QUERYN returns a numeric value.

Type: Character or Numeric

list-id
contains the identifier for the SCL list of information items that are returned by
QUERYL. See attribute for details.

Type: List

Attributes for the QUERYC Command
The values for attribute for QUERYC are:

DESCRIPT
returns information about the image size and color map. The information can be
up to 45 characters long.

FILENAME
returns the image-path string.

FORMAT
returns the original file format, such as GIF.

TYPE
returns the IMAGE type, which can be ’CMAP’, ’GRAY’, or ’RGBA’.

Attributes for the QUERYL Command
The values for attribute for QUERYL are:



756 QUERYC, QUERYL, and QUERYN 4 Appendix 1

ACTIVE_LIST
returns an SCL list that contains the identifiers for all active images (images that
are being used but that are not necessarily visible).

GLOBAL_INFO
returns a named list that contains the following items:

NUM_ACTIVE
is the number of active images that are used but not necessarily visible.

SELECT
is the identifier of the currently selected image.

WSIZE_WIDTH
is the window width in pixels.

WSIZE_HEIGHT
is the window height in pixels.

SELECT_INFO
returns a named SCL list that contains the numeric values for the currently
selected image:

IS_ACTIVE
has a value of 1 if the image is being used and if data is associated with it. If
IS_ACTIVE=1, the following items are also returned:

WIDTH the image width in pixels

HEIGHT the image height in pixels

DEPTH the image depth

TYPE the image type: ’CMAP’, ’GRAY’, ’RGBA’

IS_VISIBLE
has a value of 1 if the image is being displayed.

XPOSN
is the x position.

YPOSN
is the y position.

NCOLORS
is the number of colors, if TYPE=’CMAP’ (color mapped)

RDEPTH
is the red depth, if TYPE=’RGBA’

GDEPTH
is the green depth, if TYPE=’RGBA’

BDEPTH
is the blue depth, if TYPE=’RGBA’

ADEPTH
is the alpha depth (degree of transparency), if TYPE=’RGBA’

VISIBLE_LIST
returns an SCL list that contains the identifiers for all currently displayed images.

Attributes for the QUERYN Command
The values for attribute for QUERYN are:



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 QUERYC, QUERYL, and QUERYN 757

ADEPTH
returns the alpha depth (degree of transparency), if TYPE=3 (RGBA).

BDEPTH
returns the blue depth, if TYPE=3 (RGBA).

COLORMAP-LEN
returns the size of the color map.

DEPTH
returns the image depth.

GDEPTH
returns the green depth, if TYPE=3 (RGBA).

HEIGHT
returns the image height in pixels.

IS_BLANK
returns a value that indicates whether the current page is blank:

1 blank

0 not blank (valid for monochrome images only).

NCOLORS
returns the number of colors.

RDEPTH
returns the red depth, if TYPE=3 (RGBA).

SELECT
returns the identifier of the currently selected image.

TYPE
returns the image type:

1 GRAY (gray-scale)

2 CMAP (color mapped)

3 RGBA.

WIDTH
returns the image width in pixels.

Details The QUERYC, QUERYL, and QUERYN commands return information about
all images as well as about the Image window. QUERYC returns the values of
character attributes. QUERYL returns the values of attributes that are stored in an
SCL list. QUERYN returns the values of numeric attributes. These commands act on
the currently selected image.

Examples

Example 1: Using QUERYC Display the description, filename, format, and type of an
image:

rc=imgop(task-id,’READ’,
’/usr/local/images/color/misc/canoe.gif’);

rc=imgop(task-id,’QUERYC’,’DESCRIPT’,idescr);
put idescr=;



758 QUERYC, QUERYL, and QUERYN 4 Appendix 1

rc=imgop(task-id,’QUERYC’,’FILENAME’,ifile);
put ifile=;
rc=imgop(task-id,’QUERYC’,’FORMAT’,iformat);
put iformat=;
rc=imgop(task-id,’QUERYC’,’TYPE’,itype);
put itype=;

