
65

C H A P T E R

6
Controlling Program Flow

Introduction 65
Using DO Loops 66

DO Statement 66

Iterative DO Loops 66

Using UNTIL and WHILE Clauses 67

DO WHILE Statement 68
DO UNTIL Statement 68

Controlling DO Loops (CONTINUE and LEAVE) 68

Using SELECT-WHEN/OTHERWISE Conditions 69

Using IF-THEN/ELSE Conditions 71

Using the RETURN Statement 71

Branching to a Labeled Section (LINK) 72
Branching to Another Entry (GOTO) 72

Calling SCL Entries 73

Stopping Execution of the Current Section 73

Executing Methods 74

Using the CONTROL Statement 74

Introduction
You can control the flow of execution of your SCL application by
� using any of several programming constructs such as DO loops and IF/

THEN-ELSE statements
� branching to labeled sections with the LINK statement
� branching to PROGRAM, FRAME, MENU, CBT, or HELP entries with the GOTO

statement
� branching to another SCL entry with CALL DISPLAY
� executing a method that is stored in a separate SCL entry with CALL METHOD
� executing an object method by using dot notation
� sending a method to an object with CALL SEND
� sending a method to a FRAME entry control with CALL NOTIFY
� specifying how labeled sections are executed, when and where submit blocks are

executed, and whether execution halts when errors are encountered in dot
notation with the CONTROL statement

� creating a program halt handler to control how run-time errors are processed.

For more information about controlling the flow of execution in applications that use
frames, refer to SAS Guide to Applications Development.



66 Using DO Loops 4 Chapter 6

Using DO Loops
There are four forms of the DO statement:
� The DO statement designates a group of statements that are to be executed as a

unit, usually as a part of IF-THEN/ELSE statements.
� The iterative DO statement executes a group of statements repetitively based on

the value of an index variable. If you specify an UNTIL clause or a WHILE clause,
then the execution of the statements is also based on the condition that you specify
in the clause.

� The DO UNTIL statement executes a group of statements repetitively until the
condition that you specify is true. The condition is checked after each iteration of
the loop.

� The DO WHILE statement executes a group of statements repetitively as long as
the condition that you specify remains true. The condition is checked before each
iteration of the loop.

For more information about DO statements, in addition to the information in this
documentation, refer to SAS Language Reference: Dictionary.

DO Statement
The DO statement designates a group of statements that are to be executed as a

unit. The simplest form of the DO loop is

DO;

. . .SAS statements. . .

END;

This simple DO statement is often used within IF-THEN/ELSE statements to designate
a group of statements to be executed if the IF condition is true. For example, in the
following code, the statements between DO and END are performed only when YEARS
is greater than 5.

if years>5 then
do;

months=years*12;
put years= months=;

end;

Iterative DO Loops
The iterative DO loop executes the statements between DO and END repetitively

based on the value of an index variable.

DO index-variable = start TO stop <BY increment>;

Note: In SCL applications, both start and stop are required, and start, stop, and
increment must be numbers or expressions that yield a number. The TO and BY clauses
cannot be reversed, and start cannot be a series of items separated by commas. You can
use only one start TO stop specification (with or without the BY clause) in a DO loop. 4

If increment is not specified, then index-variable is increased by 1. If increment is
positive, then start must be the lower bound and stop must the be upper bound for the



Controlling Program Flow 4 Iterative DO Loops 67

loop. If increment is negative, then start must be the upper bound and stop must be the
lower bound for the loop.

The values of start, stop, and increment are evaluated before the first execution of the
loop. Any changes made to stop or increment within the DO group do not affect the
number of times that the loop executes.

