
93

C H A P T E R

8
SAS Object-Oriented
Programming Concepts

Introduction 94
Object-Oriented Development and the SAS Component Object Model 95

Classes 96

Relationships among Classes 96

Inheritance 96

Instantiation 97
Types of Classes 97

Abstract Classes 97

Models and Views 98

Metaclasses 98

Defining Classes 98

Generating CLASS Entries from CLASS Blocks 99
Generating CLASS Blocks from CLASS Entries 99

Referencing Class Methods or Attributes 99

Instantiating Classes 100

Methods 100

Defining Method Scope 102
Defining Method Names and Labels 102

Specifying a Name That Is Different from the Label 102

Using Underscores in Method Names 103

Specifying Parameter Types and Storage Types 103

Passing Objects as Arguments for Methods 104
Returning Values From Methods 105

Method Signatures 105

Signature Strings (SIGSTRINGs) 106

How Signatures Are Used 107

Altering Existing Signatures 107

Forward-Referencing Methods 107
Overloading Methods 108

Example: Different Parameter Types 108

Example: Different Numbers of Parameters 109

Defining One Implementation That Accepts Optional Parameters 111

Overloading and List, Object, and Numeric Types 111
Overriding Existing Methods 111

Defining Constructors 112

Overloading Constructors 112

Overriding the Default Constructor 113

Calling Constructors Explicitly 113
Specifying That a Method Is Not a Constructor 114

Implementing Methods Outside of Classes 115

Method Metadata 115

94 Introduction 4 Chapter 8

Attributes 116
Creating Attributes Automatically 116

Specifying Where an Attribute Value Can Be Changed 117

Setting Initial Values and the List of Valid Values 117

Associating Custom Access Methods with Attributes 118

Linking Attributes 118
Attribute Metadata 119

Accessing Object Attributes and Methods With Dot Notation 119

Syntax 119

Using Nested Dot Notation 120

Examples 121

What Happens When Attribute Values Are Set or Queried 122
Setting Attribute Values 123

Querying Attribute Values 124

Events and Event Handlers 125

System Events 126

Defining and Sending Events 126
Defining Event Handlers 126

Example 126

Event and Event Handler Metadata 128

Interfaces 128

Defining Interfaces 129
Example 129

Converting Version 6 Non-Visual Classes to Version 8 Classes 131

Removing Global Variables 132

Declaring Variables 133

Converting Labels and LINK Statements 133

Converting CALL SEND to Dot Notation 134
Converting Class Definitions with CREATESCL 134

Using Instance Variables 135

Introduction
Object-oriented programming (OOP) is a technique for writing computer software.

The term object oriented refers to the methodology of developing software in which the
emphasis is on the data, while the procedure or program flow is de-emphasized. That
is, when designing an OOP program, you do not concentrate on the order of the steps
that the program performs. Instead, you concentrate on the data in the program and on
the operations that you perform on that data.

Advocates of object-oriented programming claim that applications that are developed
using an object-oriented approach

� are easier to understand because the underlying code maps directly to real-world
concepts that they seek to model

� are easier to modify and maintain because changes tend to involve individual
objects and not the entire system

� promote software reuse because of modular design and low interdependence
among modules

� offer improved quality because they are constructed from stable intermediate
classes

� provide better scalability for creating large, complex systems.

Object-oriented application design determines which operations are performed on
which data, and then groups the related data and operations into categories. When the

4 Object-Oriented Development and the SAS Component Object Model 95

design is implemented, these categories are called classes. A class defines the data and
the operations that you can perform on the data. In SCL, the data for a class is defined
through the class’s attributes, events, event handlers, and interfaces. (Legacy classes
store data in instance variables.) The operations that you perform on the data are
called methods.

Objects are data elements in your application that perform some function for you.
Objects can be visual objects that you place on the frame—for example, icons, push
buttons, or radio boxes. Visual objects are called controls; they display information or
accept user input.

Objects can also be nonvisual objects that manage the application behind the scenes;
for example, an object that enables you to interact with SAS data sets may not have a
visual representation but still provides you with the functionality to perform actions on
a SAS data set such as accessing variables, adding data, or deleting data. An object or
component is derived from, or is an instance of, a class. The terms object, component,
and instance are interchangeable.

Software objects are self-contained entities that possess three basic characteristics:

behavior a collection of operations that an object can perform on itself or on
other objects. Methods define the operations that an object can
perform. For example, you can use the _onGeneric method in
sashelp.classes.programHalt.class to trap all generic errors.

state a collection of attributes and their current values. Two of the
programHalt component’s attributes are stopExecution (which
determines whether the program continues to execute after the
program halt occurs) and dump (which contains the program-halt
information). You can set these values through SCL.

identity a unique value that distinguishes one object from another. This
identifier is referred to as its object identifier. The object identifier is
created by SCL when you instantiate an object with the _NEW_
operator. This identifier is also used as the first-level qualifier in
SCL dot notation.

This chapter describes how object-oriented techniques and related concepts are
implemented in SCL.

Object-Oriented Development and the SAS Component Object Model
The SAS Component Object Model (SCOM) provides a flexible framework for SCL

component developers. With SCOM, you can develop model components that
communicate with viewer components that are built with other SAS software (such as
SAS/AF and WebAF) or with software from other vendors.

A component in SCOM is a self-contained, reusable object that has specific
properties, including

� a set of attributes and methods
� a set of events that the object sends
� a set of event handlers that execute in response to various types of events
� a set of supported or required interfaces.

With SCL, you can design components that communicate with each other, using any
of the following processes:*

* Drag and drop operations can be defined only through SAS/AF software, not through SCL.

96 Classes 4 Chapter 8

Attribute linking
enabling a component to change one of its attributes when the value of another
attribute is changed.

Model/view communication
enabling a view (typically a visual control) to communicate with a model, based on
a set of common methods that are defined in an interface.

Event handling
enabling a component to send an event that another component can respond to by
using an associated event handler.

Classes form the foundation of the SCOM architecture by defining these attributes,
methods, events, event handlers and interfaces. There are two ways to construct a class
that uses the SAS Component Object Model:

� You can build a class with the Class Editor that is available in SAS/AF software.
� You can use SCL class syntax to construct a class.

This chapter provides detailed information about using SCL to create and modify
classes.

Classes
A class defines a set of data and the operations you can perform on that data.

Subclasses are similar to the classes from which they are derived, but they may have
different properties or additional behavior. In general, any operation that is valid for a
class is also valid for each subclass of that class.

Relationships among Classes
Classes that you define with SCL can support two types of relationships:
� inheritance
� instantiation.

Inheritance
Generally, the attributes, methods, events, event handlers, and interfaces that

belong to a parent class are automatically inherited by any class that is created from it.
One metaphor that is used to describe this relationship is that of the family. Classes
that provide the foundation for other classes are called parent classes, and classes that
are derived from parent classes are child classes. When more than one class is derived
from the same parent class, these classes are related to each other as sibling classes. A
descendent of a class has that class as a parent, either directly or indirectly through a
series of parent-child relationships. In object-oriented theory, any subclass that is
created from a parent class inherits all of the characteristics of the parent class that it
is not specifically prohibited from inheriting. The chain of parent classes is called an
ancestry.

4 Types of Classes 97

Figure 8.1 Class Ancestry

Class

Frame Widget All other objects...

All SCOM Models...

Selection
Model

Visual
Controls...

V6 Legacy
Widgets

Object

Whenever you create a new class, that class inherits all of the properties (attributes,
methods, events, event handlers, and interfaces) that belong to its parent class. For
example, the Object class is the parent of all classes in SAS/AF software. The Frame
and Widget classes are subclasses of the Object class, and they inherit all properties of
the Object class. Similarly, every class you use in a frame-based application is a
descendent of the Frame, Object, or Widget class, and thus inherits all the properties
that belong to those classes.

Instantiation
In addition to the inheritance relationship, classes have an instantiation or an “is a”

relationship. For example, a frame is an instance of the Frame class; a radio box
control is an instance of the Radio Box Control class; and a color list object is an
instance of the Color List Model class.

All classes are instances of the Class class. The Class class is a metaclass. A
metaclass collects information about other classes and enables you to operate on other
classes. For more information about metaclasses, see “Metaclasses” on page 98.

Types of Classes
Some SAS/AF software classes are specific types of classes.

� Abstract classes

� Models and views

� Metaclasses.

Abstract Classes
Abstract classes group attributes and methods that are common to several subclasses.

These classes themselves cannot be instantiated; they simply provide functionality for
their subclasses.

The Widget class in SAS/AF software is an example of an abstract class. Its purpose
is to collect properties that all widget subclasses can inherit. The Widget class cannot
be instantiated.

98 Defining Classes 4 Chapter 8

Models and Views
In SAS/AF software, components that are built on the SAS Component Object Model

(SCOM) framework can be classified either as views that display data or as models that
provide data. Although models and views are typically used together, they are
nevertheless independent components. Their independence allows for customization,
flexibility of design, and efficient programming.

Models are non-visual components that provide data. For example, a Data Set List
model contains the properties for generating a list of SAS data sets (or tables), given a
specific SAS library. A model may be attached to multiple views.

Views are components that provide a visual representation of the data, but they have
no knowledge of the actual data they are displaying. The displayed data depends on the
state of the model that is connected to the view. A view can be attached to only one
model at a time.

It may be helpful to think of model/view components as client/server components.
The view acts as the client and the model acts as the server.

For more information on interfaces, see “Interfaces” on page 128. For more
information on implementing model/view communication, refer to SAS Guide to
Applications Development and to the SAS/AF online Help.

