
17

C H A P T E R

3
SCL Fundamentals

Introduction 18
SCL Data Types 18

Declaring Data Types 18

Numeric (NUM) Variables 18

Character (CHAR) Variables 19

Lists 19
Objects 19

Specific Objects (CLASS and INTERFACE) 20

Generic OBJECTs 20

Specifying the Object Type at Run Time 20

Names in SCL 21

SCL Keywords 22
Variables 22

Window Variables 22

Name 22

Data Type 23

Length 23
Nonwindow Variables 23

Name 23

Data Type 23

Length 23

Scope 24
System Variables 24

Constants 26

Numeric Constants 26

Character Constants 27

Numeric-to-Character Conversion 27

Operators 28
Arithmetic Operators 28

Comparison Operators 28

Colon Modifier 29

IN Operator 29

Logical (Boolean) Operators 30
AND Operator 30

OR Operator 30

NOT Operator 31

Expressions 31

Boolean Numeric Expressions 31
Using Functions in Expressions 32

SCL Statements 32

Executable and Declarative Statements 32

18 Introduction 4 Chapter 3

The Assignment Statement 33
Program Comments 33

SCL Functions 33

SCL CALL Routines 34

Passing Arguments to SCL Functions and CALL Routines 34

Input, Output, and Update Parameters 34
Combining Language Elements into Program Statements 36

Introduction
Like any language, SAS Component Language has its own vocabulary and syntax.

An SCL program consists of one or more SCL statements, which can include keywords,
expressions, constants, and operators.

SCL Data Types
SCL has the following data types:
� NUM
� CHAR
� LIST
� generic OBJECT
� specific object (CLASS or INTERFACE).

Declaring Data Types
You can use the DECLARE statement for declaring any type of SCL variable. You

can use the LENGTH statement for declaring numeric and character variables.
You can also declare data types when you use the ENTRY and METHOD statements.

In these statements, you must specify a colon before a named data type; with an
unnamed data type, (for example, $), the colon is optional. For example:

ENTRY: name :$20
location $20
zipcode :num
mybutton :mylib.mycat.button.class
return=char;

For details, see “DECLARE” on page 330, “LENGTH” on page 510, “ENTRY” on page
369, and “METHOD” on page 540.

Numeric (NUM) Variables
Numeric variables contain numbers and are stored as doubles. They are declared

with the keyword NUM.

/* declare a numeric variable AGE */
declare num age;

/* declare the numeric variables AGE and YEARS*/

SCL Fundamentals 4 Objects 19

declare num age, years;

/* declare numeric variables X and Y. */
/* Initialize X to 1 and Y to 20 plus the */
/* value of X. */

declare num x, y=20+x;

Character (CHAR) Variables
Character variables can contain up to 32,767 characters and are declared with the

keyword CHAR. A variable that is declared as CHAR without a specified length is
assigned a default length of 200.

/* declare a character variable NAME and */
/* assign the value ABC to it */

declare char name=’abc’;

/* declare a character variable NAME */
/* with a length of 20 */

declare char(20) name;

Lists
SCL lists are ordered collections of data. Lists are dynamic; they grow and shrink to

accommodate the number or size of the items that you store in them. Lists can contain
items of different data types.

To declare an SCL list, use the keyword LIST. The following example declares the list
MYLIST:

declare list mylist;

The function that creates the list (for example, MAKELIST) assigns the identifier for
the list to the variable, as shown below.

declare list mylist;
...more SCL statements...

mylist=makelist();

Note: To maintain compatibility with previous releases, the SCL compiler does not
generate error messages if a list is not declared or if it is declared as a numeric
variable. However, it is recommended that you declare lists so that the compiler can
identify errors. A list must be declared as type List when it is passed to a method that
requires an argument of type List. See “Overloading and List, Object, and Numeric
Types” on page 111. 4

For information about using lists, see Chapter 5, “SCL Lists,” on page 47.

Objects
Objects can be declared in either of two ways:
� as a specific object of type Class or Interface. When an object is declared with the

name of the class, the compiler can validate attributes and methods for the object
and can return error messages if incorrect attributes or methods are used.