CAUTION:
Changing the value of index-variable within the DO group may produce an infinite loop. If
you change the value of index-variable inside of the DO group, then index-variable
may never become equal to the value of stop, and the loop will not stop executing. 4

For example, the following code prints the numbers 20, 18, 16, 14, 12, and 10.

dcl num k=18 n=11;
do i=k+2 to n-1 by -2;

put i;
end;

The following code uses the DOPEN and DNUM functions to execute SAS statements
once for each file in the current directory:

rc=filename(’mydir’,’.’);
dirid=dopen(’mydir’);
do i=1 to dnum(dirid);

...SAS statements...
end;
rc=dclose(dirid);

Using UNTIL and WHILE Clauses
You can add either an UNTIL clause or a WHILE clause to your DO statements.

DO index-variable = start TO stop <BY increment>

<WHILE (expression)> | <UNTIL (expression)>;

The UNTIL expression is evaluated after the statements in the DO loop have executed,
and the WHILE expression is evaluated before the statements in the DO loop have
executed. The statements in a DO UNTIL loop are always executed at least once, but
the statements in a DO WHILE loop will not execute even once if the DO WHILE
expression is false.

If index-variable is still in the range between start and stop, then if you specify an
UNTIL clause, the DO group will execute until the UNTIL expression is true. If you
specify a WHILE clause, the loop will execute as long as the WHILE expression is true.

The following example uses an UNTIL clause to set a flag, and then it checks the flag
during each iteration of the loop:

flag=0;
do i=1 to 10 until(flag);

...SAS statements...
if expression then flag=1;

end;

The following loop executes as long as I is within the range of 10 to 0 and MONTH is
equal to JAN.

do i=10 to 0 by -1 while(month=’JAN’);
...SAS statements...

end;



68 DO WHILE Statement 4 Chapter 6

DO WHILE Statement
The DO WHILE statement works like the iterative DO statement with a WHILE

clause, except that you do not specify an index-variable or start, stop, or increment.

DO WHILE (expression);

. . .SAS statements. . .

END;

Whether the loop executes is based solely on whether the expression that you specify
evaluates to true or false. The expression is evaluated before the loop executes, and if
the expression is false, then the loop is not executed. If the expression is false the first
time it is evaluated, then the loop will not execute at all.

For example, the following DO loop is executed once for each value of N: 0, 1, 2, 3,
and 4.

n=0;
do while(n<5);

put n=;
n+1;

end;

DO UNTIL Statement
The DO UNTIL statement works like the iterative DO statement with an UNTIL

clause, except that you do not specify an index variable nor start, stop, or increment.

DO UNTIL (expression);

. . .SAS statements. . .

END;

Whether the loop executes is based solely on whether the expression that you specify
evaluates to true or false. The loop is always executed at least once, and the expression
is evaluated after the loop executes.

For example, the following DO loop is executed once for each value of N: 0, 1, 2, 3,
and 4.

n=0;
do until(n>=5);

put n=;
n+1;

end;

Controlling DO Loops (CONTINUE and LEAVE)
You can use the CONTINUE and LEAVE statements to control the flow of execution

through DO loops.
The CONTINUE statement stops the processing of the current DO loop iteration and

resumes with the next iteration of the loop. For example, the following code reads each
row in the DEPT table, and if the status is not PT, it displays a frame that enables the
user to update the full-time employee’s salary.

deptid=open(’dept’);
call set(deptid);



Controlling Program Flow 4 Using SELECT-WHEN/OTHERWISE Conditions 69

do while (fetch(deptid) ne -1);
if (status=’PT’) then continue;
newsal=display(’fulltime.frame’);

end;

The LEAVE statement stops processing the current DO loop and resumes with the
next statement after the DO loop. With the LEAVE statement, you have the option of
specifying a label for the DO statement:

LEAVE <label>;

If you have nested DO loops and you want to skip out of more than one loop, you can
specify the label of the loop that you want to leave. For example, the following LEAVE
statement causes execution to skip to the last PUT statement:

myloop:
do i=1 to 10;

do j=1 to 10;
if j=5 then leave myloop;
put i= j=;

end;
end;
put ’this statement executes next’;
return;

In SCL applications, the LEAVE statement can be used only within DO loops, not in
SELECT statements (unless it is enclosed in a DO statement).