This program writes the following lines to the LOG window:

IDESCR=640x480 8-bit CMAP, 256 colormap entries
IFILE=/usr/local/images/color/misc/canoe.gif
IFORMAT=GIF
ITYPE=CMAP

Example 2: Using QUERYL

� Display the number of active images:

qlist=0;
rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ’,path1);
rc=imgop(task-id,’SELECT’,2);
rc=imgop(task-id,’READ’,path2);
rc=imgop(task-id,’PASTE’);
rc=imgop(task-id,’QUERYL’,’ACTIVE_LIST’,qlist);
images=listlen(qlist);
put images=;

This program writes the following line to the LOG window:

images=2

� Display an SCL list of information about the current image:

qlist=makelist();
rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’QUERYL’,’SELECT_INFO’,qlist);
call putlist(qlist);

This program writes the following information to the LOG window:

(IS_ACTIVE=1 IS_VISIBLE=0 XPOSN=0 YPOSN=0 WIDTH=1024
HEIGHT=768 DEPTH=8 TYPE=’CMAP’ NCOLORS=253 )[18]

� Display an SCL list of information about the Image window:

qlist=makelist();
rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’QUERYL’,’GLOBAL_INFO’,qlist);
call putlist(qlist);

This program writes the following lines to the LOG window:

(NUM_ACTIVE=1 SELECT=1 WSIZE_WIDTH=682
WSIZE_HEIGHT=475 )[20]

Example 3: Using QUERYN Display information about the Image window. (Assume
that all variables have been initialized before they are used.)



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 READ 759

rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’QUERYN’,’SELECT’,select);
rc=imgop(task-id,’QUERYN’,’HEIGHT’,height);
rc=imgop(task-id,’QUERYN’,’WIDTH’,width);
rc=imgop(task-id,’QUERYN’,’DEPTH’,depth);
rc=imgop(task-id,’QUERYN’,’RDEPTH’,rdepth);
rc=imgop(task-id,’QUERYN’,’GDEPTH’,gdepth);
rc=imgop(task-id,’QUERYN’,’BDEPTH’,bdepth);
rc=imgop(task-id,’QUERYN’,’ADEPTH’,adepth);
rc=imgop(task-id,’QUERYN’,’NCOLORS’,ncolors);
rc=imgop(task-id,’QUERYN’,’TYPE’,type);
put select= height= width= depth= rdepth= gdepth=;
put bdepth= adepth= ncolors= type= ;

This program writes the following values to the LOG window:

SELECT=1 HEIGHT=470 WIDTH=625 DEPTH=8 RDEPTH=0
GDEPTH=0 BDEPTH=0 ADEPTH=0 NCOLORS=229 TYPE=2

READ

Reads an image from an external file, a SAS catalog, or a device

Syntax
rc=IMGOP(task-id, ’READ’, image-path<, attributes >);

rc=IMGOP(task-id, ’READ’, device-name,
’DEVICE=CAMERA | SCANNER <attributes>’);

image-path
is either the pathname of the external file that contains the image or the path string
that is returned by the LNAMEMK function.

Type: Character

device-name
specifies the name of a camera or scanner:

’KODAKDC40’
Kodak DC 40 camera (available only in the Windows 95 operating environment)

’HPSCAN’
HP Scanjet scanners (available only in the Windows and HP/UX operating
environments)

’TWAIN’
TWAIN scanners and cameras (available only in the Windows operating
environment)
If you specify a device name, then you must use the DEVICE= attribute to

indicate the type of device.
Type: Character



760 READ_CLIPBOARD 4 Appendix 1

attributes
are file- or device-specific attributes. See “Attributes for Reading Image Files” on
page 774 for possible choices.

Type: Character

Details READ acts on the currently selected image. You can specify the file directly
(using its physical filename path), or use the information returned by a previous
LNAMEMK function call. The LNAMEMK function creates a single character variable
that contains information about the location of the image (even if it resides in a SAS
catalog), as well as other image attributes.