Metaclasses
As previously mentioned, the Class class (sashelp.fsp.Class.class) and any

subclasses you create from it are metaclasses. Metaclasses enable you to collect
information about other classes and to operate on those classes.

Metaclasses enable you to make changes to the application at run time rather than
only at build time. Examples of such changes include where a class’s methods reside,
the default values of class properties, and even the set of classes and their hierarchy.

Metaclasses also enable you to access information about parent classes, subclasses,
and the methods and properties that are defined for a class. Specifically, through
methods of the Class class, you can

� retrieve information about an application, such as information about the
application’s structure, which classes are being used, and which legacy classes use
particular instance variables. Each class has a super class that is accessed by the
_getSuper method. Every class also maintains a list of subclasses that is accessed
with the _getSubclassList and _getSubclasses methods.

� list the instances of a class and process all of those instances in some way. Each
class maintains a list of its instances. You can use _getInstanceList and
_getInstances to process all the instances.

� create objects and classes at run time with the _new method. Instances of the
metaclass are other classes.

For more information about metaclasses, see the Class class in the SAS/AF online
Help.

Defining Classes
You can create classes in SCL with the CLASS block. The CLASS block begins with

the CLASS statement and ends with the ENDCLASS statement:

<ABSTRACT> CLASS class-name<EXTENDS parent-class-name>
<SUPPORTS supports-interface-clause>
<REQUIRES requires-interface-clause>
< / (class-optional-clause)>
<(attribute-statements)>

4 Defining Classes 99

<(method-declaration-statements)>
<(method-implementation-blocks)>

<(event-declaration-statements)>
<(eventhandler-declaration-statements)>

ENDCLASS;

The CLASS statement enables you to define attributes, methods, events, and event
handlers for a class and to specify whether the class supports or requires an interface.
The remaining sections in this chapter describe these elements in more detail.

The EXTENDS clause specifies the parent class. If you do not specify an EXTENDS
clause, SCL assumes that sashelp.fsp.object.class is the parent class.

Using the CLASS block instead of the Class Editor to create a class enables the
compiler to detect errors at compile time, which results in improved performance during
run time.

For a complete description of the CLASS statement, see “CLASS” on page 277. For a
description of using the Class Editor to define classes, refer to SAS Guide to
Applications Development.

Generating CLASS Entries from CLASS Blocks
Suppose you are editing an SCL entry in the Build window and that the entry

contains a CLASS block. For example:

class Simple extends myParent;
public num num1;
M1: method n:num return=num / (scl=’work.a.uSimple.scl’);
M2: method return=num;

num1 = 3;
dcl num n = M1(num1);
return (n);

endmethod;
endclass;

To generate a CLASS entry from the CLASS block, issue the SAVECLASS command or
select

File I Save as class...

Generating the CLASS entry from the CLASS block is equivalent to using the Class
Editor to create a CLASS entry interactively.

Generating CLASS Blocks from CLASS Entries
The CLASS block is especially useful when you need to make many changes to an

existing class. To make changes to an existing class, use the CREATESCL function to
write the class definition to an SCL entry. You can then edit the SCL entry in the Build
window. After you finish entering changes, you can generate the CLASS entry by
issuing the SAVECLASS command or selecting

File I Save as class...

For more information, see “CREATESCL” on page 316.

Referencing Class Methods or Attributes
Any METHOD block in a class can refer to methods or attributes in its own class

without specifying the _SELF_ system variable (which contains the object identifier for

100 Instantiating Classes 4 Chapter 8

the class). For example, if method M1 is defined in class X (and it returns a value),
then any method in class X can refer to method M1 as follows:

n=M1();

You do not need to use the _SELF_ system variable:

n=_SELF_.M1();

Omitting references to the _SELF_ variable (which is referred to as shortcut syntax)
makes programs easier to read and maintain. However, if you are referencing a method
or attribute that is not in the class you are creating, you must specify the object
reference.

Instantiating Classes
To instantiate a class, declare a variable of the specific class type, then use the

NEW operator. For example:

dcl mylib.classes.collection.class C1;
C1 = _new_ Collection();

You can combine these two operations as follows:

dcl mylib.classes.collection.class C1 = _new_ Collection();

The _NEW_ operator combines the actions of the LOADCLASS function, which loads a
class, with the _new method, which initializes the object by invoking the object’s _init
method.

You can combine the _NEW_ operator with the IMPORT statement, which defines a
search path for references to CLASS entries, so that you can refer to these entries with
one or two-level names instead of having to use a four-level name in each reference.

For example, you can use the following statements to create a new collection object
called C1 as an instance of the collection class that is stored in
mylib.classes.collection.class:

/* Collection class is defined in */
/* the catalog MYLIB.MYCAT */

import mylib.mycat.collection.class;
/* Create object C1 from a collection class */
/* defined in MYLIB.MYCAT.COLLECTION.CLASS */

declare Collection C1=_new_ Collection();

For more information, see “_NEW_” on page 563 and “LOADCLASS” on page 525.

Methods

Methods define the operations that can be executed by any component that you
create from that class. In other words, methods are how classes (and instances of those
classes) do their work.

Methods can be declared in CLASS blocks. To declare a method, include the following
METHOD statement in your CLASS block:

label : <scope> METHOD <parameter-list></(method-options)>;

The statements that implement the method can either follow the declaration, or they
can reside in a separate SCL entry.

4 Methods 101

Methods are implemented in METHOD blocks. A METHOD block begins with the
METHOD statement, includes the SCL code that implements the method, and then
ends with the ENDMETHOD statement.

label : <scope> METHOD <parameter-list>
<OPTIONAL=parameter-list>

<ARGLIST=parm-list-id |REST=rest-list-id>
RETURN=limited-data-type
</ (method-options)>;

. . .SCL statements that implement the method. . .

ENDMETHOD;

If your program is an object-oriented program, the METHOD blocks are contained
either in the CLASS block or in a USECLASS block that is stored in a separate SCL
entry from the CLASS block. To store the method implementation in a separate SCL
entry, when you declare the method in the CLASS block, you specify (with the
SCL=entry-name option) the name of another SCL entry that contains the method
implementation.

For example, the Add method can be implemented in the CLASS block as follows:

class Arithmetic;
add: method n1 n2:num;

return(n1 + n2);
endmethod;

endclass;

If you want to implement the Add method in a separate SCL entry, then the CLASS
block would contain only the method declaration:

class Arithmetic;
add: method n1 n2:num / (scl=’work.a.b.scl’);

endclass;

The work.a.b.scl entry would contain a USECLASS block that implements the Add
method:

useclass Arithmetic;
add: method n1 n2: num;

return (n1 + n2);
endmethod;

enduseclass;

See “METHOD” on page 540 for a complete description of implementing methods
with the METHOD statement. See Chapter 2, “The Structure of SCL Programs,” on
page 9; “Implementing Methods Outside of Classes” on page 115; and “USECLASS” on
page 698 for more information about implementing methods in USECLASS blocks.

Note: The method options that you specify in the CLASS block can also be specified
in the USECLASS block. Any option that is included in the CLASS block and is used to
specify a nondefault value must be repeated in the USECLASS block. For example, if
you specify State=’O’ or Signature=’N’ in the CLASS block, then you must repeat
those options in the USECLASS block. However, the SCL option will be ignored in the
USECLASS block. 4

For compatibility with Version 6, you can also define METHOD blocks in a separate
SCL entry outside of CLASS and USECLASS blocks. However, such an application is
not a strictly object-oriented application. For these methods, SCL will not validate
method names and parameter types during compile time. See “Defining and Using

102 Defining Method Scope 4 Chapter 8

Methods” on page 13 for more information about methods that are not declared or
implemented within a class.

Defining Method Scope
SCL supports variable method scope, which gives you considerable design flexibility.

Method scope can be defined as Public, Protected, or Private. The default scope is
Public. In order of narrowing scope,

� Public methods can be accessed by any other class and are inherited by subclasses.
� Protected methods can be accessed only by the same class and its subclasses; they

are inherited by subclasses.
� Private methods can be accessed only by the same class and are not inherited by

subclasses.

For example, the Scope class defines two public methods (m1 and m4), one private
method (m2), and one protected method (m3):

class Scope;
m1: public method n:num return=num

/(scl=’work.a.uScope.scl’);
m2: private method :char;

/(scl=’work.b.uScope.scl’);
m3: protected method return=num;

num = 3;
dcl num n = m1(num);
return(n);

endmethod;
m4: method

/(scl=’work.c.uScope.scl’);
endclass;

By default, method m4 is a public method.

Defining Method Names and Labels
Method names can be up to 256 characters long. Method labels can be up to 32

characters long. The name of a method should match its label whenever possible.

Note: A method that has the same name as the class that contains it is called a
constructor. See “Defining Constructors” on page 112 for more information. 4

Specifying a Name That Is Different from the Label
If you need the method name to be different from the method label, you must specify

either the METHOD or LABEL option in the METHOD statement. These options are
mutually exclusive.

