
37

C H A P T E R

4
SCL Arrays

Introduction 37
Declaring Arrays 37

Referencing Array Elements 38

Grouping Variables That Have Sequential Names 39

Initializing The Elements of A Static Array 39

Assigning the Same Value to Multiple Elements 39
Initializing Static Multidimensional Arrays 40

Creating and Initializing Dynamic Arrays 40

Resizing Dynamic Arrays 41

Using Array Functions with Dynamic Arrays 42

Copying Elements From One Array To Another 42

Using Assignment Statements 42
Using The COPYARRAY Function 43

Repeating an Action for Variables in an Array 44

Passing Dynamic Arrays to Methods 45

Returning Arrays From Methods 45

Deleting Dynamic Arrays 46
Using Temporary Arrays to Conserve Memory 46

Introduction
SCL supports two types of arrays: static and dynamic. The size of a static array is

set when you declare the array and cannot be changed at runtime. With dynamic
arrays, you do not specify a size when you declare the array, but you can use any one of
several different SCL functions to define the size of the array. With a dynamic array, you
can create an array of a specfied size and resize the array as needed in your program.

The differences between ARRAY statement execution in SCL and ARRAY statement
execution in the DATA step are described in Chapter 7, “Using Other SAS Software
Products,” on page 77.

Declaring Arrays
You can use the DECLARE statement to declare static or dynamic arrays. Arrays

that are declared with the DECLARE statement are all temporary arrays. That is, they
default to the _TEMPORARY_ option. (See “Using Temporary Arrays to Conserve
Memory” on page 46 for more information.) For example, the following statement
declares an array named MONTH that contains five character variables that are each
up to three characters in length:



38 Referencing Array Elements 4 Chapter 4

declare char(3) month[5];

To declare a dynamic array, you must specify an asterisk (*) for the array dimensions:

declare char students[*];

This statement declares a one-dimensional array of type character. The DECLARE
statement does not set the array bounds or create any elements. Dynamic arrays are
only accessible within the scope in which they are declared.

You can use the ARRAY statement to declare indirect or non-temporary arrays. You
can declare only static arrays with the ARRAY statement. You can declare temporary
arrays by specifying the _TEMPORARY argument in the ARRAY statement. For
example:

array month[5] $;

The ARRAY statement (but not the DECLARE statement) enables you to assign
names to individual array elements. For example, the following statement assigns the
names JAN, FEB, MAR, APR, and MAY to the five elements in the MONTH array.:

array month[5] $ jan feb mar apr may;

You can use these names to refer to the array elements in your SCL program.
In contrast to the ARRAY statement, you cannot use the DECLARE statement to

assign names to individual array elements. The following DECLARE statement
declares an array named MONTH plus five more character variables named JAN, FEB,
MAR, APR, and MAY:

declare char month[5] jan feb mar apr may;

Referencing Array Elements

To reference array elements, you can use the form array-name[position], where
position is the index position of the variable in the array. This form of array reference is
called subscripting. Subscripting is the only way to refer to array elements that were
declared with the DECLARE statement. For example, FACTOR[4] is the only way to
reference the fourth element of array FACTOR if it is created with the statement

declare num Factor[5];

This DECLARE statement also produces variables FACTOR[1] through FACTOR[5].
Because you must use the DECLARE statement to declare dynamic arrays, the only

way to reference the elements of a dynamic array is with subscripting. However, you
cannot reference the elements of a dynamic array until you have created the array. See
“Creating and Initializing Dynamic Arrays” on page 40 for more information.

You can also use subscripting to refer to elements of an array that is declared with
the ARRAY statement. For example, you can use MONTH[1] and MONTH[4] to refer to
the first and fourth elements of an array that is declared with the following statement:

array month[5] $;

If the array is declared with an ARRAY statement that does not assign individual
names to the array elements (as shown in this example), then you can also refer to
these array elements as MONTH1 and MONTH4.

If the ARRAY statement assigns names to the individual array elements, then you
can also use those names to refer to the array elements. For example, if you declare
your array with the following statement, then you can refer to the elements in the
array using the names JAN, FEB, and MAR:



SCL Arrays 4 Assigning the Same Value to Multiple Elements 39

array month[3] $ jan feb mar;

Grouping Variables That Have Sequential Names
If an application program or window has a series of variables whose names end in

sequential numbers (for example, SCORE1, SCORE2, SCORE3, and so on), then you
can use an array to group these variables. For example, the following ARRAY statement
groups the variables SCORE1, SCORE2, SCORE3, and SCORE4 into the array SCORE:

array score[4];

Note: If the variables do not already exist as window variables, then SCL defines
new, nonwindow, numeric variables with those names. 4

Grouping the variables into an array is useful when your program needs to apply the
same operations to all of the variables. See “Repeating an Action for Variables in an
Array” on page 44 for more information.

