
9

C H A P T E R

2
The Structure of SCL Programs

Introduction 9
Using Labeled Sections 10

Reserved Labels 10

Window Variable Sections 11

Correcting Errors in Window Variables 12

Defining Classes 12
Defining and Using Methods 13

Defining Method Blocks 13

Calling a Method That Is Stored in an SCL Entry 13

USECLASS Blocks 14

Defining Interfaces 14

Using Macros 15
Example 15

Introduction

An SCL application consists of one or more SCL entries. These SCL entries can
contain the following types of modules:

� labeled sections

� CLASS blocks

� METHOD blocks

� USECLASS blocks

� INTERFACE blocks

� macros.

For example, an SCL program may consist of only one labeled section, or it may
contain two labeled sections, a METHOD block, and a couple of macros. A complex
program may contain several CLASS, METHOD, USECLASS, and INTERFACE blocks.

Some types of modules can be stored together in one SCL entry, but others cannot.
One SCL entry may contain any one of the following:

� one or more labeled sections and/or one or more macros

� one CLASS block, which may also contain one or more METHOD blocks

� one INTERFACE block

� one or more USECLASS blocks, each of which may contain one or more METHOD
blocks

� one or more METHOD blocks (that are not contained within a CLASS or
USECLASS block).

10 Using Labeled Sections 4 Chapter 2

In strictly object-oriented applications, METHOD blocks are contained within
CLASS or USECLASS blocks. If your application is not a strictly object-oriented
application, you can save METHOD blocks by themselves in SCL entries.

Object-oriented applications use CLASS, METHOD, USECLASS, and INTERFACE
blocks extensively. For information about designing and implementing object-oriented
applications see SAS Guide to Applications Development in addition to the information
contained in this documentation.

Using Labeled Sections
SCL programs execute in phases, such as the initialization phase and the

termination phase. During each phase, control of the entry can pass to a different
segment of an SCL program. The segments of the program are identified by labels; that
is, the SCL program is divided into labeled sections.

Labeled sections are program segments that are designed to be called only within the
program in which they are defined. Labeled sections begin with a label and end with a
RETURN statement. A label may be one of the reserved labels such as INIT or MAIN;
it may correspond to a field name, window-variable name, or object name in your
application; or it may simply identify a module that is called repetitively, such as a
module that sorts data.

Labeled sections are a good solution when you are working within one SCL program
because they can help divide the program into smaller, simpler pieces.

For example, the following SCL program contains an INIT section that is executed
before the application window is displayed; two sections that correspond to window
variables, NAME and ADDRESS; and a MAIN section that is executed each time the
user updates a field in the window.

init:
...some SCL statements...
return;

name:
...some SCL statements...
return;

address:
...some SCL statements...
return;

main:
...some SCL statements...
return;

Reserved Labels
There are five reserved labels:

FSEINIT
An FSEINIT section, which is valid in FSEDIT and FSBROWSE applications only,
contains any statements that are needed to initialize the application. These
statements are executed one time only when the user invokes the FSEDIT or
FSBROWSE procedure and before the first row is displayed.

4 Window Variable Sections 11

INIT
The INIT section is executed before the application window is displayed to the
user. Typically, you use the INIT section to initialize variables, to import values
through macro variables, to open tables, and to define initial messages to display
when the window is opened. In FSEDIT and FSBROWSE applications, as well as
Data Table and Data Form controls, the INIT section is executed before each SAS
table row is displayed.

MAIN
The MAIN section is executed each time the user modifies a field in the window
and presses ENTER.

TERM
The TERM section is executed when the user issues the END command. You
might use the TERM section to close tables, to export values of macro variables,
and to construct and submit statements for execution. In FSEDIT applications,
Data Table controls, and Data Form controls, the TERM section is executed after
each SAS table row is displayed, provided that the MAIN section has been
executed for the row.

FSETERM
The FSETERM section is valid in FSEDIT applications only. This section executes
once after the user issues the END command and terminates the FSEDIT
procedure.

In FSVIEW applications, you write individual formulas consisting of one or more
lines of SCL code for each computed variable, rather than complete SCL programs.
These formulas are stored in FORMULA entries. The FSVIEW procedure automatically
adds a label before the formula and a RETURN statement after the formula. The label
is the same as the name of the variable whose value you are calculating.

An SCL program for FSEDIT or FSBROWSE applications must contain at least one
of the following reserved labels: INIT, MAIN, or TERM. If a program does not include
at least one of these three reserved labels, the procedure never passes control to your
SCL program. If a program does not contain all three of these reserved labels, you get
one or more warning messages when you compile the program.