For more information, refer to “CONTINUE” on page 300, “LEAVE” on page 504, and
SAS Language Reference: Dictionary.

Using SELECT-WHEN/OTHERWISE Conditions
The SELECT statement executes one of several statements or groups of statements

based on the value of the expression that you specify.

SELECT<(select-expression)>;

WHEN-1 (when-expression-1) statement(s);

<WHEN-n (when-expression-n) statement(s);>

<OTHERWISE statement;>

END;

SAS evaluates select-expression, if present, as well as when–expression-1. If the values
of both expressions are equal, then SAS executes the statements associated with
when-expression-1. If the values are not equal, then SAS evaluates when-expression-n,
and if the values of select–expression-1 and when-expression-1 are equal, SAS executes
the statements associated with when-expression-n. SAS evaluates each when expression
until it finds a match or until it has evaluated all of the when expressions without
finding a match. If you do not specify a select expression, then SAS evaluates each
when expression and executes only the statements associated with the first when
expression that evaluates to true.

If the value of none of the when expressions matches the value of the select
expression, or if you do not specify a select expression and all of the when expressions
are false, then SAS executes the statements associated with the OTHERWISE
statement. If you do not specify an OTHERWISE statement, the program halts.



70 Using SELECT-WHEN/OTHERWISE Conditions 4 Chapter 6

In SCL applications, you cannot specify a series of when expressions separated by
commas in the same WHEN statement. However, separating multiple WHEN
statements with a comma is equivalent to separating them with the logical operator
OR, which is acceptable in SCL applications.

The statements associated with a when expression can be any executable SAS
statement, including SELECT and null statements. A null statement in a WHEN
statement causes SAS to recognize a condition as true and to take no additional action.
A null statement in an OTHERWISE statement prevents SAS from issuing an error
message when all of the when expressions are false.

Each WHEN statement implies a DO group of all statements until the next WHEN
or OTHERWISE statement. Therefore the following program is valid:

select (paycat);
when (’monthly’)

amt=salary;
when (’hourly’)

amt=hrlywage*min(hrs,40);
if hrs>40 then put ’Check timecard.’;

otherwise put ’problem observation’;
end;

However, if you need to include a LEAVE statement as part of your WHEN statement,
then you must explicitly specify the DO statement in your WHEN statement.

You can specify expressions and their possible values in either of the following ways:
1

SELECT;

WHEN (variable operator value) statement(s);

END;

2

SELECT (variable);

WHEN (value) statement(s);

END;

For example, both of the following SELECT statements are correct:

select;
when (x<=5) put ’1 to 5’;
when (x>=6) put ’6 to 10’;

end;

select (x);
when (1) put ’one’;
when (2) put ’two’;

end;

The following code is incorrect because it compares the value of the expression X with
the value of the expression X=1. As described in “Boolean Numeric Expressions” on
page 31, in Boolean expressions, a value of 0 is false and a value of 1 is true. Therefore,
the expression X is false and the expression X=1 is false, so the program prints x is 1.

x=0;
select (x);

when (x=0) put ’x is 0’;



Controlling Program Flow 4 Using the RETURN Statement 71

when (x=1) put ’x is 1’;
otherwise put x=;

end;

For more information about the SELECT statement, refer to “SELECT” on page 640
and to SAS Language Reference: Dictionary.

Using IF-THEN/ELSE Conditions
The IF-THEN/ELSE statement executes a statement or group of statements based

on a condition that you specify.

IF expression THEN statement;

<ELSE statement;>

If expression is true, then SAS executes the statement in the THEN clause. If the
expression is false and if an ELSE statement is present, then SAS executes the ELSE
statement. The statement following THEN and ELSE can be either a single SAS
statement (including an IF-THEN/ELSE statement) or a DO group.