Initializing The Elements of A Static Array

By default, all elements in a numeric array are initialized to numeric missing values
if the array elements did not previously exist.

You can define initial values for the elements of a static array by listing the initial
values in parentheses following the list of element names in the DECLARE or ARRAY
statements. Commas are optional between variable values. For example, the following
ARRAY statement creates a two-item array named COUNT, assigns the value 1 to the
first element, and assigns the value 2 to the second element:

array count[2] (1 2);

You can also initialize array elements with the DECLARE statement. For example,
the following program declares an array named MONTH, which contains five elements
that can each contain three characters, and it assigns initial values to the array
elements:

declare char(3) month[5]=(’jan’ ’feb’ ’mar’
’apr’ ’may’);

INIT:
put month;

return;

The example produces the following output:

month[1] = ’jan’
month[2] = ’feb’
month[3] = ’mar’
month[4] = ’apr’
month[5] = ’may’

Assigning the Same Value to Multiple Elements
You can use repetition factors to initialize static arrays. Repetition factors specify

how many times the values are assigned in the array. They have the following form:

5 * (2 3 4)



40 Initializing Static Multidimensional Arrays 4 Chapter 4

In this example, 5 is the repetition factor and (2 3 4) is the list of initial values for
the array elements. If the list consists of only a single item, then you can omit the
parentheses.

For example, the following ARRAY and DECLARE statements both use repetition
factors to initialize the values of the array REPEAT:

array repeat[17] (0,3*1,4*(2,3,4),0);
declare num repeat[17]=(0,3*1,4*(2,3,4),0);

This example repeats the value 1 three times and the sequence 2, 3, 4 four times. The
following values are assigned to the elements of the array REPEAT:

0, 1, 1, 1, 2, 3, 4, 2, 3, 4, 2, 3, 4, 2, 3, 4, 0

Initializing Static Multidimensional Arrays
To initialize a static multidimensional array, use the ARRAY or DECLARE

statement to list values for the first row of the array, followed by values for the second
row, and so on. The following examples both initialize a two-dimensional array named
COUNT with two rows and three columns:

array count[2,3] (1 2 3 4 5 6);

dcl num count[2,3]=(1 2 3 4 5 6);

Figure 4.1 on page 40 shows the values of the elements of this array.

Figure 4.1 Elements of the COUNT Array

Columns

Rows
row 1

row 2

column 1 column 2 column 3

1 32

4 5 6

For more information about arrays, see “ARRAY” on page 254 and “DECLARE” on
page 330.

Creating and Initializing Dynamic Arrays
Dynamic arrays can be created and initialized in five ways:
� with the COPYARRAY function. See “Using The COPYARRAY Function” on page

43 for more information.
� using simple assignment statements that copy the values of one array into another

array. For more information, see “Using Assignment Statements” on page 42.
� by a method that returns an array. See “Returning Arrays From Methods” on page

45 for more information.
� with the REDIM function. See “Resizing Dynamic Arrays” on page 41 for more

information.
� with the MAKEARRAY function.



SCL Arrays 4 Resizing Dynamic Arrays 41

After you have declared a dynamic array, you can create the array with the
MAKEARRAY function. The MAKEARRAY function creates an array of the given size
with all elements in the array initialized to missing for numerics or blank for
characters. The number of dimensions must be the same as what was specified in the
DECLARE statement. The low bound for all dynamic arrays is 1, and the high bound is
determined at runtime by the values that you specify with the MAKEARRAY (or
REDIM) function. For example, the following statements create a one-dimensional
dynamic array named STUDENTS that has three elements and initializes these array
elements to Mary, Johnny, and Bobby:

Example Code 4.1 Dynamic STUDENTS Array

declare char students[*];
students = MAKEARRAY(3);
students[1] = ’Mary’;
students[2] = ’Johnny’;
students[3] = ’Bobby’;
put students;

The low bound for STUDENTS is 1, and the high bound 3. The output for this example
is

students[1] = ’Mary’
students[2] = ’Johnny’
students[3] = ’Bobby’

Resizing Dynamic Arrays
You can use the REDIM function to change the high bound of any dimension of a

dynamic array at runtime. You cannot change the number of dimensions or type of the
array, only the bounds. The REDIM function will also preserve the data in the array
unless you resize the array to a smaller size. If you reduce the size of an array, you will
lose the data in the eliminated elements.