20 Objects 4 Chapter 3

� as a generic object of type Object. The specific object class that is associated with
the generic object cannot be resolved until run time. The compiler reserves space
in the SAS Data Vector (SDV) for the object, but it cannot validate attributes or
methods for the object, because it does not know the names of classes. Instead,
this validation is deferred until program execution. Consequently, you should use
the OBJECT keyword to declare an object only when necessary, so that you can
obtain optimal run-time performance.

You can use dot notation for accessing attributes and methods for both specific
objects and generic objects.

Note: If you want to use dot notation to access the attributes or methods of a
Version 6 widget, then you need to declare its widget ID of OBJECT type, and you must
obtain its widget ID with the _getWidget method. For example, Text is a Version 6 text
entry widget. To access its methods or attributes with dot notation, you should use code
that looks like this:

dcl object obj;
/* dcl sashelp.fsp.efield.class obj; */
call notify (‘Text’, ‘_getWidget’, obj);
obj.backgroundColor = ‘blue’;

See “Accessing Object Attributes and Methods With Dot Notation” on page 119 for more
information. 4

Specific Objects (CLASS and INTERFACE)
The following example declares an object named DataHolder as an instance of the

Collection class, which is provided with SAS software:

declare sashelp.fsp.collection.class DataHolder;

When you declare a class, you can also use the IMPORT statement to reference the
class and then use an abbreviated form of the class name in the DECLARE statement.
For example:

import sashelp.fsp.collection.class;
declare collection DataHolder;

Generic OBJECTs
In the following example, MyObject is recognized by the compiler as an object, but

the compiler has no information about the type of class instance that the object will
actually be:

declare object MyObject;

Specifying the Object Type at Run Time
The following example declares an object named PgmObj2 and then specifies one

condition under which PgmObj2 will be a collection object and another condition under
which PgmObj2 will be an object that is created from a class named Foo. The _NEW_
operator creates the object.

declare object PgmObj2,
num x;

if x=1 then
PgmObj2=_new_ sashelp.fsp.collection.class;

else

SCL Fundamentals 4 Names in SCL 21

PgmObj2=_new_ sashelp.fsp.foo.class;

As described above, you can use the IMPORT statement to reference a class
definition and then use an abbreviated class name when you create the class.

import sashelp.fsp.collection.class;
import sashelp.fsp.foo.class;
declare object PgmObj2,

num x;
if x=1 then

PgmObj2=_new_ collection();
end;

else
PgmObj2=_new_ foo();

Any errors that result from using incorrect methods or attributes for PgmObj2 and Foo
will cause the program to halt.

Names in SCL
In SCL, the rules for names are

1 Librefs and filerefs can have a maximum length of 8 characters. Other names —
including names of SCL variables, arrays, SCL lists, SAS tables, views, indexes,
catalogs, catalog entries, macros, and macro variables — can be 32 characters long.

2 The first character must be a letter (A, B, C, . . . , Z) or an underscore (_).
Subsequent characters can be letters, numeric digits (0, 1, . . . , 9), or underscores.

3 Names are stored in the case in which they are entered, which can be lower case,
mixed case, or upper case.

4 Names cannot contain blanks.
5 SCL honors the names that are reserved by SAS software for automatic variables,

lists of variables, SAS tables, and librefs. Thus, you cannot use these names in
your SCL programs.

a When creating variables, do not use the names of special SAS automatic
variables (for example, _N_ and _ERROR_) nor the names of lists of variables
(for example, _CHARACTER_, _NUMERIC_, and _ALL_).

b Do not use any of the following names as a libref:
� SASCAT
� SASHELP
� SASMSG
� SASUSER
� USER
� WORK

Use LIBRARY only as the libref to point to a SAS data library containing a
FORMATS catalog that was created with PROC FORMAT.

c Do not assign any of the following names to a SAS table:
� _NULL_
� _DATA_
� _LAST_

Just as SCL recognizes keywords from position and context, it also recognizes names
in the same way. If SCL sees a word that meets the requirements for a user-supplied

22 SCL Keywords 4 Chapter 3

SAS name and that is not used in a syntax that defines it as anything else, it interprets
the word as a variable name.