Note: In dot notation, always use the method name. When implementing the
method, always use the method label. 4

For example, a label of MyMethod may be sufficient, but if you want the method
name to be MySortSalaryDataMethod, you can declare the method as follows:

class a;
MyMethod: public method sal:num

/(Method=’MySortSalaryDataMethod’, SCL=’work.a.a.scl’);

4 Specifying Parameter Types and Storage Types 103

endclass;

When you implement the method in work.a.a.scl, you identify the method by using
the method label as follows:

useclass a;
MyMethod: public method sal:num;

...SCL statements...
endmethod;

enduseclass;

You would reference this method in dot notation by using the method name as follows:

obj.MySortSalaryDataMethod(n);

Alternatively, you can specify the LABEL option. For example, to specify a method
name of Increase and a method label of CalculatePercentIncrease, you could declare the
method as follows:

class a;
Increase: public method

/(Label=’CalculatePercentIncrease’, SCL=’work.a.b.scl’);
endclass;

As in the previous example, you use the method label when you implement the method,
and you use the method name when you refer to the method in dot notation. In
work.a.b.scl, you would implement the method as follows:

useclass a;
CalculatePercentIncrease: public method;

...SCL statements...
endmethod;

enduseclass;

You would reference the method in dot notation as follows:

obj.Increase();

Using Underscores in Method Names

In Version 6, SAS/AF software used underscores to separate words in method names
(for example, _set_background_color_). The current convention is to use a lowercase
letter for the first letter and to subsequently uppercase the first letter of any joined
word (for example, _setBackgroundColor).

The embedded underscores have been removed to promote readibility. However, for
compatibility, the compiler recognizes _set_background_color_ as equivalent to
_setBackgroundColor. All Version 6 code that uses the old naming convention in CALL
SEND or CALL NOTIFY method invocations will still function with no modification.

Although it is possible for you to name a new method using a leading underscore, you
should use caution when doing so. Your method names may conflict with future
releases of SAS/AF software if SAS Institute adds new methods to the parent classes.

Specifying Parameter Types and Storage Types
When you define a method parameter, you must specify its data type. Optionally,

you can also specify its storage type: input, output, or update. The storage type
determines how methods can modify each other’s parameters:

104 Passing Objects as Arguments for Methods 4 Chapter 8

input The values of the caller’s parameters are copied into the
corresponding parameters in the called method. When the called
method’s ENDMETHOD statement is executed, any updated values
are not copied out to the caller’s parameters.

output The values of the caller’s parameters are not copied into the
corresponding parameters in the called method. When the called
method’s ENDMETHOD statement is executed, any updated values
are copied out to the caller’s parameters.

update The values of the caller’s parameters are copied into the
corresponding parameters in the called method. When the called
method’s ENDMETHOD statement is executed, any updated values
are copied out to the caller’s parameters.

The default parameter storage type is update.
You use the colon (:) delimiter to specify both the storage type and the data type for

each method parameter:

variables<:storage>:type

In the following example, the TypeStore class defines four methods:

import sashelp.fsp.collection.class;
class TypeStore;

m1: method n:num a b:update:char return=num
/(scl = ’work.a.uType.scl’);

m2: method n:output:num c:i:char
/(scl = ’work.b.uType.scl’);

m3: method s:i:Collection
/(scl = ’work.c.uType.scl’);

m4: method l:o:list
/(scl = ’work.d.uType.scl’);

endclass;

The parameter storage type and data type for each method are as follows:

Method Parameter Data Type Storage

m1 n numeric update

a character update

b character update

m2 n numeric output

c character input

m3 s Collection class input

m4 l list output

Note: If you specify the storage type for a parameter in the CLASS block, then you
must also specify the storage type in the USECLASS block. 4

Passing Objects as Arguments for Methods
An object can be declared as an INTERFACE object, a CLASS object, or a generic

OBJECT. If you declare an object as a generic OBJECT, then the compiler cannot
validate attributes or methods for that object. Validation is deferred until run time.

4 Method Signatures 105

Any error that results from using incorrect methods or attributes for the generic object
will cause the program to halt. For example, if you pass a listbox class to a method that
is expecting a collection object, the program will halt.

Object types are treated internally as numeric values. This can affect how you
overload methods. See “Overloading and List, Object, and Numeric Types” on page 111
for more information.

Returning Values From Methods
When you declare or implement a method, you can specify the data type of the return

value with the RETURN option. If the method has a RETURN option, then the method
implementation must contain a RETURN statement. The method’s RETURN statement
must specify a variable, expression, or value of the same type. In the following example,
method m1 returns a numeric value:

class mylib.mycat.myclass.class;
/* method declaration */
m1: method n:num c:char return=num;

/* method implementation */
return(n+length(c));

endmethod;
endclass;

Method Signatures
A method’s signature is a set of parameters that uniquely identifies the method to

the SCL compiler. Method signatures enable the compiler to check method parameters
at compile time and can enable your program to run more efficiently. All references to a
method must conform to its signature definition. Overloaded methods must have
signatures. (See “Overloading Methods” on page 108.)

A signature is automatically generated for each Version 8 method unless you specify
Signature=’N’ in the method’s option list. By default, Signature=’Y’ for all Version
8 methods. When you edit a class in the Build window, a signature is generated for
each method that is declared in that class when you issue the SAVECLASS command or
select

File I Save as class...

For all Version 6 methods, the default is Signature=’N’. See “Converting Version 6
Non-Visual Classes to Version 8 Classes” on page 131 for information about adding
signatures to Version 6 methods.

For example, the following method declarations show methods that have different
signatures:

Method1: method name:char number:num;
Method2: method number:num name:char;
Method3: method name:char;
Method4: method return=num;

Each method signature is a unique combination, varying by argument number and type:

� The first signature contains a character argument and a numeric argument.

� The second signature contains a numeric argument and a character argument.

� The third signature contains a single character argument.

� The fourth signature contains no arguments.

106 Method Signatures 4 Chapter 8

These four method signatures have the following sigstrings (see “Signature Strings
(SIGSTRINGs)” on page 106):

Method1 sigstring: (CN)V
Method2 sigstring: (NC)V
Method3 sigstring: (C)V
Method4 sigstring: ()N

The order of arguments also determines the method signature. For example, the
getColNum methods below have different signatures — (CN)V and (NC)V — because
the arguments are reversed. As a result, they are invoked differently, but they return
the same result.

/* method1 */
getColNum: method colname:char number:update:num;

number = getnitemn(listid, colname, 1, 1, 0);
endmethod;

/* method2 */
getColNum: method number:update:num colname:char;

number = getnitemn(listid, colname, 1, 1, 0);
endmethod;

You can also use the Class Editor to define method signatures. See SAS Guide to
Applications Development for more information.

Signature Strings (SIGSTRINGs)
Signatures are usually represented by a shorthand notation, called a sigstring. This

sigstring is stored in the method metadata as SIGSTRING.
A sigstring has the following compressed form:

(<argument-type-1 argument-type-2...argument-type-n>)return-type

Each argument type can be one of the following:

N Numeric

C Character string

L SCL list

O Generic object

O:<class-name>; Specific class. The class name should be preceded by O: and
followed by a semi-colon.

Return-type can be any of the above types, or V for void, which specifies that the
method does not return a value. The return type cannot be an array.

Arrays are shown by preceding any of the above types with a bracket ([). For
example, a method that receives a numeric value and an array of characters and
returns a numeric value would have the signature (N[C)N.

Here are some examples of method signatures:
� A method that does not receive any parameters and does not return a value: ()V.

This sigstring is the default signature.
� A method that returns a numeric value and that requires three parameters,

numeric, character, and list: (NCL)N.
� A method that does not have a return value and that requires an object of type

ProgramHalt and a numeric value:

(O:sashelp.classes.programHalt.class;N)V

4 Forward-Referencing Methods 107

� A method that returns a character value and receives a generic object and a
character value: (OC)C.

Note: Although the return type is listed as part of the sigstring, it is not used by
SCL to identify the method. Therefore, it is recommended that you do not define
methods that differ only in return type. See “Overloading Methods” on page 108 for
more information. 4

How Signatures Are Used
Signatures are most useful when SCL has to distinguish among the different forms

of an overloaded method. The SCL compiler uses signatures to validate method
parameters. When you execute your program, SCL uses signatures to determine which
method to call.

For example, suppose your program contains the following class:

class Sig;
/* Signature is (N)C */

M1: method n:num return=char /(scl=’work.a.uSig.scl’);
/* Signature is ([C)V */

M1: private method n(*):char /(scl=’work.a.uSig.scl’);
/* Signature is ()V */

M1: protected method /(scl=’work.a.uSig.scl’);
/* Signature is (NC)V

M1: method n:num c:char /(scl=’work.a.uSig.scl’);
endclass;

Suppose also that your program calls M1 as follows:

dcl char ch;
ch = M1(3);

SCL will call the method with the signature (N)C. If your program calls M1 like this:

M1();

SCL will call the method with the signature ()V.

Altering Existing Signatures
After defining a signature for a method and deploying the class that contains it for

public use, you should not alter the signature of the method in future versions of the
class. Doing so could result in program halts for users who have already compiled their
applications. Instead of altering an existing signature, you should overload the method
to use the desired signature, leaving the previous signature intact.

Forward-Referencing Methods
Within a CLASS block, if a method invokes a another method within that same class,

then either the second method must be implemented before the first, or the second
method must be declared with the Forward=’Y’ option.

Note: Any methods that are forward-referenced must be implemented in the class in
which they are declared. 4

In the following example, m1 calls m2, so the compiler needs to know the existence of
m2 before it can compile m1.

class mylib.mycat.forward.class;
m2: method n:num c:char return=num / (forward=’y’);

108 Overloading Methods 4 Chapter 8

m1: method n1 n2:num mylist:list return=num;
dcl num listLen = listlen(mylist);
dcl num retVal;
if (listLen = 1) then

retVal=m2(n1,’abc’);
else if (listLen = 2) then

retVal=m2(n2,’abc’);
endmethod;
m2:method n:num c:char return=num;

return(n+length(c));
endmethod;

endclass;

Overloading Methods
You can overload methods only for Version 8 classes. Method overloading is the

process of defining multiple methods that have the same name, but which differ in
parameter number, type, or both. Overloading methods enables you to

� use the same name for methods that are related conceptually.
� create methods that have optional parameters.

