
77

C H A P T E R

7
Using Other SAS Software
Products

Introduction 77
Using SAS DATA Step Features in SCL 78

Statements 78

Functions 79

Variables 79

Numeric Variables 79
Character Variables 79

Expressions 80

Submitting SAS Statements and SQL Statements 80

Submitting Statements Compared to Using SCL Features 81

Designating Submit Blocks 81

How Submit Blocks Are Processed 81
How Submitted Statements Are Formatted 83

Modifying the Behavior of Submit Blocks 83

Controlling Where Submitted Code Is Executed 83

Controlling What Happens After a Submit Block Executes 83

Using SUBMIT CONTINUE in FSEDIT Applications 84
Submitting Statements to a Remote Host 84

Substituting Text in Submit Blocks 85

How Values Are Substituted in Submit Blocks 85

Specifying Text for Substitutions 86

Using the REPLACE Statement 86
Using the Replace Attribute 86

Issuing Commands to Host Operating Systems 86

Using Macro Variables 87

Storing and Retrieving Macro Variable Values 87

Using the Same Name for Macro Variables and SCL Variables 88

Using Automatic Macro Variables 88

Introduction
SCL provides many of the same features as the base SAS language. However, some

SCL features differ slightly in functionality from base SAS language features. Also,
although SCL provides a rich set of features, it does not provide functions and
statements to accomplish directly all of the data access, management, presentation, and
analysis tasks that SAS software can perform, nor can it provide the equivalent for
every command that is available under your host operating system. However, SCL does
provide the following features:

78 Using SAS DATA Step Features in SCL 4 Chapter 7

� the SUBMIT statement, which provides access to other features of SAS software
by generating SAS statements and then submitting them to SAS software for
processing.

� the SYSTEM function, which provides access to host operating systems by issuing
host operating system commands.

Using SAS DATA Step Features in SCL

SCL supports the syntax of the SAS DATA step with the exceptions and additions
noted. Refer to SAS Language Reference: Dictionary for details about the SAS language
elements that are available in the DATA step.

SCL does not support the DATA step statements that relate specifically to creating
SAS data tables, such as the DATA, SET, INFILE, and DATALINES statements.
However, SCL does provide special functions that can perform equivalent SAS table
manipulations. See Chapter 11, “Using SAS Tables,” on page 165 for details.

Statements
“SCL Language Elements by Category” on page 235 lists the statements that are

supported by SCL and tells you where they are documented. The ARRAY, DO,
LENGTH, PUT, and SELECT statements are different in SCL. The differences are
documented in their entries in Chapter 16, “SAS Component Language Dictionary,” on
page 249. The following list shows the DATA step statements that are valid in SCL
programs and notes differences between a statement’s support in SCL and in the DATA
step.

ARRAY (Explicit)
defines the elements of an explicit array. _NUMERIC_, _CHARACTER_, and
ALL are not supported.

assignment
assigns values to variables.

comment
documents the purpose of a program.

CONTINUE
stops the processing of the current DO loop and resumes with the next iteration of
that DO loop. See the dictionary entries for DO as well as CONTINUE for
information about the differences in the behavior of this statement in SCL.

DO, iterative DO, DO-UNTIL, DO-WHILE
repetitively execute one or more statements. SCL does not support the DO-list
form of the DO statement, but it does support LEAVE and CONTINUE statements
that extend the capabilities of DO-group processing.

END
designates the end of a DO group or SELECT group.

GOTO
jumps to a specified program label.

IF-THEN-ELSE
enables conditional execution of one or more statements.

Using Other SAS Software Products 4 Variables 79

%INCLUDE
accesses statements (usually from an external file) and adds them to the program
when the SCL program compiles.

LEAVE
stops executing the current DO group and resumes with the next sequential
statement. See the dictionary entries for DO as well as LEAVE for information
about the differences in the behavior of this statement in SCL.

LENGTH
allocates storage space for character and numeric variables. In SCL, the LENGTH
statement can set only the lengths of nonwindow variables.