SCL Keywords

An SCL keyword is a word or symbol in an SCL statement that defines the
statement type to SAS software. Keywords are a fixed part of the SCL, and their form
and meaning are also fixed. Generally, keywords define the function or CALL routine
that you are using in an SCL program statement. For example, OPEN is the keyword in

table-id=OPEN(’MYLIB.HOUSES’);

Variables

SCL variables have most of the same attributes as variables in the base SAS
language:

� name

� data type

� length.

However, SCL variables do not have labels.
SCL provides three categories of variables:

window variables
are linked to a control (widget) or field in a window. They pass values between an
SCL program and the associated window.

nonwindow variables
are defined in an SCL program. They hold temporary values that users do not
need to see.

system variables
are provided by SCL. They hold information about the status of an application.

As in the base SAS language, you can group variables into arrays to make it easier to
apply the same process to all the variables in a group. Arrays in SCL are described in
Chapter 4, “SCL Arrays,” on page 37.

Window Variables
Most SCL programs are associated with a window for interacting with users. An

SCL program for a window has variables that are associated with the controls and
fields in the window. These variables are called window variables, and they are the
means by which users and SCL programs communicate with each other. You can use
these variables in the SCL program without explicitly declaring them.

Name
The name of a window variable is the same as the name that is assigned to the

control or field. The SCL program for the window cannot change that name.

SCL Fundamentals 4 Nonwindow Variables 23

Data Type
A window variable also has a data type, which can be character, numeric, or an

object data type. The type is determined by the value of the Type attribute, which is
displayed in the Properties window (for a control) or in the Attributes window (for a
field). For more information about data types that are used in SAS/AF applications, see
the SAS/AF online Help and SAS Guide to Applications Development.

Length
Lengths of window variables are determined as follows:

� Numeric and object variables are stored internally as doubles.

� Character variables have a maximum length that equals the width of the
corresponding field in the application window. For example, if a field occupies 20
columns in the window, then the maximum length of the associated window
variable is 20.

SCL programs can use methods to alter the lengths of window variables for some
FRAME entry controls. Otherwise, you cannot alter the length of a window variable in
an SCL program. Specifying a length for a window variable in a DECLARE or
LENGTH statement produces an error message when you compile the program.

Nonwindow Variables
SCL programs can define and use variables that do not have associated controls or

fields in the window. These variables are called nonwindow variables, and they are
used to hold values that users do not need to see. SCL programs that do not have an
associated window use only nonwindow variables. Nonwindow variables are also
referred to as program variables. Because nonwindow variables are used only within an
SCL program, they have no informat or format.

Name
The name of a nonwindow variable is determined by the first assignment statement

that uses the variable, unless the variable is explicitly defined with a DECLARE or
LENGTH statement. Names of nonwindow variables can be up to 32 characters long.

Data Type
Nonwindow variables are numeric unless they are explicitly declared as a different

data type.

Length
Lengths of nonwindow variables are determined as follows:

� Numeric and object variables are stored as doubles.

� Character variables have a default length of 200. However, you can use the
DECLARE statement to change the length from a minimum length of 1 to a
maximum of 32K.

You can use the DECLARE or LENGTH statement to specify a different maximum
length for nonwindow character variables. This can significantly reduce memory
requirements if your program uses many nonwindow variables.

24 System Variables 4 Chapter 3

Scope

The scope of a variable determines when a value can be assigned to it and when its
value is available for use. In general, variables in an SCL program have program scope.
That is, their scope is local to the program. They are available for use within the SCL
program but not to other parts of SAS software. When the program finishes, the
variables no longer exist, so their values are no longer available.

SCL provides a feature for defining variables as local to a DO or SELECT block. To
define a variable with this type of scope, use a DECLARE statement inside a DO or
SELECT block. Any variable that you declare in this way exists only for the duration of
that DO or SELECT block, and its value is available only during that time. For
example, the following program uses two variables named SECOND. One variable is
numeric by virtue of the first assignment statement. The other is a character variable
that is local to the DO block. After the DO block ends, only the numeric SECOND
variable is available.