All overloaded methods must have method signatures because SCL uses the
signatures to differentiate between overloaded methods. If you call an overloaded
method, SCL checks the method arguments, scans the signatures for a match, and
executes the appropriate code. A method that has no signature cannot be overloaded.

If you overload a method, and the signatures differ only in the return type, the results
are unpredictable. The compiler will use the first version of the method that it finds to
validate the method. If the compiler finds the incorrect version, it generates an error. If
your program compiles without errors, then when you run the program, SCL will
execute the first version of the method that it finds. If it finds the incorrect version, SCL
generates an error. If it finds the correct version, your program might run normally.

Each method in a set of overloaded methods can have a different scope, as well.
However, the scope is not considered part of the signature, so you may not define two
methods that differ only by scope. (See “Defining Method Scope” on page 102.)

Example: Different Parameter Types
Suppose you have the following two methods, where each method performs a

different operation on its arguments:

CombineNumerics: public method a :num b :num
return=num;
endmethod;

CombineStrings: public method c :char d :char
return=char;
endmethod;

Assume that CombineNumerics adds the values of A and B, whereas CombineStrings
concatenates the values of C and D. In general terms, these two methods combine two
pieces of data in different ways based on their data types.

Using method overloading, these methods could become

Combine: public method a :num b :num
return=num;
endmethod;

Combine: public method c :char d :char

4 Overloading Methods 109

return=char;
endmethod;

In this case, the Combine method is overloaded with two different parameter lists:
one that takes two numeric values and returns a numeric value, and another that takes
two character parameters and returns a character value.

As a result, you have defined two methods that have the same name but different
parameter types. With this simple change, you do not have to worry about which
method to call. The Combine method can be called with either set of arguments, and
SCL will determine which method is the correct one to use, based on the arguments
that are supplied in the method call. If the arguments are numeric, SCL calls the first
version shown above. If the arguments are character, SCL calls the second version. The
caller can essentially view the two separate methods as one method that can operate on
different types of data.

Here is a more complete example that shows how method overloading fits in with the
class syntax. Suppose you create X.SCL and issue the SAVECLASS command, which
generates the X class. (Although it is true here, it is not necessary that the class name
match the entry name.)

class X;

Combine: public method a:num b:num return=num;
dcl num value;
value = a + b;
return value;

endmethod;

Combine: public method a:char b:char return=char;
dcl char value;
value = a || b;
return value;

endmethod;

endclass;

You can then create another entry, Y.SCL. When you compile and execute Y.SCL, it
instantiates the X class and calls each of the Combine methods.

import X.class;
init:

dcl num n;
dcl char c;
dcl X xobject = _new_ X();
n = xobject.Combine(1,2);
c = xobject.Combine("abc","def");
put n= c=;

The PUT statement produces

n=3 c=abcdef

Example: Different Numbers of Parameters

Another typical use of method overloading is to create methods that have optional
parameters.

110 Overloading Methods 4 Chapter 8

Note: This example shows two implementations of an overloaded method that each
accept different numbers of parameters. “Defining One Implementation That Accepts
Optional Parameters” on page 111 describes how to use the OPTIONAL option to create
a method with one implementation that accepts different numbers of parameters. 4

For example, suppose we have a method that takes a character string and a numeric
value, where the numeric value is used as a flag to indicate a particular action. The
method signature would be (CN)V.

M: public method c :char f :num;
if (f = 1) then

/* something */
else if (f = 2)

/* something else */
else

/* another thing */
endmethod;

If method M is usually called with the flag equal to one, you can overload M as (C)V,
where that method would simply include a call to the original M. The flag becomes an
optional parameter.

M: public method c: char;
M(c, 1);

endmethod;

When you want the flag to be equal to one, call M with only a character string
parameter. Notice that this is not an error. Method M can be called with either a single
character string, or with a character string and a numeric — this is the essence of
method overloading. Also, the call M(c,1); is not a recursive call with an incorrect
parameter list. It is a call to the original method M.

This example can also be turned around for cases with existing code. Assume that
we originally had the method M with signature (C)V and that it did all the work.

M: public method c: char;
/* A lot of code for processing C. */

endmethod;

Suppose you wanted to add an optional flag parameter, but did not want to change
the (possibly many) existing calls to M. All you need to do is overload M with (CN)V
and write the methods as follows:

M: public method c: char f: num;
Common(c, f);

endmethod;

M: public method c: char;
Common(c, 0);

endmethod;

Common: public method c: char f: num;
if (f) then

/* Do something extra. */
/* Fall through to same old code for */
/* processing S. */
endmethod;

4 Overriding Existing Methods 111

Notice that when you call M with a single character string, you get the old behavior.
When you call M with a string and a (non-zero) flag parameter, you get the optional
behavior.

Defining One Implementation That Accepts Optional Parameters
You can use the OPTIONAL option to create an overloaded method with only one

implementation that will accept different numbers of parameters, depending on which
arguments are passed to it.

In the following example, the method M1 will accept from two to four parameters:

class a;
M1: public method p1:input:num p2:output:char

optional=p3:num p4:char
/ (scl=’mylib.classes.old.scl’);

endclass;

SCL will generate three signatures for this method:

(NC)V

(NCN)V
(NCNC)V

Overloading and List, Object, and Numeric Types
Lists and objects (variables declared with either the OBJECT keyword or a specific

class name) are treated internally as Numeric values. As a result, in certain situations,
variables of type List, Numeric, generic Object, and specific class names are
interchangeable. For example, you can assign a generic Object or List to a variable that
has been declared as Numeric, or you can assign a generic Object to a List. This
flexibility enables Version 6 programs in which list identifiers are stored as Numeric
variables to remain compatible with Version 8.

The equivalence between objects, lists, and numeric variables requires that you
exercise caution when overloading methods with these types of parameters. When
attempting to match a method signature, the compiler first attempts to find the best
possible match by matching the most parameter types exactly. If no exact match can be
found, the compiler resorts to using the equivalence between List, generic Object, and
Numeric types.

For example, suppose you have a method M with a single signature (L)V. If you pass
a numeric value, a list, or an object, it will be matched, and method M will be called. If
you overload M with signature (N)V, then Numeric values will match the signature
(N)V, and List values will match the signature (L)V. However, List values that are
undeclared or declared as Numeric will now match the wrong method. Therefore, you
must explicitly declare them with the LIST keyword to make this example work
correctly. Also, if you pass an object, it will match both (L)V and (N)V, so the compiler
cannot determine which method to call and will generate an error message.

Overriding Existing Methods
When you instantiate a class, the new class (or subclass) inherits the methods of the

parent class. If you want to use the signature of one of the parent’s methods, but you
want to replace the implementation with your own implementation, you can override
the parent’s method. To override the implementation of a method, specify State=’O’ in
the method declaration and in the method implementation. Here is an example for a
class named State:

112 Defining Constructors 4 Chapter 8

class State;
_init: method / (state=’o’);

_super();
endmethod;

endclass;

Defining Constructors
Constructors are methods that are used to initialize an instance of a class. The

Object class provides a default constructor that is inherited for all classes. Unless your
class requires special initialization, you do not need to create a constructor.

Each constructor has the following characteristics:

� It has the same name as the class in which it is declared.

� It is run automatically when the class is instantiated with the _NEW_ operator. If
you do not create your own constructor, the default constructor is executed.

Note: Using the _NEW_ operator to instantiate a class is the only way to run
constructors. Unlike other user-defined methods, you cannot execute constructors
using dot notation. If you instantiate a class in any way other than by using the
NEW operator (for example, with the _NEO_ operator), constructors are not
executed. 4

� It is intended to run as an initializer for the instance. Therefore, only constructors
can call other constructors. A constructor cannot be called from a method that is
not a constructor.

� It cannot return a value; it must be void a method. The _NEW_ operator returns
the value for the new instance of the class; it cannot return a value from an
implicitly called constructor.

For example, you could define a constructor X for class X as follows:

class X;
X: method n: num;

put ’In constructor, n=’;
endmethod;

endclass;

You can instantiate the class as follows:

init:
dcl X x = _new_ X(99);

return;

The constructor is run automatically when the class is instantiated. The argument to
NEW, 99, is passed to the constructor. The output is

In constructor, n=99

Overloading Constructors
Like other methods, constructors can be overloaded. Any void method that has the

same name as the class is treated as a constructor. The _NEW_ operator determines
which constructor to call based on the arguments that are passed to it. For example,
the Complex class defines two constructors. The first constructor initializes a complex
number with an ordered pair of real numbers. The second constructor initializes a
complex number with another complex number.

4 Defining Constructors 113

class Complex;
private num a b;

Complex: method r1: num r2: num;
a = r1;
b = r2;

endmethod;

Complex: method c: complex;
a = c.a;
b = c.b;

endmethod;
endclass;

This class can be instantiated with either of the following statements:

dcl Complex c = _new_(1,2);
dcl Complex c2 = _new_(c);

These statements both create complex numbers. Both numbers are equal to 1 + 2i.

Overriding the Default Constructor

The default constructor does not take any arguments. If you want to create your own
constructor that does not take any arguments, you must explicitly override the default
constructor. To override the default constructor, specify State=’o’ in the method
options list.

class X;
X: method /(state=’o’);

...SCL statements to initialize class X...
endmethod;

endclass;

Calling Constructors Explicitly

Constructors can be called explicitly only from other constructors. The _NEW_
operator calls the first constructor. The first constructor can call the second constructor,
and so on.