For example, suppose that you have declared and initialized the STUDENTS array
as shown in Example Code 4.1 on page 41. To add another student, you must resize the
array. The following statements increase the high bound by 1 element, add the new
variable STUDENTS[4], and initialize this new element to Alice.

declare num rc;
rc = REDIM(students, DIM(students) + 1);
students[DIM(students) + 1] = ’Alice’;
put students;

All of the existing data is preserved. The low bound for the array STUDENTS is 1, and
the new high bound is 4. The output for this example would be:

students[1] = ’Mary’
students[2] = ’Johnny’
students[3] = ’Bobby’
students[4] = ’Alice’

You can also use the REDIM function to create and initialize an array that has been
declared but not yet created by other means. For example, the following statements
declare, create, and initialize an array of five elements to numeric missing values:

dcl num rc;
dcl num a[*];



42 Using Array Functions with Dynamic Arrays 4 Chapter 4

rc = redim(a,5);

There is no limit to the number of times that you can resize an array.

Note: You can use the MAKEARRAY function to resize an array, but all the data
will be lost. The MAKEARRAY function will reinitialize the elements to missing
numeric values or to blank character values. 4

Using Array Functions with Dynamic Arrays
You can use dynamic arrays with the other existing array functions (DIM, HBOUND,

LBOUND) as long as the array has been created with MAKEARRAY or REDIM. If your
program references a dynamic array before it has been created, a program halt will
occur. If you pass a dynamic array to a method by reference (that is, as an input
parameter), you cannot resize the array using MAKEARRAY, REDIM, or DELARRAY
within the method.

Copying Elements From One Array To Another
There are two ways to copy an array:
� using an assignment statement. When assigning the values of one array to

another array, the two arrays must have the same size.
� using the COPYARRAY function. When using the COPYARRAY function, the

arrays do not have to be the same size.

Using Assignment Statements
You can assign values to an array from another array in an assignment statement.

For example, the following code copies the values of array A into array B:

declare num a[3] = (1 3 5);
declare num b[3];
b = a;
put b;

These statements produce the following output:

b[1] = 1
b[2] = 3
b[3] = 5

When you use the assignment statement to copy an array, the two arrays must have
the same type, dimensions, and size; otherwise, an error condition will occur.

You can use an assignment statement to create and initialize a dynamic array that
has been declared but not yet created. If you specify a newly declared dynamic array as
the array to which values are to be assigned, then SCL will create the dynamic array
and copy the values of the existing array into the new array.

For example, the following statements create dynamic array B to the same size as A
and then copies the values of array A into dynamic array B.

declare num a[3] = (1 3 5);
declare num b[*];
b = a;



SCL Arrays 4 Using The COPYARRAY Function 43

put b;

These statements produce the following output:

b[1] = 1
b[2] = 3
b[3] = 5

Using The COPYARRAY Function
You can also use the COPYARRAY function to copy elements from one array to

another. By default, the COPYARRAY function produces the same result as the
assignment statement and requires that the arrays be of the same type, dimension, and
size. For example, the following statements copy the array A into arrays B and C:

declare num a[3] = (1 3 5);
declare num b[3] c[3];
rc = COPYARRAY(a,b);
put b;
c = a;
put c;

The output for this code would be:

b[1] = 1
b[2] = 3
b[3] = 5
c[1] = 1
c[2] = 3
c[3] = 5

However, with the COPYARRAY function, you can copy an array to an array of a
different size if you set the IGNORESIZE parameter to Y in the call to COPYARRAY:

rc = COPYARRAY(array1,array2,’Y’);

The type and dimensions of the arrays must still match. For example, the following
statements will copy array A, which has three elements, into array B, which has five
elements.

declare num a[3] = (1 3 5);
declare num b[5];
rc = COPYARRAY(a,b,’Y’);
put b;

This code produces the following output:

b[1] = 1
b[2] = 3
b[3] = 5
b[4] = .
b[5] = .

The COPYARRAY can also be used to create dynamic arrays, just as you can create
them using assignment statements. For example, the following statements create and
initialize dynamic array B:

declare num a[3] = (1 3 5);
declare num b[*];



44 Repeating an Action for Variables in an Array 4 Chapter 4

rc = COPYARRAY(a,b);
put b;

The output for this code would be:

b[1] = 1
b[2] = 3
b[3] = 5

Note: When you use the COPYARRAY function to create a new dynamic array, it is
good practice to delete the newly created array using the DELARRAY function.
However, if you do not delete the array with the DELARRAY function, SCL will delete
the array at the end of the routine like all other dynamic arrays. See “Deleting
Dynamic Arrays” on page 46 for more information. 4