INIT:
first=10;
second=5;
put ’Before the DO block: ’ first= second=;
do;

/* Declare variable THIRD and new */
/* variable SECOND, which is local to */
/* the DO block and is CHAR data type */

declare char(3) second third;
second=’Jan’;
third =’Mar’;

/* FIRST is available because */
/* it comes from parent scope. */

put ’Inside the DO block: ’
first= second= third=;

end;
/* THIRD is not available because */
/* it ended when the DO block ended. */

put ’After the DO block: ’
first= second= third=;

return;

The example produces the following output:

Before the DO block: first=10 second=5
Inside the DO block: first=10 second=Jan third=Mar
After the DO block: first=10 second=5 third=.

Although program variables are available only while an SCL program is running,
SCL provides features for passing variables to other programs and also for receiving
returned values. For more information, see “ENTRY” on page 369 and “METHOD” on
page 539.

You can also use global macro variables to make variables available outside the SCL
program. See “Using Macro Variables” on page 87 for details.

System Variables
System variables are created automatically when an SCL program compiles. These

variables communicate information between an SCL program and an application, and
you can use them in programs. System variables can be Character, Numeric, or Object

SCL Fundamentals 4 System Variables 25

data type variables. The Object data type facilitates compile-time checking for SCL
programs that use dot notation to invoke methods and to access attributes for objects.
Although the system variables _CFRAME_, _FRAME_, and _SELF_ are designated as
object variables in Version 8 of SAS software, applications that were built with earlier
releases and that use these variables will continue to work with Version 8.

Do not declare the _SELF_, _FRAME_, _CFRAME_, _METHOD_, or _EVENT_
system variables inside a CLASS or USECLASS block. SCL automatically sets these
values when it is running methods that are defined in CLASS or USECLASS blocks.
Redefining any of these system variables can introduce unexpected behavior.

With the exceptions of _EVENT_, _METHOD_, and _VALUE_, you can simply
reference a system variable in an SCL program without explicitly declaring it.

BLANK
reports whether a window variable contains a value or sets a variable value to
blank.

Type: Character

CFRAME
contains the identifier of the FRAME entry that is currently executing, when a
control is executing a method. Otherwise, it stores the identifier of the FRAME
entry that is executing.

Type: Object

CURCOL
contains the value of the first column on the left in an extended table object in a
FRAME entry. It is used to control horizontal scrolling.

Type: Numeric

CURROW
contains the number of the current row in an extended table.

Type: Numeric

ERROR
contains a code for the application’s error status.

Type: Numeric

EVENT
returns the type of event that occurred on a control. It is useful only during a
_select method. At other times, it may not exist as an attribute or it is blank.
EVENT can have one of the following values:

’’ modification or selection

C command

D double click

P pop-up menu request

S selection or single click.
EVENT must be explicitly declared in an SCL program. For example:

declare char(1) _event_;

Type: Character.

FRAME
contains the identifier of the FRAME entry that contains a control, when the
object is a FRAME entry control. Otherwise, it contains the identifier of the
FRAME entry that is currently executing. You can use this variable to send

26 Constants 4 Chapter 3

methods to a FRAME entry from a control’s method. For example, a control
method can send a _refresh method to the FRAME entry, causing the FRAME
entry to refresh its display.

Type: Object

METHOD
contains the name of the method that is currently executing.

METHOD must be explicitly declared in an SCL program. In the declaration
statement, specify the maximum length for the name of a method. For example:

declare char(40) _method_;

Type: Character.

MSG
assigns text to display on the message line, or contains the text to be displayed on
the window’s message line the next time the window is refreshed.

Type: Character

SELF
contains the identifier of the object that is currently executing a method.

Type: Object

STATUS
contains a code for the status of program execution. You can check for the value of
STATUS, and you can also set its value.

Type: Character

VALUE
contains the value of a control.

When _VALUE_ contains the value of a character control, it must be explicitly
declared in an SCL program. In the declaration statement, specify the maximum
length for a character window control. For example:

declare char(80) _value_;

Type: Character or Numeric.

Constants

In SCL, a constant (or literal) is a fixed value that can be either a number or a
character string. Constants can be used in many SCL statements, including assignment
and IF-THEN statements. They can also be used as values for certain options.

Numeric Constants
A numeric constant is a number that appears in a SAS statement, and it can be

presented in the following forms:

� standard syntax, in which numeric constants are expressed as integers, can be
specified with or without a plus or minus sign, and can include decimal places.

� scientific (E) syntax, in which the number that precedes the E is multiplied by the
power of ten indicated by the number that follows the E.