When a constructor calls another constructor within the same class, it must use the
SELF system variable. For example, you could overload X as follows:

class X;
private num m;

X: method n: num;
self(n, 1);

endmethod;

X: method n1: num n2: num;
m = n1 + n2;

endmethod;

endclass;

The first constructor, which takes one argument, calls the second constructor, which
takes two arguments, and passes in the constant 1 for the second argument.

114 Defining Constructors 4 Chapter 8

The following labeled section creates two instances of X. In the first instance, the m
attribute is set to 3. In the second instance, the m attribute is set to 100.

init:
dcl X x = _new_ X(1,2);
dcl X x2 = _new_ X(99);

return;

Constructors can call parent constructors by using the _SUPER operator. For
example, suppose you define class X as follows:

class X;
protected num m;

X: method n: num;
m = n * 2;

endmethod;

endclass;

Then, you create a subclass Y whose parent class is X. The constructor for Y overrides
the default constructor for Y and calls the constructor for its parent class, X.

class Y extends X;
public num p;

Y: method n: num /(state=’o’);
_super(n);
p = m - 1;

endmethod;

endclass;

You can instantiate Y as shown in the following labeled section. In this example, the
constructor in Y is called with argument 10. This value is passed to the constructor in X,
which uses it to initialize the m attribute to 20. Y then initializes the p attribute to 19.

init:
dcl Y y = _new_ Y(10);
put y.p=;

return;

The output would be:

y.p=19

Note: As with other overridden methods that have identical signatures, you must
explicitly override the constructor in Y because there is a constructor in X that has the
same signature. 4

Specifying That a Method Is Not a Constructor
The compiler automatically treats as a constructor any void method that has the

same name as the class. If you do not want such a method to be treated as a
constructor, you can specify constructor=’n’ in the method declaration.

class X;
X: method /(constructor=’n’);

put ’Is not constructor’;

4 Method Metadata 115

endmethod;
endclass;

init:
dcl X x = _new_ X();
put ’After constructor’;
x.x();

return;

This will result in the following output:

After constructor
Is not constructor

Implementing Methods Outside of Classes
You can define the implementation of methods outside the SCL entry that contains

the CLASS block that defines the class. This feature enables multiple people to work on
class methods simultaneously.

To define class methods in a different SCL entry, use the USECLASS statement
block. The USECLASS block binds methods that it contains to the class that is specified
in the USECLASS statement. The USECLASS statement also enables you to define
implementations for overloading methods. (See “Overloading Methods” on page 108.)

Method implementations inside a USECLASS block can include any SCL functions
and routines. However, the only SCL statements that are allowed in USECLASS blocks
are METHOD statements.

The USECLASS block binds the methods that it contains to a class that is defined in
a CLASS statement block or in the Class Editor. Therefore, all references to the methods
and the attributes of the class can bypass references to the _SELF_ variable completely
as long as no ambiguity problem is created. Because the binding occurs at compile time,
the SCL compiler can detect whether an undefined variable is a local variable or a class
attribute. See also “Referencing Class Methods or Attributes” on page 99.

Method Metadata
SCL stores metadata for maintaining and executing methods. You can query a class

(or a method within a class) to view the method metadata. For example, to list the
metadata for a specific method, execute code similar to the following:

init:
DCL num rc metadata;
DCL object obj;

obj=loadclass(’class-name’);

/* metadata is a numeric list identifier */
rc=obj._getMethod(’getMaxNum’,metadata);
call putlist(metadata,’’,2);

return;

116 Attributes 4 Chapter 8

Attributes
Attributes are the properties that specify the information associated with a

component, such as its name, description, and color. Attributes determine how a
component will look and behave. For example, the Push Button Control has an
attribute named label that specifies the text displayed on the button. You can create
two instances of the Push Button Control on your frame and have one display “OK” and
the other display “Cancel,” simply by specifying a different value for the label
attribute of each instance.

You can define attributes with attribute statements in CLASS blocks:

scope data-type attribute-name/(attribute-options);

Attribute names can be up to 256 characters long.
Like methods, attributes can have public, private, or protected scope. The scope

works the same for attributes as it does for methods. See “Defining Method Scope” on
page 102 for more information.

Examples of attribute options include the attribute description, whether the attribute
is editable or linkable, custom access methods that are to be executed when the
attribute is queried or set, and whether the attribute sends events.

If an attribute is editable, you can use the Editor option to specify the name of the
FRAME, SCL, or PROGRAM entry that will be used to edit the attribute’s value. This
entry is displayed and executed by the Properties window when the ellipsis button (...)
is selected.

To specify an attribute’s category, use the Category attribute option. The category is
used for grouping similar types of options in the Class Editor or for displaying related
attributes in the Properties window. You can create your own category names.
Components that are supplied by SAS may belong to predefined categories.

Creating Attributes Automatically
With the Autocreate option, you can control whether storage for list attributes and

class attributes is automatically created when you instantiate a class. By default,
Autocreate=’Y’, which means that SCL automatically uses the _NEW_ operator to
instantiate class attributes and calls the MAKELIST function to create the list
attributes.

Note: Even when Autocreate=’Y’, storage is not created for generic objects
because the specific class is unknown. 4

If you specify Autocreate=’N’, then storage is not automatically created, and it is
your responsibility to create (and later destroy) any list attributes or class attributes
after the class is instantiated.

import sashelp.fsp.collection.class;
class myAttr;

public list myList / (autocreate=’N’);
public list listTwo; /* created automatically */
public collection c1; /* created automatically */
public collection c2 / (autocreate=’N’);

endclass;

4 Setting Initial Values and the List of Valid Values 117

Specifying Where an Attribute Value Can Be Changed
An attribute’s scope and the value of its Editable option determines which methods

can change an attribute’s value.
� If the scope is public and Editable=’Y’, then the attribute can be accessed (both

queried and set) from any class method as well as from a frame SCL program.
� If the scope is public and Editable=’N’, then the attribute can only be queried

from any class method or frame SCL program. However, only the class or
subclasses of the class can modify the attribute value.

� If the scope is protected and Editable=’N’, then the class and its subclasses can
query the attribute value, but only the class itself can set or change the value. A
frame SCL program cannot set or query the value.

� If the scope is private and Editable=’N’, then the attribute value can be queried
only from methods in the class on which it is defined, but it cannot be set by the
class. Subclasses cannot access these attributes, nor can a frame SCL program.
This combination of settings creates a private, pre-initialized, read-only constant.

Setting Initial Values and the List of Valid Values
Unless you specify otherwise, all numeric attributes are initialized to missing values,

and all character attributes are initialized to blank strings. You can use the initialValue
attribute option to explicitly initialize an attribute. For example:

class myAttr;
public num n1 / (initialvalue = 3);
public list list2 / (initialvalue = {1, 2, ’abc’, ’def’};

endclass;

Explicitly initializing attribute values improves the performance of your program.
You can use the ValidValues attribute option to specify a list of values that the

attribute can have. This list is used as part of the validation process that occurs when
the value is set programmatically by using either dot notation or the _setAttributeValue
method.

If you specify the ValidValues option and the InitialValue option, the value that you
specify with the InitialValue option must be included in the values that you specify with
the ValidValues option.

In the list of valid values, you can use blanks to separate values, or, if the values
themselves contain blanks, use a comma or a slash (/) as the separator. For example:

class business_graph_c;
public char statistic

/ (ValidValues=’Frequency/Mean/Cumulative Percent’,
InitialValue=’Mean’);

public char highlightEnabled
/ (ValidValues=’Yes No’,

InitialValue=’Yes’);
endclass;

You can also specify an SCL or SLIST entry to validate values. For more information
on how to use an SCL entry to perform validation, refer to SAS Guide to Applications
Development.

118 Associating Custom Access Methods with Attributes 4 Chapter 8

Associating Custom Access Methods with Attributes
A custom access method (CAM) is a method that is executed automatically when an

attribute’s value is queried or set using dot notation. When you query the value of an
attribute, SCL calls the _getAttributeValue method. When you set the value of an
attribute, SCL calls the _setAttributeValue method. These methods are inherited from
the Object class.

You can use the getCAM and setCAM attribute options to specify additional methods
that you want _getAttributeValue or _setAttributeValue to execute. For example:

class CAM;
public char A / (getCAM=’M1’);
public num B / (setCAM=’M2’);
protected M1: method c:char;

put ’In M1’;
endmethod;
protected M2: method b:num;

put ’In M2’;
endmethod;

endclass;

When the value of A is queried, _getAttributeValue is called, then M1 is executed.
When the value of B is set, _setAttributeValue is called, then M2 is executed.

CAMs always have a single signature and cannot be overloaded. The CAM signature
contains a single argument that is the same type as its associated attribute. A CAM
always returns a numeric value.

You should never call a CAM directly; instead, use the _getAttributeValue or
_setAttributeValue methods to call it automatically. To prevent CAMs from being called
directly, it is recommended that you define them as protected methods.

Linking Attributes
Attribute linking enables one component to automatically upate the value of one of

its attributes when the value of another component attribute is changed. You can link
attributes between components or within the same component. Only public attributes
are linkable.

To implement attribute linking, you need to identify attributes as either source
attributes or target attributes. You can identify source and target attributes either in
the Properties window or with SCL. To identify an attribute as a source attribute with
SCL, specify SendEvent=’Y’ in the attribute’s option list. To identity an attribute as a
target attribute, specify Linkable=’Y’ in the attribute’s option list.

You can then link the attributes (specify the LinkTo option) in the Properties window.
When SendEvent=’Y’, SAS/AF software registers an event on the component. For

example, the textColor attribute has an associated event named “textColor Changed”.
You can then register an event handler to trap the event and to conditionally execute
code when the value of the attribute changes.

