
137

C H A P T E R

9
Example: Creating An
Object-Oriented Application

Introduction 137
Simple Class Syntax — Level Zero 137

Creating a Data Set Class — Level One 138

Class Data — Level One 139

The Data Set Class — Level One 139

Constructors — Level One 140
Using the Data Set Class — Level One 141

Extending Classes — Level Two 142

Access Modifiers — Level Two 143

The DDATA Class as a Subclass — Level Two 143

The FDATA Class — Level Two 144

Overloaded Methods — Level Two 145
Interfaces and Higher Levels of Abstraction — Level Three 146

Other Classes and Further Abstraction — Level Four 148

USECLASS — Level One 150

Using SCL Class Syntax with SAS/AF — Level Five 151

Flexibility — Level Five 153

Introduction
Version 8 SCL provides many object-oriented programming features such as class

and useclass syntax, method overloading, and interfaces. This tutorial demonstrates
how to use many of these new features by creating a class-based version of a simple
data input facility that is based on traditional SCL library functions.

The tutorial is organized in sections by level of difficulty, with Level Zero being the
most elementary and Level Five the most challenging. A beginner should work through
sections Zero, One, and Two. The remaining sections can then be reviewed as the user
progresses. For example, a beginner may want to return to the tutorial after gaining
additional experience with the basics. A user who is more experienced in
object-oriented programming may want to work through them at once. Level Five
should be reviewed by all users because it contains an example that shows how the SCL
class syntax can be used with SAS/AF software.

Simple Class Syntax — Level Zero
Before beginning the tutorial, you must have a clear understanding of a simple SCL

class. A CLASS statement enables you to use SCL to create a SAS/AF class and to
define all the properties for the class, including attributes, methods, events, and

138 Creating a Data Set Class — Level One 4 Chapter 9

interfaces. An SCL class is created with SCL class syntax. The simplest class is an
empty class, which is defined using the following code:

class x;
endclass;

Enter the above code in an SCL entry such as X.SCL and then create the class by using
the SAVECLASS command. You should now see a CLASS entry for X in the current
catalog.

Note: The name of the entry does not have to match the name of the class, but for
beginners this is the easiest way to name an entry. 4

To add functionality to this class, you can create a simple method by using the
following code:

class x;

m: method;
put ’Hello’;

endmethod;

endclass;

The PUT statement will write Hello to the SAS procedure output file or to a file that is
specified in the most recent FILE statement. To run this method, you need to create an
example of the class and call the method. In an SCL entry called Y.SCL, enter the
following code:

init:
dcl x x = _new_ x();
x.m();
return;

The _NEW_ operator is used to create an example of the class X and to assign it to the
variable x. The _NEW_ operator provides a faster and more direct way to create an
object by combining the actions of loading a class with LOADCLASS and initializing the
object with the _new method, which invokes the object’s _init method. You then call
method M using the object variable x in the dot notation expression x.m().

Note: dot notation provides a shortcut for invoking methods and for setting or
querying attribute values. Using dot notation reduces typing and makes SCL programs
easier to read. It also enhances run-time performance if you declare the object used in
the dot notation as an example of a predefined class instead of a generic object. The
object’s class definition is then known at compile time. Because dot notation checks the
method signature, it is the only way to access an overloaded method as illustrated in
“Overloaded Methods — Level Two” on page 145. 4

Compile Y.SCL, and then use the TESTAF command to run it. You should see the
following output:

Hello

Creating a Data Set Class — Level One

In this exercise you will read a simple SAS data set that contains two character
variables. You will learn how to open the data set, fetch an observation, copy a data set
character variable, and close the data set. The SCL functions that will be used are

4 The Data Set Class — Level One 139

� OPEN

� FETCH

� GETVARC

� CLOSE

You will build a class that encapsulates these operations so that they can be called as
methods on any given data set. Because of this, the class itself should represent a data
set.

Before you can begin converting these functions to class methods, you must create
the class data, as shown in the next section, “Class Data — Level One” on page 139.