� hexadecimal syntax, in which a numeric hex constant starts with a numeric digit
(usually 0), can be followed by more hexadecimal digits, and ends with the letter
X. The constant can contain up to 16 hexadecimal digits (0 to 9, A to F).

SCL Fundamentals 4 Numeric-to-Character Conversion 27

� special SAS date and time values, in which the date or time is enclosed in single
or double quotation marks, followed by a D (date), T (time), or DT (datetime) to
indicate the type of value (for example, ’15jan99’d).

Character Constants
A character constant can consist of 1 to 32,767 characters and must be enclosed in

quotation marks. Character constants can be represented in the following forms:

� hexadecimal form, in which a string of an even number of hex characters is
enclosed in single or double quotation marks, followed immediately by an X, as in
this example:

’534153’x

� bit form, in which a string of 0s, 1s, and periods is surrounded by quotation marks
and is immediately followed by a B. Zero tests whether a bit is off, 1 tests whether
a bit is on, and a period ignores a bit. Commas and blanks can be inserted in the
bit mask for readability without affecting its meaning.

In the following example, if the third bit of A (counting from the left) is on, and
the fifth through eighth bits are off, then the comparison is true and the expression
results in 1. Otherwise, the comparison is false and the expression results in 0.

if a=’..1.0000’b then do;

Bit constants cannot be used as literals in assignment statements. For example,
the following statement is not valid:

x=’0101’b; /* incorrect */

If a character constant includes a single quotation mark, then either write the
quotation mark as two consecutive single quotation marks or surround the entire value
with double quotation marks, as shown in the following examples:

possession=’Your’’s’;
company="Your’s and Mine"
company="Your""s and Mine"

To use a null character value as an argument to a function in SCL, either use
’’(without a space) or use a blank value with ’’(with a space).

Numeric-to-Character Conversion
If a value is inconsistent with the variable’s data type, SCL attempts to convert the

value to the expected type. SCL automatically converts character variables to numeric
variables and numeric variables to character variables, according to the following rules:

� A character variable is converted to numeric when the character variable is used
� with an operator that requires numeric operands (for example, the plus sign)
� with a comparison operator (for example, the equal sign) to compare a

character variable and a numeric variable
� on the right side of an assignment statement, when a numeric variable is on

the left side.
� A numeric variable is converted to character when the numeric variable is used

� with an operator that requires a character value (for example, the
concatenation operator)

28 Operators 4 Chapter 3

� on the right side of an assignment statement, when a character variable is on
the left side.

When a variable is converted automatically, a message in the LOG window warns
you that the conversion took place. If a conversion from character to numeric produces
invalid numeric values, then a missing value is assigned to the result, an error message
appears in the LOG window, and the value of the automatic variable _ERROR_ is set to
1.

Operators
Operators are symbols that request an arithmetic calculation, a comparison, or a

logical operation. SCL includes the same operators that are provided in the base SAS
language. The only restrictions on operators in SCL are for the minimum and maximum
value operators. For these SAS operators, you must use the operator symbols (> < and
< >, respectively) rather than the mnemonic equivalents (MIN and MAX, respectively).

Arithmetic Operators
The arithmetic operators, which designate that an arithmetic calculation is

performed, are shown here:

Symbol Definition

+ addition

/ division

** exponentiation

* multiplication

- subtraction

Comparison Operators
Comparison operators propose a relationship between two quantities and ask

whether that relationship is true. Comparison operators can be expressed as symbols or
written with letters. An operator that is written with letters, such as EQ for =, is called
a mnemonic operator. The symbols for comparison operators and their mnemonic
equivalents are shown in the following table:

Symbol Mnemonic

Equivalent

Definition

= EQ equal to

^= * NE not equal to

= * NE not equal to

> GT greater than

< LT less than

>= ** GE greater than or equal to

SCL Fundamentals 4 Comparison Operators 29

Symbol Mnemonic

Equivalent

Definition

<= ** LE less than or equal to

<> maximum

>< minimum

|| concatenation

IN equal to one item in a list

* The symbol that you use for NE depends on your keyboard.
** The symbols =< and => are also accepted for compatibility with previous releases of SAS.