LINK
jumps to a specified program label but allows a return to the following statement.
SCL allows nesting of up to 25 LINK statements.

NULL
is an executable statement that contains a semicolon (;) and acts as a place holder.

PUT
writes text to the LOG window.

RETURN
returns control or a value to the calling routine or application. In SCL, RETURN
can also return a value from the execution of a method.

RUN
is an alias for the RETURN statement.

SELECT-WHEN
enables conditional execution of one or several statements or groups of statements.

STOP
is an alias for the RETURN statement.

SUM
adds the result of an expression to an accumulator variable.

Functions
SCL supports all DATA step functions except LAG and DIF. See Table 15.1 on page

235 for a list of the DATA step functions that are supported by SCL. See SAS Language
Reference: Dictionary for details about other DATA step functions that are supported by
SCL.

Variables
Variables in SCL programs share most of the characteristics of variables in the

DATA step such as default length and type. However, you should be aware of the
differences described in the following sections. In addition, SCL variables can be
declared to be local in scope to a DO or SELECT block.

Numeric Variables
A variable is assigned the numeric data type if its data type is not explicitly declared.

Character Variables
In SCL, the length of a character variable is determined as follows:

80 Expressions 4 Chapter 7

� For window variables, the maximum length of a variable is equal to the length of
the corresponding control or field in the window.

� For character-type nonwindow variables, the length is 200 characters unless a
different length is explicitly declared. However, you can use the DECLARE or
LENGTH statement to change the length from a minimum of 1 character to a
maximum of 32K characters. The maximum length of a nonwindow variable is not
affected by the length of a string that is assigned to the variable in the SCL
program. For example, suppose your SCL program contains the following
statement and that the window for the application does not include a field named
LongWord:

LongWord=’Thisisaverylongword’;

As a result of this assignment statement, SCL creates a nonwindow variable
named LongWord with a maximum length of 200 characters. The length of the
string in the assignment statement has no effect on the maximum length of the
variable. By contrast, this same assignment in a DATA step would create a
variable with a maximum length of 19 characters.

As in the DATA step, the LENGTH function in SCL returns the current
trimmed length of a string (the position of the nonblank character at the right end
of the variable value). However, SCL also provides the MLENGTH function, which
returns the maximum length of a character variable, as well as the LENGTH
function with the NOTRIM option, which returns the untrimmed length of a string.

Expressions
SCL supports the standard DATA step expressions in an identical manner. The only

exception is the IN operator, which has the following syntax:

i=variable IN (list-of-values)|array-name;

In SCL, the IN operator returns the index of the element if a match is found, or it
returns 0 if no match is found. However, in the DATA step, the IN operator returns 1 if
a match is found and 0 if no match is found. The IN operator is valid for both numeric
and character lists as well as for arrays. If a list that is used with the IN operator
contains values with mixed data types, then those values are converted to the data type
of the first value in the list when the program is compiled.

In the following example, the statements using the IN operator are equivalent:

array list{3}$ (’cat’,’bird’,’dog’);
i=’dog’ in (’cat’,’bird’,’dog’);
i=’dog’ in list;

In SCL, this example produces I=3, whereas in the DATA step the example produces
I=1. Also, the DATA step does not support the form i=’dog’ in list.

Submitting SAS Statements and SQL Statements

SCL programs can submit statements to execute both DATA steps and all the
procedures in any product in SAS software. SCL programs can also submit Structured
Query Language (SQL) statements directly to SAS software’s SQL processor without
submitting a PROC SQL statement. SQL statements enable you to query the contents
of SAS files and to create and manipulate SAS tables and SAS views. SCL programs
also enable you to submit command line commands to the Program Editor window for

Using Other SAS Software Products 4 How Submit Blocks Are Processed 81

processing. Finally, SCL programs can submit statements for processing on your local
host or on a remote host, if SAS/CONNECT software is installed at your site.