Class Data — Level One
Class data is declared with the DCL statement by using the following code:

class x;
dcl num n;

endclass;

Here class X contains a numeric variable called n.
The DCL statement can be omitted when you provide a variable scope modifier such

as public, private or protected. Scope modifiers indicate how the variable is to be
accessed from locations outside the class. By default, the scope modifier is public, which
indicates that anyone can access the variable. Both private and protected scope
modifiers restrict access to the variable.

The Data Set Class — Level One
For the data set class, begin with the following class data:

DDATA class;
public-string-dname;
public-string-mode;
protected-num-fid;
protected-num-nvars; endclass;

where

dname is the name of the data set

mode is the access mode

fid is the file identifier that will be returned from the OPEN call

nvars is the number of variables in the data set.

In this case, public access is given to dname and mode, but access is restricted for fid
and nvars.

You will create one method for each of the SCL functions OPEN, FETCH, GETVARC,
and CLOSE. The following example shows how to use the FETCH function to take an
action that is based on the value of its return code:

read: method return=num;
dcl num rc;
rc = fetch(fid);
return rc;

endmethod;

140 Constructors — Level One 4 Chapter 9

You can use a function such as GETVARC directly in the IF statement. In this case, the
VARTYPE function is executed, and then the IF expression evaluates the return code to
determine whether to perform the conditional action. The following method takes a
parameter n, which represents the variable number, and returns the character variable
c from GETVARC.

cpy: method n: num return=string;
dcl string c = "";
if (vartype(fid, n) = ’C’) then

c = getvarc(fid, n);
return c;

endmethod;

CLOSE is used to close a data set as soon as it is no longer needed by the
application. The method in this example for CLOSE is

_term: method /(state=’O’);
if (fid) then close(fid);
_super();

endmethod;

This method closes the data set represented by fid. It also contains two items that refer
to the parent class of DDATA (State=’O’ and _super()). A parent class is the class from
which a particular class was extended or derived. In this case, DDATA was implicitly
extended from OBJECT.CLASS. Since OBJECT.CLASS contains a _term method, you
must indicate that you are overriding it in DDATA by specifying State=’O’. Because
OBJECT.CLASS is being overridden, to ensure that the _term method in
OBJECT.CLASS is still executed, use the function call _super().

Constructors — Level One
The method that will be used for opening the data set is called a constructor. A

constructor is a method that is used to instantiate a class and provides a way for
initializing class data. In order for a method to be a constructor, it must be a void
method (one that does not have a return value), and it must have the same name as the
class. Here is the constructor for DDATA:

ddata: method n: string m:string nv:num;
fid = open(n, m);
dname = n;
mode = m;
nvars = nv;

endmethod;

where n is a parameter containing the name of the data set, m is the input mode, and
nv is the number of variables.

This constructor method will be called when an example of the DDATA class is
created using the _NEW_ operator. For example, the following code creates an example
of the DDATA class representing the data set sasuser.x. The data set will be opened
in input mode and has two variables.

init:
dcl ddata d = _new_ ddata("sasuser.x", "i", 2);
return;

4 Using the Data Set Class — Level One 141

Using the Data Set Class — Level One

The entire data set class is

class ddata;

/* Data */
public string dname;
public string mode;
protected num fid;
protected num nvars;

/* Constructor method */
ddata: method n: string m:string nv:num;

fid = open(n, m);
dname = n;
mode = m;
nvars = nv;

endmethod;

/* FETCH method */
read: method return=num;

dcl num rc;
rc = fetch(fid);
return rc;

endmethod;

/* GETVARC method */
cpy: method n: num return=string;

dcl string c = "";
if (vartype(fid, n) = ’C’) then

c = getvarc(fid, n);
return c;

endmethod;

/* CLOSE method */
_term: method /(state=’O’);

if (fid) then close(fid);
_super();

endmethod;
endclass;

You can use this class as follows:

init:
dcl ddata d = _new_ ddata("sasuser.x", "i", 2);
dcl num more = ^d.read();
do while(more);

dcl string s s2;
s = d.cpy(1);
s2 = d.cpy(2);
put s s2;
more = ^d.read();

end;
d._term();

142 Extending Classes — Level Two 4 Chapter 9

return;

In this example, the data set sasuser.x has two character variables, which you read
and print until the end of the file is reached.