Colon Modifier
You can add a colon (:) modifier after any operator to compare only a specified prefix

of a character string. For example, the following code produces the message pen
found, because the string pen occurs at the beginning (as a prefix) of pencil:

var=’pen’;
if var =: ’pencil’

then put var ’found’;
else

put var ’not found’;

The following code produces the message phone not found because phone occurs
at the end (as a suffix) of telephone:

var=’phone’;
if var =: ’telephone’;

then put var ’found’;
else put var ’not found’;

The code produces these messages:

pen found
phone not found

IN Operator
The IN operator compares a value produced by an expression on the left side of the

operator to a list of values on the right. For example:

if age in (16, 21, 25);

If the IN operator returns 0 if the value on the left does not match a value in the list.
The result is 1 if the value on the left matches a value in the list. In the case of arrays,
the IN operator returns the index of the element if it finds a match.

The form of the comparison is

expression IN <value-1<, . . . ,value-n>)

The elements of the comparison are

expression
can be any valid SAS expression, but it is usually a variable name when used with
the IN operator.

value
must be a SAS constant. Value can be an array of constants.

30 Logical (Boolean) Operators 4 Chapter 3

Suppose you have the following program section:

init:
declare a[5] = (2 4 6 8 10);
b = 6;
if b in a then put ’B is in array A’;
c=b in a;
put c=;
return;

This code produces the following output:

B in in array A
c=3

Logical (Boolean) Operators
Logical operators (also called Boolean operators) are usually used in expressions to

link sequences of comparisons. The logical operators are shown in the following table:

Symbol Mnemonic

Equivalent

Definition

& AND AND comparison

| OR OR comparison

* NOT NOT comparison

^ * NOT NOT comparison

~ * NOT NOT comparison

* The symbol that you use for NOT depends on your keyboard.

AND Operator

If both conditions compared by an AND operator are true, then the result of the
AND operation is true. Two comparisons with a common variable linked by AND can be
condensed with an implied AND. For example, the following two subsetting IF
statements produce the same result:

if 16<=age and age<=65;
if 16<=age<=65;

OR Operator

If either condition compared by an OR operator is true, then the result of the OR
operation is true.

Be careful when using the OR operator with a series of comparisons (in an IF,
SELECT, or WHERE statement, for example). Remember that only one comparison in a
series of OR comparisons needs to be true in order to make a condition true. Also, any
nonzero, nonmissing constant is always evaluated as true. Therefore, the following
subsetting IF statement is always true:

if x=1 or 2;

SCL Fundamentals 4 Boolean Numeric Expressions 31

Although X=1 may be either true or false, the 2 is evaluated as nonzero and nonmissing,
so the entire expression is true. In the following statement, however, the condition is
not necessarily true, because either comparison can evaluate as true or false:

if x=1 or x=2;

You can also use the IN operator with a series of comparisons. The following
statements are equivalent:

if x in (2, 4, 6);
if x=2 or x=4 or x=6;

NOT Operator
Putting NOT in front of a quantity whose value is false makes that condition true.

That is, negating a false statement makes the statement true. Putting NOT in front of
a quantity whose value is missing is also true. Putting NOT in front of a quantity that
has a nonzero, nonmissing value produces a false condition. That is, the result of
negating a true statement is false.

Expressions

An SCL expression can be a sequence of operands and operators forming a set of
instructions that are performed to produce a result value, or it can be a single variable
name, constant, or function. Operands can be variable names or constants, and they
can be numeric, character, or both. Operators can be symbols that request a
comparison, a logical operation, or an arithmetic calculation. Operators can also be SAS
functions and grouping parentheses.

Expressions are used for calculating and assigning new values, for conditional
processing, and for transforming variables. These examples show SAS expressions:

� 3

� x

� age<100

� (abc)/2

� min(2,-3,1)

SCL expressions can resolve to numeric, character, or Boolean values. In addition, a
numeric expression that contains no logical operators can serve as a Boolean expression.

Boolean Numeric Expressions
In SCL programs, any numeric value other than 0 or missing is true, whereas a

value of 0 or missing is false. Therefore, a numeric variable or expression can stand
alone in a condition. If the value is a number other than 0 or missing, then the
condition is true; if the value is 0 or missing, then the condition is false.