The FORMAT= attribute must be specified for Targa images, for images that reside
in SAS catalogs, and for host-specific formats. FORMAT is not required in other cases,
but it is always more efficient to specify it.

Examples
� Read an image that is stored in a SAS catalog:

path=lnamemk(5,’sashelp.imagapp.gfkids’,’format=cat’);
rc=imgop(task-id,’READ’,path);

� Specify a file in the READ command:

rc=imgop(task-id,’READ’,’/usr/images/color/sign.gif’);

� Read from a scanner:

rc=imgop(task-id,’READ’,’hpscan’,’device=scanner dpi=100’);

� Take a picture with a camera:

rc=imgop(task-id,’READ’,’kodakdc40’,’device=camera takepic’);

� Read a Portable Networks Graphics image:

rc=imgop(taskid,’READ’,’/images/test.png’,’format=PNG’);

� Read an image and wait 5 seconds before displaying the image after each PASTE
command:

rc=imgop(taskid,’READ’,path);
rc=imgop(taskid,’PASTE’);
rc=imgctrl(taskid,’WAIT’,5);
rc=imgop(taskid,’READ’,path2);
rc=imgop(taskid,’PASTE’);
rc=imgctrl(taskid,’WAIT’,5);

READ_CLIPBOARD

Reads an image from the host clipboard

Syntax
rc=IMGOP(task-id, ’READ_CLIPBOARD’);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 READ_PASTE 761

Details READ_CLIPBOARD acts on the currently selected image. On some hosts,
the clipboard can be read only after you use the WRITE_CLIPBOARD command.

Example

Read an image from the clipboard and display it:

rc=imgop(task-id,’READ_CLIPBOARD’);
rc=imgop(task-id,’PASTE’);

READ_PASTE

Reads and displays an image

Syntax

rc=IMGOP(task-id, ’READ_PASTE’, x, y, image-path<, attributes>);

x
is the X coordinate of the top left corner of the image.

Type: Numeric

y
is the Y coordinate of the top left corner of the image.

Type: Numeric

image-path
contains either the pathname of the external file that contains the image or the path
string that is returned by the LNAMEMK function.

Type: Character

attributes
are file-specific attributes. See “Attributes for Reading Image Files” on page 774 for
possible choices.

Type: Character

Details READ_PASTE acts on the currently selected image. It provides the same
functionality as READ plus PASTE. Notice that x and y are required.

Example

Read and paste an image that is stored in a SAS catalog:

path=lnamemk(5,’sashelp.imagapp.gfkids’,
’format=cat’);

rc=imgop(task-id,’READ_PASTE’,1,1,path);



762 READ_PASTE_AUTO 4 Appendix 1

READ_PASTE_AUTO

Reads and automatically displays an image

Syntax
rc=IMGOP(task-id, ’READ_PASTE_AUTO’, x, y, image-path<, attributes>);

x
is the X coordinate of the top left corner of the image.

Type: Numeric

y
is the Y coordinate of the top left corner of the image.

Type: Numeric

image-path
contains either the pathname of the external file that contains the image or the path
string that is returned by the LNAMEMK function.

Type: Character

attributes
are file-specific attributes. See “Attributes for Reading Image Files” on page 774 for
possible choices.

Type: Character

Details READ_PASTE_AUTO acts on the currently selected image. It provides the
same functionality as READ plus PASTE_AUTO. Notice that x and y are required.

Example

Read and automatically paste an image that is stored in a SAS catalog:

path=lnamemk(5,’sashelp.imagapp.gfkids’,’format=cat’);
rc=imgop(task-id,’READ_PASTE_AUTO’,1,1,path);

ROTATE

Rotates an image clockwise by 90, 180, or 270 degrees

Syntax
rc=IMGOP(task-id, ’ROTATE’, degrees);

region-id=PICFILL(graphenv-id, type, ulr, ulc, lrr, lrc, source<, ’ROTATE’< ,
arguments>>);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 SCALE 763

degrees
is the number of degrees to rotate the image: 90, 180, or 270.