The FSEINIT and FSETERM labels are optional. The compiler does not issue any
warnings if these labels are not present.

Neither SCL programs for FRAME entries nor programs in SCL entries that contain
method block definitions require any reserved sections.

For more information about the FSVIEW, FSEDIT, and FSBROWSE procedures,
seeSAS/FSP Software Procedures Guide. For more information about FRAME
applications, see SAS Guide to Applications Development.

Window Variable Sections
SCL provides a special type of labeled section, called a window variable section, that

automatically executes when a user takes an action in a particular control or field. For
example, window variable sections might be used to verify values that users enter in
controls or fields. An SCL program can include labeled sections for any number of
window variables.

The sequence for executing window variable sections is determined by the physical
position of the window element. Window variable sections execute sequentially for each
window element, from left to right and from top to bottom. A window variable section
must be labeled with the name of the associated window variable. For more information
about window variables, see SAS Guide to Applications Development.

12 Defining Classes 4 Chapter 2

Correcting Errors in Window Variables
To correct an error in a window variable, you can allow users to correct the error in

the window, or you can include a CONTROL ERROR statement along with statements
in the window variable section that make a correction, as shown in the following
example:

INIT:
control error;

return;

Name:
if error(Name) then do;

erroroff Name;
Name=default-value-assigned-elsewhere;
msg=

’Value was invalid and has been reset.’;
end;

return;

Using a window variable section in this manner reduces overhead because the
program’s MAIN section executes only after the window variable sections for all
modified window variables have executed correctly.

If a program also uses CONTROL ERROR, CONTROL ALWAYS, or CONTROL
ALLCMDS, then the MAIN section executes after the window variable sections even if
an error has been introduced. For more information about the CONTROL statement,
see “CONTROL” on page 302.

Defining Classes
Classes define data and the operations that you can perform on that data. You

define classes with the CLASS statement. For example, the following code defines a
class, Simple, that defines an attribute named total and implements a method named
addNums:

Example Code 2.1 Example Class Definition

class Simple;
public num total;

addNums: public method n1:num n2:num return=num;
total=n1+n2;
return(total);

endmethod;

endclass;

The CLASS statement does not have to implement the methods. The methods may
be only declared. For example:

class Simple;
public num total;

addNums: public method n1:num n2:num return=num
/ (scl=work.a.simMeth.scl’);

endclass;

4 Calling a Method That Is Stored in an SCL Entry 13

The code to implement the method is contained in work.a.simMeth.scl (see Example
Code 2.2 on page 14).

For more information about defining and using classes, see Chapter 8, “SAS
Object-Oriented Programming Concepts,” on page 93; Chapter 9, “Example: Creating
An Object-Oriented Application,” on page 137; and “CLASS” on page 277.

Defining and Using Methods
Methods define operations that you can perform on data. Methods are defined with

the METHOD statement. Methods can be implemented in CLASS blocks or in
USECLASS blocks. In addition, if you are not designing a strictly object-oriented
application, they can be stored in separate SCL entries.

Storing method implementations in SCL entries enables you to write methods that
perform operations that are common to or shared by other applications. You can call the
methods from any SAS/AF application.

For more information about defining and using methods in CLASS and USECLASS
blocks, see Chapter 8, “SAS Object-Oriented Programming Concepts,” on page 93 and
Chapter 9, “Example: Creating An Object-Oriented Application,” on page 137.

Defining Method Blocks
To define a method, use the METHOD statement. For example, the METHOD

statement in Example Code 2.1 on page 12 defines the public method addNums, which
takes two numeric parameters, adds them, and returns the total.

Note: Do not include window-specific statements or functions (for example, the
PROTECT and CURSOR statements and the FIELD and MODIFIED functions) in
method blocks that are stored in independent SCL entries. SCL entries that contain
window-specific statements or functions will not compile independently. They must be
compiled in conjunction with the associated FRAME entry. 4

When you want to pass parameters between an SCL program and a method block,
you use the same principles as when you are passing parameters between a CALL
DISPLAY statement and an ENTRY statement. Unless the REST=, ARGLIST=, or
OPTIONAL= option is used in the METHOD statement, the parameter list for the
METHOD statement and the argument list for the associated ENTRY statement must
agree in the following respects:

� The number of parameters passed by the METHOD statement must equal the
number of arguments received by the ENTRY statement.

� The position of each parameter in the METHOD statement must be the same as
the position of the corresponding argument in the ENTRY statement.

� Each parameter in the METHOD statement and its corresponding argument in
the ENTRY statement must have the same data type.

The parameters and arguments do not have to agree in name. For more information,
see “METHOD” on page 540 and “ENTRY” on page 369.