Submitting Statements Compared to Using SCL Features
You should submit statements when the task you want to perform is difficult or

impossible using SCL features alone. Whenever equivalent SCL features are available,
it is more efficient to use them than to submit SAS statements. For example, the
following two sets of statements produce the same result, opening an FSEDIT window
to display the SAS data table WORK.DATA1 for editing:

/* This uses the SCL Feature. */
call fsedit(’work.data1’);

/* This uses submitted statements. */
submit continue;

proc fsedit data=work.data1;
run;

endsubmit;

From within an application, fewer computer resources are required to execute the
CALL routine in SCL than to submit statements to SAS software. Thus, the CALL
routine is a better choice unless you need features of the procedure that the CALL
routine does not provide (for example, the VAR statement in PROC FSEDIT to select
which variables to display to the user).

Designating Submit Blocks
In SCL programs, you designate statements to be submitted to SAS software for

processing by placing them in submit blocks. A submit block begins with a SUBMIT
statement, ends with an ENDSUBMIT statement, and consists of all the statements in
between. The following statements illustrate these characteristics:

SUBMIT; u
proc print data=work.data1; v

var a b c; v
run;

endsubmit; w

1 The SUBMIT statement starts the submit block.
2 These statements are submitted to SAS software when the program executes.
3 The ENDSUBMIT statement ends the submit block.

For details, see “SUBMIT” on page 676.

How Submit Blocks Are Processed
Figure 7.1 on page 82 illustrates how submit blocks are processed when they are

executed (not when they are compiled). Submit blocks are not processed when you test
a SAS/AF application with the TESTAF command.

82 How Submit Blocks Are Processed 4 Chapter 7

Figure 7.1 Default Processing of Submit Blocks

submit;
 proc print data=work.datal;
 var a b c;
 run;
endsubmit;

SAS Supervisor

DATA Step Compiler Procedure Parser

SQL Processor

SCL Program

Preview Buffer

 proc print data=work.datal;
 var a b c;
 run;

❶

❷

❸

1 All of the code between a SUBMIT statement and the next ENDSUBMIT
statement is copied into a special storage area called the preview buffer. The
submitted code is not checked for errors when it is copied to the preview buffer.
Errors in the submitted code are not detected until the statements or commands
are executed.

2 The text in the preview buffer is scanned, and any requested substitutions are
made. Substitution is discussed in “Substituting Text in Submit Blocks” on page
85.

3 The contents of the preview buffer are submitted to SAS software for execution.
You can specify options to change where and when the contents of the preview
buffer are submitted and to specify the actions that the SCL program takes after
the statements are submitted. See “Modifying the Behavior of Submit Blocks” on
page 83 for details.

Note: By default, code is not submitted immediately when the submit block is
encountered in an executing program. Also, when a nested entry (that is, an entry that
is called by another entry in the application) contains a submit block, the submitted
code is not executed until the calling task ends, or until another submit block with a
CONTINUE or IMMEDIATE option is encountered. Simply ending the entry that
contains the submit block does not process submitted code. 4

Using Other SAS Software Products 4 Controlling What Happens After a Submit Block Executes 83

How Submitted Statements Are Formatted
By default, SCL reformats the submitted code when it copies it to the preview buffer.

To conserve space, all leading and trailing spaces in the submitted text are removed.
Semicolons in the submitted statements cause line breaks in the submitted text.

In some situations (for example, when the submitted code includes lines of raw data),
you may want to prevent this formatting by SCL. You can do this by using a CONTROL
statement with the ASIS option. When an SCL program contains a CONTROL ASIS
statement, SCL honors the indention and spacing that appears in the submit block.
Programs that use CONTROL ASIS are more efficient because the time spent on
formatting is reduced. A CONTROL NOASIS statement restores the default behavior.

Modifying the Behavior of Submit Blocks
You can modify the default processing of submit blocks by specifying options in the

SUBMIT statement. SUBMIT statement options control the following behaviors:
� when the code in the preview buffer is submitted for execution
� when the submitted code is processed and what happens after the submitted code

is executed
� whether the submitted code is executed in the local SAS session or in a remote

SAS session.