Type: Numeric

Details ROTATE acts on the currently selected image.

Example

Rotate an image the number of degrees stored in RV:

main:
rc=imgop(task-id,’READ’,path);
if (rv ge 90) then

do;
rc=imgop(task-id,’ROTATE’,rv);
rc=imgop(task-id,’PASTE’);

end;
return;

SCALE

Scales an image

Syntax
rc=IMGOP(task-id, ’SCALE’, width, height<, algorithm>);

region-id=PICFILL(graphenv-id, type, ulr, ulc,
lrr, lrc, source<, ’SCALE’<, arguments>>);

width
is the new width of the image (in pixels).

Type: Numeric

height
is the new height of the image (in pixels).

Type: Numeric

algorithm
specifies which scaling algorithm to use:

BILINEAR
computes each new pixel in the final image by averaging four pixels in the source
image and using that value. The BILINEAR algorithm is more computationally
expensive than LINEAR, but it preserves details in the image better.

LINEAR
replicates pixels when the image is scaled up and discards pixels when the image
is scaled down. The LINEAR algorithm yields good results on most images.
However, it does not work very well when you are scaling down an image that



764 SELECT 4 Appendix 1

contains small, but important, features such as lines that are only one pixel wide.
LINEAR is the default.
Type: Character

Details SCALE acts on the currently selected image. It scales the image to a new
image. If you specify -1 for either width or height, then SCALE preserves the image’s
aspect ratio.

Example

Double the size of an image:

main:
rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’QUERYN’,’WIDTH’,width);
rc=imgop(task-id,’SCALE’,2*width,-1);
rc=imgop(task-id,’PASTE’);

return;

SELECT

Selects the image identifier to be used in other commands

Syntax

rc=IMGOP(task-id, ’SELECT’<, image-id>);

image-id
contains the identifier of the image to select. The value of image-id must be between
1 and 999. The default is 1. Using a value of 32 or less is more efficient.

Type: Numeric

Details The SELECT command enables you to work with more than one image. The
command specifies the image identifier to be used in all subsequent commands until
another SELECT command is issued.

Only the COPY, DESTROY, and UNPASTE commands can act on either the
currently selected image or on a specified image identifier.

Example

Display two images at once:

rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ_PASTE’,1,1,path1);
rc=imgop(task-id,’SELECT’,2);
rc=imgop(task-id,’READ_PASTE’,200,200,path2);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 SET_PIXEL 765

SET_COLORS

Assigns the RGB values for the index positions of a color map for the current image

Syntax
rc=IMGOP(task-id, ’SET_COLORS’, index, red, green, blue);

index
contains the identifier for the color map index.

Type: Numeric

red
is the red value for the index.

Type: Numeric

green
is the green value for the index.

Type: Numeric

blue
is the blue value for the index.

Type: Numeric

Details SET_COLORS acts on the currently selected image. It can be used with
either a new image or an existing image. If index is outside the valid range for the color
map, an error is returned. The color values must be between 0 and 255.

Example

See the example for “CREATE_IMAGE” on page 737.

SET_PIXEL

Assigns the pixel value in an image at the specified position

Syntax
rc=IMGOP(task-id, ’SET_PIXEL’, x, y, red<, green, blue>);

x
is the row location in the image.

Type: Numeric

y
is the column location in the image.

Type: Numeric



766 STANDARD_CMAP 4 Appendix 1

red
is either the red value of an RGB image or the pixel value for a CMAP or GRAY
image.

Type: Numeric

green
is the green value for an RGB image and is ignored for all other image types.

Type: Numeric

blue
is the blue value for an RGB image and is ignored for all other image types.

Type: Numeric

Details SET_PIXEL acts on the currently selected image. It can be used with either
a new image or an existing image. The colors for a CMAP and an RGB image must be
between 0 and 255. If any value is out of range, an error is returned. For a GRAY
image, SET_PIXEL returns either 0 or 1 for red.