Now suppose that you create the following data set:

data sasuser.x;
input city $1-14;
length airport $10;
if city=’San Francisco’ then airport=’SFO’;
else if city=’Honolulu’ then airport=’HNL’;
else if city=’New York’ then airport=’JFK’;
else if city=’Miami’ then airport=’MIA’;
cards;
San Francisco
Honolulu
New York
Miami
;

The output from the program will be

San Francisco SFO
Honolulu HNL
New York JFK
Miami MIA

Extending Classes — Level Two

While designing the class structure, you might find that some classes share
functionality with other classes. In that case, you can extend classes by creating
subclasses to prevent duplication of functionality.

In “Constructors — Level One” on page 140, the DDATA class implicitly extended
OBJECT.CLASS. In fact, any class without an explicit EXTENDS clause in the CLASS
statement extends OBJECT.CLASS. To explicitly extend a class, add the EXTENDS
clause shown below:

class y extends x;
endclass;

In this case, class Y extends the class X. Alternatively, Y is a subclass of X, and X is the
parent class of Y.

This enables Y to share X’s functionality. For example, if the class X were

class x;
m: method;

put ’Hello’;
endmethod;

endclass;

and the class y were

class y extends x;
endclass;

then you could call the method M using an example of the class Y:

4 The DDATA Class as a Subclass — Level Two 143

init:
dcl y y = _new_ y();
y.m();
return;

Access Modifiers — Level Two
The access modifiers that we mentioned above – public, private and protected – can

now be explained. A variable (or method) that is declared as public can be accessed
anywhere. A variable (or method) that is declared as protected can be accessed only by
non-proper subclasses of the class in which its declared. Protected variables can be
accessed only from the class in which they are declared. This is also true for protected
variables that are accessed from the subclasses of those classes.

These modifiers restrict access to certain variables (or methods) that should not be
seen outside the class or class hierarchy in which they are declared. For example, there
is no need for any class outside the DATA class hierarchy to access the fid variable, so it
is declared as protected but could also be declared as private.

The DDATA Class as a Subclass — Level Two
To illustrate how subclassing works with the DDATA class, this exercise creates a

similar class for external data files. The following SCL functions will be used:
� FOPEN
� FREAD
� FGET
� FCLOSE

These SCL functions will be used to create a class called FDATA to represent an
external file. It is important to note similarities to the DDATA class. In particular, each
class will have a name, input mode, and file identifier, so a class will be created to store
this information. Then the subclasses DDATA and FDATA will be created from the
DATA class. The parent data class will be

class data;
public num type;
public string dname;
public string mode;
protected num fid;

data: method f: num n: string m:string;
fid = f;
dname = n;
mode = m;

endmethod;

endclass;

In addition to the name, mode and file id, a type variable is stored to indicate whether
FDATA is an external file or a SAS data set.

The constructor DATA will be called whenever an example of the DATA class is
created. It will also be called automatically whenever any subclasses of data are
created if the constructor in the subclass has not be overridden. If the constructor has

144 The FDATA Class — Level Two 4 Chapter 9

been overridden, you must use _super to call the parent constructor. You must also use
_super if the argument list that is used in the _NEW_ operator does not match the
argument list of the parent constructor. This will be the case for DDATA and FDATA.

To extend the DATA class, modify the DDATA CLASS statement, data declarations,
and constructor as follows:

class ddata extends data;

/* Class data */
protected num nvars;

/* Constructor method */
ddata: method n: string m:string nv:num;

fid = open(n, m);
_super(fid, n, m);
nvars = nv;
type = 1;

endmethod;

In this example, the DDATA constructor will call the data constructor via the _super
call. This sets the name, mode and file identifier that are stored in the parent class
data. The DDATA constructor still sets nvars and also sets the type field to indicate
that the file is a data set. The rest of the class will remain the same.