If you change the SendEvent value from ’Y’ to ’N’, and if Linkable=’Y’, then you
must send the “attributeName Changed” event programmatically with the attribute’s
setCAM in order for attributes that are linked to this attribute to receive notification
that the value has changed. If the linked attributes do not receive this event, attribute
linking will not work correctly. In the previous example, the setCAM for the textColor
attribute would use the _sendEvent method to send the “textColor Changed” event.

Refer to SAS Guide to Applications Development for more information on attribute
linking.

4 Syntax 119

Attribute Metadata
SCL uses a set of attribute metadata to maintain and manipulate attributes. This

metadata exists as a list that is stored with the class. You can query a class (or an
attribute within a class) with specific methods to view attribute metadata. To list the
metadata for a specific attribute, execute code similar to the following:

init:
DCL num rc;
DCL list metadata;
DCL object obj;

obj=loadclass(’class-name’);

rc=obj._getAttribute(’attribute-name’,metadata);
call putlist(metadata,’’,3);

return;

Accessing Object Attributes and Methods With Dot Notation
SCL provides dot notation for directly accessing object attributes and for invoking

methods instead of using the SEND and NOTIFY routines. Thus, dot notation provides
a shortcut for invoking methods and for setting or querying attribute values. Using dot
notation reduces typing and makes SCL programs easier to read.

Using dot notation enhances run-time performance if you declare the object used in
the dot notation as an instance of a predefined class instead of declaring it as a generic
object. The object’s class definition is then known at compile time, enabling the SCL
compiler to verify the method and to access attributes at that time. Moreover, since dot
notation checks the method signature, it is the only way to access an overloaded
method. SEND does not check method signatures. It executes the first name-matched
method, and the program might halt if the method signature does not match.

Syntax
The syntax for dot notation is as follows:

object.attribute

or

object.method(<arguments>)

Where

object
specifies an object or an automatic system variable (for example, _SELF_). An
object must be a component in a FRAME entry or a variable that is declared as an
Object type in the SCL program. Automatic system variables like _SELF_ are
declared internally as Object type, so they do not have to be declared explicitly as
such in a program.

attribute
specifies an object attribute to assign or query. It can be of any data type,
including Array. If the attribute is an array, use the following syntax to reference
its elements:

120 Syntax 4 Chapter 8

object.attributeArray[i]

You can also use parentheses instead of brackets or braces when referencing the
array elements. However, if you have declared the object as a generic object, the
compiler interprets it as a method name rather than an attribute array. If you
have declared a type for the object, and an attribute and method have the same
name, the compiler still interprets the object as a method. To avoid this ambiguity,
use brackets when referencing attribute array elements.

method
specifies the name of the method to invoke. If an object is declared with a specific
class definition, the compiler can perform error checking on the object’s method
invocations.

If the object was declared as a generic object (with the OBJECT keyword), then
the method lookup is deferred until run time. If there is no such method for the
object, the program halts. If you declare the object with a specific definition, errors
such as this are discovered at compile time instead of at run time.

arguments
are the arguments passed to the method. Enclose the arguments in parentheses.
The parentheses are required whether or not the method needs any arguments.

You can use dot notation to specify parameters to methods. For example:

return-value = object.method (object.id);

However, if you use dot notation to specify an update or output parameter, then
SCL executes the _setAttributeValue method, which may produce side effects. See
“What Happens When Attribute Values Are Set or Queried” on page 122 for more
information.

Some methods may be defined to return a value of any SCL type. You can access this
returned value by specifying a variable in the left side of the dot notation. For example:

return-value = object.method (<arguments>);

or

if (object.method (<arguments>)) then ...

The return value’s type defaults to Numeric if it is not explicitly declared. If the
declared type does not match the returned type, and the method signature is known at
compile time, the compiler returns an error. Otherwise, a data conversion might take
place, or the program will halt at run time.

If you override an object’s INIT method, you must call _SUPER._INIT before you can
use dot notation to set attribute values or to make other method calls.

Dot notation is not available in the INPUT and PUT functions.
By default, your application halts execution if an error is detected in the dot notation

that is used in the application. You can control this behavior with the
HALTONDOTATTRIBUTE or NOHALTONDOTATTRIBUTE option in the CONTROL
statement. See “CONTROL” on page 302 for more information.

Using Nested Dot Notation
You can also use dot notation in nested form. For example,

value = object.attribute1.method1().attribute2;

is equivalent to the following:

dcl object object1 object2;
object1 = object.attribute1; /* attribute1 in object

4 Examples 121

is of OBJECT type */
object2 = object1.method1(); /* method1 in object1

returns an object */
value = object2.attribute2; /* assign the value of

attribute2 in object2
to the variable
’value’. */

You can also specify the nested dot notation as an l-value. For example,

object.attribute1.method1().attribute2 = value;

is equivalent to the following:

dcl object object1 object2;

object1 = object.attribute1;
object2 = object1.method1();
object2.attribute2 = value; /* assume ’value’ has

been initialized.
This would set
attribute2 in object2
to the value */

Examples

An application window contains a text entry control named clientName. The
following examples show how to use dot notation to invoke methods and to query and
assign attribute values. For example, the following statement uses dot notation to
invoke the _gray method of the control:

clientName._gray();

This is equivalent to

call send(’clientName’,’_gray’);

You can change the text color to blue, using dot notation to set the value of its
textColor attribute:

name.textColor=’blue’;

You can also use dot notation to query the value of an attribute. For example:

color=clientName.textColor;

You can use dot notation in expressions. You can use a method in an expression only if
the method can return a value via a RETURN statement in its definition. For example,
suppose you create a setTable method, which is a public method and accepts an input
character argument (the name of a SAS table). The method determines whether a SAS
table exists and uses the RETURN statement to pass the return code from the EXIST
function.

setTable: public method dsname:i:char(41) return=num;
rc = exist(dsname, ’DATA’);
return rc;

endmethod;

122 What Happens When Attribute Values Are Set or Queried 4 Chapter 8

Then you could use a statement like the following to perform actions that depend on the
value that the setTable method returned.

if (obj.setTable(’sasuser.houses’)) then
/* the table exists, perform an action */

else
/* the table doesn’t exist, */
/* perform another action */

The next example shows how to use dot notation with an object that you create in an
SCL program. Suppose class X is saved in the entry X.SCL, and the INIT section is
saved in the entry Y.SCL.

class x;
public num n;
m: public method n1: num n2: num return=num;

dcl num r;
r = n1 + n2;
/* return sum of n1 and n2 */
return r;

endmethod;
m: public method c1: char c2:char return=char;

dcl num s;
/* concatenate c1 and c2 */
s = c1 || c2;
return s;

endmethod;
endclass;

init:
dcl x xobj = _new_ x();
dcl num n;
dcl string s;
n = xobj.m(99,1);
s = xobj.m("abc","def");
put n= s=;
return;

If you compile and run Y.SCL, it produces

n=100 s=abcdef

What Happens When Attribute Values Are Set or Queried

When you use dot notation to change or query an attribute value, SCL translates the
statement to a _setAttributeValue method call (to change the value) or to a
_getAttributeValue method call (to query the value). As a result, defining the attribute
with a getCAM or setCAM method could produce side effects.

When you use dot notation to specify a parameter to a method, SCL executes the
_setAttributeValue method if the parameter is an update or output parameter. SCL
executes the _getAttributeValue method if the parameter is an input parameter.
However, if the object is declared as a generic object or if the method does not have a
signature, then all of the method’s parameters are treated as update parameters.
Therefore, SCL will execute the _setAttributeValue method even if the parameter is an
input parameter, which could execute a setCAM method and send an event.

4 What Happens When Attribute Values Are Set or Queried 123

Note: If you use dot notation to access a class attribute, program execution halts if
any error is detected while the _getAttributeValue or _setAttributeValue method is
running. Explicitly invoking the _getAttributeValue or _setAttributeValue method
allows the program to control the halt behavior. The _getAttributeValue or
_setAttributeValue method also enables you to check the return code from the method.
For example:

rc = obj._setAttributeValue (‘abc’);
if (rc) then do;

/* error detected in the _setAttributeValue method */
...more SCL statements...
end;

4

Setting Attribute Values
When you use dot notation to set the value of an attribute, SCL follows these steps:
1 Verify that the attribute exists.
2 Verify that the type of the attribute matches the type of the value that is being set.
3 Check whether the attribute value is in the ValidValues list. If the ValidValues

metadata is an SCL entry, it is executed first to get the list of values to check the
attribute value against.

4 Run the setCAM method, if it is defined, which gives users a chance to perform
additional validation and to process their own side effects.

Note: If the Editable metadata is set to No, the custom set method is not called
(even if it was defined for the attribute). 4

5 Store the object’s value in the attribute.
6 Send the “attributeName Changed” event if the SendEvent metadata is set to Yes.
7 sends the “contents Updated” event if the attribute is specified in the object’s

contentsUpdatedAttributes attribute. This event notifies components in a
model/view relationship that a key attribute has been changed.