A numeric expression can be simply a numeric constant, as follows:

if 5 then do;

The numeric value returned by a function is also a valid numeric expression:

if index(address,’Avenue’) then do;

32 Using Functions in Expressions 4 Chapter 3

Using Functions in Expressions
You can use functions almost any place in an SCL program statement where you can

use variable names or literal values. For example, the following example shows a way
to perform an operation (in this case, the FETCH function) and take an action, based on
the value of the return code from the function:

rc=fetch(dsid);
/* The return code -1 means the */
/* end of the file was reached. */

if (rc=-1) then
do;
...SCL statements to handle the
end-of-file condition...
end;

To eliminate the variable for the return code, you can use the function directly in the
IF statement’s expression, as shown in the following example:

if (fetch(dsid)=-1) then
do;

...SCL statements to handle the
end-of-file condition...

end;

In this case, the FETCH function is executed, and then the IF expression evaluates
the return code to determine whether to perform the conditional action.

As long as you do not need the value of the function’s return code for any other
processing, the latter form is more efficient because it eliminates the unnecessary
variable assignment.

SCL Statements

SCL provides all of the program control statements of the base SAS language.
However, many base SAS language statements that relate to the creation and
manipulation of SAS tables and external files are absent in SCL. In their place, SCL
provides an extensive set of language elements for manipulating SAS tables and
external files. These elements are described in Chapter 11, “Using SAS Tables,” on page
165 and in Chapter 12, “Using External Files,” on page 179.

SCL also provides CLASS and INTERFACE statements, which enable you to design
and build true object-oriented applications. CLASS statements enable you to define
classes from which you can create new objects. The INTERFACE statement enables you
to define how applications can communicate with these objects.

Executable and Declarative Statements
As in the base SAS language, SCL statements are either executable or declarative.

executable statements
are compiled into intermediate code and result in some action when the SCL
program is executed. (Examples of executable statements are the CURSOR,
IF-THEN/ELSE, and assignment statements.)

SCL Fundamentals 4 SCL Functions 33

declarative statements
provide information to the SCL compiler but do not result in executable code
unless initial values are assigned to the declared variables. (Examples of
declarative statements are the DECLARE, LENGTH, and ARRAY statements.)

You can place declarative statements anywhere in an SCL program, but they typically
appear at the beginning of the program before the first labeled section.

CAUTION:
Do not place executable statements outside the program modules. Executable statements
outside a program module (labeled section, class definition file, method
implementation file, and so on) are never executed. See Chapter 2, “The Structure of
SCL Programs,” on page 9 for more information about program modules. 4

The Assignment Statement
The assignment statement in SCL works like the assignment statement in base SAS

except:
� You can specify an array name (without the subscript) in the left side of the

assignment statement. See “Using Assignment Statements” on page 42 and
“Returning Arrays From Methods” on page 45 for more information.

� You can use the assignment statement to initialize the values of an SCL list. See
“Initializing the Values in a List” on page 51 for more information.

Program Comments
You can include comments anywhere in your SCL programs. Comments provide

information to the programmer, but they are ignored by the compiler, and they produce
no executable code.

SCL allows the following two forms of comments:
� /* comment */

/* sort the data set and */
/* then do something else */

sysrc=sort(dsid,’year month’);

� * comment ;

* sort the data set and ;
* then do something else ;

sysrc=sort(dsid,’year month’);

SCL Functions
Like the functions in the base SAS language, each SCL function returns a value that

is based on one or more arguments that are supplied with the function. Most of the
special features of SCL are implemented as functions. In addition, SCL provides all of
the functions of the base SAS language except for the DIF and LAG functions. (The
DIF and LAG functions require a queue of previously processed rows that only the
DATA step maintains.)

34 SCL CALL Routines 4 Chapter 3

SCL functions can be divided into the following groups according to the type of
information they return:

� functions that return a value representing the result of a manipulation of the
argument values. For example, the MLENGTH function returns the maximum
length of a variable.

� functions that perform an action and return a value indicating the success or
failure of that action. For these functions, the value that the function returns is
called a return code. For example, the LIBNAME function returns the value 0 if it
successfully assigns a libref to a SAS data library or directory. If the function
cannot assign the libref, it returns a nonzero value that reports the failure of the
operation. The SYSMSG function returns the text of the error message that is
associated with the return code.