The FDATA Class — Level Two
The declaration and constructor of the FDATA class will be similar to those of the

DDATA class, as shown in the following:

class fdata extends data;

/* Constructor method */
fdata: method n: string m: string;

dcl string ref = "";
dcl num rc = filename(ref, n);
fid = fopen(ref, m);
_super(fid, n, m);
type = 2;

endmethod;

/* FREAD method */
read: method return=num;

dcl num rc = fread(fid);
return rc;

endmethod;

/* FGET method */
cpy: method n: num return=string;

dcl string c = "";
dcl num rc = fget(fid, c);
return c;

endmethod;

/* FCLOSE method */
_term: method /(state=’O’);

4 Overloaded Methods — Level Two 145

if (fid) then fclose(fid);
_super();

endmethod;
endclass;

Use FDATA to read an external class by instantiating it and looping through the data:

init:
dcl fdata f = _new_ fdata("some_file", "i");
dcl num more = ^f.read();
do while(more);

dcl string s s2;
s = f.cpy(1);
s2 = f.cpy(2);
put s s2;
more = ^f.read();

end;
f._term();
return;

This code assumes that the external file is formatted with each line containing two
character variables separated by a blank. For example:

Geoffrey Chaucer
Samuel Johnson
Henry Thoreau
George Eliot
Leo Tolstoy

Overloaded Methods — Level Two
Method overloading is the process of defining multiple methods that have the same

name, but which differ in parameter number, type, or both. Method overloading lets
you use the same name for methods that are related conceptually but take different
types or numbers of parameters.

For example, you may have noticed that the CPY method in FDATA has a numeric
parameter that apparently serves no useful purpose. You do not need to specify a
variable number for an external file. This parameter is used so that in the future when
you use interfaces, the CPY method in FDATA matches the one in DDATA. For now, the
parameter is not needed. One way of resolving this is to overload the CPY method by
creating another CPY method with a different parameter list, as shown in the following
code:

cpy: method return=string;
dcl string c="";
dcl num rc = fget(fid, c);
return c;

endmethod;

cpy: method n: num return=string;
return cpy();

endmethod;

In this example, the original CPY method ignores the parameter and calls a CPY
method that returns the character value. By doing this, you have defined two methods

146 Interfaces and Higher Levels of Abstraction — Level Three 4 Chapter 9

that have the same name but different parameter types. With this simple change, you
do not have to worry about which method to call.

The CPY method can be used as follows:

s = f.cpy();

Overloaded methods can be used any time you need to have multiple methods with the
same name but different parameter lists. For example, you may have several methods
that are conceptually related but which operate on different types of data, or you may
want to create a method with an optional parameter, as in the CPY example.

To differentiate between overloaded methods, the compiler refers to the method
signature, which is a list of the method’s parameter types. A method signature provides
a means of extending a method name, so that the same name can be combined with
multiple different signatures to produce multiple different actions. Method signatures
are created automatically when a method is added to a class and when the compiler is
parsing a method call. Method signatures appear as part of the information that the
Class Editor displays about a method.

Interfaces and Higher Levels of Abstraction — Level Three

The routines that use DDATA and FDATA are very similar. In fact, the set of
methods for each class is similar by design. The actual implementations of the methods
differ. For example, the CPY method in DDATA is different from the CPY method in
FDATA, but the basic concept of reading character data is the same. In effect, the
interface for both classes is essentially the same.

You can exploit this similarity to make it easier to use the two classes. In fact, you
can have one data loop that handles both types of classes by defining an SCL interface
for both classes. To define the interface, you generalize the functionality and create the
following SCL entry:

interface reader;
read: method return=num;
cpy: method n: num return=string;

endinterface;

Use SAVECLASS to create an interface entry with two abstract methods, READ and
CPY. The abstract methods are by definition the interface itself. Any class that
supports this interface will need to supply the implementations for these methods.

When you use the SAVECLASS command in an SCL entry that contains a CLASS
block, the class is generated and its CLASS entry is created. This is the equivalent of
using the Class Editor to interactively create a CLASS entry.