124 What Happens When Attribute Values Are Set or Queried 4 Chapter 8

Figure 8.2 Flow of Control for _setAttributeValue

_setAttributeValue
executes

If attribute is
defined and is not accessed

outside its defined
scope

If attribute type is matched

rc=2; processing ends;
errorMessage attribute is set

rc=3; processing ends;
errorMessage attribute is set

rc=5; processing ends;
errorMessage attribute is set

rc=7; processing ends;
errorMessage attribute is set

rc=4 if CAM rc=4, otherwise,
rc=7; processing ends;
errorMessage attribute is set

rc=0; processing ends

If EDITABLE
attribute metadata item

= 'Yes'

If specified
VALID VALUES metadata

is working and exists
in the list

If no

No

No

No

No

No

If setCAM

fails to execute

No

processing ends
No

No

setCAM
executes

If setCAM exists

If

setCAM return

code <=0

Attribute value is set

If rc=0

rc=4;
errorMessage attribute is set

If SENDEVENT
attribute metadata

item = 'Yes'

'attribute Name Changed'
event is sent

_setAttributeValue checks the
contentsUpdatedAttributes attribute and sends
the 'contents updated' event if the attribute is listed

If object is a
visual control and it

is build time

rc=0
Object region is refreshed

RC (Return Code) Key

<0
0

1

2

3

4

5

7

Reserved for warning conditions returned from CAMs
successful

unsuccessful (an error condition); you can use the
return code to identify an error condition from a
Custom Access Method

attribute does not exist on the specified object or
cannot be accessed

type mismatch; the type of the passed value does not
match the value of the attribute you are trying to set

value passed to _setAttributeValue is not on attribute's
VALIDVALUES list or is otherwise invalid

cannot set attribute because its EDITABLE metadata
item is set to 'No.'

the Custom Access Method (CAM) failed to run

Querying Attribute Values

When you use dot notation to query the value of an attribute, SCL follows these steps:

4 Events and Event Handlers 125

1 Execute the getCAM method to determine the attribute value, if a getCAM method
has been defined.

2 Return the attribute value, if a value has been set.

3 Return the initial class value, if no attribute value has been set.

The following figure shows this process in detail.

Figure 8.3 Flow of Control for _getAttributeValue

_getAttributeValue
executes

If attribute is
defined and not accessed

outside its defined
scope

rc=2; processing ends

rc=3; processing ends

rc=7; processing ends

If attribute type
is matched

If getCAM
is defined

If no

No

No

NogetCAM
executes

Attribute value is returned

rc is propagated as the value
for the 2nd argument on the
_getAttributeValue call

Events and Event Handlers

Events alert applications when there is a change of state. Events occur when a user
action takes place (such as a mouse click), when an attribute value is changed, or when
a user-defined condition occurs. Events are essentially generic messages that are sent
to objects from the system or from SCL applications. These messages usually direct an
object to perform some action such as running a method.

Event handlers are methods that listen for these messages and respond to the them.
Essentially, an event handler is a method that determines which method to execute
after the event occurs.

SCL supports both system events and user-defined events.

126 System Events 4 Chapter 8

System Events
System events include user interface events (such as mouse clicks) as well as

“attribute changed” events that occur when an attribute value is updated. SCL
automatically defines system events for component attributes when those attributes are
declared.

SCL can also automatically send system events for you when a component’s attribute
is changed. If you want “attribute changed” events to be sent automatically, specify
SendEvent=’Y’ in the options list for the attribute.

If you want an action to be performed when the system event occurs, then you need
to define the event handler that you want to be executed when the event occurs. You
define event handlers for system events in the same way that you define them for
user-defined events. See “Defining Event Handlers” on page 126 for more information.

Defining and Sending Events
You can create user-defined events through the Properties window in the Class

Editor or with event declaration statements in CLASS blocks.

EVENT event-name</(event-options)>;

Event names can be up to 256 characters long.
For the event options, you can specify the name of the method that handles the event

and when an object should send the event. Events can be sent automatically either
before (specify Send=’Before’) or after (Send=’After’) a method executes or they can
be programmed manually (’Manual’) with SCL. New events default to ’After’. You
must specify a method name for events that are to be sent automatically.

After an event is defined, you can use the _sendEvent method to send the event:

object._sendEvent("event-name"<, event-handler-parameters>);

For a complete description of _sendEvent, refer to the SAS/AF online Help.

Defining Event Handlers
You can define event handlers with event handler declaration statements in CLASS

blocks.

EVENTHANDLER event-handler-name</(event-handler-options)>;

As part of the event handler options, you can specify the name of the event, the name
of the method that handles the event, and the name of the object that generates the
event (the sender). As the sender, you can specify ’_SELF_’ or ’_ALL_’. When
Sender=’_SELF_’, the event handler listens only to events from the class itself. When
Sender=’_ALL_’, the event handler listens to events from any other class.

Using the _addEventHandler method, you can dynamically add a sender to trigger
the event. For a complete description of _addEventHandler, refer to the SAS/AF online
Help.

For more information about defining event handlers, see “CLASS” on page 277.

Example
The following class defines one user-defined event, myEvent, and the event handler

for this event, M2. When this class is created, SCL also assigns the system event name
“n Changed” for the attribute n and registers the event name with the component.

4 Example 127

class EHclass;
public num n; /* system event */
event ’myEvent’ / (method=’M2’);
eventhandler M1 / (sender = ’_SELF_’,

event = ’n Changed’);
eventhandler M2 / (sender = ’_SELF_’,

event = ’myEvent’);

M1: method a:list;
put "Event is triggered by attribute n";

endmethod;

M2: method a:string n1:num n2:num;
put "Event is triggered by _sendEvent";
put a= n1= n2=;

endmethod;
endclass;

When the value of the attribute n is changed, the system automatically sends the “n
Changed” event, and method M1 is executed. Method M2 is not executed until myEvent
is sent with the _sendEvent method.

The next class, EHclass1, defines a second event handler, M3, that is also executed
when myEvent is sent.

class EHclass1;
/* Sender=’*’ means that the sender */
/* is determined at run time. */
eventhandler M3 / (sender = ’*’, event=’myEvent’);
M3: method a:string n1:num n2:num;

put "Event myEvent is defined in another class";
put "that is triggered by _sendEvent.";
put a= n1= n2=;

endmethod;
endclass;

In the following program, the system event “n Changed” is triggered when the value
of the n attribute is modified. The user-defined event myEvent is triggered with the
_sendEvent method.

import work.a.EHclass.class;
import work.a.EHclass1.class;
init:

dcl EHclass obj = _new_ EHclass();
dcl EHclass1 obj1 = _new_ EHclass1();

/* Trigger the system event. */
obj.n = 3;

/* Trigger the user-defined event. */
obj._sendEvent("myEvent", ’abc’, 3, 4);

return;

The order in which the two classes are instantiated determines the order in which
the event handlers for myEvent are executed. EHclass is instantiated first, so when
myEvent is sent, event handler M2 is executed first, followed by the event handler
defined in EHclass1, M3.

The output from this test program is

128 Event and Event Handler Metadata 4 Chapter 8

Event is triggered by attribute n
Event is triggered by _sendEvent
a=abc n1=3 n2=4
Event myEvent is defined in another class
that is triggered by _sendEvent.
a=abc n1=3 n2=4

Event and Event Handler Metadata
Events and event handlers are implemented and maintained with metadata. This

metadata exists as a list that is stored with the class. You can query a class (or an
event within a class) to view the event and event handler metadata. To list the
metadata for the an event, execute code similar to the following:

init:
DCL num rc;
DCL list metadata;
DCL object obj;

obj=loadclass(’class-name’);

rc=obj._getEvent(’event-name’,metadata);
call putlist(metadata,’’,3);
rc=obj._getEventHandler(’_self_’,’event-handler-name’,

’_refresh’,metadata);
call putlist(metadata,’’,3);

return;

Interfaces
Interfaces are groups of method declarations that enable classes to possess a

common set of methods even if the classes are not related hierarchically. An interface is
similar to a class that contains only method declarations.

A class can either support or require an interface. A class that supports an interface
must implement all of the methods in the interface. A class that requires an interface
can invoke any of the methods in the interface.

Suppose you have the following interface:

interface I1;
M1: method;

endinterface;

If class A supports the interface, then it must implement the method M1:

class A supports I1;
M1: method;

put ’Implementation of M1’;
endmethod;

endclass;

Class B requires the interface, which means that it can invoke the methods declared in
the interface.

class B requires I1;
M2: method;

4 Example 129

dcl I1 myObj = _new_ I1;
myObj.M1();

endmethod;
endclass;

Interfaces are especially useful when you have several unrelated classes that perform
a similar set of actions. These actions can be declared as methods in an interface, and
each class that supports the interface provides its own implementation for each of the
methods. In this way, interfaces provide a form of multiple inheritance.

A class can be defined to support or require one or more interfaces. If two
components share an interface, they can indirectly call each others’ methods via that
interface. For example, model/view component communication is implemented with the
use of interfaces. The model typically supports the interface, whereas the view requires
the same interface. The interfaces for the components must match before a model/view
relationship can be established. A class stores interface information as a property to
identify whether it supports or requires an interface. Refer to SAS Guide to
Applications Development for more information about model/view communication.

Although classes that support or require an interface are often used together, they are
still independent components and can be used without taking advantage of an interface.

Defining Interfaces
You define interfaces with the INTERFACE statement block:

INTERFACE interface-name
<EXTENDS interface-name>
</ (interface-optional-clause)>;

<limited-method-declaration-statements>

ENDINTERFACE;

For more information about defining interfaces, see Chapter 9, “Example: Creating An
Object-Oriented Application,” on page 137 and “INTERFACE” on page 486.

Example
The following INTERFACE block declares two methods for reading and writing data.

interface Reader;
Read: method return=string;
Write: method data:string;

endinterface;

Only the method declarations are given in the INTERFACE block. The method
implementations are given in any class that supports the interface.