Note: Some functions use a return code value of 0 to indicate that the
requested operation was successful, whereas other functions use a return code of 0
to indicate that the operation failed. 4

SCL CALL Routines
Like functions, CALL routines perform actions, based on the values of arguments

that are supplied with the routine name. However, unlike functions, CALL routines do
not return values. Many halt the program if the call is unsuccessful. Use CALL
routines to implement features that do not require return codes.

SCL has a variety of CALL routines of its own. It also supports all of the CALL
routines that are provided by the base SAS language.

Passing Arguments to SCL Functions and CALL Routines
Some additional restrictions apply to the values that you pass as arguments to SCL

functions and CALL routines. Some SCL functions and CALL routines accept only
names of variables as arguments, but for most arguments you can specify either a
literal value or the name of a variable that contains the desired value.

Note: For some functions, passing missing values for certain arguments causes the
SCL program to stop executing and to display an error message. Restrictions on
argument values are described in the entries in Chapter 16, “SAS Component Language
Dictionary,” on page 249. 4

Input, Output, and Update Parameters
Parameters to functions and methods can be one of three types:

input
The value of the parameter is passed into the function, but even if the function
modifies the value, it cannot pass the new value out to the calling function.

output
Output parameters are used to return a value from a function.

update
Update parameters can be used to pass a value into a function, and the function
can modify its value and return the new value out to the calling function.

SCL Fundamentals 4 Input, Output, and Update Parameters 35

Note: If you use dot notation to specify a parameter to a method, then the
parameter is treated as an update parameter if the method does not have a signature or
if the object is declared as a generic object. SCL executes the _setAttributeValue method
for all update parameters, which could cause unwanted effects. See “What Happens
When Attribute Values Are Set or Queried” on page 122 for complete information. 4

If you do not use dot notation to pass parameters to the functions and routines
documented in Chapter 16, “SAS Component Language Dictionary,” on page 249, then
all parameters are input parameters except for those listed in Table 3.1 on page 35.

Table 3.1 Functions With Update Parameters

Function Name Update Parameters

DELNITEM index

DIALOG all parameters other than entry

DISPLAY all parameters other than entry

FGET cval

FILEDIALOG filename

FILLIST description

LVARLEVEL n-level

CALL METHOD all parameters except entry and label

NAMEDIVIDE all parameters except name

NOTIFY all parameters except control-name and method-name

RGBDM RGB-color

SAVEENTRYDIALOG description

SEND all parameters except object-id and method-name

SETNITEMC index

SETNITEML index

SETNITEMN index

SETNITEMO index

SUPER all parameters except object-id and method-name

VARLEVEL n-level

VARSTAT varlist-2

Note: The argument parameter of the DATA step SUBSTR (left of =) function is also
an update parameter. 4

For all methods that you define with the METHOD statement, all parameters are
assumed to be update parameters unless either you specify input or output when you
define the method or you invoke the method with SEND, NOTIFY, SUPER, or CALL
METHOD. If you invoke the method with SEND, NOTIFY, SUPER, or CALL
METHOD, then the first two parameters (listed in Table 3.1 on page 35) are assumed to
be input parameters.

36 Combining Language Elements into Program Statements 4 Chapter 3

Combining Language Elements into Program Statements
The statements that you use in SCL programs must conform to the following rules:
� You must end each SCL program statement with a semicolon.
� You can place any number of SCL program statements on a single line as long as

you separate the individual statements with semicolons. If you plan to use the
SCL debugger, it is helpful to begin each statement on a separate line.

� You can continue an SCL program statement from one line to the next as long as
no keyword is split.

� You can begin SCL program statements in any column.
� You must separate words in SCL program statements with blanks or with special

characters such as the equal sign (=) or another operator.
� You must place arguments for SCL functions and CALL routines within

parentheses.
� If a function or CALL routine takes more than one argument, you must separate

the arguments with commas.
� Character arguments that are literal values must be enclosed in either single or

double quotation marks (for example, ’Y’ or ‘‘N’’).
� Numeric arguments cannot be enclosed in quotation marks.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Component Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Component Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–495–0
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