Controlling Where Submitted Code Is Executed
By default, code that is collected in the preview buffer using SUBMIT blocks is sent

to SAS software for execution. SCL provides options for the SUBMIT statement that
alter the default behavior. If you specify the CONTINUE option in the SUBMIT
statement, you can control where code is submitted with the following options:

COMMAND
submits the code in the preview buffer to the command line of the next window
that is displayed. The code should contain valid commands for that window;
otherwise, either errors are reported or the submitted commands are ignored.

EDIT
sends the code in the preview buffer to the Program Editor window. You can
modify your code in the Program Editor window and then submit it for execution.

SQL
submits the code in the preview buffer to SAS software’s SQL processor, from both
TESTAF and AF modes. The SUBMIT SQL option enables you to submit the SQL
statements without having to specify a PROC SQL statement. Submitting SQL
statements directly to the SQL processor is more efficient than submitting PROC
SQL statements.

Controlling What Happens After a Submit Block Executes
SCL also provides SUBMIT statement options that you can use to control what

action, if any, the application takes after a submit block executes. These options are
CONTINUE, IMMEDIATE, PRIMARY, and TERMINATE. Without one of these options,
the code in a submit block is simply passed to the preview buffer, the application

84 Submitting Statements to a Remote Host 4 Chapter 7

continues executing, and the code in the submit block is not processed by SAS software
until the application ends.

CONTINUE
suspends program execution while the submit block executes and then continues
program execution at the statement that immediately follows the ENDSUBMIT
statement. (CONTINUE is the only SUBMIT option that is valid in FSEDIT and
FSBROWSE applications.)

IMMEDIATE
stops program execution after the generated statements are submitted. Use this
option with caution. Using this option in a labeled section that is executed
individually when a CONTROL LABEL statement is in effect can prevent the
execution of other labeled sections. A program in a FRAME entry does not compile
if it contains a SUBMIT IMMEDIATE statement.

PRIMARY
returns the program to the application’s initial window after the generated
statements are submitted. This option is useful when you want all the
intermediate windows to close and you want control to return to a primary window
in the current execution stream. This option causes looping if the current program
is the primary window.

TERMINATE
stops the SAS/AF task after the statements in the submit block are processed.
This option is useful when an application does not need to interact with users
after the submitted statements are processed. However, use TERMINATE with
caution because re-invoking the application can be time-consuming.

Using SUBMIT CONTINUE in FSEDIT Applications
The behavior of a SUBMIT CONTINUE block in an FSEDIT application depends on

how the application was invoked.

� If you invoked the application with a PROC FSEDIT statement, then the
statements in the submit block cannot be processed until the FSEDIT session
ends, even when you specify SUBMIT CONTINUE. The statements cannot be
executed as long as the FSEDIT procedure is executing.

� If you invoked the application with an FSEDIT command or with a CALL FSEDIT
routine from another SCL program, then the statements in the submit block can
execute immediately as long as no other procedure is currently executing.

Submitting Statements to a Remote Host
By default, statements in a submit block are executed for processing on the local

host. If SAS/CONNECT software is available at your site, you can also submit
statements for processing on a remote host. To send submitted statements to a remote
host, use the following form of the SUBMIT statement:

submit remote;
...SAS or SQL statements to execute
on a remote host...
endsubmit;

In situations where an application user can switch between a remote host and the
local host, the user can issue the REMOTE command to force all submits to be sent to a

Using Other SAS Software Products 4 How Values Are Substituted in Submit Blocks 85

remote host. The syntax of the REMOTE command is REMOTE <ON|OFF>. If neither
ON nor OFF is specified, the command acts like a toggle.

The REMOTE option in the SUBMIT block takes precedence over a REMOTE
command that is issued by an application user. A SAS/AF application must have a
display window in order to issue and recognize the REMOTE command. Before SCL
submits the generated code for execution, it checks to see whether the user has issued
the REMOTE ON command. If a user has issued the command, SCL checks to see
whether the remote link is still active. If the remote link is active, SCL submits the
code for execution. If the remote link is not active, SCL generates an error message and
returns. The preview buffer is not cleared if the submit fails.