For example, the Lst and Ddata classes both implement the Read and Write
methods. These classes support the Reader interface. In the Lst class, these methods
read and write items from and to an SCL list.

class Lst supports Reader;
dcl list L;
dcl num cur n;

/* Override the class constructor. */
/* Create a new list. */
Lst: method/(state=’o’);

130 Example 4 Chapter 8

L = makelist();
cur = 0;
n = 0;

endmethod;

Read method: return=string;
if (cur >= n) then do;

put ’End of file’;
return "";
end;

else do;
cur + 1;

/* Get the current item from the list. */
return getitemc(l,cur);

end;
endmethod;

Write method: c:string;
n + 1;

/* Insert a new item into the list. */
insertc(l,c,-1);

endmethod;

endclass;

The method implementations in the Ddata class read and write data from and to a SAS
table.

class Ddata supports Reader;
protected num fid;
protected num obs n;

/* Override the class constructor. */
/* Use the open function to open a SAS table. */
Ddata: method name: string mode: string;

fid = open(name, mode);
obs = 0;
n = 0;

endmethod;

Read method: return=string;
if (obs >= n) then do;

put ’End of file’;
return "";

end;
else do;

dcl string c;

/* Fetch an observation from the table. */
obs + 1;
fetchobs(fid, obs);

/* Get the contents of table column 1. */

4 Converting Version 6 Non-Visual Classes to Version 8 Classes 131

c = getvarc(fid, 1);
return c;

end;
endmethod;

Write method: c:string;
dcl num rc;

/* Add a new row to the table and */
/* write the contents of C into column 1. */
append(fid);
call putvarc(fid, 1, c);
rc = update(fid);
n + 1;

endmethod;

endclass;

Using the interface, you can read and write data without knowing the data source. In
the following example, the Read class implements method M, which calls the method
that was declared in the Reader interface. The interface determines which method
implementation is executed.

class Read;
M: method r:Reader;

/* Write a string to the data source, */
/* then read it back. */
r.write("abc");
put r.read();

endmethod;
endclass;

The following labeled program section reads and writes data to both a list and a SAS
table. This code passes a Lst class and a Ddata class to the Read class, which treats the
list and the table in the same way. The data is read and written transparently. The
Read class does not need to know what the actual implementation of the Reader is — it
only needs to know the interface.

init:
dcl Lst L = _new_ Lst();
dcl Ddata D = _new_Ddata("test","un");
dcl read R = _new_ read();

R.M(L);
R.M(D);

return;

Converting Version 6 Non-Visual Classes to Version 8 Classes

You do not need to convert Version 6 classes to Version 8 classes in order to run
programs from the previous versions. Version 6 classes are automatically loaded into
Version 8 formats when they are instantiated. Existing Version 6 SCL programs should
run normally in Version 8 environments.

132 Removing Global Variables 4 Chapter 8

However, you can use Version 8 SAS Component Object Model (SCOM) features to
make your programs more object-oriented, easier to maintain, and more efficient. Using
SCOM features also enables you to reuse model classes in the future development of
client/server applications.

To convert Version 6 model classes to Version 8 classes, you must modify the method
implementation files and regenerate the class files. To modify the method
implementation files, follow these steps:

1 Remove global variables. Declare them as private attributes or, if they are
referenced in only one method, declare them as local variables within that method.
See “Removing Global Variables” on page 132 for more information.

2 Declare all variables. See “Declaring Variables” on page 133 for more information.

3 Convert labels to method names and convert LINK statements to method calls.
Declare the labeled sections as private methods. If necessary, specify the
Forward=’Y’ option for the method. See “Converting Labels and LINK
Statements” on page 133 for more information.

4 Convert CALL SEND statements to dot notation. See “Converting CALL SEND to
Dot Notation” on page 134 for more information.

To regenerate the class files, follow these steps:

1 Use CREATESCL to convert Version 6 class files to Version 8 class files. See
“Converting Class Definitions with CREATESCL” on page 134 for more
information.

2 Convert instance variables to attributes, if appropriate. See “Using Instance
Variables” on page 135 for more information.

3 Make sure signatures are generated for all methods. The best way to ensure that
signatures are generated is to delete the method declarations from the class files
and to replace them with the METHOD blocks from the method implementation
files.

4 Change the class names specified in the CLASS statements if you do not want to
overwrite the existing Version 6 classes.

5 Issue the SAVECLASS command to generate the new Version 8 class.

Removing Global Variables
Remove all global variables from the Version 6 method implementation entries.

Convert them either to local variables through DECLARE or to private attributes in the
class definition file. For example, suppose that a Version 6 method implementation file
contains the variables N1, N2, C1 and C2 as shown:

length n1 n2 8;
length c1 c2 $200;

In this example, four attributes need to be added to mylib.classes.newclass.scl, as
follows:

Private num n1;
Private num n2;
Private char c1;
Private char c2;

After the attributes are added, issue the SAVECLASS command to generate the new
class.

4 Converting Labels and LINK Statements 133

Declaring Variables
Declare all of the variables in your program. Lists should be declared with the LIST

keyword rather than allowing them to default to a Numeric type. Objects should be
declared either as generic objects (with the OBJECT keyword) or as specific class
objects. You can use dot notation with an object only if it is declared as an object. Using
specific LIST and object declarations can avoid problems with overloading methods. For
more information, see “Overloading and List, Object, and Numeric Types” on page 111.

Whenever possible, classes should be declared with a specific class declaration such as

dcl work.a.listbox.class lboxobj;

Try to avoid using generic object declarations such as

dcl object lboxobj;

Also, the compiler cannot check method signatures or validate methods and attributes if
it does not know the specific class type. If the compiler is not able to do this checking
and validation at compile time, then SCL must do it at run time, which makes your
program less efficient.

For example, assume that you declare a generic object named SomeC that has a
method Get, which returns a numeric value. You also declare a class named XObj that
has a method M, which is overloaded as (N)V and (C)V. Suppose you need to pass the
return value of Get to the M method:

dcl object SomeC = _new_ someclass.class();
dcl work.a.xclass.class XObj = _new_ xclass.class();
XObj.M(SomeC.Get());

SomeC is declared as a generic object, so the compiler cannot determine what object it
contains at compile time. Even though there is a specific object assignment to SomeC,
the compiler cannot guarantee what type it will contain at any given point, because the
value could be changed elsewhere when the program runs.

Therefore, the compiler cannot look up the Get method to find that it returns a
Numeric value, and it cannot determine which method M in Xclass to call. This method
validation must be deferred until run time, when the return type of the Get method will
be known (because the actual call will have taken place and the value will have been
returned).

The problem can be remedied by declaring SomeC as a specific object:

dcl someclass SomeC = _new_ someclass.class();

If this is not possible, then you could declare a Numeric variable to hold the result of
the Get method, as shown in this example:

dcl object SomeC = _new_ someclass.class();
dcl xclass XObj = _new_ xclass.class();
dcl num n;
n = SomeC.Get();
XObj.M(n);

Even though the compiler cannot validate the Get method for the SomeC class, it can
validate the method name and parameter type for XObj.

Converting Labels and LINK Statements
The next step is to remove all link labels from the Version 6 method implementation

catalog entries. Convert them to private methods in the class definition file, and convert

134 Converting CALL SEND to Dot Notation 4 Chapter 8

the link to a method call. For example, suppose that myclass.classes.old.scl
contains the following:

m1: method;
link a1;

endmethod;

a1:
...SCL statements...

return;

To change the labeled section to a private method in mylib.classes.newclass.scl,
add the following:

a1: Private method;
...SCL statements...

endmethod;

If needed, you can also add parameters to the method. To change the link to a method
call, change the following:

m1: method;
a1();

endmethod;

In the old entry, the A1 labeled section is after the M1 method. In the new entry, the
labeled section has been converted to a method. However, you cannot call a method
before it is declared. To fix this problem, you must either move the A1 method before
the M1 method, or you can declare A1 with the Forward=’Y’ option:

a1: Private method / (Forward=’y’);
...SCL statements...

endmethod;

Converting CALL SEND to Dot Notation
The final step in modifying your method implementation files is converting CALL

SEND statements to METHOD calls that use dot notation.

Note: To use dot notation, the method that you specify must have a signature.
Therefore, you cannot convert CALL SEND statements to dot notation unless your class
files have been converted to Version 8 class files. Also, the object that you specify
should be declared as a specific class type to enable the compiler to validate method
parameters. 4

For example, suppose that a Version 6 program contains the following line:

call send(obj1,’m1’,p1);

Converting this line to dot notation results in

obj1.m1(p1);

Converting Class Definitions with CREATESCL
Assume that the Version 6 class is mylib.classes.oldclass.class and that the

method implementation file is mylib.classes.old.scl.

4 Using Instance Variables 135

1 Use CREATESCL to create an SCL entry that contains the following SCL
statements:

Init:
rc=createscl(’mylib.classes.oldclass.class’,

’mylib.classes.newclass.scl’);
return;

2 Issue the SAVECLASS command to generate the Version 6 class file
mylib.classes.newclass.class.

3 Open this entry in the Build window and modify the class definition as needed.
Reissue the SAVECLASS command to generate the new class file in Version 8
format.

Using Instance Variables
The object model in Version 6 uses instance variables. In Version 8, instance

variables have been replaced with attributes.
When a class is loaded, the class loader automatically converts Version 6 formats to

the Version 8 format. This process includes converting instance variables to public or
private attributes with the option IV, which specifies the name of the Version 6 instance
variable.

In the following example, the Version 6 instance variable ABC is converted to the
Version 8 attribute abc.

class IVclass;
public char abc / (iv=’ABC’);

endclass;

136 Using Instance Variables 4 Chapter 8

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Component Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Component Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–495–0
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