For example:

if (exist(table)) then
_msg_=’SAS table already exists.’;

else do;
call new(table,’’,1,’y’);
_msg_=’Table has been created.’;

end;

Suppose your application is designed to run in batch mode and you do not want to
generate any messages. You could use a null statement after THEN:

if (exist(table)) then;
else call new(table,’’,1,’y’);

For more information, refer to SAS Language Reference: Dictionary.

Using the RETURN Statement
The RETURN statement stops the execution of the program section that is currently

executing.

RETURN <value>;

The RETURN statement at the end of a reserved program section (FSEINIT ,INIT,
MAIN, TERM, and FSETERM) sends control to the next program section in the
sequence.

The first RETURN statement after a LINK statement returns control to the
statement that immediately follows the LINK statement.

When the RETURN statement is encountered at the end of a window variable
section, control returns to the next section in the program execution cycle. That next
section may be another window variable section or it may be the MAIN section. When
the current program execution cycle finishes, control returns to the application window.

The RETURN statement at the end of a method returns control to the calling
program.



72 Branching to a Labeled Section (LINK) 4 Chapter 6

The RETURN statement for an ENTRY or METHOD block can return value if the
ENTRY or METHOD statement contains RETURN=data-type. The returned value has
no effect if control does not immediately return to the calling program.

For an example of the RETURN statement, see the example in “Branching to
Another Entry (GOTO)” on page 72. For more explanation and an additional example,
see “RETURN” on page 615.

Branching to a Labeled Section (LINK)

The LINK statement tells SCL to jump immediately to the specified statement label.

LINK label;

SCL then executes the statements from the statement label up to the next RETURN
statement. The RETURN statement sends program control to the statement that
immediately follows the LINK statement. The LINK statement and the label must be
in the same entry.

The LINK statement can branch to a group of statements that contains another
LINK statement; that is, you can nest LINK statements. You can have up to ten LINK
statements with no intervening RETURN statements.

See “Branching to Another Entry (GOTO)” on page 72 for an example that includes
LINK statements.

For more information, refer to SAS Language Reference: Dictionary.

Branching to Another Entry (GOTO)

You can use the GOTO statement to transfer control to another SAS/AF entry.

CALL GOTO (entry<, action<, frame>>);

Entry specifies a FRAME, PROGRAM, MENU, CBT, or HELP entry. By default, when
the entry ends, control returns to the parent entry that was specified in entry. If a
parent entry is not specified, then the window exits.

For example, suppose WORK.A.A.SCL contains the following code:

INIT:
link SECTONE;
put ’in INIT after link to SECTONE’;

return;

SECTONE:
put ’in SECTONE before link to TWO’;
link TWO;
put ’in SECTONE before goto’;
call goto(’work.a.b.frame’);
put ’in SECTONE after goto to frame’;

return;

TWO:
put ’in TWO’;

return;

WORK.A.B.SCL contains the following code:



Controlling Program Flow 4 Stopping Execution of the Current Section 73

INIT:
put ’in WORK.A.B.FRAME’;

return;

If you compile WORK.A.B.FRAME and WORK.A.A.SCL, and then test WORK.A.A.SCL,
you will see the following output:

in SECTONE before link to TWO
in TWO
in SECTONE before goto
in WORK.A.B.FRAME

The PUT statement in the INIT section of A.SCL and the last PUT statement in
SECTONE are never executed. After WORK.A.B.FRAME is displayed and the user
exits from the window, the program ends.

For more information, see “GOTO” on page 455.

Calling SCL Entries
SAS/AF software provides SCL entries for storing program modules. SCL programs

can access a module that is stored in another SCL entry. They can pass parameters to
the module and can receive values from the module. An SCL module can be used by
any other SCL program.

You call an SCL module with a CALL DISPLAY routine that passes parameters to it
and receives values that are returned by the SCL entry. The module’s ENTRY
statement receives parameters and returns values to the calling program.