Substituting Text in Submit Blocks

In interactive applications, values for statements in a submit block may need to be
determined by user input or program input in the application. An SCL feature that
supports this requirement is the substitution of text in submit blocks, based on the
values of fields or SCL variables.

How Values Are Substituted in Submit Blocks
SCL performs substitution in submit blocks according to the following rules:

� When SCL encounters a name that is prefixed with an ampersand (&) in a submit
block, it checks to see whether that name is the name of an SCL variable. If it is,
then SCL substitutes the value of that variable for the variable reference in the
submit block. For example, suppose a submit block contains the following
statement:

proc print data=&table;

If the application includes a variable named TABLE whose value is
work.sample, then this statement is passed to the preview buffer:

proc print data=work.sample;

� If the name that follows the ampersand does not match an SCL variable, then no
substitution occurs. The name is passed unchanged (including the ampersand)
with the submitted statements. When SAS software processes the statements, it
attempts to resolve the name as a macro variable reference. SCL does not resolve
macro variable references within submit blocks. For example, suppose a submit
block contains the following statement:

proc print data=&table;

If there is no SCL variable named TABLE in the application, then the
statement is passed unchanged to the preview buffer. SAS software attempts to
resolve &TABLE as a macro reference when the statements are processed.

CAUTION:
Avoid using the same name for both an SCL variable and a macro variable that you want to
use in submitted statements. SCL substitutes the value of the corresponding SCL
variable for any name that begins with an ampersand. To guarantee that a name is
passed as a macro variable reference in submitted statements, precede the name
with two ampersands (for example, &&TABLE). 4

86 Specifying Text for Substitutions 4 Chapter 7

Specifying Text for Substitutions
If an SCL variable that is used in a substitution contains a null value, then a blank

is substituted for the reference in the submitted statements. This can cause problems if
the substitution occurs in a statement that requires a value, so SCL allows you to
define a replacement string for the variable. If the variable’s value is not blank, the
complete replacement string is substituted for the variable reference. To define a
replacement string, you can use either the Replace attribute (for a control or field) or
the REPLACE statement.

Using the REPLACE Statement

The REPLACE statement acts as an implicit IF-THEN statement that determines
when to substitute a specified string in the submit block. Consider the following
example:

replace table ’data=&table’;
...more SCL statements...

submit;
proc print &table;
run;

endsubmit;

If the SCL variable TABLE contains ’’(or _BLANK_), then these statements are
submitted:

proc print;
run;

If the SCL variable TABLE contains work.sample, then these statements are
submitted:

proc print data=work.sample;
run;

Using the Replace Attribute

In SAS/AF applications, you can also can define replacement strings for a window
variable using the Replace attribute in the properties window (for a control) or the
attribute window (for a field). The text that you specify for the Replace attribute is
substituted for the variable name when the variable name is preceded with an
ampersand in submitted statements.

Issuing Commands to Host Operating Systems

SCL programs can use the SYSTEM function to issue commands to host operating
systems. For example, an SCL program may need to issue commands to the operating
system in order to perform system-specific data management or control tasks or to
invoke non-SAS applications.

An SCL program can issue any command that is valid for the operating system
under which an application runs. SCL places no restrictions on commands that are
issued to an operating system, nor does SCL check command strings for validity before
passing them to the operating system.

Using Other SAS Software Products 4 Storing and Retrieving Macro Variable Values 87

Using Macro Variables
Macro variables, which are part of the macro facility in base SAS software, can be

used in SCL programs. Macro variables are independent of any particular SAS table,
application, or window. The values of macro variables are available to all SAS software
products for the duration of a SAS session. For details, refer to macro variables in SAS
Macro Language: Reference. In SCL programs, you can

� store values in macro variables (for example, to pass information from the current
SCL program to subsequent programs in the application, to subsequent
applications, or to other parts of SAS software).

� retrieve values from macro variables (for example, to pass information to the
current SCL program from programs that executed previously or from other parts
of SAS software, or to pass values from one observation to another in FSEDIT
applications).