Once you have created the interface, you must modify the DDATA and FDATA
classes to support it. To do that, change the CLASS statements in each class as follows:

class ddata extends data supports reader;

and

class fdata extends data supports reader;

Since DDATA and FDATA contain READ and CPY methods, no other changes are
needed in the classes.

To use the new interface, you will create two helper classes. One is an iterator class
that will be used to abstract the looping process over both DDATA and FDATA. Use the
following code to create the two helper classes:

4 Interfaces and Higher Levels of Abstraction — Level Three 147

class iter;

private num varn nvars;
public reader r /(autocreate=’n’);

/* Constructor */
iter: method rdr: reader n: num;

varn = 1;
nvars = n;
r = rdr;

endmethod;

/* Check if there are more elements to iterate over */
more: method return=num;

dcl num more = ^r.read();
varn = 1;
return more;

endmethod;

/* Return the next element */
next: method return=string;

dcl string c = "";
c = r.cpy(varn);
varn + 1;
return c;

endmethod;

endclass;

Several things require explanation for this class. First, note that it has two private
variables, varn and nvars, to keep track of where it is in the iteration process.

It also has a variable r which is an interface type. Since we cannot create the
interface automatically when an example of ITER is created, we specify the
AUTOCREATE=’N’ option.

The iterator has three methods. In the first method, the constructor stores the reader
variable and the number of variables in the reader. A reader variable is any class that
supports the READER interface. The MORE method reads from the reader to check
whether there are any more elements. The NEXT method returns the next element.

The other helper class uses the iterator to loop over the data in a reader.

class read;

private iter i;

read: method r: reader;
i = _new_ iter(r, 2);

endmethod;

loop:method;
do while(i.more());
dcl string s s2;
s = i.next();
s2 = i.next();
put s s2;

end;

148 Other Classes and Further Abstraction — Level Four 4 Chapter 9

endmethod;

_term: method /(state=’O’);
i._term();
_super();

endmethod;

endclass;

The constructor will create a new iterator, and the LOOP method will use it to loop over
the data.

The SCL to use these classes is

init:
dcl string filename;
dcl fdata f;
dcl ddata d;
dcl read r;

/* Read an external file */
filename = "some_file";
f = _new_ fdata(filename, "i");
r = _new_ read(f);
r.loop();
r._term();

/* Read a dataset */
filename = "sasuser.x";
d = _new_ ddata(filename, "i", 2);
r = _new_ read(d);
r.loop();
r._term();
return;

This code will successively read an external file and a data set.

Other Classes and Further Abstraction — Level Four
Given the reader interface, you can now use other classes – even ones outside the

data class hierarchy – as readers, as long as they support the reader interface. Using
the abstract reader interface enables you to read from many different types of objects as
well.

For example, consider the following class, which uses SCL lists to maintain data:

class lst supports reader;
private list l;
private num nvars;
private num nelmts;
private num cur;

/* Constructor */
lst: method n:num;

l = makelist();
nvars = n;
nelmts = 0;

4 Other Classes and Further Abstraction — Level Four 149

cur = 1;
endmethod;

/* Copy method */
cpy: method n: num return=string;

dcl string c = "";
if (cur <= nelmts) then do;

c = getitemc(l, cur);
cur + 1;

end;
return c;

endmethod;

/* Read method */
read: method return=num;

if (cur > nelmts) then
return 1;

else
return 0;

endmethod;

/* Add an element to the list */
add: method c:string;

nelmts + 1;
setitemc(l, c, nelmts, ’Y’);

endmethod;

/* Add two elements to the list */
add: method c1:string c2:string;

add(c1);
add(c2);

endmethod;

/* Terminate the list */
_term: method /(state=’O’);

if (l) then dellist(l);
_super();

endmethod;
endclass;

This class represents a list, and because it supports the READER interface, it can be
read in the same way as the DDATA and FDATA classes.