For example, if you were creating an SCL module to validate amounts and rates that
are entered by users, you could store the labeled sections in separate SCL entries
named AMOUNT.SCL and RATE.SCL. Then, you could call either of them with a CALL
DISPLAY statement like the following:

call display(’methdlib.validate.amount.scl’,amount,error);

For more information, see “DISPLAY” on page 350.

Stopping Execution of the Current Section
The STOP statement stops the execution of the current section. If a MAIN or TERM

section is present, control passes to MAIN or TERM. For example, in the following
program, control passes from INIT to SECTONE. Since X=1 is true, the STOP
statement is executed, so control never passes to TWO. Control passes directly from the
STOP statement in SECTONE to MAIN. The STOP statement at the end of MAIN has
no effect, and control passes to TERM.

INIT:
put ’beginning INIT’;
x=1;
link SECTONE;
put ’in INIT after link’;

stop;

MAIN:
put ’in MAIN’;

stop;



74 Executing Methods 4 Chapter 6

SECTONE:
put ’in SECTONE’;
if x=1 then stop;
link TWO;

return;

TWO:
put ’in TWO’;

return;

TERM:
put ’in TERM’;

return;

This program produces the following output:

beginning INIT
in SECTONE
in MAIN
in TERM

For more information, see “STOP” on page 674.

Executing Methods
In object-oriented applications, methods are implemented in CLASS blocks or

USECLASS blocks. These methods are usually invoked with dot notation. See
“Accessing Object Attributes and Methods With Dot Notation” on page 119 for
information about dot notation.

You can also send methods to an object by using CALL SEND, and you can send a
method to a control in a FRAME entry by using CALL NOTIFY. See “SEND” on page
644 and “NOTIFY” on page 572 for more information.

Methods may also be stored in SCL, PROGRAM, or SCREEN entries. If the method
is stored in an SCL entry, then call the method with the CALL METHOD routine. If
the method is stored in a PROGRAM or SCREEN entry, you can use the LINK or
GOTO statements to call it. See “Calling a Method That Is Stored in an SCL Entry” on
page 13, “Branching to a Labeled Section (LINK)” on page 72, and “Branching to
Another Entry (GOTO)” on page 72 for more information.

Using the CONTROL Statement
The CONTROL statement enables you to specify options that control the execution

of labeled sections, the formatting of submit blocks, and whether an error in dot
notation causes a program halt.

CONTROL options;

You can specify the following options with the CONTROL statement:

ALLCMDS|NOALLCMDS
determines whether SCL can intercept procedure-specific or custom commands
that are issued in the application. This option also determines if and when the
MAIN section executes.



Controlling Program Flow 4 Using the CONTROL Statement 75

ALWAYS|NOALWAYS
determines whether the MAIN section executes if the user enters a command that
SCL does not recognize.

ASIS NOASIS
determines whether SCL eliminates unnecessary spaces and line breaks before
submit blocks are submitted.

BREAK label|NOBREAK
enables you to specify a labeled program section that will be executed if an
interrupt or break occurs while your program is executing.

HALTONDOATTRIBUTE|NOHALTONDOTATTRIBUTE
determines whether execution halts if SCL finds an error in the dot notation that
is used in your program.

ENDSAS|NOENDSAS
determines whether the TERM section executes when the user enters the
ENDSAS or BYE commands.

ENDAWS|NOENDAWS
determines whether the TERM section executes when a user ends a SAS session
by selecting the system closure menu in a FRAME entry that is running within
the SAS application workspace.

ENTER|NOENTER
determines whether the MAIN section executes when the user presses the ENTER
key or a function key without modifying a window variable.

ERROR|NOERROR
determines whether the MAIN section executes if a control or field contains a
value that causes an attribute error.

LABEL|NOLABEL
determines whether the MAIN section executes before or after the window
variable sections.

TERM|NOTERM
determines whether the TERM section executes even if a user does not modify any
columns in the current row of the SAS table.

For more information, see “CONTROL” on page 302.



76 Using the CONTROL Statement 4 Chapter 6



The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Component Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Component Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–495–0
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.