Examples of types of information that you frequently need to pass between entries in
an application include

� names of SAS tables to be opened
� names of external files to be opened
� identifiers of open SAS tables
� file identifiers of open external files
� the current date (instead of using date functions repeatedly)
� values to be repeated across rows in an FSEDIT session.

Storing and Retrieving Macro Variable Values
To assign a literal value to a macro variable in an SCL program, you can use the

standard macro variable assignment statement, %LET. For example, the following
statement assigns the literal value sales (not the value of an SCL variable named
SALES) to a macro variable named DSNAME:

%let dsname=sales;

Macro variable assignments are evaluated when SCL programs are compiled, not
when they are executed. Thus, the %LET statement is useful for assigning literal
values at compile time. For example, you can use macro variables defined in this
manner to store a value or block of text that is used repeatedly in a program. However,
you must use a different approach if you want to store the value of an SCL variable in a
macro variable while the SCL program executes (for example, to pass values between
SCL programs).

Macro variables store only strings of text characters, so numeric values are stored as
strings of text digits that represent numeric values. To store values so that they can be
retrieved correctly, you must use the appropriate CALL routine. The following routines
store the value of a macro when an SCL program runs:

CALL SYMPUT
stores a character value in a macro variable.

CALL SYMPUTN
stores a numeric value in a macro variable.

For example, the following CALL routine stores the value of the SCL variable SALES
in the macro variable TABLE:

call symput(’table’,sales);

88 Using the Same Name for Macro Variables and SCL Variables 4 Chapter 7

To retrieve the value of a macro variable in an SCL program, you can use a standard
macro variable reference. In the following example, the value of the macro variable
TABLE is substituted for the macro variable reference when the program is compiled:

dsn="&table";

The function that you use to retrieve the value of a macro variable determines how
the macro variable value is interpreted. The following functions return the value of a
macro variable when a program runs:

SYMGET
interprets the value of a macro variable as a character value.

SYMGETN
interprets the value of a macro variable as a numeric value.

Using the Same Name for Macro Variables and SCL Variables
Using the same name for a macro variable and an SCL variable in an SCL program

does not cause a conflict. Macro variables are stored in SAS software’s global symbol
table, whereas SCL variables are stored in the SCL data vector (SDV). However, if your
program uses submit blocks and you have both a macro variable and an SCL variable
with the same name, then a reference with a single ampersand substitutes the SCL
variable. To force the macro variable to be substituted, reference it with two
ampersands (&&). The following example demonstrates using a reference that contains
two ampersands:

dsname=’sasuser.class’;
call symput(’dsname’,’sasuser.houses’);
submit continue;

proc print data=&dsname;
run;
proc print data=&&dsname;
run;

endsubmit;

The program produces the following:

proc print data=sasuser.class;
run;
proc print data=sasuser.houses;
run;

Using Automatic Macro Variables
In addition to macro variables that you define in your programs, SAS software

provides a number of predefined macro variables for every SAS session or process.
These automatic macro variables supply information about the current SAS session or
process and about the host operating system on which the SAS session is running. For
example, you can use the automatic macro variable SYSSCP to obtain the name of the
current operating system. Automatic macro variables are documented in SAS Macro
Language: Reference.

When you use automatic macro variables, remember to use the appropriate routines
and functions to set and retrieve variable values. For example, consider the following
program statements. The first uses a macro variable reference:

Using Other SAS Software Products 4 Using Automatic Macro Variables 89

jobid="&sysjobid";

The second uses an SCL function:

jobid=symget(’sysjobid’);

The macro variable reference, designated by the & (ampersand), is evaluated when
the program is compiled. Thus, the identifier value for the job or process that compiles
the program is assigned to the variable JOBID. Assuming that the preceding two
statements were compiled by an earlier SAS process, if you want the JOBID variable to
contain the identifier for the current process, then you must use the second form
(without the &). The SYMGET function extracts the macro variable value from the
global symbol table at execution.

Note: The values that are returned by SYSJOBID and other automatic macro
variables depend on your host operating system. 4

90 Using Automatic Macro Variables 4 Chapter 7

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Component Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Component Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–495–0
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