Calling a Method That Is Stored in an SCL Entry
If the method module is stored in a PROGRAM entry or SCREEN entry, then you

must use a LINK or GOTO statement to call it. Although parameters cannot be passed
with LINK or GOTO statements, you can reference global values in those statements.

14 USECLASS Blocks 4 Chapter 2

If the module is an SCL entry, then call the method module with a CALL METHOD
routine. The CALL METHOD routine enables you to pass parameters to the method.
For example, a program that needs to validate an amount can call the AMOUNT
method, which is stored in METHDLIB.METHODS.VALIDATE.SCL:

call method(’methdlib.methods.validate.scl’,
’amount’,amount,controlid);

After the method module performs its operations, it can return modified values to the
calling routine.

If the method module is stored in the SCL entry that is associated with the FRAME
entry, then you must compile the SCL entry as a separate entity from the FRAME
entry in addition to compiling the FRAME entry.

For more information about the CALL METHOD routine, see “METHOD” on page
539.

USECLASS Blocks

USECLASS blocks contain method blocks. A USECLASS block binds the methods
that are implemented within it to a class definition. This binding enables you to use the
attributes and methods of the class within the methods that are implemented in your
USECLASS block. However, your USECLASS block does not have to implement all of
the methods defined in the class.

For example, the USECLASS block for the class defined in “Defining Classes” on page
12 would be stored in work.a.simMeth.scl and would contain the following code:

Example Code 2.2 USECLASS Block for the addNums Method

useclass simple.class;
addNums: public method n1:num n2:num return=num;

total=n1+n2;
return(total);

endmethod;
enduseclass;

Using USECLASS blocks to separate the class definition from the method
implementations enables multiple programmers to work on method implementations
simultaneously.

For more information, see Chapter 8, “SAS Object-Oriented Programming Concepts,”
on page 93; “USECLASS — Level One” on page 150; and “USECLASS” on page 698.

Defining Interfaces

Interfaces are groups of method declarations that enable classes to possess a
common set of methods even if the classes are not related hierarchically. Interfaces are
especially useful when you have several unrelated classes that perform a similar set of
actions. These actions can be declared as methods in an interface, and each associated
class can provide its own implementation for each of the methods. In this way,
interfaces provide a form of multiple inheritance.

For more information about defining and using interfaces, see Chapter 8, “SAS
Object-Oriented Programming Concepts,” on page 93; Chapter 9, “Example: Creating
An Object-Oriented Application,” on page 137; and “INTERFACE” on page 486.

4 Example 15

Using Macros

You can use the SAS macro facility to define macros and macro variables for your
SCL program. That is, you can use SAS macros and SAS macro variables that have
been defined elsewhere in the SAS session or in autocall libraries. You can then pass
parameters between macros and the rest of your program. In addition, macros can be
used by more than one program. However, macros can be more complicated to maintain
than the original program segment because of the symbols and quoting that are
required.

If a macro is used by more than one program, you must keep track of all the
programs that use the macro so that you can recompile all of them each time the macro
is updated. Because SCL is compiled (rather than interpreted like the SAS language),
each SCL program that calls a macro must be recompiled whenever that macro is
updated in order to update the program with the new macro code.

Macros and macro variables in SCL programs are resolved when you compile the
SCL program, not when a user executes the application. However, you can use the
SYMGET and SYMGETN functions to retrieve the value of a macro variable or to store
a value in a macro variable at execution time, and you can use the SYMPUT and
SYMPUTN functions to create a macro variable at execution time. For more
information, see “Using Macro Variables” on page 87.

Note: Macros and macro variables within submit blocks are not resolved when you
compile the SCL program. Instead, they are passed with the rest of the submit block to
SAS software when the block is submitted. For more information about submit blocks,
see “Submitting SAS Statements and SQL Statements” on page 80. 4

Note: Using macros does not reduce the size of the compiled SCL code. Program
statements that are generated by a macro are added to the compiled code as if those
lines existed at that location in the program. 4

Example
The following SCL program uses macros to validate an amount and a rate:

%macro valamnt;
if amount < 0 or amount > 500 then do;

erroron amount;
msg=’Amount must be between $0 and $500.’;
stop;

end;
else erroroff amount;

%mend;
%macro rateamnt;

if rate<0 or rate>1 then do;
erroron rate;
msg=’Rate must be between 0 and 1.’;
stop;

end;
else erroroff rate;

%mend;

INIT:
control error;
amount=0;

16 Example 4 Chapter 2

rate=.5;
return;

MAIN:
payment=amount*rate;

return;

TERM:
return;

AMOUNT:
%valamnt

return;

RATE:
%rateamnt

return;

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Component Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Component Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–495–0
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