The SCL for reading from the list is

init:
dcl lst l;
dcl read r;
l = _new_ lst(2);

/* Notice the overloaded add method */
l.add("123", "456");
l.add("789", "012");
l.add("345", "678");

/* Create a read class and loop over the data */

150 USECLASS — Level One 4 Chapter 9

r = _new_ read(l);
r.loop();

r._term();
return;

The output for this program will be

123 456
789 012
345 678

USECLASS — Level One
This section presents the USECLASS statement and is intended for those users who

are unfamiliar with USECLASS. It is not required for the remainder of the tutorial.
A USECLASS statement binds methods that are implemented within it to the

specified class definition. USECLASS allows a class’s method implementations to reside
in different entries other than the class declaration’s entry. This is helpful if a class is
complex enough to require several developers to write its methods.

The DDATA class will be modified to use USECLASS. Although this class is certainly
not complex enough to require USECLASS, it illustrates its use.

First, rewrite the class specification, using the following code:

class ddata;

/* Data */
public string dname;
public string mode;
protected num fid;
protected num nvars;

/* Constructor method */
ddata: method n: string m:string nv:num /

(scl=’sasuser.a.constr.scl’);

/* FETCH method */
read: method return=num /

(scl=’sasuser.a.read.scl’);

/* GETVARC method */
cpy: method n: num return=string /

(scl=’sasuser.a.cpy.scl’);

/* CLOSE method */
_term: method /

(state=’O’, scl=’sasuser.a.trm.scl’);
endclass;

The method implementations are removed, and the method declaration statements are
modified to indicate which SCL entry contains each method implementation. This new
class specification should be compiled with the SAVECLASS command.

Next, create the method implementations in each entry. These should be compiled
with the COMPILE command, not with SAVECLASS. SASUSER.A.CONSTR.SCL
should contain

4 Using SCL Class Syntax with SAS/AF — Level Five 151

useclass ddata;

/* Constructor method */
ddata: method n: string m:string nv:num;

fid = open(n, m);
dname = n;
mode = m;
nvars = nv;

endmethod;

enduseclass;

SASUSER.A.READ.SCL should contain

useclass ddata;

/* FETCH method */
read: method return=num;

dcl num rc;
rc = fetch(fid);
return rc;

endmethod;

enduseclass;

SASUSER.A.CPY.SCL should contain

useclass ddata;

/* GETVARC method */
cpy: method n: num return=string;

dcl string c = "";
if (vartype(fid, n) = ’C’) then

c = getvarc(fid, n);
return c;

endmethod;

enduseclass;

SASUSER.A.TRM.SCL should contain

useclass ddata;

/* CLOSE method */
_term: method /(state=’O’);

if (fid) then close(fid);
_super();

endmethod;
enduseclass;

Using SCL Class Syntax with SAS/AF — Level Five

So far you have created stand-alone SCL classes. SCL class syntax can be used to
create SAS/AF visual objects.

152 Using SCL Class Syntax with SAS/AF — Level Five 4 Chapter 9

This exercise will extend the SAS/AF List Box class. The readers that were
previously developed in this tutorial will be used to read data that will be used to
initialize the items in the List Box.

To extend the List Box class, you must write a class to extend List Box and modify
the READ class that was created in “Other Classes and Further Abstraction — Level
Four” on page 148. The READ class will then be able to pass the new class to the list
box to use for initializing the item list instead of having it simply print the character
data after reading it.

You must create a new interface and make a minor modification to the LOOP method
in READ.

The interface has a single method, CALLBACK:

interface call;
callback: method s:string;

endinterface;

The modified LOOP method in READ is

loop: method caller:call;
do while(i.more());

caller.callback(i.next());
end;

endmethod;

The method now takes a CALL interface parameter and calls its CALLBACK method.

Note: You do not specify the implementation of a method in an interface; you simply
supply the name and parameter list. 4

It is not necessary to know what the implementation for CALLBACK is at this point,
only that you call it in the read loop and pass a character value to it. Whatever class
supports the interface will supply the implementation for CALLBACK.