Repeating an Action for Variables in an Array
To perform an action on variables in an array, you can use an iterative DO

statement, using the index variable for the array subscript. A DO block is especially
convenient when arrays contain many elements. For example, you could use a program
like the following to sum the values of the array variables and to display the total in
the SUM field:

array month[5] jan feb mar apr may (1,2,3,4,5);
INIT:

do i=1 to 5;
sum+month[i];

end;
put month;
put sum=;

return;

The example produces the following output:

month[1] = 1
month[2] = 2
month[3] = 3
month[4] = 4
month[5] = 5
sum=15

The preceding DO block has the same effect as any one of the following assignment
statements:

sum1=jan+feb+mar+apr+may;
sum2=sum(of month[*]);
sum3=sum(of jan--may);
put sum1= sum2= sum3= ;

This example produces the following output:

sum1=15 sum2=15 sum3=15



SCL Arrays 4 Returning Arrays From Methods 45

Passing Dynamic Arrays to Methods
Passing a dynamic array to a method is no different than passing a static array, but

the dynamic array must have been created by MAKEARRAY, REDIM, COPYARRAY, or
an assignment statement. If the dynamic array is not created before the method call,
then an error condition will occur.

Dynamic arrays can be resized via a method if the method’s parameter is a reference
array and an output parameter. See “ARRAY” on page 254 for more information on
reference arrays.

Suppose you have defined the resizeDynamicArray method as follows:

resizeDynamicArray:method parm1[*]:O:num;
declare num rc = redim(parm1, 5);
endmethod;

The parameter PARM1 is output parameter and a reference array. When you call this
method, it will resize the dynamic array passed to it into an array with a low bound 1
and a high bound of 5. In the following code, resizeDynamicArray resizes an array with
3 elements into an array with 5 elements:

declare num a[*] = MAKEARRAY(3);
object.resizeDynamicArray(a);
put a;

The output for this code would be:

a[1] = .
a[2] = .
a[3] = .
a[4] = .
a[5] = .

Because PARM1 is a reference array, it is using the same memory as the dynamic array
A.

You can now resize the array using MAKEARRAY, REDIM, COPYARRAY,
DELARRAY, or an assignment statement.

Returning Arrays From Methods
Arrays can also be assigned values from a method that returns an array. The array

to which values are being assigned must have the same type, dimensions, and size as
the array returned from the method. Otherwise, an error condition will occur.

Suppose you define the getArrayValues method as follows:

getArrayValues:method return=num(*);
declare num a[3] = (1 3 5);
return a;
endmethod;

To assign the values that are returned by getArrayValues to an array, you could use the
following code:

declare num b[3];
b = object.getArrayValues();
put b;

The output for this example is



46 Deleting Dynamic Arrays 4 Chapter 4

b[1] = 1
b[2] = 3
b[3] = 5

Dynamic arrays (that have not yet been created by other means) can be created when
an array is returned from a method call. If your program returns values into a dynamic
array that has been declared but not yet created, SCL will first create the new dynamic
array, then copy the returned values into the new array. For example, the following
code creates dynamic array B with the same size as the returned array and copies the
values of the returned array into B.

declare num b[*];
b = getArrayValues();
put b;

The output of these statements is

b[1] = 1
b[2] = 3
b[3] = 5

Deleting Dynamic Arrays
The DELARRAY function is used to delete a dynamic array that has been created

using the MAKEARRAY or REDIM. The array’s contents cannot be accessed after the
array is deleted. If you do not delete the created dynamic array using DELARRAY, the
array will be automatically deleted when exiting the routine.

Using Temporary Arrays to Conserve Memory
If you want to use an array in an SCL program but do not need to refer to array

elements by name, then you can add the _TEMPORARY_ argument to your ARRAY
statement:

array total[4] _temporary_;

When you use the _TEMPORARY_ argument, you must use subscripting to refer to
the array elements. For example, you must use TOTAL[2] to refer to the second
element in the array TOTAL, defined above. You cannot use the variable name TOTAL2
as an alternative reference for the array element TOTAL[2]. Using the _TEMPORARY_
argument conserves memory. By default, SCL allocates memory for both the name of
the array and the names of the individual array elements. However, when you use the
_TEMPORARY_ argument, SCL allocates memory only for the array name. For large
arrays, this can result in significant memory savings.

Note: Do not use the _TEMPORARY_ option if you plan to use the SET routine to
read values from a SAS table directly into array elements. You must use the GETVARN
or GETVARC function to read values from a SAS table into the elements of a temporary
array. 4



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Component Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Component Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–495–0
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