CAUTION:
Image data can be destroyed. Use this function carefully, or you can destroy your
image data. SET_PIXEL overwrites the image data in memory and thus destroys the
original image. 4

Example

See the example for “CREATE_IMAGE” on page 737.

STANDARD_CMAP

Selects a color map

Syntax
rc=IMGOP(task-id, ’STANDARD_CMAP’, color-map);

color-map
is the color map to designate as the current color map.

BEST
is a special, dynamic color map that can contain up to 129 colors. The color map
contains the 16 personal computer colors, a set of grays, and an even distribution of
colors. The colors are dynamically selected, based on the capabilities of the display
and on the number of available colors. The best set of colors is chosen accordingly.

COLORMIX_CGA
is the 16-color personal computer color map.

COLORMIX_192
is a 192-color blend.



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 THRESHOLD 767

DEFAULT
is an initial set of colors that is chosen by default. The available colors may vary
between releases of the SAS System.

SYSTEM
is the color map for the currently installed device or system. The color map that
STANDARD_CMAP obtains is a “snapshot” of the color map for the current device
and does not change when the device’s color map changes.
Type: Character

Details STANDARD_CMAP specifies that the current color map should be filled with
one of the “standard” image color maps. This new color map can be applied to any
image by using either the DITHER command or the MAP_COLORS command.

Example

Select a new color map and use the DITHER command to apply it to an image:

rc=imgop(task-id,’STANDARD_CMAP’,’COLORMIX_CGA’);
rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’DITHER’);

THRESHOLD

Converts a color image to black and white, using a threshold value

Syntax
rc=IMGOP(task-id, ’THRESHOLD’, value);

value
is a threshold value for converting standard RGB values to monochrome. Value can
be:

1...255 sets the threshold that determines whether a color maps to black
or white

0 defaults to 128

-1 calculates the threshold value by averaging all pixels in the image.
Type: Numeric

Details
The THRESHOLD command acts on either the currently selected image or on the
image specified by task-id. It enables documents that are scanned in color to be
converted to monochrome for applying optical character recognition (OCR) and for other
purposes. Dithering is not a good technique for converting images when OCR is used.

The threshold is a color value that acts as a cut-off point for converting colors to
black and white. All colors greater than the threshold value map to white, and all
colors less than or equal to the threshold value map to black.



768 TILE 4 Appendix 1

The algorithm weights the RGB values, using standard intensity calculations for
converting color to gray scale.

TILE

Replicates the current image

Syntax
rc=IMGOP(task-id, ’TILE’, new-width, new-height);

new-width
is the width (in pixels) for the tiled images to fill.

Type: Numeric

new-height
is the height (in pixels) for the tiled images to fill.

Type: Numeric

Details
TILE acts on the currently selected image. The area defined by new-width�new-height
is filled beginning in the upper left corner. The current image is placed there. Copies of
the current image are added to the right until the row is filled. This process then starts
over on the next row until the area defined by new-width�new-height is filled. For
example, if the current image is 40�40 and new-width�new-height is 200�140, then
the current image is replicated 5 times in width and 3.5 times in height. This technique
is useful for creating tiled backdrops.

Note: Before tiling an image, you must turn off the SCALE option for the image. 4

Example

Create a 480�480 tiled image from a 48�48 image:

rc=imgop(task-id,’READ’,’sashelp.c0c0c.access’,’format=cat’);
rc=imgop(task-id,’TILE’,480,480);

UNPASTE

Removes an image from the display

Syntax
rc=IMGOP(task-id, ’UNPASTE’<, image-id>);



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 WRITE 769

image-id
contains the identifier of the image to remove from the display.

Type: Numeric

Details UNPASTE acts either on the currently selected image or on the image
specified by image-id. The image is removed from the display, but it is not removed
from memory. UNPASTE enables you to remove an image from the display and to later
paste it without re-reading it.