Now, create the extended List Box class (depending on which version of SAS you have,
you may need to create an empty MLIST class first in order for the following to work).

import sashelp.classes;
class mlist extends listbox_c supports call;

/* Local item list */
private list l;

/* Set method */
set: method r: read;

l = makelist();
r.loop(_self_);

endmethod;

/* Store the character value in the local list */
callback: method s:string;

insertc(l, s, -1);
endmethod;

/* Set the items attribute */
setattr: method;

self.items = l;
endmethod;

endclass;

4 Flexibility — Level Five 153

Note how the IMPORT statement and the LOOP, SET, SETATTR, and CALLBACK
methods will be used:

� The IMPORT statement defines a search path for CLASS entry references in an
SCL program so that you can refer to a class by its two-level name instead of
having to specify the four-level name each time. It is used to specify a catalog to
search for abbreviated class names. For example, the MLIST class extends
LISTBOX_C, but if LISTBOX_C is not in the current catalog, the compiler will not
know where to find it. The IMPORT statement tells the compiler to search the
SASHELP.CLASSES catalog for any classes it cannot find in the current catalog.

� The SET method is used to set up a local list that will hold the new set of items
for the list box. It will also call the LOOP method in READ, with MLIST’s object
as a parameter. Recall that MLIST supports the CALL interface, so this will work
with the new LOOP method that was created above.

� As the LOOP method executes, it will call the CALLBACK method for each
character variable that it reads. The CALLBACK method will store the variable in
the local list that was created in the SET method.

� Finally, the SETATTR method will assign the local list to MLIST’s item list, thus
changing the list of items seen when the List Box, which is actually MLIST, is
displayed.

To see how this works, create the CALL interface, as well as the classes READ and
MLIST, by using the SAVECLASS command. Then edit a frame. In the Components
window, add the MLIST class to the class list (via AddClasses on the pop-up menu).
After it appears on the list, drag and drop MLIST to the frame. In the frame’s source,
enter

init:
dcl ddata d;
dcl read r;
dcl string filename = "sasuser.x";
d = _new_ ddata(filename, "i", 2);
r = _new_ read(d);
mlist1.set(r);
mlist1.setattr();
return;

This will create a DDATA reader with an associated READ class. Now call the SET and
SETATTR methods on the new List Box class (MLIST).

Compile and use the TESTAF command on the frame. The initial list of items will be

San Francisco
Honolulu
New York
Miami

Flexibility — Level Five
Using the CALL interface in the above exercise allows a great deal of flexibility in

modifying the MLIST and READ classes.
For example, to process numeric data instead of character data, you could simply

overload the CALLBACK method in the interface

interface call;
callback: method s:string;

154 Flexibility — Level Five 4 Chapter 9

callback: method n:num;
endinterface;

and support it in the MLIST class

callback: method n:num;
/* process numeric value */

endmethod;

Now, the READ class – or any class that supports CALL – can call the CALLBACK
method with a numeric parameter. Clearly, this process can be generalized to make use
of any possible parameter lists that are needed for CALLBACK.

Another feature is that any class that supports the READER interface can be used to
read the data into the list box. For example, to use an external file, change the frame’s
SCL to

init:
dcl fdata f;
dcl read r;
dcl string filename = "some_file";
f = _new_ fdata(filename, "i");
r = _new_ read(f);
mlist1.set(r);
mlist1.setattr();
return;

We can consolidate the code further by creating another class to set up the reader:

init:
dcl SetReader g = _new_ SetReader();
dcl read r = g.get();
mlist1.set(r);
mlist1.setattr();
return;

SetReader sets up whatever reader is necessary even if your program is using external
data. Then, at the frame level, you can read from any type of data source, such as a
data set, an external file, an SCL list, or any other user-defined data source. The only
requirement is that SetReader support the reader interface.

The correct bibliographic citation for this manual is as follows: SAS Institute Inc., SAS ®

Component Language: Reference, Version 8, Cary, NC: SAS Institute Inc., 1999.

SAS® Component Language: Reference, Version 8
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA.
ISBN 1–58025–495–0
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, October 1999
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.
The Institute is a private company devoted to the support and further development of its
software and related services.