Example

Display two images at once and then remove one of them:

rc=imgop(task-id,’SELECT’,1);
rc=imgop(task-id,’READ_PASTE’,1,1,name1);
rc=imgop(task-id,’SELECT’,2);
rc=imgop(task-id,’READ_PASTE’,200,200,name2);
...more SCL statements...
if (omit=1) then

rc=imgop(task-id,’UNPASTE’,1);

WRAISE
Raises the Image window

Syntax
rc=IMGCTRL(task-id, ’WRAISE’);

Details WRAISE attempts to force the Image window to the top of the display as long
as the IMGOP or IMGCTRL commands are executing. This command might not be
executed by some window managers. Note that when you start the image task with the
IMGINIT function, you can specify the TOPWINDOW option to force the window to
always be on top.

Example

Raise the Image window to the top of the display:

pop:
rc = imgctrl(task-id,’WRAISE’);

return;

WRITE
Writes an image to a file or to a SAS catalog



770 WRITE_CLIPBOARD 4 Appendix 1

Syntax
rc=IMGOP(task-id, ’WRITE’, image-path<, attributes>);

image-path
contains either the pathname of the external file that contains the image or the path
string that is returned by the LNAMEMK function.

Type: Character

attributes
lists attributes that are specific to the file type. See “Attributes for Reading Image
Files” on page 774.

Type: Character

Details WRITE writes the currently selected image to an external file. The file can
be specified either directly (using its physical filename path) or by using the
information that was returned by a previous LNAMEMK function call. The LNAMEMK
function creates a character variable that contains information about the location of the
image (even if it is to reside in a SAS catalog), as well as information about other image
attributes.

The FORMAT= attribute (described in “Attributes for Writing Image Files” on page
776) must be specified if image-path does not include that information.

Examples
� Write an image to a SAS catalog:

path=lnamemk
(5,’mine.images.sign’,’FORMAT=CAT’);
rc=imgop(task-id,’WRITE’,path);

� Specify a file in the WRITE command. (Notice that file attributes are included.)

rc=imgop(task-id,’WRITE’,’/user/images/sign.tif’,
’FORMAT=TIFF COMPRESS=G3FAX’);

WRITE_CLIPBOARD

Writes an image to the host clipboard

Syntax
rc=IMGOP(task-id, ’WRITE_CLIPBOARD’);

Details WRITE_CLIPBOARD acts on the currently selected image. The image must
be pasted before it can be written to the system clipboard.



Commands Used with the IMGCTRL, IMGOP and PICFILL Functions 4 WSIZE 771

Example

Read in an image and then write it to the clipboard:

rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’WRITE_CLIPBOARD’);

WSIZE

Sets the size of the Image window

Syntax
rc=IMGCTRL(task-id, ’WSIZE’, width, height<, x, y>);

width
is the width of the window (in pixels).

Type: Numeric

height
is the height of the window (in pixels).

Type: Numeric

x
is the X coordinate of the top left corner.

Type: Numeric

y
is the Y coordinate of the top left corner.

Type: Numeric

Details WSIZE sets the size of the Image window. Optionally, it positions the window
at x and y. Some window managers might not support positioning.

Example

Make the Image window match the size of the image that is being displayed:

main:
height=0;
width=0;
rc=imgop(task-id,’READ’,path);
rc=imgop(task-id,’QUERYN’,’WIDTH’,iwidth);
rc=imgop(task-id,’QUERYN’,’HEIGHT’,iheight);
rc=imgctrl(task-id,’WSIZE’,iwidth,iheight);
rc=imgop(task-id,’PASTE’,1,1);

return;



772 WTITLE 4 Appendix 1

WTITLE

Specifies a title for the Image window

Syntax
rc=IMGCTRL(task-id, ’WTITLE’, title);

title
is the text to display as the window title.

Type: Character

Details The specified title appears in parentheses after SAS: IMAGE in the title bar
of the window.

Example

Specify gname as the title of the Image window:

path=lnamemk(5,catname,’format=cat’);
rc=lnameget(path,type,name,form);
gname=scan(name,3,’.’);
rc=imgctrl(tid,’wtitle’,gname);



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Component Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Component Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–495–0
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


